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Abstract
In this article we consider the commuting graphs of involution conjugacy classes in the affine Weyl
group Ãn. We show that where the graph is connected the diameter is at most 6.
MSC(2000): 20F55, 05C25, 20D60.

1 Introduction

Let G be a group and X a subset of G. The commuting graph on X, denoted C(G,X), has vertex
set X and an edge joining x, y ∈ X whenever xy = yx. If in addition X is a set of involutions, then
C(G,X) is called a commuting involution graph. Commuting graphs have been investigated by many
authors. Sometimes they are tools used in the proof of a theorem, or they may be studied as a way
of shedding light on the structures of certain groups (as in [1]). Commuting involution graphs for the
case where X is a conjugacy class of involutions were studied by Fischer [4] – in that case X was the
class of 3-transpositions of a 3-transposition group. These groups include all finite simply laced Weyl
groups, in particular the symmetric group.

Commuting involution graphs for arbitrary involution conjugacy classes of symmetric groups were
considered in [2]. The remaining finite Coxeter groups were dealt with in [3]. In this article we con-
sider commuting involution graphs in the affine Coxeter group of type Ãn. As in [2] and [3], we will
focus on the diameter of these graphs. We show that if X is a conjugacy class of involutions, then
either the graph is disconnected or it has diameter at most 6.

For the rest of this paper, let Gn denote Ãn−1, for some n ≥ 2, writing G when n is not specified, and
let X be a conjugacy class of involutions of G. We write Diam C(G, X) for the diameter of C(G,X)
(when it is connected). Let Ĝ be the underlying Weyl group An−1 of G. It will be shown that every
conjugacy class X of G corresponds to a certain conjugacy class X̂ of Ĝ. We may now state our main
results (notation will be explained in Section 3).

Theorem 1.1 Let G = Gn
∼= Ãn−1 and a = (12)(34) · · · (2m−1 2m) ∈ X̂. Then C(G,X)is connected

unless n = 2m + 1 or m = 1 and n ∈ {2, 4}.
Theorem 1.2 Suppose C(G,X) is connected. If n > 2m or m is even, then

Diam C(G,X) ≤ Diam C(Ĝ, X̂) + 2.

If n = 2m and m is odd, then Diam C(G,X) ≤ Diam C(Ĝ, X̂) + 3.

Using results about commuting involution graphs in An−1 (see Section 2) we can then deduce the
following result.

Corollary 1.3 Let G = Gn
∼= Ãn−1 and a = (12)(34) · · · (2m−1 2m). Suppose C(G,X) is connected.

(i) If n 6= 2m + 2 or n > 10, then Diam C(G,X) ≤ 5.

(ii) If n = 2m + 2 and n = 6, 8 or 10 then Diam C(G,X) ≤ 6.

In Section 2 we will establish notation, describe the conjugacy classes of involutions in G and state
results which we will require. Section 3 is devoted to proving Theorem 1.2. In Section 4 we give
examples of commuting involution graphs which show that the bounds of Theorem 1.2 are strict.
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Remark In the case of finite Weyl groups, given any conjugacy class X of a finite Weyl group W , it
was shown in [3] that if C(G,X) is connected, then Diam C(G,X) ≤ 5. It is natural to ask whether
there is a similar bound in the case of affine Weyl groups. The answer is no. Let W ∼= B̃n, and let WI

be a standard parabolic subgroup of G such that WI has type Bn−1. Let wI be the central involution
of WI , and set X = wW

I . It can be shown that Diam C(G,X) = n. Thus the set of diameters of
commuting involution graphs is unbounded.

2 The group Gn
∼= Ãn−1

Let W be a finite Weyl group with root system Φ and let Φ̌ denote the set of coroots. (For full details,
see for example [5].) The affine Weyl group W̃ is the semidirect product of W with the translation
group Z of the coroot lattice ZΦ̌ of W .
Elements of W̃ are written as pairs (w, z), for w ∈ W, z ∈ Z. Multiplication is given by

(σ,v)(τ,u) = (στ,vτ + u).

We now fix W = An−1. Then W ∼= Sym(n), the symmetric group of degree n. W acts on Rn =
〈ε1, ε2, . . . εn〉 by permuting the subscripts of the basis vectors. The root system Φ of W is the set
{±(εi−εj) : 1 ≤ i < j ≤ n}, and in this case Φ̌ = Φ. Writing a translation by

∑n
i=1 λiεi as (λ1, . . . , λn),

we see that

Z = 〈(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)〉

= 〈(u1, . . . , un) :
n∑

i=1

ui = 0〉.

2.1 Involutions in Gn

By the definition of group multiplication in Gn, we see that the element (σ,v) of G is an involution
precisely when (σ2,vσ +v) = (1,0). So σ is an involution of Sym(n) and for appropriate ai, bi, ci and
m,

σ = (a1b1) · · · (ambm)(c2m+1)(c2m+2) · · · (cn).

Setting v = (v1, · · · , vn) we must have

va1 + vb1 = · · · = vam + vbm = 2vc2m+1 = · · · = 2vcn = 0.

Hence we have the following lemma:

Lemma 2.1 Any involution in Gn is of the form (σ,v), where

σ = (a1b1) · · · (ambm)(c2m+1)(c2m+2) · · · (cn),

with vbi
= −vai for 1 ≤ i ≤ m and vci = 0 for 2m + 1 ≤ i ≤ n.

It will be convenient to use a more compact notation for involutions of G. Let g = (
∏m

i=1(αiβi),v) with
αi, βi ∈ {1, . . . , n} for 1 ≤ i ≤ m. Then, by Lemma 2.1, vβi = −vαi , and if j /∈ {α1, . . . , αm, β1, . . . , βm},
then vj = 0. Thus v is determined from the set λi := vαi , 1 ≤ i ≤ m. We may therefore write

g =
m∏

i=1

λi

(αiβi).
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2.2 Conjugacy classes of Involutions

We now describe the conjugacy classes of involutions in Gn. Conjugacy classes of involutions in Coxeter
groups are well understood and in order to use the known results we must give another description of
Gn, this time in terms of its Coxeter graph. A Coxeter group W has a generating set R of involutions
(known as the fundamental reflections), where the only relations are (rs)mrs = 1 (r, s ∈ R), with
mrr = 1 and, for r 6= s, mrs = msr ≥ 2. This information is encoded in the Coxeter graph Γ = Γ(W ).
The vertex set of Γ is R, where vertices r, s are joined by an edge labelled mrs whenever mrs > 2. By
convention the label is omitted when mrs = 3. The Coxeter graphs of G2

∼= Ã1 and Gn
∼= Ãn−1, n ≥ 3

are as follows:

∞
u uG2

r1 r2

uu u³³³³³³³³

PPPPPPPPurn

r1 r2 rn−1

Gn(n ≥ 3)

We may define rn =
1

(1n), and for 1 ≤ i ≤ n− 1, ri =
0

(i i + 1) (using the notation defined in Section
2.2). It is not difficult to see that the appropriate relations hold.
The symmetric group Sym(n) is a Coxeter group of type An−1, with Coxeter graph

uu u
r1 r2 rn−1

Sym(n) ∼= An−1

We may set ri = (i i + 1) for 1 ≤ i ≤ n− 1.

Definition 2.2 Let W be an arbitrary Coxeter group, with I, J two subsets of R. We say that I, J
are W -equivalent if there exists w ∈ W such that Iw = J .

Any subset I of R generates a Coxeter group in its own right, denoted WI . Such subgroups are called
standard parabolic subgroups of W . If WI is finite then it has a unique longest element, denoted wI .
Richardson [6] proved

Theorem 2.3 Let W be an arbitrary Coxeter group, with R the set of fundamental reflections. Let
g ∈ W be an involution. Then there exists I ⊆ R such that wI is central in WI , and g is conjugate to
wI . In addition, for I, J ⊆ R, wI is conjugate to wJ if and only if I and J are W -equivalent.

It will be useful to narrow down the possible elements in the conjugacy class of involutions (a,u) in
the case where a is an involution of Sym(n) with no fixed points.

Lemma 2.4 Suppose n = 2m. Let a =
∏m

i=1(αi βi) and b =
∏m

i=1(γi δi). Suppose g = (a,u) and
h = (b,v) are conjugate involutions of Gn. Then

∑m
i=1 uαi ≡

∑m
i=1 vγi mod 2.

Proof Let g = (a,u), and suppose h = (b,v) is conjugate to g in Gn via (c,w). Reordering if
necessary, assume that c(αi) = γi and c(βi) = δi for 1 ≤ i ≤ m. We see that

(b,v) = (a,u)(c,w)

= (c−1ac, (w−1)c−1ac + uc + w).

Thus b = c−1ac and v = w − wb + uc. Hence, for 1 ≤ i ≤ m, vγi = wγi − wb(γi) + [uc]γi . Since
c(αi) = γi, it follows that [uc]γi = uαi . Hence, recalling that

∑n
j=1 = 0,
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m∑

i=1

vγi =
m∑

i=1

(wγi − wδi + uαi) =
m∑

i=1

(wγi + wδi
− 2wδi

+ uαi)

=
n∑

j=1

wj − 2
m∑

i=1

wδi +
m∑

i=1

uαi ≡
m∑

i=1

uαi mod 2.

Therefore
∑m

i=1 uαi ≡
∑m

i=1 vγi mod 2, and the result holds. ¤

We use Theorem 2.3 to establish the next result.

Proposition 2.5 Let g ∈ G be an involution. Then there is m ∈ Z+ such that g is conjugate to
exactly one of the following:

0

(12) · · ·
0

(2m− 1 2m); or
1

(12)
0

(34) · · ·
0

(2m− 1 2m) (and n = 2m).

If n = 2m and g =
∏m

i=1

λi

(αi βi), then g is conjugate to
0

(12) · · ·
0

(2m− 1 2m) if and only if
∑m

i=1 λi ≡ 0
mod 2.

Proof By Theorem 2.3, g is conjugate to wI for some finite standard parabolic subgroup WI of
W in which wI is central. Note that if g is also conjugate to wJ for some J ⊆ R then |I| = |J |,
so that |I| only depends on g and not the particular choice of I. For any proper subset I ( R, we
see that WI is isomorphic to a direct product of symmetric groups. The only symmetric group with
non-trivial centre is Sym(2) ∼= A1. So for wI to be central, WI must be a direct product of symmetric
groups of degree 2, and wI = ri1ri2 · · · ril for some l, where rijrik = rikrij for 1 ≤ j < k ≤ l. This
immediately implies that |I| ≤ n/2. Suppose that wI and wJ are central in WI , WJ respectively,
and, in addition, that there exists r ∈ R\(I ∪ J). Set K = R\{r}. Then K is isomorphic to Sym(n).
It is well known that conjugacy classes in the symmetric group are parameterised by cycle type, so
that wI is conjugate to wJ precisely when |I| = |J |. Therefore, in the case |I| < n/2, we may as-

sume that I = {r1, r3, · · · , r2m−1} for some m < n/2, so that wI =
0

(12) · · ·
0

(2m− 1 2m), with 2m < n.

It only remains to consider the case |I| = n/2 (and then of course n must be even). We quickly see that
there are only two possibilities for I such that wI is central in WI . Either I = {r1, r3, . . . , rn−1} and

wI = g1 :=
0

(12) · · ·
0

(2m− 1 2m), or I = {r2, r4, . . . , rn} and wI = g2 :=
1

(1n)
0

(23) · · ·
0

(2m− 2 2m− 1).
By Lemma 2.4, g1 is not conjugate to g2. Hence g is conjugate to exactly one of g1 and g2. By Lemma

2.4, g3 :=
1

(12)
0

(34) · · ·
0

(2m− 1 2m) must be conjugate to g2. Hence g =
∏m

i=1

λi

(αi βi) is conjugate to ex-
actly one of g1 and g3. Furthermore g is conjugate to g1 if and only if∑n

i=1 λi ≡ 0 mod 2. We have now proved Proposition 2.5. ¤

It can easily be seen that in the case n = 2m, the two conjugacy classes have isomorphic commuting

involution graphs. Thus we may assume that g is conjugate to
0

(12) · · ·
0

(2m− 1 2m).
We end this section by stating some results from [2] concerning the diameters of commuting involution
graphs in Sym(n).
Let a = (12)(34) · · · (2m− 1 2m) ∈ Sym(n) and write Y = aSym(n).

Theorem 2.6 (Theorem 1.1 of [2]) C(Sym(n), Y ) is disconnected if and only if n = 2m + 1 or n = 4
and m = 1.
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Proposition 2.7 (Corollary 3.2 of [2]) If n = 2m, then C(Sym(n), Y ) is connected and
Diam C(Sym(n), Y ) ≤ 2, with equality when n > 4.

Theorem 2.8 (Theorem 1.2 of [2]) Suppose that C(Sym(n), Y ) is connected. Then one of the follow-
ing holds:

(i) Diam C(Sym(n), Y ) ≤ 3; or

(ii) 2m + 2 = n ∈ {6, 8, 10} and Diam C(Sym(n), Y ) = 4.

3 Proof of Theorems 1.1 and 1.2

From now on, fix a = (12) · · · (2m − 1 2m), where 2m ≤ n, and set t = (a,0) =
0

(12) · · ·
0

(2m− 1 2m)
and X = tG. As we have observed, every commuting involution graph of G is isomorphic to C(G,X)

for an appropriate choice of m. Write Ĝ = Sym(n) and X̂ = aĜ. Finally, if g =
∏m

i=1

λi

(αiβi) ∈ X,
then set ĝ =

∏m
i=1(αiβi) ∈ Ĝ. Clearly if g, h ∈ X, then ĝ, ĥ ∈ X̂. We begin with the following lemma.

Lemma 3.1 Suppose g, h ∈ X. If d(ĝ, ĥ) = k, then d(g, h) ≥ k. If C(Ĝ, X̂) is disconnected, then
C(G,X) is disconnected.

Proof Observe that if σ commutes with τ in Gn then σ̂ commutes with τ̂ in Sym(n). The lemma
follows. ¤

Lemma 3.2 Let g1 =
λ1

(αβ)
λ2

(γδ), g2 =
µ1

(αγ)
µ2

(βδ), g3 =
λ1

(αβ), g4 =
λ2

(αβ) for distinct α, β, γ, δ in
{1, . . . , n} and integers λi, µi. Then

(a) g1g2 = g2g1 if and only if µ1 − λ1 = µ2 − λ2;

(b) g3g4 = g4g3 if and only if λ1 = λ2;

(c) If h ∈ G is an involution such that ĥ(α) = α and ĥ(β) = β, then g3h = hg3 for all λ1 ∈ Z.

Proof For part (a), we lose no generality by assuming, for ease of notation, that n = 4, g1 =
λ1

(12)
λ2

(34)

and g2 =
µ1

(13)
µ2

(24). That is, g1 = ((12)(34), (λ1,−λ1, µ1,−µ1)) and g2 = ((13)(24), (λ2, µ2,−λ2,−µ2)).
Hence

g1g2 = ((14)(23), (λ1,−λ1, µ1,−µ1)(13)(24) + (λ2, µ2,−λ2,−µ2))
= ((14)(23), (µ1 + λ2,−µ1 + µ2, λ1 − λ2,−λ1 − µ2)).

Now g1 and g2 commute if and only if g1g2 is an involution. This occurs if and only if µ1 + λ2 =
−(−λ1 − µ2) and −µ1 + µ2 = −(λ1 − λ2). Rearranging gives µ1 − λ1 = µ2 − λ2, as required.
For part (b), we may assume that n = 2, g3 = ((12), (λ1,−λ1)) and g4 = ((12), (λ2,−λ2)). Then
g3g4 = (1, (−λ1 + λ2, λ1 − λ2)). Hence g3g4 = g4g3 if and only if λ1 = λ2.
For part (c), we again assume that g3 = ((12), (λ1,−λ1)), and write h = (b, (v1, . . . , v2)). Since b fixes
1 and 2 and h is an involution, we must have v1 = v2 = 0. Hence hg3 = ((12)b, (λ1,−λ1, v3, . . . , vn) =
g3h. This completes the proof of Lemma 3.2. ¤

We may now dispose of the case n = 2.

Proposition 3.3 Let G = G2
∼= Ã1. Then there are two conjugacy classes of involutions, represen-

tatives of which are
0

(12) and
1

(12). In either case C(G,X) is completely disconnected (the graph has
no edges).
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A double transposition
λ1

(α1 β1)
λ2

(α2 β2) for which λ1 + λ2 is even is called an even pair. Otherwise it is
an odd pair.

Proposition 3.4 Suppose n > 2 and that C(Ĝ, X̂) is connected. Let g ∈ X. If n > 2m or m is even,
then there exists h = (c,0) ∈ X such that d(g, h) ≤ 2.

Proof Let g ∈ X. We will find it useful to split g into various components. Since C(Ĝ, X̂) is
connected, by Theorem 2.6 either n = 2m or there are at least two fixed points. Recalling that either
n > 2m or m is even, it is easily seen that we may write g in the following form:

g = P1P2 · · ·PkQ

where P1, . . . , Pk are even pairs and Q is either the identity (if n = 2m and m is even), a single
transposition along with at least two fixed points, or an odd pair along with at least two fixed points.

Let Pi =
µi

(αiβi)
νi

(γiδi) with µi + νi = 2λi even. Now set P ′
i =

λi

(αiδi)
λi

(γiβi) and P ′′
i =

0

(αiγi)
0

(δiβi). Note
that each of Pi, P

′
i and P ′′

i is an even pair. It is clear by Lemma 3.2(a) that P ′
iP

′′
i = P ′′

i P ′
i . But Lemma

3.2(a) also implies that PiP
′
i = P ′

iPi, because we may rewrite Pi =
µi

(αiβi)
−νi

(δiγi) and P ′
i =

λi

(αiδi)
−λi

(βiγi).

If Q is the identity, then let Q′ = Q′′ = Q. If Q is a single transposition along with at least two fixed

points, then we may write Q =
λ

(αβ)
0

(ε1) · · ·
0

(εl) for some l ≥ 2. Let Q′ = Q′′ =
0

(ε1ε2)
0

(α)
0

(β)
0

(ε3) · · ·
0

(εl).

If Q is an odd pair, along with at least two fixed points, then we may write Q =
µ

(αβ)
ν

(γδ)
0

(ε1) · · ·
0

(εl)

for some l ≥ 2. Let Q′ =
0

(ε1ε2)
ν

(γδ)
0

(α)
0

(β)
0

(ε3) · · ·
0

(εl) and let Q′′ =
0

(αβ)
0

(ε1ε2)
0

(γ)
0

(δ)
0

(ε3) · · ·
0

(εl).
Then set g′ = P ′

1 · · ·P ′
kQ

′ and h = P ′′
1 · · ·P ′′

k Q′′. Let c = ĥ. Then by choice of h, h = (c,0). If n = 2m,
note that g′ and h consist entirely of even pairs, so g′, h ∈ X. If n 6= 2m, then g′ and h are obviously
in X. By construction, and Lemma 3.2, g commutes with g′ and g′ commutes with h. Therefore
d(g, h) ≤ 2. This completes the proof of the proposition. ¤

Proposition 3.5 Suppose that n = 2m with m > 1 odd. Let g = (b,v) ∈ X. Then there exists
h = (c,0) ∈ X such that d(g, h) ≤ 3.

Proof We may write g = PQ where P is a product of k even pairs and Q is an ‘even triple’ with

Q =
µ1

(α1β1)
µ2

(α2β2)
µ3

(α3β3) and µ1 + µ2 + µ3 = 2λ for some λ ∈ Z. Set ρ = µ1 − λ.

Now define Q1 =
µ1

(α1β1)
ρ+µ2

(α2α3)
ρ+µ3

(β2β3), Q2 =
0

(α1α2)
µ2−λ

(β1α3)
ρ+µ3

(β2β3) and Q3 =
0

(α1α2)
0

(β1β3)
0

(α3β2). By
repeated use of Lemma 3.2(a), we see that QQ1 = Q1Q, Q1Q2 = Q2Q1 and Q2Q3 = Q3Q2. Note also
that Q1, Q2 and Q3 are all even triples.

By Proposition 3.4, there exist P ′, P ′′, both products of k even pairs, such that P ′′ =
∏2k

i=1

0

(γiδi) for
some γi, δi and PP ′ = P ′P , P ′P ′′ = P ′′P ′. In addition, we may assume that Fix(P̂ ) = Fix(P̂ ′) =
Fix(P̂ ′′). Define g1 = PQ1, g2 = P ′Q2 and h = P ′′Q3. Then by construction g1 commutes with g
and g2, and g2 commutes with h. So d(g, h) ≤ 3. Furthermore, by construction g1, g2 and h are all
elements of X, and h = (ĥ,0). We have now proved Proposition 3.5. ¤

Lemma 3.6 Suppose g1 = (b1,0), g2 = (b2,0) ∈ X. If C(Ĝ, X̂) is connected, then d(g1, g2) = d(b1, b2).

We are now able to prove Theorems 1.1 and 1.2.
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Proof of Theorem 1.1 The case n = 2,m = 1 is Proposition 3.3. If n = 2m + 1 or n = 4,m = 1,
then C(G,X) is disconnected by Lemma 3.1 and Theorem 2.6. If n > 2 and C(Ĝ, X̂) is connected, then
the fact that C(G,X) is connected is an easy consequence of Propositions 3.4 and 3.5, and Lemma
3.6. ¤

Proof of Theorem 1.2 By Proposition 3.4, if n > 2m or m is even, and C(G,X) is connected,
then there exists h = (c,0) ∈ X such that d(g, h) ≤ 2. If n = 2m and m is odd, then by Proposition
3.5 there exists h = (c,0) ∈ X such that d(g, h) ≤ 3. By Lemma 3.6, d(h, t) ≤ Diam C(Ĝ, X̂). Thus
d(g, t) ≤ Diam C(Ĝ, X̂) + 2 if n > 2m or m is even, and d(g, t) ≤ Diam C(Ĝ, X̂) + 3 otherwise.
Theorem 1.2 follows immediately. ¤

Corollary 1.3 now follows from Theorem 1.2 in conjunction with Proposition 2.7 and Theorem 2.8.

4 Two Examples

In this section we give C(G,X) for two examples: n = 4,m = 2 and n = 6,m = 3. These graphs, of
diameters 3 and 5 respectively, illustrate the fact that the bounds in Theorem 1.2 are tight, because
the respective diameters of C(Sym(4), (12)(34)Sym(4)) and C(Sym(6), (12)(34)(56)Sym(6)) are 1 and 2.
Figure 1 shows C(G,X) for n = 4, m = 2. The variable(s) above a transposition can be taken to be

any integers. So for example
λ

(13)
λ

(24) commutes with
µ

(12)
µ

(34) for any integers λ, µ.
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0

(12)
0

(34)

λ

(13)
λ

(24)

λ

(14)
λ

(23)

λ+µ

(14)
λ−µ

(23)

λ+µ

(13)
λ−µ

(24)

µ

(12)
µ

(34)

µ

(12)
−µ

(34)

ρ+µ

(12)
µ−ρ

(34)

ρ+µ

(12)
ρ−µ

(34)

Figure 1: n = 4, m = 2

Figure 2 shows the collapsed adjacency graph in the case n = 6,m = 3. If g, h ∈ G are in the same
orbit of the centralizer CG(t) of t in G, then clearly d(g, t) = d(h, t). The vertices of the graph in
Figure 2 are the CG(t)-orbits of C(G,X). We give one representative for each CG(t)-orbit.
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Figure 2: n = 6,m = 3
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