Commuting Involution Graphs for \tilde{A}_{n}

Sarah Perkins *

Abstract

In this article we consider the commuting graphs of involution conjugacy classes in the affine Weyl group \tilde{A}_{n}. We show that where the graph is connected the diameter is at most 6 . MSC(2000): 20F55, 05C25, 20D60.

1 Introduction

Let G be a group and X a subset of G. The commuting graph on X, denoted $\mathcal{C}(G, X)$, has vertex set X and an edge joining $x, y \in X$ whenever $x y=y x$. If in addition X is a set of involutions, then $\mathcal{C}(G, X)$ is called a commuting involution graph. Commuting graphs have been investigated by many authors. Sometimes they are tools used in the proof of a theorem, or they may be studied as a way of shedding light on the structures of certain groups (as in [1]). Commuting involution graphs for the case where X is a conjugacy class of involutions were studied by Fischer [4] - in that case X was the class of 3 -transpositions of a 3 -transposition group. These groups include all finite simply laced Weyl groups, in particular the symmetric group.

Commuting involution graphs for arbitrary involution conjugacy classes of symmetric groups were considered in [2]. The remaining finite Coxeter groups were dealt with in [3]. In this article we consider commuting involution graphs in the affine Coxeter group of type \tilde{A}_{n}. As in [2] and [3], we will focus on the diameter of these graphs. We show that if X is a conjugacy class of involutions, then either the graph is disconnected or it has diameter at most 6 .

For the rest of this paper, let G_{n} denote \tilde{A}_{n-1}, for some $n \geq 2$, writing G when n is not specified, and let X be a conjugacy class of involutions of G. We write $\operatorname{Diam} \mathcal{C}(G, X)$ for the diameter of $\mathcal{C}(G, X)$ (when it is connected). Let \hat{G} be the underlying Weyl group A_{n-1} of G. It will be shown that every conjugacy class X of G corresponds to a certain conjugacy class \hat{X} of \hat{G}. We may now state our main results (notation will be explained in Section 3).
Theorem 1.1 Let $G=G_{n} \cong \tilde{A}_{n-1}$ and $a=(12)(34) \cdots(2 m-12 m) \in \hat{X}$. Then $\mathcal{C}(G, X)$ is connected unless $n=2 m+1$ or $m=1$ and $n \in\{2,4\}$.
Theorem 1.2 Suppose $\mathcal{C}(G, X)$ is connected. If $n>2 m$ or m is even, then

$$
\operatorname{Diam} \mathcal{C}(G, X) \leq \operatorname{Diam} \mathcal{C}(\hat{G}, \hat{X})+2
$$

If $n=2 m$ and m is odd, then $\operatorname{Diam} \mathcal{C}(G, X) \leq \operatorname{Diam} \mathcal{C}(\hat{G}, \hat{X})+3$.
Using results about commuting involution graphs in A_{n-1} (see Section 2) we can then deduce the following result.
Corollary 1.3 Let $G=G_{n} \cong \tilde{A}_{n-1}$ and $a=(12)(34) \cdots(2 m-12 m)$. Suppose $\mathcal{C}(G, X)$ is connected. (i) If $n \neq 2 m+2$ or $n>10$, then $\operatorname{Diam} \mathcal{C}(G, X) \leq 5$.
(ii) If $n=2 m+2$ and $n=6,8$ or 10 then $\operatorname{Diam} \mathcal{C}(G, X) \leq 6$.

In Section 2 we will establish notation, describe the conjugacy classes of involutions in G and state results which we will require. Section 3 is devoted to proving Theorem 1.2. In Section 4 we give examples of commuting involution graphs which show that the bounds of Theorem 1.2 are strict.

[^0]Remark In the case of finite Weyl groups, given any conjugacy class X of a finite Weyl group W, it was shown in [3] that if $\mathcal{C}(G, X)$ is connected, then $\operatorname{Diam} \mathcal{C}(G, X) \leq 5$. It is natural to ask whether there is a similar bound in the case of affine Weyl groups. The answer is no. Let $W \cong \tilde{B}_{n}$, and let W_{I} be a standard parabolic subgroup of G such that W_{I} has type B_{n-1}. Let w_{I} be the central involution of W_{I}, and set $X=w_{I}^{W}$. It can be shown that $\operatorname{Diam} \mathcal{C}(G, X)=n$. Thus the set of diameters of commuting involution graphs is unbounded.

2 The group $G_{n} \cong \tilde{A}_{n-1}$

Let W be a finite Weyl group with root system Φ and let $\check{\Phi}$ denote the set of coroots. (For full details, see for example [5].) The affine Weyl group \tilde{W} is the semidirect product of W with the translation group Z of the coroot lattice $\mathbb{Z} \check{\Phi}$ of W.
Elements of \tilde{W} are written as pairs (w, z), for $w \in W, z \in Z$. Multiplication is given by

$$
(\sigma, \mathbf{v})(\tau, \mathbf{u})=\left(\sigma \tau, \mathbf{v}^{\tau}+\mathbf{u}\right)
$$

We now fix $W=A_{n-1}$. Then $W \cong \operatorname{Sym}(n)$, the symmetric group of degree n. W acts on $\mathbb{R}_{n}=$ $\left\langle\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}\right\rangle$ by permuting the subscripts of the basis vectors. The root system Φ of W is the set $\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right): 1 \leq i<j \leq n\right\}$, and in this case $\check{\Phi}=\Phi$. Writing a translation by $\sum_{i=1}^{n} \lambda_{i} \varepsilon_{i}$ as $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we see that

$$
\begin{aligned}
Z & =\langle(0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)\rangle \\
& =\left\langle\left(u_{1}, \ldots, u_{n}\right): \sum_{i=1}^{n} u_{i}=0\right\rangle
\end{aligned}
$$

2.1 Involutions in G_{n}

By the definition of group multiplication in G_{n}, we see that the element (σ, \mathbf{v}) of G is an involution precisely when $\left(\sigma^{2}, \mathbf{v}^{\sigma}+\mathbf{v}\right)=(1, \mathbf{0})$. So σ is an involution of $\operatorname{Sym}(n)$ and for appropriate a_{i}, b_{i}, c_{i} and m,

$$
\sigma=\left(a_{1} b_{1}\right) \cdots\left(a_{m} b_{m}\right)\left(c_{2 m+1}\right)\left(c_{2 m+2}\right) \cdots\left(c_{n}\right)
$$

Setting $\mathbf{v}=\left(v_{1}, \cdots, v_{n}\right)$ we must have

$$
v_{a_{1}}+v_{b_{1}}=\cdots=v_{a_{m}}+v_{b_{m}}=2 v_{c_{2 m+1}}=\cdots=2 v_{c_{n}}=0
$$

Hence we have the following lemma:
Lemma 2.1 Any involution in G_{n} is of the form (σ, \mathbf{v}), where

$$
\sigma=\left(a_{1} b_{1}\right) \cdots\left(a_{m} b_{m}\right)\left(c_{2 m+1}\right)\left(c_{2 m+2}\right) \cdots\left(c_{n}\right)
$$

with $v_{b_{i}}=-v_{a_{i}}$ for $1 \leq i \leq m$ and $v_{c_{i}}=0$ for $2 m+1 \leq i \leq n$.
It will be convenient to use a more compact notation for involutions of G. Let $g=\left(\prod_{i=1}^{m}\left(\alpha_{i} \beta_{i}\right)\right.$, v $)$ with $\alpha_{i}, \beta_{i} \in\{1, \ldots, n\}$ for $1 \leq i \leq m$. Then, by Lemma 2.1, $v_{\beta_{i}}=-v_{\alpha_{i}}$, and if $j \notin\left\{\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{m}\right\}$, then $v_{j}=0$. Thus \mathbf{v} is determined from the set $\lambda_{i}:=v_{\alpha_{i}}, 1 \leq i \leq m$. We may therefore write

$$
g=\prod_{i=1}^{m}\left(\alpha_{i} \beta_{i}\right)
$$

2.2 Conjugacy classes of Involutions

We now describe the conjugacy classes of involutions in G_{n}. Conjugacy classes of involutions in Coxeter groups are well understood and in order to use the known results we must give another description of G_{n}, this time in terms of its Coxeter graph. A Coxeter group W has a generating set R of involutions (known as the fundamental reflections), where the only relations are $(r s)^{m_{r s}}=1(r, s \in R)$, with $m_{r r}=1$ and, for $r \neq s, m_{r s}=m_{s r} \geq 2$. This information is encoded in the Coxeter graph $\Gamma=\Gamma(W)$. The vertex set of Γ is R, where vertices r, s are joined by an edge labelled $m_{r s}$ whenever $m_{r s}>2$. By convention the label is omitted when $m_{r s}=3$. The Coxeter graphs of $G_{2} \cong \tilde{A}_{1}$ and $G_{n} \cong \tilde{A}_{n-1}, n \geq 3$ are as follows:

1
We may define $r_{n}=(1 n)$, and for $1 \leq i \leq n-1, r_{i}=(i i+1)$ (using the notation defined in Section 2.2). It is not difficult to see that the appropriate relations hold.

The symmetric group $\operatorname{Sym}(n)$ is a Coxeter group of type A_{n-1}, with Coxeter graph
$\operatorname{Sym}(n) \cong A_{n-1}$

r_{n-1}
We may set $r_{i}=(i i+1)$ for $1 \leq i \leq n-1$.
Definition 2.2 Let W be an arbitrary Coxeter group, with I, J two subsets of R. We say that I, J are W-equivalent if there exists $w \in W$ such that $I^{w}=J$.

Any subset I of R generates a Coxeter group in its own right, denoted W_{I}. Such subgroups are called standard parabolic subgroups of W. If W_{I} is finite then it has a unique longest element, denoted w_{I}. Richardson [6] proved

Theorem 2.3 Let W be an arbitrary Coxeter group, with R the set of fundamental reflections. Let $g \in W$ be an involution. Then there exists $I \subseteq R$ such that w_{I} is central in W_{I}, and g is conjugate to w_{I}. In addition, for $I, J \subseteq R$, w_{I} is conjugate to w_{J} if and only if I and J are W-equivalent.

It will be useful to narrow down the possible elements in the conjugacy class of involutions (a, \mathbf{u}) in the case where a is an involution of $\operatorname{Sym}(n)$ with no fixed points.

Lemma 2.4 Suppose $n=2 m$. Let $a=\prod_{i=1}^{m}\left(\alpha_{i} \beta_{i}\right)$ and $b=\prod_{i=1}^{m}\left(\gamma_{i} \delta_{i}\right)$. Suppose $g=(a, \mathbf{u})$ and $h=(b, \mathbf{v})$ are conjugate involutions of G_{n}. Then $\sum_{i=1}^{m} u_{\alpha_{i}} \equiv \sum_{i=1}^{m} v_{\gamma_{i}} \bmod 2$.

Proof Let $g=(a, \mathbf{u})$, and suppose $h=(b, \mathbf{v})$ is conjugate to g in G_{n} via ($\left.c, \mathbf{w}\right)$. Reordering if necessary, assume that $c\left(\alpha_{i}\right)=\gamma_{i}$ and $c\left(\beta_{i}\right)=\delta_{i}$ for $1 \leq i \leq m$. We see that

$$
\begin{aligned}
(b, \mathbf{v}) & =(a, \mathbf{u})^{(c, \mathbf{w})} \\
& =\left(c^{-1} a c,\left(\mathbf{w}^{-1}\right)^{c^{-1} a c}+\mathbf{u}^{c}+\mathbf{w}\right) .
\end{aligned}
$$

Thus $b=c^{-1} a c$ and $\mathbf{v}=\mathbf{w}-\mathbf{w}^{b}+\mathbf{u}^{c}$. Hence, for $1 \leq i \leq m, v_{\gamma_{i}}=w_{\gamma_{i}}-w_{b\left(\gamma_{i}\right)}+\left[\mathbf{u}^{c}\right]_{\gamma_{i}}$. Since $c\left(\alpha_{i}\right)=\gamma_{i}$, it follows that $\left[\mathbf{u}^{c}\right]_{\gamma_{i}}=u_{\alpha_{i}}$. Hence, recalling that $\sum_{j=1}^{n}=0$,

$$
\begin{aligned}
\sum_{i=1}^{m} v_{\gamma_{i}} & =\sum_{i=1}^{m}\left(w_{\gamma_{i}}-w_{\delta_{i}}+u_{\alpha_{i}}\right)=\sum_{i=1}^{m}\left(w_{\gamma_{i}}+w_{\delta_{i}}-2 w_{\delta_{i}}+u_{\alpha_{i}}\right) \\
& =\sum_{j=1}^{n} w_{j}-2 \sum_{i=1}^{m} w_{\delta_{i}}+\sum_{i=1}^{m} u_{\alpha_{i}} \equiv \sum_{i=1}^{m} u_{\alpha_{i}} \bmod 2
\end{aligned}
$$

Therefore $\sum_{i=1}^{m} u_{\alpha_{i}} \equiv \sum_{i=1}^{m} v_{\gamma_{i}} \bmod 2$, and the result holds.

We use Theorem 2.3 to establish the next result.

Proposition 2.5 Let $g \in G$ be an involution. Then there is $m \in \mathbb{Z}^{+}$such that g is conjugate to exactly one of the following:

$$
\begin{aligned}
& 0 \\
& (12) \cdots(2 m-12 m) ; \text { or } \\
& 1 \\
& 0 \\
& (12)(34) \cdots(2 m-12 m)(\text { and } n=2 m)
\end{aligned}
$$

If $n=2 m$ and $g=\prod_{i=1}^{m}\left(\alpha_{i} \beta_{i}\right)$, then g is conjugate to $\stackrel{0}{(12)} \cdots\left(\begin{array}{c}0 \\ (2 m-12 m)\end{array}\right.$ if and only if $\sum_{i=1}^{m} \lambda_{i} \equiv 0$ $\bmod 2$.

Proof By Theorem 2.3, g is conjugate to w_{I} for some finite standard parabolic subgroup W_{I} of W in which w_{I} is central. Note that if g is also conjugate to w_{J} for some $J \subseteq R$ then $|I|=|J|$, so that $|I|$ only depends on g and not the particular choice of I. For any proper subset $I \subsetneq R$, we see that W_{I} is isomorphic to a direct product of symmetric groups. The only symmetric group with non-trivial centre is $\operatorname{Sym}(2) \cong A_{1}$. So for w_{I} to be central, W_{I} must be a direct product of symmetric groups of degree 2, and $w_{I}=r_{i_{1}} r_{i_{2}} \cdots r_{i_{l}}$ for some l, where $r_{i_{j}} r_{i_{k}}=r_{i_{k}} r_{i_{j}}$ for $1 \leq j<k \leq l$. This immediately implies that $|I| \leq n / 2$. Suppose that w_{I} and w_{J} are central in W_{I}, W_{J} respectively, and, in addition, that there exists $r \in R \backslash(I \cup J)$. Set $K=R \backslash\{r\}$. Then K is isomorphic to $\operatorname{Sym}(n)$. It is well known that conjugacy classes in the symmetric group are parameterised by cycle type, so that w_{I} is conjugate to w_{J} precisely when $|I|=|J|$. Therefore, in the case $|I|<n / 2$, we may assume that $I=\left\{r_{1}, r_{3}, \cdots, r_{2 m-1}\right\}$ for some $m<n / 2$, so that $w_{I}=(12) \cdots(2 m-12 m)$, with $2 m<n$.

It only remains to consider the case $|I|=n / 2$ (and then of course n must be even). We quickly see that there are only two possibilities for I such that w_{I} is central in W_{I}. Either $I=\left\{r_{1}, r_{3}, \ldots, r_{n-1}\right\}$ and $\left.w_{I}=g_{1}:=\stackrel{0}{12}\right) \cdots\left(\begin{array}{c}0 \\ -1\end{array} 2 m\right)$, or $I=\left\{r_{2}, r_{4}, \ldots, r_{n}\right\}$ and $w_{I}=g_{2}:=\stackrel{1}{(1 n)}\binom{0}{23} \cdots\left(2 m-22_{2}^{2}-1\right)$. By Lemma 2.4, g_{1} is not conjugate to g_{2}. Hence g is conjugate to exactly one of g_{1} and g_{2}. By Lemma $\left.2.4, g_{3}:=\stackrel{1}{12}\right)\binom{0}{34} \cdots\left(\begin{array}{c}0 \\ -1\end{array} 2 m\right)$ must be conjugate to g_{2}. Hence $g=\prod_{i=1}^{m}\left(\alpha_{i} \beta_{i}\right)$ is conjugate to exactly one of g_{1} and g_{3}. Furthermore g is conjugate to g_{1} if and only if $\sum_{i=1}^{n} \lambda_{i} \equiv 0 \bmod 2$. We have now proved Proposition 2.5.

It can easily be seen that in the case $n=2 m$, the two conjugacy classes have isomorphic commuting involution graphs. Thus we may assume that g is conjugate to $\left(\begin{array}{c}0 \\ (12)\end{array} \cdots(2 m-12 m)\right.$.
We end this section by stating some results from [2] concerning the diameters of commuting involution graphs in $\operatorname{Sym}(n)$.
Let $a=(12)(34) \cdots(2 m-12 m) \in \operatorname{Sym}(n)$ and write $Y=a^{\operatorname{Sym}(n)}$.
Theorem 2.6 (Theorem 1.1 of $[2]) \mathcal{C}(\operatorname{Sym}(n), Y)$ is disconnected if and only if $n=2 m+1$ or $n=4$ and $m=1$.

Proposition 2.7 (Corollary 3.2 of [2]) If $n=2 m$, then $\mathcal{C}(\operatorname{Sym}(n), Y)$ is connected and $\operatorname{Diam} \mathcal{C}(\operatorname{Sym}(n), Y) \leq 2$, with equality when $n>4$.

Theorem 2.8 (Theorem 1.2 of [2]) Suppose that $\mathcal{C}(\operatorname{Sym}(n), Y)$ is connected. Then one of the following holds:
(i) $\operatorname{Diam} \mathcal{C}(\operatorname{Sym}(n), Y) \leq 3$; or
(ii) $2 m+2=n \in\{6,8,10\}$ and $\operatorname{Diam} \mathcal{C}(\operatorname{Sym}(n), Y)=4$.

3 Proof of Theorems 1.1 and 1.2

From now on, fix $a=(12) \cdots(2 m-12 m)$, where $2 m \leq n$, and set $t=(a, \mathbf{0})=\stackrel{0}{(12)} \cdots(2 m-12 m)$ and $X=t^{G}$. As we have observed, every commuting involution graph of G is isomorphic to $\mathcal{C}(G, X)$ for an appropriate choice of m. Write $\hat{G}=\operatorname{Sym}(n)$ and $\hat{X}=a^{\hat{G}}$. Finally, if $g=\prod_{i=1}^{m}\left(\alpha_{i} \beta_{i}\right) \in X$, then set $\hat{g}=\prod_{i=1}^{m}\left(\alpha_{i} \beta_{i}\right) \in \hat{G}$. Clearly if $g, h \in X$, then $\hat{g}, \hat{h} \in \hat{X}$. We begin with the following lemma.

Lemma 3.1 Suppose $g, h \in X$. If $d(\hat{g}, \hat{h})=k$, then $d(g, h) \geq k$. If $\mathcal{C}(\hat{G}, \hat{X})$ is disconnected, then $\mathcal{C}(G, X)$ is disconnected.

Proof Observe that if σ commutes with τ in G_{n} then $\hat{\sigma}$ commutes with $\hat{\tau}$ in $\operatorname{Sym}(n)$. The lemma follows.

Lemma 3.2 Let $g_{1}=\stackrel{\lambda_{1}}{(\alpha \beta)} \stackrel{\lambda_{2}}{(\gamma \delta)}, g_{2}=\stackrel{\mu_{1}}{(\alpha \gamma)(\beta \delta)} \stackrel{\mu_{2}}{(\beta)}, g_{3}=\stackrel{\lambda_{1}}{(\alpha \beta)}, g_{4}=\stackrel{\lambda_{2}}{(\alpha \beta)}$ for distinct $\alpha, \beta, \gamma, \delta$ in $\{1, \ldots, n\}$ and integers λ_{i}, μ_{i}. Then
(a) $g_{1} g_{2}=g_{2} g_{1}$ if and only if $\mu_{1}-\lambda_{1}=\mu_{2}-\lambda_{2}$;
(b) $g_{3} g_{4}=g_{4} g_{3}$ if and only if $\lambda_{1}=\lambda_{2}$;
(c) If $h \in G$ is an involution such that $\hat{h}(\alpha)=\alpha$ and $\hat{h}(\beta)=\beta$, then $g_{3} h=h g_{3}$ for all $\lambda_{1} \in \mathbb{Z}$.

Proof $\underset{\mu_{1}}{\text { For part }} \underset{\mu_{2}}{ }(\mathrm{a})$, we lose no generality by assuming, for ease of notation, that $\left.n=4, g_{1}=\begin{array}{c}\lambda_{1} \\ (12)(34)\end{array}\right)$ and $g_{2}=(13)(24)$. That is, $g_{1}=\left((12)(34),\left(\lambda_{1},-\lambda_{1}, \mu_{1},-\mu_{1}\right)\right)$ and $g_{2}=\left((13)(24),\left(\lambda_{2}, \mu_{2},-\lambda_{2},-\mu_{2}\right)\right)$. Hence

$$
\begin{aligned}
g_{1} g_{2} & =\left((14)(23),\left(\lambda_{1},-\lambda_{1}, \mu_{1},-\mu_{1}\right)^{(13)(24)}+\left(\lambda_{2}, \mu_{2},-\lambda_{2},-\mu_{2}\right)\right) \\
& =\left((14)(23),\left(\mu_{1}+\lambda_{2},-\mu_{1}+\mu_{2}, \lambda_{1}-\lambda_{2},-\lambda_{1}-\mu_{2}\right)\right)
\end{aligned}
$$

Now g_{1} and g_{2} commute if and only if $g_{1} g_{2}$ is an involution. This occurs if and only if $\mu_{1}+\lambda_{2}=$ $-\left(-\lambda_{1}-\mu_{2}\right)$ and $-\mu_{1}+\mu_{2}=-\left(\lambda_{1}-\lambda_{2}\right)$. Rearranging gives $\mu_{1}-\lambda_{1}=\mu_{2}-\lambda_{2}$, as required.
For part (b), we may assume that $n=2, g_{3}=\left((12),\left(\lambda_{1},-\lambda_{1}\right)\right)$ and $g_{4}=\left((12),\left(\lambda_{2},-\lambda_{2}\right)\right)$. Then $g_{3} g_{4}=\left(1,\left(-\lambda_{1}+\lambda_{2}, \lambda_{1}-\lambda_{2}\right)\right)$. Hence $g_{3} g_{4}=g_{4} g_{3}$ if and only if $\lambda_{1}=\lambda_{2}$.
For part (c), we again assume that $g_{3}=\left((12),\left(\lambda_{1},-\lambda_{1}\right)\right)$, and write $h=\left(b,\left(v_{1}, \ldots, v_{2}\right)\right)$. Since b fixes 1 and 2 and h is an involution, we must have $v_{1}=v_{2}=0$. Hence $h g_{3}=\left((12) b,\left(\lambda_{1},-\lambda_{1}, v_{3}, \ldots, v_{n}\right)=\right.$ $g_{3} h$. This completes the proof of Lemma 3.2.

We may now dispose of the case $n=2$.
Proposition 3.3 Let $G=G_{2} \cong \tilde{A}_{1}$. Then there are two conjugacy classes of involutions, representatives of which are (12) and (12). In either case $\mathcal{C}(G, X)$ is completely disconnected (the graph has no edges).

A double transposition $\left(\alpha_{1} \beta_{1}\right)\left(\alpha_{2} \beta_{2}\right)$ for which $\lambda_{1}+\lambda_{2}$ is even is called an even pair. Otherwise it is an odd pair.

Proposition 3.4 Suppose $n>2$ and that $\mathcal{C}(\hat{G}, \hat{X})$ is connected. Let $g \in X$. If $n>2 m$ or m is even, then there exists $h=(c, \mathbf{0}) \in X$ such that $d(g, h) \leq 2$.

Proof Let $g \in X$. We will find it useful to split g into various components. Since $\mathcal{C}(\hat{G}, \hat{X})$ is connected, by Theorem 2.6 either $n=2 m$ or there are at least two fixed points. Recalling that either $n>2 m$ or m is even, it is easily seen that we may write g in the following form:

$$
g=P_{1} P_{2} \cdots P_{k} Q
$$

where P_{1}, \ldots, P_{k} are even pairs and Q is either the identity (if $n=2 m$ and m is even), a single transposition along with at least two fixed points, or an odd pair along with at least two fixed points. Let $\left.P_{i}=\stackrel{\mu_{i}}{\left(\alpha_{i} \beta_{i}\right)\left(\nu_{i}\right.} \gamma_{i} \delta_{i}\right)$ with $\mu_{i}+\nu_{i}=2 \lambda_{i}$ even. Now set $P_{i}^{\prime}=\stackrel{\lambda_{i}}{\left(\alpha_{i} \delta_{i}\right)\left(\gamma_{i} \beta_{i}\right)}$ and $P_{i}^{\prime \prime}=\stackrel{0}{\left(\alpha_{i} \gamma_{i}\right)\left(\delta_{i} \beta_{i}\right) \text {. Note }}$ that each of P_{i}, P_{i}^{\prime} and $P_{i}^{\prime \prime}$ is an even pair. It is clear by Lemma 3.2(a) that $P_{i}^{\prime} P_{i}^{\prime \prime}=P_{i}^{\prime \prime} P_{i}^{\prime}$. But Lemma 3.2 (a) also implies that $P_{i} P_{i}^{\prime}=P_{i}^{\prime} P_{i}$, because we may rewrite $P_{i}=\binom{\mu_{i}}{\alpha_{i} \beta_{i}}\left({\stackrel{-\nu}{\delta_{i}} \gamma_{i}}_{\text {ind }}\right.$) and $P_{i}^{\prime}=\binom{\lambda_{i}}{\alpha_{i} \delta_{i}}\binom{-\lambda_{i}}{\beta_{i} \gamma_{i}}$.

If Q is the identity, then let $Q^{\prime}=Q^{\prime \prime}=Q$. If Q is a single transposition along with at least two fixed points, then we may write $Q=\left(\begin{array}{cc}\lambda \\ (\alpha \beta)\left(\varepsilon_{1}\right)\end{array} \cdots\left(\varepsilon_{l}\right)\right.$ for some $l \geq 2$. Let $Q^{\prime}=Q^{\prime \prime}=\left(\begin{array}{ccc}0 & 0 & 0 \\ \left(\varepsilon_{1} \varepsilon_{2}\right) & (\alpha)(\beta)\left(\varepsilon_{3}\right) \cdots\left(\varepsilon_{l}\right) \\ \mu_{0}\end{array}\right)$. If Q is an odd pair, along with at least two fixed points, then we may write $Q=(\alpha \beta)\left({ }_{\gamma} \gamma^{\nu}\right)\left(\varepsilon_{1}\right) \cdots\left(\varepsilon_{l}\right)$
 Then set $g^{\prime}=P_{1}^{\prime} \cdots P_{k}^{\prime} Q^{\prime}$ and $h=P_{1}^{\prime \prime} \cdots P_{k}^{\prime \prime} Q^{\prime \prime}$. Let $c=\hat{h}$. Then by choice of $h, h=(c, \mathbf{0})$. If $n=2 m$, note that g^{\prime} and h consist entirely of even pairs, so $g^{\prime}, h \in X$. If $n \neq 2 m$, then g^{\prime} and h are obviously in X. By construction, and Lemma 3.2, g commutes with g^{\prime} and g^{\prime} commutes with h. Therefore $d(g, h) \leq 2$. This completes the proof of the proposition.

Proposition 3.5 Suppose that $n=2 m$ with $m>1$ odd. Let $g=(b, \mathbf{v}) \in X$. Then there exists $h=(c, \mathbf{0}) \in X$ such that $d(g, h) \leq 3$.

Proof We may write $g=P Q$ where P is a product of k even pairs and Q is an 'even triple' with $Q=\left(\alpha_{1}^{\mu_{1}} \beta_{1}\right)\left(\alpha_{2} \beta_{2}\right)\left(\alpha_{3} \beta_{3}\right)$ and $\mu_{1}+\mu_{2}+\mu_{3}=2 \lambda$ for some $\lambda \in \mathbb{Z}$. Set $\rho=\mu_{1}-\lambda$.
 repeated use of Lemma 3.2(a), we see that $Q Q_{1}=Q_{1} Q, Q_{1} Q_{2}=Q_{2} Q_{1}$ and $Q_{2} Q_{3}=Q_{3} Q_{2}$. Note also that Q_{1}, Q_{2} and Q_{3} are all even triples.
By Proposition 3.4, there exist $P^{\prime}, P^{\prime \prime}$, both products of k even pairs, such that $P^{\prime \prime}=\prod_{i=1}^{2 k}\left(\gamma_{i} \delta_{i}\right)$ for some γ_{i}, δ_{i} and $P P^{\prime}=P^{\prime} P, P^{\prime} P^{\prime \prime}=P^{\prime \prime} P^{\prime}$. In addition, we may assume that $\operatorname{Fix}(\hat{P})=\operatorname{Fix}\left(\hat{P}^{\prime}\right)=$ $\operatorname{Fix}\left(\hat{P^{\prime \prime}}\right)$. Define $g_{1}=P Q_{1}, g_{2}=P^{\prime} Q_{2}$ and $h=P^{\prime \prime} Q_{3}$. Then by construction g_{1} commutes with g and g_{2}, and g_{2} commutes with h. So $d(g, h) \leq 3$. Furthermore, by construction g_{1}, g_{2} and h are all elements of X, and $h=(\hat{h}, \mathbf{0})$. We have now proved Proposition 3.5.

Lemma 3.6 Suppose $g_{1}=\left(b_{1}, \mathbf{0}\right), g_{2}=\left(b_{2}, \mathbf{0}\right) \in X$. If $\mathcal{C}(\hat{G}, \hat{X})$ is connected, then $d\left(g_{1}, g_{2}\right)=d\left(b_{1}, b_{2}\right)$.
We are now able to prove Theorems 1.1 and 1.2

Proof of Theorem 1.1 The case $n=2, m=1$ is Proposition 3.3. If $n=2 m+1$ or $n=4, m=1$, then $\mathcal{C}(G, X)$ is disconnected by Lemma 3.1 and Theorem 2.6. If $n>2$ and $\mathcal{C}(\hat{G}, \hat{X})$ is connected, then the fact that $\mathcal{C}(G, X)$ is connected is an easy consequence of Propositions 3.4 and 3.5 , and Lemma 3.6.

Proof of Theorem 1.2 By Proposition 3.4, if $n>2 m$ or m is even, and $\mathcal{C}(G, X)$ is connected, then there exists $h=(c, \boldsymbol{0}) \in X$ such that $d(g, h) \leq 2$. If $n=2 m$ and m is odd, then by Proposition 3.5 there exists $h=(c, \mathbf{0}) \in X$ such that $d(g, h) \leq 3$. By Lemma 3.6, $d(h, t) \leq \operatorname{Diam} \mathcal{C}(\hat{G}, \hat{X})$. Thus $d(g, t) \leq \operatorname{Diam} \mathcal{C}(\hat{G}, \hat{X})+2$ if $n>2 m$ or m is even, and $d(g, t) \leq \operatorname{Diam} \hat{\mathcal{C}}(\hat{G}, \hat{X})+3$ otherwise. Theorem 1.2 follows immediately.

Corollary 1.3 now follows from Theorem 1.2 in conjunction with Proposition 2.7 and Theorem 2.8 .

4 Two Examples

In this section we give $\mathcal{C}(G, X)$ for two examples: $n=4, m=2$ and $n=6, m=3$. These graphs, of diameters 3 and 5 respectively, illustrate the fact that the bounds in Theorem 1.2 are tight, because the respective diameters of $\mathcal{C}\left(\operatorname{Sym}(4),(12)(34)^{\operatorname{Sym}(4)}\right)$ and $\mathcal{C}\left(\operatorname{Sym}(6),(12)(34)(56)^{\operatorname{Sym}(6)}\right)$ are 1 and 2 . Figure 1 shows $\mathcal{C}(G, X)$ for $n=4, m=2$. The variable(s) above a transposition can be taken to be any integers. So for example $\stackrel{\lambda}{(13)(24)}$ commutes with $\stackrel{\mu}{(12)}(34)$ for any integers λ, μ.

Figure 1: $n=4, m=2$
Figure 2 shows the collapsed adjacency graph in the case $n=6, m=3$. If $g, h \in G$ are in the same orbit of the centralizer $C_{G}(t)$ of t in G, then clearly $d(g, t)=d(h, t)$. The vertices of the graph in Figure 2 are the $C_{G}(t)$-orbits of $\mathcal{C}(G, X)$. We give one representative for each $C_{G}(t)$-orbit.

Figure 2: $n=6, m=3$

References

[1] M. Aschbacher. Sporadic Groups, Cambridge Tracts in Mathematics, 104, Cambridge University Press, Cambridge (1994).
[2] C. Bates, D. Bundy, S. Perkins and P. Rowley. Commuting Involution Graphs for Symmetric Groups, J. Algebra 266 (2003), 133-153.
[3] C. Bates, D. Bundy, S. Perkins and P. Rowley. Commuting Involution Graphs for Finite Coxeter Groups, J. Group Theory 6 (2003), 461-476.
[4] B. Fischer, Finite groups generated by 3-transpositions, I. Invent. Math. 13 (1971), 232-246.
[5] J.E. Humphreys. Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29 (1990).
[6] R.W. Richardson. Conjugacy Classes of Involutions in Coxeter Groups, Bull. Austral. Math. Soc. 26 (1982), 1-15.

[^0]: *School of Economics, Mathematics and Statistics, Birkbeck College, Malet Street, London, WC1E 7HX. s.perkins@bbk.ac.uk

