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» 1. Convex sets
2# Let A be a subset of R".

2 e Interior: int(A)

26 e Closure: cl(A)

27 ¢ Relative interior: ri(A). Interior of A relative to the smallest subspace containing

28 A (defined technically as the interior relative to the affine hull of A). (Fig. 1) (VT §4.8)
29 o int(A) is the interior of A relative to R™. (1%, §6)

30 o I“i(A) CAC CI(A). ( , §6)
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Figure 1: (a) int(A) =ri(A). (b) int(A) = 0 but ri(A) # 0.
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Figure 2:

o For A C R",

) Nonconvex sets.

ri(A)

o ri = int in 1D.

= int(A) if dim(A)

RQ

=nNn.

) Convex set. (d) Convex hull.

e Convex set: A is convex if az+ (1 —a)y € A for all z,y € A, a € [0,1]. (Fig. 2)

o Operations that preserve convexity: intersection, dilatation, addition, closure,

linear transformations.

o Convex sets are connected.

o Convex sets have non-empty relative interiors.

e Convex hull: co(A4). Smallest convex set containing A.

2. Convex functions

Consider a function f: X — R, with X C R"™.

e Extended reals: R = RU {+oco}

e Extension of f:

o) = { 100

o0

o f is a function of R™ to R.

o One can always extend a function, so from now we consider only functions of

R” to R.

rze X

¢ X.

(1)

(B, §2)

(VT, §1.22)
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Figure 3: (a) Lower semi-continuous function. (A). (b) Upper semi-continuous function.
(c) Lower semi-continuous, extended function.

e Effective domain: dom(f) = {z € R": f(z) < oo}.

e Lower semi-continuity: f: X — R is lower semi-continuous at zo € X if for
each k € R, k < f(x) there exists a neighborhood U of xg such that f(U) > k.

o

Interpretation: function values near z are either close to f(xg) or are greater
than f(xo).

Graphical interpretation: if f(x) is discontinuous at xg, then f(xo) is on the
lowest branch. (Fig. 3)

Equivalent definition:
liminf f(x) > f(zo). (2)

T—X0

(Closed level sets) If f is lower semi-continuous, then {x € X : f(x) < a} is
closed for all a € R. (Essential property for LDT.)

If f is lower semi-continuous, then {x € X : f(z) > a} is open for all a € R.

f(x) = supy fa(x) is lower semi-continuous if the fy’s are all lower semi-
continuous.

If f is lower semi-continuous on a compact space, then f assumes a minimum
value (which may be +00). (Essential for LDT.)

If f and g are lower semi-continuous, then so is Af, A > 0, and f + g.

A function is continuous if and only if it is both lower and upper semi-
continuous.

e Epigraph: epi(f) = {(z,a) : f(x) < a,a € R} (Fig. 4)

@)

@)

epi(f) is closed < f is lower semi-continuous.

From the greek “epi” meaning “upon” or “over”.

e Lower semi-continuous hull: function f such that (Fig. 4)

o

o

epi(f) = epi(f)- 3)

f is the largest lower semi-continuous minorant of f, i.e., the largest lower
semi-continuous function g(x) such that g(z) < f(x) for all z € R™.

If f is lower semi-continuous, then f = f.

, §5.11)

, §5.7)

, §5.3)
, §5.3)

) §5'4)

, §5.4)
, §5.4)

, §5.3)

, §5.5)

) §5'6)
, §5.8)
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Figure 4: (a) epi(f). (b) Lower semi-continuous hull of f.

T

(b)

—o0 o—— +00

T

e Subgradient: « € R" is said to be a subgradient of f at zg if

f(x) > f(xo) + o (z — x0)

for all z € R". (Fig. 5)

o When the inequality is satisfied we also say that f has a supporting hyperplane

at xg with gradient a.

o A supporting hyperplane is said to be strictly supporting if the inequality is

strict for all z # x.

o If f is differentiable at xy € dom(f), then V f(x¢) is the unique subgradient

of f at xg.

o In R, we say that f has a supporting line with slope a.

e Subdifferential: Set of all subgradients of f at xg:

Of (xo) = {a € R : f(z) = f(x0) + - (x — 20), Var}.

(@]

@)

Of(xg) is a convex subset of R™.
Of(x) ={V f(x)} if f is differentiable at x.

o If f: R — R is differentiable at x, then df(x) = {f'(x)}.

(@]

e Convex function: f is convex if

dom(af) = {x € R": 0f(x) # 0}.

flax + (1 —a)y) < af(z)+ (1 —a)f(y).

for all z,y € R™ and a € [0, 1].

o f is strictly convex if the inequality is strict for all a € (0,1).

o Proper convex function: f # —+oo.

o Improper convex function: f(x) = —oo for all z € ri(dom(f)). If f is lower
semi-continuous, then dom(f) is closed, so that f(z) = —oo on dom(f) in
this case.

(4)

e Properties of convex functions: Let f be a proper convex function. Then,

o epi(f) is convex.

(

(

(

(

(

(

, §5.30)

, §5.30)

, §5.9)

,§5.11)

, §5.12)

, §5.10)
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Figure 5: (a) (i) Point admitting a strict supporting line; (ii) point admitting no
supporting line; (iii) non-strict supporting line. (b) df(x) = [f., f}]. (c) Supporting
lines for boundary points: the left boundary point has no supporting lines, while the
right boundary point has an infinite number of supporting lines with slope in [f’ ; 00).

o Convex level sets: f has convex level sets, i.e., {x : f(z) < a} is a convex set
for all a € R.

o dom(f) is convex. (

o f has no isolated (—o0) singularities in its domain. (Fig. 6)

, §5.11)

o ri(dom(f)) C dom(df) C dom(f). (R, §227)

« This shows that df(z) is defined for all x € dom f except possibly at
relative boundary points.

x A proper convex function has supporting lines everywhere except possibly
relative boundary points.

« Example of convex function that is not subdifferentiable (in fact differen-

tiable) everywhere: (R, §215)

10 ={ T e g
Then domdf = (—1,1) but dom f = [-1,1].

o Continuity: f is continuous on int(dom(f)). (

o Relative continuity: The restriction of f to ri(dom(f)) is continuous. (

o Semi-continuity: f is lower semi-continuous at each point in ri(dom(f)).

o Subdifferential: f is everywhere subdifferentiable in its relative interior, i.e.,

df (x) # 0 for all x € ri(dom(f)). (
o In R, f has left- and right-derivatives everywhere in int(dom(f)).
o InR, 0f(x) = [f\(z), f.(x)] for all x € int(dom(f)).
o If f:R — R is convex, differentiable, then f’(z) is monotonically increasing.
o af(x)+b, a>0,is convex.
o Affinisation: f(ax 4 b) is convex.
o Minimizers: f has no local minimum which is not a global minimum.

o Minimizers set: The set of minimizers of f is a convex set.

, §5.20)
, §5.23)

, §5.35)
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e Other useful properties:

@)

@)

Jensen’s inequality: f(E[X]) < E[f(X)], where E[] denotes the expected
value.

Hessian: If f is twice continuously differentiable, then f is convex if and only
if its Hessian is semi-definite (non-negative determinant).

If f:R — R is twice differentiable and f”(z) > 0, then f is convex. The
converse does not hold (counterexample: f(x) = z%).

Convex superposition: g(x) =), fi(x) is convex if the f;(x)’s are convex.

Convex maximization: g(z) = sup, fi(z) is convex if f(z) is convex for all .

Equivalently, g(z) = sup,, f(z,y) is convex if f(z,y) is convex in x for all y.

Convex minimization: g(z) = inf, f(x,y) is convex if f(z,y) is jointly convex,

i.e., convex as a “surface”.

Pointwise limit: f(x) = lim,, f,(x) is convex if f,, is convex for all n.

e Convex hull:

@)

@)

co(f)(x) = inf{a : (z,a) € co(epi(f))}. (8)

co(f) is the largest convex minorant of f.

co(f) is the largest lower semi-continuous, convex minorant of f.

1w 3. D uality

135
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e Conjugate or dual function:

[ (k) =$S€11R51{k-$*f(w)}- (9)
e Bipolar or double dual:
[ (@) = sup{k -z — f*(k)} = (f")" (@) (10)
keRn®

e Properties:

o If f <g, then f* > g*.

o (—|—oo)* = —0Q.

o If there is a point where f has the value —oo, then f* = +oo. In this case,
f* = —o0, and so f** may not necessarily be equal to f.

o f** < f.

o (infy fa)" = sup, f3.

o (supy fa)" <infy f}.

o (M)(k) = Af*(k/A), A > 0.

o (f+N)* =f"+A\

o [f(@ —y)(k) = F*(k) + k- y.

o inf f(z) = —f*(0).

(
(

(
(

(

(

(

, §5.14)
, §5.29)

,§1.11)
, §5.14)

, §5.16)

, §6.3)
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@)

(¢]

@)

o

f* is convex, lower semi-continuous.

f** is convex, lower semi-continuous.

f*** — f*.

Fenchel’s inequality: f(z)+ f*(k) > k- x.

e Closure of f: cl(f) = f if f has nowhere the value —oo; otherwise cl(f) = —oc.

@)

f is said to be closed when cl(f) = f.

e Duality: (Fig. 6) See also (H'T) for figures.

o

@)

o

kedf(z) < f"(k) =k -z — f(zx). (R:Thm 23.5:218)

ke df*(x) < xedf (k).

ke df(x) & f(x) = f*(x) except possibly at relative boundary points.
(See Rockafellar’s example).

Af(x) #0 f(x) = f**(x) except possibly at relative boundary points.
(See Rockafellar’s example).

[ =cl(co(f)) in general; f** = co(f) if f is nowhere equal to —cc.
f** = fif f is proper convex.
f* = fif f is convex, lower semi-continuous or else f = 4o0.
dom f C dom f**.
« Examples: f is not lower semi-continuous or f has a middle +oo (non-
convex) part, i.e., dom f is not convex.
« Corollary: If f(z) < oo, then f**(x) < oo.
The map f — f* is bijective for convex, lower semi-continuous functions.
A PR
If f is nonconcave or affine somewhere, then f* is non-differentiable some-
where.

If f is non-differentiable somewhere, then f* has an affine region.

The dual is the same as the Legendre transform for strictly convex, differen-
tiable functions.

e Concave points vs supporting lines:

@)

@)

(¢]

(@]

(¢]

Convex hull points: T'(f) = {x : f(z) = f**(x)}.
Concave points: I'(f) Ndom f.
The intersection with dom f comes from not wanting +o0o points as concave.
Supporting line points: C(f) = {x : 0f(x) # 0} = dom I f.
C(f) =T(f)ndomaf** =T(f) NdomIf.
I(f) Nri(dom £) € C(f) € T(f) N dom f.
« Proof: Take I'(f)N of Rockafellar’s inclusion result.

* This shows that concave points are supporting line points except possibly
at relative boundary points.

(

, §6.8)
, §6.11)

, §6.9)
, §6.13)

, §23, 25)
, §6.10)

, §6.15)
, §6.16)
, §6.18)

, §6.19)
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—Te o— 400 —0 o—— 400

Figure 6: (a)-(b) f and its convex, lower semi-continuous hull. (c¢) f has the value —oo
somewhere. Then f* = 400, so that f** = —o0.

4. Optimization

e Fenchel’s duality Theorem: Let f be a proper convex function and g be a
proper concave function such that ri(dom(f)) Nri(dom(g)) # 0. Then,

inf {f(z) — g(2)} = max{g* (k) — f*(k)}.

reR”™ keR”
g* is the dual defined for concave functions.

e Constrained minimization: Let C be a convex, non-empty subset of R™. Then,

inf f(z) = inf {f(z) —g(x)} = max{g*(k) — f*(k)},

zeC TeR™ keR"™

where g(x) = —d¢(x) (indicator function). Note that

3o (k) = sup{k -z —dc(z)} =supk-x.
z€R zeC

5. Convex inequalities
e Jensen inequality: Let f be a convex function. Then
f(EIX]) < E[f(X)] (11)

with equality if X is deterministic or if f is affine. The sign is reversed for concave
functions.

e Examples:

o ePIX] < EleX] or
In E[X] < In E[X]. (12)

Simple proof (from wiki).
E[eX] = P E[X PN > PN B + X — E[X]] = P (13)

where the inequality follows from eX > 1+ X. O
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o In EF[X] > E[ln X]. Compare with previous result.
e Relative entropy: D(p||q) > 0 with equality iff p = q.
e Gibbs inequality:
r—zlnz <y—axlny, z,y >0 (14)
with equality iff x = y.

e Gibbs inequality (sums or integrals):

= pilnp; < =) pilng, (15)
7 7

or
- [ dop@)np(e) < - [ dep(o)ng(o) (16)
with equality iff p = q.

o Equivalent to positive relative entropy.

o ¢(z) uniform:

H(p) <In|X| (17)
with equality iff p is uniform.
o q(z) =e PV /Z(B):
H(p) < BE[U(X)] +1InZ(B) (18)

with equality iff p = ¢. This result is what is most often referred to as Gibbs
inequality or sometimes as the Gibbs-Bogoliubov inequality.

o q(x) = e"p(x) /W (k):

kE[X] < In E[e"], (19)
that is,
(k) > EX(0). (20)
See PR2009:13.
o p(x) = Fq(x)/ Egle"]:
D(pllq) = KEp[X] — In Ey[e"] > 0. (21)

e Gibbs inequality (two Hamiltonians):

InZ1(6) > InZy(B) + B{Us — Ur)o (22)
for
e~ BUi(x)
pi(z) = Zi(B) Zi(B) = Ze_’BUi(m)~ (23)

x
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e Donsker-Varadhan variational formula:

D(pllg) = fesclvlf(’x){Ep[f(X)} —In Eq[ef(X)]}

- _ f
i U

o Remark: The name ‘DV variational formula’ comes from Dupuis-Ellis p. 29.

(24)

o Resulting inequality:
D(pllg) = Ep[f(X)] — In Eg[e/ )] (25)

for any function f.

o Particular case: For f(z) = ka:
D(pllg) 2 kEy[X] - In EyfeX] (26)
with equality iff p and ¢ are related by exponential tilting; see (21).
Proof. Functional GE applied to Sanov:

D(pllq) = 21(1%){% -p = Ey[e" ]} = sup{ B, [k(X)] — In B [¢*)]} (27)

k(x)
[
e Csiszar’s inequality:
D(pllg) = D(pllpo) + D(pollq) (28)
where pg is such that D(po||g) = infpea D(p||q) and A some convex set.
e Exponential Chebyshev inequality:
P(X >a) < e *E[M], k>o0. (29)
Proof. Use e"#=%) > g(z —a) = g 00y (2),
P(X > a) = E[lljg00)(X)] < B[], (30)
O
e Markov inequality:
E|X
P(|X|>a) < g, a> 0. (31)

a

Proof. Use the exponential Chebyshev inequality for & = —1/a or notice that
L4 00)(y) < y/a for y > 0 to obtain

ElX|

P(IX] 2 a) = B[ljg,00) (| X)) = —_

(32)

O

10
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Chebyshev inequality:

1
ﬁa
(actually k& > 1 since the RHS is above 1 otherwise) or

P(|X — u| > ko) < k>0 (33)

2

P(X —p| > k) k> 0. (34)

<
= ﬁv
Follows from the exponential or the Markov inequalities. Gives rather loose bounds.
Other useful function inequalities (real x):

o ekaQ(a?),kZO
olmr<z-1
oe™>14ax,a>0
ozxer —et+12>0

o e > u—ulnu+ ux for all u > 0 with equality iff u = e*. Hence,

e’ = max{u —ulnu + ux}. (35)
u>0

o Geometric vs arithmetic mean:

n 1/n n
<H x> < %Zm z; > 0. (36)
i =1

o If g(z) > f(x) on the support of X, then E[g(X)] > E[f(X)].

. Some Legendre transforms

Absolute value:

0 rz==1
o= suplhe — )}, €)= { 0 Sl (37)
Parabola 1 (general): For p(z) = ax?® + bx + ¢, a > 0
b — 4ac — 2bk + k?
(k) =
p (k) - (38)
Parabola 2 (Gaussian): p(z) = (z — b)?/(2a)
k’2
p(k) = 5 + bk (39)
Parabola 3 (pure): p(z) = 22/2,
. k?
Pk = (40)
Parabola 4 (concave):
ak? ) (x — b)?
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