Commuting Involution Graphs for A_n

Sarah Perkins *

Abstract

In this article we consider the commuting graphs of involution conjugacy classes in the affine Weyl group \tilde{A}_n . We show that where the graph is connected the diameter is at most 6. MSC(2000): 20F55, 05C25, 20D60.

1 Introduction

Let G be a group and X a subset of G. The commuting graph on X, denoted $\mathcal{C}(G, X)$, has vertex set X and an edge joining $x, y \in X$ whenever xy = yx. If in addition X is a set of involutions, then $\mathcal{C}(G, X)$ is called a commuting involution graph. Commuting graphs have been investigated by many authors. Sometimes they are tools used in the proof of a theorem, or they may be studied as a way of shedding light on the structures of certain groups (as in [1]). Commuting involution graphs for the case where X is a conjugacy class of involutions were studied by Fischer [4] – in that case X was the class of 3-transpositions of a 3-transposition group. These groups include all finite simply laced Weyl groups, in particular the symmetric group.

Commuting involution graphs for arbitrary involution conjugacy classes of symmetric groups were considered in [2]. The remaining finite Coxeter groups were dealt with in [3]. In this article we consider commuting involution graphs in the affine Coxeter group of type \tilde{A}_n . As in [2] and [3], we will focus on the diameter of these graphs. We show that if X is a conjugacy class of involutions, then either the graph is disconnected or it has diameter at most 6.

For the rest of this paper, let G_n denote A_{n-1} , for some $n \ge 2$, writing G when n is not specified, and let X be a conjugacy class of involutions of G. We write Diam $\mathcal{C}(G, X)$ for the diameter of $\mathcal{C}(G, X)$ (when it is connected). Let \hat{G} be the underlying Weyl group A_{n-1} of G. It will be shown that every conjugacy class X of G corresponds to a certain conjugacy class \hat{X} of \hat{G} . We may now state our main results (notation will be explained in Section 3).

Theorem 1.1 Let $G = G_n \cong \tilde{A}_{n-1}$ and $a = (12)(34) \cdots (2m-1 \ 2m) \in \hat{X}$. Then C(G, X) is connected unless n = 2m + 1 or m = 1 and $n \in \{2, 4\}$.

Theorem 1.2 Suppose C(G, X) is connected. If n > 2m or m is even, then

Diam
$$\mathcal{C}(G, X) \leq \text{Diam } \mathcal{C}(\hat{G}, \hat{X}) + 2.$$

If n = 2m and m is odd, then Diam $\mathcal{C}(G, X) \leq \text{Diam } \mathcal{C}(\hat{G}, \hat{X}) + 3$.

Using results about commuting involution graphs in A_{n-1} (see Section 2) we can then deduce the following result.

Corollary 1.3 Let $G = G_n \cong \tilde{A}_{n-1}$ and $a = (12)(34) \cdots (2m-1 \ 2m)$. Suppose $\mathcal{C}(G, X)$ is connected. (i) If $n \neq 2m+2$ or n > 10, then Diam $\mathcal{C}(G, X) \leq 5$.

(ii) If n = 2m + 2 and n = 6, 8 or 10 then $\text{Diam } \mathcal{C}(G, X) \leq 6$.

In Section 2 we will establish notation, describe the conjugacy classes of involutions in G and state results which we will require. Section 3 is devoted to proving Theorem 1.2. In Section 4 we give examples of commuting involution graphs which show that the bounds of Theorem 1.2 are strict.

^{*}School of Economics, Mathematics and Statistics, Birkbeck College, Malet Street, London, WC1E 7HX. s.perkins@bbk.ac.uk

Remark In the case of finite Weyl groups, given any conjugacy class X of a finite Weyl group W, it was shown in [3] that if $\mathcal{C}(G, X)$ is connected, then Diam $\mathcal{C}(G, X) \leq 5$. It is natural to ask whether there is a similar bound in the case of affine Weyl groups. The answer is no. Let $W \cong \tilde{B}_n$, and let W_I be a standard parabolic subgroup of G such that W_I has type B_{n-1} . Let w_I be the central involution of W_I , and set $X = w_I^W$. It can be shown that Diam $\mathcal{C}(G, X) = n$. Thus the set of diameters of commuting involution graphs is unbounded.

2 The group $G_n \cong \tilde{A}_{n-1}$

Let W be a finite Weyl group with root system Φ and let $\check{\Phi}$ denote the set of coroots. (For full details, see for example [5].) The affine Weyl group \tilde{W} is the semidirect product of W with the translation group Z of the coroot lattice $\mathbb{Z}\check{\Phi}$ of W.

Elements of \tilde{W} are written as pairs (w, z), for $w \in W, z \in Z$. Multiplication is given by

$$(\sigma, \mathbf{v})(\tau, \mathbf{u}) = (\sigma\tau, \mathbf{v}^{\tau} + \mathbf{u}).$$

We now fix $W = A_{n-1}$. Then $W \cong \text{Sym}(n)$, the symmetric group of degree n. W acts on $\mathbb{R}_n = \langle \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \rangle$ by permuting the subscripts of the basis vectors. The root system Φ of W is the set $\{\pm(\varepsilon_i - \varepsilon_j) : 1 \le i < j \le n\}$, and in this case $\check{\Phi} = \Phi$. Writing a translation by $\sum_{i=1}^n \lambda_i \varepsilon_i$ as $(\lambda_1, \ldots, \lambda_n)$, we see that

$$Z = \langle (0, \dots, 0, 1, 0, \dots, 0, -1, 0, \dots, 0) \rangle$$

= $\langle (u_1, \dots, u_n) : \sum_{i=1}^n u_i = 0 \rangle.$

2.1 Involutions in G_n

By the definition of group multiplication in G_n , we see that the element (σ, \mathbf{v}) of G is an involution precisely when $(\sigma^2, \mathbf{v}^{\sigma} + \mathbf{v}) = (1, \mathbf{0})$. So σ is an involution of Sym(n) and for appropriate a_i, b_i, c_i and m,

$$\sigma = (a_1b_1)\cdots(a_mb_m)(c_{2m+1})(c_{2m+2})\cdots(c_n)$$

Setting $\mathbf{v} = (v_1, \cdots, v_n)$ we must have

$$v_{a_1} + v_{b_1} = \dots = v_{a_m} + v_{b_m} = 2v_{c_{2m+1}} = \dots = 2v_{c_n} = 0.$$

Hence we have the following lemma:

Lemma 2.1 Any involution in G_n is of the form (σ, \mathbf{v}) , where

$$\sigma = (a_1b_1)\cdots(a_mb_m)(c_{2m+1})(c_{2m+2})\cdots(c_n),$$

with $v_{b_i} = -v_{a_i}$ for $1 \le i \le m$ and $v_{c_i} = 0$ for $2m + 1 \le i \le n$.

It will be convenient to use a more compact notation for involutions of G. Let $g = (\prod_{i=1}^{m} (\alpha_i \beta_i), \mathbf{v})$ with $\alpha_i, \beta_i \in \{1, \ldots, n\}$ for $1 \le i \le m$. Then, by Lemma 2.1, $v_{\beta_i} = -v_{\alpha_i}$, and if $j \notin \{\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_m\}$, then $v_j = 0$. Thus \mathbf{v} is determined from the set $\lambda_i := v_{\alpha_i}, 1 \le i \le m$. We may therefore write

$$g = \prod_{i=1}^{m} \left(\alpha_i^{\lambda_i} \beta_i \right)$$

2.2 Conjugacy classes of Involutions

We now describe the conjugacy classes of involutions in G_n . Conjugacy classes of involutions in Coxeter groups are well understood and in order to use the known results we must give another description of G_n , this time in terms of its Coxeter graph. A Coxeter group W has a generating set R of involutions (known as the fundamental reflections), where the only relations are $(rs)^{m_{rs}} = 1$ $(r, s \in R)$, with $m_{rr} = 1$ and, for $r \neq s$, $m_{rs} = m_{sr} \geq 2$. This information is encoded in the Coxeter graph $\Gamma = \Gamma(W)$. The vertex set of Γ is R, where vertices r, s are joined by an edge labelled m_{rs} whenever $m_{rs} > 2$. By convention the label is omitted when $m_{rs} = 3$. The Coxeter graphs of $G_2 \cong \tilde{A}_1$ and $G_n \cong \tilde{A}_{n-1}, n \geq 3$ are as follows:

We may define $r_n = (1n)$, and for $1 \le i \le n-1$, $r_i = (i i + 1)$ (using the notation defined in Section 2.2). It is not difficult to see that the appropriate relations hold.

The symmetric group Sym(n) is a Coxeter group of type A_{n-1} , with Coxeter graph

$$\operatorname{Sym}(n) \cong A_{n-1} \qquad \underbrace{\bullet}_{r_1} \qquad \underbrace{\bullet}_{r_2} \qquad \cdots \qquad \underbrace{\bullet}_{r_{n-1}}$$

We may set $r_i = (i \ i + 1)$ for $1 \le i \le n - 1$.

Definition 2.2 Let W be an arbitrary Coxeter group, with I, J two subsets of R. We say that I, J are W-equivalent if there exists $w \in W$ such that $I^w = J$.

Any subset I of R generates a Coxeter group in its own right, denoted W_I . Such subgroups are called standard parabolic subgroups of W. If W_I is finite then it has a unique longest element, denoted w_I . Richardson [6] proved

Theorem 2.3 Let W be an arbitrary Coxeter group, with R the set of fundamental reflections. Let $g \in W$ be an involution. Then there exists $I \subseteq R$ such that w_I is central in W_I , and g is conjugate to w_I . In addition, for $I, J \subseteq R$, w_I is conjugate to w_J if and only if I and J are W-equivalent.

It will be useful to narrow down the possible elements in the conjugacy class of involutions (a, \mathbf{u}) in the case where a is an involution of Sym(n) with no fixed points.

Lemma 2.4 Suppose n = 2m. Let $a = \prod_{i=1}^{m} (\alpha_i \beta_i)$ and $b = \prod_{i=1}^{m} (\gamma_i \delta_i)$. Suppose $g = (a, \mathbf{u})$ and $h = (b, \mathbf{v})$ are conjugate involutions of G_n . Then $\sum_{i=1}^{m} u_{\alpha_i} \equiv \sum_{i=1}^{m} v_{\gamma_i} \mod 2$.

Proof Let $g = (a, \mathbf{u})$, and suppose $h = (b, \mathbf{v})$ is conjugate to g in G_n via (c, \mathbf{w}) . Reordering if necessary, assume that $c(\alpha_i) = \gamma_i$ and $c(\beta_i) = \delta_i$ for $1 \le i \le m$. We see that

$$(b, \mathbf{v}) = (a, \mathbf{u})^{(c, \mathbf{w})}$$

= $(c^{-1}ac, (\mathbf{w}^{-1})^{c^{-1}ac} + \mathbf{u}^{c} + \mathbf{w}).$

Thus $b = c^{-1}ac$ and $\mathbf{v} = \mathbf{w} - \mathbf{w}^b + \mathbf{u}^c$. Hence, for $1 \le i \le m$, $v_{\gamma_i} = w_{\gamma_i} - w_{b(\gamma_i)} + [\mathbf{u}^c]_{\gamma_i}$. Since $c(\alpha_i) = \gamma_i$, it follows that $[\mathbf{u}^c]_{\gamma_i} = u_{\alpha_i}$. Hence, recalling that $\sum_{j=1}^n = 0$,

$$\sum_{i=1}^{m} v_{\gamma_i} = \sum_{i=1}^{m} (w_{\gamma_i} - w_{\delta_i} + u_{\alpha_i}) = \sum_{i=1}^{m} (w_{\gamma_i} + w_{\delta_i} - 2w_{\delta_i} + u_{\alpha_i})$$
$$= \sum_{j=1}^{n} w_j - 2\sum_{i=1}^{m} w_{\delta_i} + \sum_{i=1}^{m} u_{\alpha_i} \equiv \sum_{i=1}^{m} u_{\alpha_i} \mod 2.$$

Therefore $\sum_{i=1}^{m} u_{\alpha_i} \equiv \sum_{i=1}^{m} v_{\gamma_i} \mod 2$, and the result holds.

We use Theorem 2.3 to establish the next result.

Proposition 2.5 Let $g \in G$ be an involution. Then there is $m \in \mathbb{Z}^+$ such that g is conjugate to exactly one of the following:

$$\begin{array}{c} 0 & 0 \\ (12) \cdots (2m-1 \ 2m); or \\ 1 & 0 \\ (12)(34) \cdots (2m-1 \ 2m) \ (and \ n=2m). \end{array}$$

If n = 2m and $g = \prod_{i=1}^{m} (\alpha_i^{\lambda_i} \beta_i)$, then g is conjugate to $(12) \cdots (2m - 1 2m)$ if and only if $\sum_{i=1}^{m} \lambda_i \equiv 0 \mod 2$.

Proof By Theorem 2.3, g is conjugate to w_I for some finite standard parabolic subgroup W_I of W in which w_I is central. Note that if g is also conjugate to w_J for some $J \subseteq R$ then |I| = |J|, so that |I| only depends on g and not the particular choice of I. For any proper subset $I \subsetneq R$, we see that W_I is isomorphic to a direct product of symmetric groups. The only symmetric group with non-trivial centre is $\operatorname{Sym}(2) \cong A_1$. So for w_I to be central, W_I must be a direct product of symmetric groups of degree 2, and $w_I = r_{i_1}r_{i_2}\cdots r_{i_l}$ for some l, where $r_{i_j}r_{i_k} = r_{i_k}r_{i_j}$ for $1 \le j < k \le l$. This immediately implies that $|I| \le n/2$. Suppose that w_I and w_J are central in W_I , W_J respectively, and, in addition, that there exists $r \in R \setminus (I \cup J)$. Set $K = R \setminus \{r\}$. Then K is isomorphic to $\operatorname{Sym}(n)$. It is well known that conjugacy classes in the symmetric group are parameterised by cycle type, so that w_I is conjugate to w_J precisely when |I| = |J|. Therefore, in the case |I| < n/2, we may assume that $I = \{r_1, r_3, \cdots, r_{2m-1}\}$ for some m < n/2, so that $w_I = (12) \cdots (2m-12m)$, with 2m < n.

It only remains to consider the case |I| = n/2 (and then of course n must be even). We quickly see that there are only two possibilities for I such that w_I is central in W_I . Either $I = \{r_1, r_3, \ldots, r_{n-1}\}$ and $w_I = g_1 := (12) \cdots (2m - 1 \ 2m)$, or $I = \{r_2, r_4, \ldots, r_n\}$ and $w_I = g_2 := (1n)(23) \cdots (2m - 2 \ 2m - 1)$. By Lemma 2.4, g_1 is not conjugate to g_2 . Hence g is conjugate to exactly one of g_1 and g_2 . By Lemma $2.4, g_3 := (12)(34) \cdots (2m - 1 \ 2m)$ must be conjugate to g_2 . Hence $g = \prod_{i=1}^m (\alpha_i \ \beta_i)$ is conjugate to exactly one of g_1 and g_3 . Furthermore g is conjugate to g_1 if and only if $\sum_{i=1}^n \lambda_i \equiv 0 \mod 2$. We have now proved Proposition 2.5.

It can easily be seen that in the case n = 2m, the two conjugacy classes have isomorphic commuting involution graphs. Thus we may assume that g is conjugate to $\begin{pmatrix} 0 \\ 12 \end{pmatrix} \cdots \begin{pmatrix} 2m - 1 \\ 2m \end{pmatrix}$.

We end this section by stating some results from [2] concerning the diameters of commuting involution graphs in Sym(n).

Let $a = (12)(34) \cdots (2m - 1 \ 2m) \in \text{Sym}(n)$ and write $Y = a^{\text{Sym}(n)}$.

Theorem 2.6 (Theorem 1.1 of [2]) C(Sym(n), Y) is disconnected if and only if n = 2m + 1 or n = 4 and m = 1.

Proposition 2.7 (Corollary 3.2 of [2]) If n = 2m, then $\mathcal{C}(\text{Sym}(n), Y)$ is connected and Diam $\mathcal{C}(\text{Sym}(n), Y) \leq 2$, with equality when n > 4.

Theorem 2.8 (Theorem 1.2 of [2]) Suppose that C(Sym(n), Y) is connected. Then one of the following holds:

(i) Diam $C(Sym(n), Y) \le 3$; or (ii) $2m + 2 = n \in \{6, 8, 10\}$ and Diam C(Sym(n), Y) = 4.

3 Proof of Theorems 1.1 and 1.2

From now on, fix $a = (12) \cdots (2m - 1 \ 2m)$, where $2m \le n$, and set $t = (a, \mathbf{0}) = (12) \cdots (2m - 1 \ 2m)$ and $X = t^G$. As we have observed, every commuting involution graph of G is isomorphic to $\mathcal{C}(G, X)$

for an appropriate choice of m. Write $\hat{G} = \text{Sym}(n)$ and $\hat{X} = a^{\hat{G}}$. Finally, if $g = \prod_{i=1}^{m} (\alpha_i \beta_i) \in X$, then set $\hat{g} = \prod_{i=1}^{m} (\alpha_i \beta_i) \in \hat{G}$. Clearly if $g, h \in X$, then $\hat{g}, \hat{h} \in \hat{X}$. We begin with the following lemma.

Lemma 3.1 Suppose $g, h \in X$. If $d(\hat{g}, \hat{h}) = k$, then $d(g, h) \ge k$. If $C(\hat{G}, \hat{X})$ is disconnected, then C(G, X) is disconnected.

Proof Observe that if σ commutes with τ in G_n then $\hat{\sigma}$ commutes with $\hat{\tau}$ in Sym(n). The lemma follows.

Lemma 3.2 Let $g_1 = (\alpha\beta)(\gamma\delta)$, $g_2 = (\alpha\gamma)(\beta\delta)$, $g_3 = (\alpha\beta)$, $g_4 = (\alpha\beta)$ for distinct $\alpha, \beta, \gamma, \delta$ in $\{1, \ldots, n\}$ and integers λ_i, μ_i . Then

(a) $g_1g_2 = g_2g_1$ if and only if $\mu_1 - \lambda_1 = \mu_2 - \lambda_2$;

(b) $g_3g_4 = g_4g_3$ if and only if $\lambda_1 = \lambda_2$;

(c) If $h \in G$ is an involution such that $\hat{h}(\alpha) = \alpha$ and $\hat{h}(\beta) = \beta$, then $g_3h = hg_3$ for all $\lambda_1 \in \mathbb{Z}$.

Proof For part (a), we lose no generality by assuming, for ease of notation, that n = 4, $g_1 = \begin{pmatrix} \lambda_1 & \lambda_2 \\ (12)(34) \end{pmatrix}$ and $g_2 = \begin{pmatrix} 13 \\ (24) \end{pmatrix}$. That is, $g_1 = ((12)(34), (\lambda_1, -\lambda_1, \mu_1, -\mu_1))$ and $g_2 = ((13)(24), (\lambda_2, \mu_2, -\lambda_2, -\mu_2))$. Hence

$$g_1g_2 = ((14)(23), (\lambda_1, -\lambda_1, \mu_1, -\mu_1)^{(13)(24)} + (\lambda_2, \mu_2, -\lambda_2, -\mu_2)) = ((14)(23), (\mu_1 + \lambda_2, -\mu_1 + \mu_2, \lambda_1 - \lambda_2, -\lambda_1 - \mu_2)).$$

Now g_1 and g_2 commute if and only if g_1g_2 is an involution. This occurs if and only if $\mu_1 + \lambda_2 = -(-\lambda_1 - \mu_2)$ and $-\mu_1 + \mu_2 = -(\lambda_1 - \lambda_2)$. Rearranging gives $\mu_1 - \lambda_1 = \mu_2 - \lambda_2$, as required.

For part (b), we may assume that n = 2, $g_3 = ((12), (\lambda_1, -\lambda_1))$ and $g_4 = ((12), (\lambda_2, -\lambda_2))$. Then $g_3g_4 = (1, (-\lambda_1 + \lambda_2, \lambda_1 - \lambda_2))$. Hence $g_3g_4 = g_4g_3$ if and only if $\lambda_1 = \lambda_2$.

For part (c), we again assume that $g_3 = ((12), (\lambda_1, -\lambda_1))$, and write $h = (b, (v_1, \ldots, v_2))$. Since b fixes 1 and 2 and h is an involution, we must have $v_1 = v_2 = 0$. Hence $hg_3 = ((12)b, (\lambda_1, -\lambda_1, v_3, \ldots, v_n) = g_3h$. This completes the proof of Lemma 3.2.

We may now dispose of the case n = 2.

Proposition 3.3 Let $G = G_2 \cong \tilde{A}_1$. Then there are two conjugacy classes of involutions, representatives of which are $\begin{pmatrix} 0 \\ 12 \end{pmatrix}$ and $\begin{pmatrix} 12 \\ 12 \end{pmatrix}$. In either case $\mathcal{C}(G, X)$ is completely disconnected (the graph has no edges).

A double transposition $\begin{pmatrix} \lambda_1 \\ \alpha_1 \beta_1 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \alpha_2 \beta_2 \end{pmatrix}$ for which $\lambda_1 + \lambda_2$ is even is called an *even pair*. Otherwise it is an odd pair.

Proposition 3.4 Suppose n > 2 and that $\mathcal{C}(\hat{G}, \hat{X})$ is connected. Let $q \in X$. If n > 2m or m is even, then there exists $h = (c, \mathbf{0}) \in X$ such that d(q, h) < 2.

Proof Let $g \in X$. We will find it useful to split g into various components. Since $\mathcal{C}(\hat{G}, \hat{X})$ is connected, by Theorem 2.6 either n = 2m or there are at least two fixed points. Recalling that either n > 2m or m is even, it is easily seen that we may write q in the following form:

$$g = P_1 P_2 \cdots P_k Q$$

where P_1, \ldots, P_k are even pairs and Q is either the identity (if n = 2m and m is even), a single transposition along with at least two fixed points, or an odd pair along with at least two fixed points. Let $P_i = (\alpha_i \beta_i)(\gamma_i \delta_i)$ with $\mu_i + \nu_i = 2\lambda_i$ even. Now set $P'_i = (\alpha_i \delta_i)(\gamma_i \beta_i)$ and $P''_i = (\alpha_i \gamma_i)(\delta_i \beta_i)$. Note that each of P_i, P'_i and P''_i is an even pair. It is clear by Lemma 3.2(a) that $P'_i P''_i = P''_i P'_i$. But Lemma 3.2(a) also implies that $P_i P'_i = P'_i P_i$, because we may rewrite $P_i = (\alpha_i \beta_i)(\delta_i \gamma_i)$ and $P'_i = (\alpha_i \delta_i)(\beta_i \gamma_i)$.

If Q is the identity, then let Q' = Q'' = Q. If Q is a single transposition along with at least two fixed points, then we may write $Q = (\alpha\beta)(\varepsilon_1)\cdots(\varepsilon_l)$ for some $l \ge 2$. Let $Q' = Q'' = (\varepsilon_1\varepsilon_2)(\alpha)(\beta)(\varepsilon_3)\cdots(\varepsilon_l)$. If Q is an odd pair, along with at least two fixed points, then we may write $Q = (\alpha\beta)(\gamma\delta)(\varepsilon_1)\cdots(\varepsilon_l)$ for some $l \ge 2$. Let $Q' = (\varepsilon_1\varepsilon_2)(\gamma\delta)(\alpha)(\beta)(\varepsilon_3)\cdots(\varepsilon_l)$ and let $Q'' = (\alpha\beta)(\varepsilon_1\varepsilon_2)(\gamma)(\delta)(\varepsilon_3)\cdots(\varepsilon_l)$. Then set $q' = P'_1\cdots P'_l Q'$ and $h = P''_l\cdots P''_l Q''_l$. Let $c = \hat{h}$. Then by choice of h does not constant of Q. Then set $g' = P'_1 \cdots P'_k Q'$ and $h = P''_1 \cdots P''_k Q''$. Let $c = \hat{h}$. Then by choice of $h, h = (c, \mathbf{0})$. If n = 2m, note that g' and h consist entirely of even pairs, so $g', h \in X$. If $n \neq 2m$, then g' and h are obviously in X. By construction, and Lemma 3.2, g commutes with g' and g' commutes with h. Therefore

Proposition 3.5 Suppose that n = 2m with m > 1 odd. Let $g = (b, \mathbf{v}) \in X$. Then there exists $h = (c, \mathbf{0}) \in X$ such that $d(q, h) \leq 3$.

Proof We may write g = PQ where P is a product of k even pairs and Q is an 'even triple' with

 $Q = (\alpha_1\beta_1)(\alpha_2\beta_2)(\alpha_3\beta_3) \text{ and } \mu_1 + \mu_2 + \mu_3 = 2\lambda \text{ for some } \lambda \in \mathbb{Z}. \text{ Set } \rho = \mu_1 - \lambda.$ Now define $Q_1 = (\alpha_1\beta_1)(\alpha_2\alpha_3)(\beta_2\beta_3), Q_2 = (\alpha_1\alpha_2)(\beta_1\alpha_3)(\beta_2\beta_3) \text{ and } Q_3 = (\alpha_1\alpha_2)(\beta_1\beta_3)(\alpha_3\beta_2).$ By repeated use of Lemma 3.2(a), we see that $QQ_1 = Q_1Q$, $Q_1Q_2 = Q_2Q_1$ and $Q_2Q_3 = Q_3Q_2$. Note also that Q_1, Q_2 and Q_3 are all even triples.

By Proposition 3.4, there exist P', P'', both products of k even pairs, such that $P'' = \prod_{i=1}^{2k} {0 \choose \gamma_i \delta_i}$ for some $\gamma_i \delta_i$ and PP' = D'P = D'P' = D'P' = D'P'. some γ_i, δ_i and PP' = P'P, P'P'' = P''P'. In addition, we may assume that $\operatorname{Fix}(\hat{P}) = \operatorname{Fix}(\hat{P}') =$ Fix $(\hat{P''})$. Define $g_1 = PQ_1$, $g_2 = P'Q_2$ and $h = P''Q_3$. Then by construction g_1 commutes with g_1 and g_2 , and g_2 commutes with h. So $d(g,h) \leq 3$. Furthermore, by construction g_1, g_2 and h are all elements of X, and $h = (h, \mathbf{0})$. We have now proved Proposition 3.5.

Lemma 3.6 Suppose $q_1 = (b_1, \mathbf{0}), q_2 = (b_2, \mathbf{0}) \in X$. If $\mathcal{C}(\hat{G}, \hat{X})$ is connected, then $d(q_1, q_2) = d(b_1, b_2)$.

We are now able to prove Theorems 1.1 and 1.2.

 $d(q,h) \leq 2$. This completes the proof of the proposition.

Proof of Theorem 1.1 The case n = 2, m = 1 is Proposition 3.3. If n = 2m + 1 or n = 4, m = 1, then $\mathcal{C}(G, X)$ is disconnected by Lemma 3.1 and Theorem 2.6. If n > 2 and $\mathcal{C}(\hat{G}, \hat{X})$ is connected, then the fact that $\mathcal{C}(G, X)$ is connected is an easy consequence of Propositions 3.4 and 3.5, and Lemma 3.6.

Proof of Theorem 1.2 By Proposition 3.4, if n > 2m or m is even, and $\mathcal{C}(G, X)$ is connected, then there exists $h = (c, \mathbf{0}) \in X$ such that $d(g, h) \leq 2$. If n = 2m and m is odd, then by Proposition 3.5 there exists $h = (c, \mathbf{0}) \in X$ such that $d(g, h) \leq 3$. By Lemma 3.6, $d(h, t) \leq \text{Diam } \mathcal{C}(\hat{G}, \hat{X})$. Thus $d(g, t) \leq \text{Diam } \mathcal{C}(\hat{G}, \hat{X}) + 2$ if n > 2m or m is even, and $d(g, t) \leq \text{Diam } \mathcal{C}(\hat{G}, \hat{X}) + 3$ otherwise. Theorem 1.2 follows immediately.

Corollary 1.3 now follows from Theorem 1.2 in conjunction with Proposition 2.7 and Theorem 2.8.

4 Two Examples

In this section we give C(G, X) for two examples: n = 4, m = 2 and n = 6, m = 3. These graphs, of diameters 3 and 5 respectively, illustrate the fact that the bounds in Theorem 1.2 are tight, because the respective diameters of $C(\text{Sym}(4), (12)(34)^{\text{Sym}(4)})$ and $C(\text{Sym}(6), (12)(34)(56)^{\text{Sym}(6)})$ are 1 and 2. Figure 1 shows C(G, X) for n = 4, m = 2. The variable(s) above a transposition can be taken to be any integers. So for example (13)(24) commutes with (12)(34) for any integers λ, μ .

Figure 1: n = 4, m = 2

Figure 2 shows the collapsed adjacency graph in the case n = 6, m = 3. If $g, h \in G$ are in the same orbit of the centralizer $C_G(t)$ of t in G, then clearly d(g,t) = d(h,t). The vertices of the graph in Figure 2 are the $C_G(t)$ -orbits of $\mathcal{C}(G, X)$. We give one representative for each $C_G(t)$ -orbit.

Figure 2: n = 6, m = 3

References

- [1] M. Aschbacher. *Sporadic Groups*, Cambridge Tracts in Mathematics, 104, Cambridge University Press, Cambridge (1994).
- [2] C. Bates, D. Bundy, S. Perkins and P. Rowley. Commuting Involution Graphs for Symmetric Groups, J. Algebra 266 (2003), 133–153.
- [3] C. Bates, D. Bundy, S. Perkins and P. Rowley. Commuting Involution Graphs for Finite Coxeter Groups, J. Group Theory 6 (2003), 461–476.
- [4] B. Fischer, Finite groups generated by 3-transpositions, I. Invent. Math. 13 (1971), 232–246.
- [5] J.E. Humphreys. *Reflection Groups and Coxeter Groups*, Cambridge Studies in Advanced Mathematics, 29 (1990).
- [6] R.W. Richardson. Conjugacy Classes of Involutions in Coxeter Groups, Bull. Austral. Math. Soc. 26 (1982), 1–15.