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1. Convex sets23

Let A be a subset of Rn.24

• Interior: int(A)25

• Closure: cl(A)26

• Relative interior: ri(A). Interior of A relative to the smallest subspace containing27

A (defined technically as the interior relative to the affine hull of A). (Fig. 1) (VT, §4.8)
(R, §6)

28

◦ int(A) is the interior of A relative to Rn.29

◦ ri(A) ⊆ A ⊆ cl(A). (R, §6)30
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Figure 1: (a) int(A) = ri(A). (b) int(A) = ∅ but ri(A) 6= ∅.
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Figure 2: (a)-(b) Nonconvex sets. (c) Convex set. (d) Convex hull.

◦ For A ⊆ Rn, ri(A) = int(A) if dim(A) = n.31

◦ ri = int in 1D.32

• Convex set: A is convex if ax+ (1− a)y ∈ A for all x, y ∈ A, a ∈ [0, 1]. (Fig. 2) (B, §2)33

◦ Operations that preserve convexity: intersection, dilatation, addition, closure,34

linear transformations.35

◦ Convex sets are connected.36

◦ Convex sets have non-empty relative interiors.37

• Convex hull: co(A). Smallest convex set containing A.38

2. Convex functions39

Consider a function f : X → R, with X ⊆ Rn.40

• Extended reals: R = R ∪ {+∞}41

• Extension of f : (VT, §1.22)42

f̃(x) =
{
f(x) x ∈ X
∞ x 6∈ X. (1)

◦ f̃ is a function of Rn to R.43

◦ One can always extend a function, so from now we consider only functions of44

Rn to R.45
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Figure 3: (a) Lower semi-continuous function. (A). (b) Upper semi-continuous function.
(c) Lower semi-continuous, extended function.

• Effective domain: dom(f) = {x ∈ Rn : f(x) <∞}. (VT, §5.11)46

• Lower semi-continuity: f : X → R is lower semi-continuous at x0 ∈ X if for47

each k ∈ R, k < f(x0) there exists a neighborhood U of x0 such that f(U) > k. (VT, §5.2)48

◦ Interpretation: function values near x0 are either close to f(x0) or are greater49

than f(x0).50

◦ Graphical interpretation: if f(x) is discontinuous at x0, then f(x0) is on the51

lowest branch. (Fig. 3)52

◦ Equivalent definition: (VT, §5.7)53

lim inf
x→x0

f(x) ≥ f(x0). (2)

◦ (Closed level sets) If f is lower semi-continuous, then {x ∈ X : f(x) ≤ a} is54

closed for all a ∈ R. (Essential property for LDT.) (VT, §5.3)55

◦ If f is lower semi-continuous, then {x ∈ X : f(x) > a} is open for all a ∈ R. (VT, §5.3)56

◦ f(x) = supλ fλ(x) is lower semi-continuous if the fλ’s are all lower semi-57

continuous. (VT, §5.4)58

◦ If f is lower semi-continuous on a compact space, then f assumes a minimum59

value (which may be +∞). (Essential for LDT.) (VT, §5.4)60

◦ If f and g are lower semi-continuous, then so is λf , λ > 0, and f + g. (VT, §5.4)61

◦ A function is continuous if and only if it is both lower and upper semi-62

continuous.63

• Epigraph: epi(f) = {(x, a) : f(x) ≤ a, a ∈ R} (Fig. 4) (VT, §5.1)64

◦ epi(f) is closed ⇔ f is lower semi-continuous. (VT, §5.3)65

◦ From the greek “epi” meaning “upon” or “over”.66

• Lower semi-continuous hull: function f such that (Fig. 4) (VT, §5.5)67

epi(f) = epi(f). (3)

◦ f is the largest lower semi-continuous minorant of f , i.e., the largest lower68

semi-continuous function g(x) such that g(x) ≤ f(x) for all x ∈ Rn. (VT, §5.6)69

◦ If f is lower semi-continuous, then f = f . (VT, §5.8)70
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Figure 4: (a) epi(f). (b) Lower semi-continuous hull of f .

• Subgradient: α ∈ Rn is said to be a subgradient of f at x0 if (VT, §5.30)71

f(x) ≥ f(x0) + α · (x− x0) (4)

for all x ∈ Rn. (Fig. 5)72

◦ When the inequality is satisfied we also say that f has a supporting hyperplane73

at x0 with gradient α.74

◦ A supporting hyperplane is said to be strictly supporting if the inequality is75

strict for all x 6= x0.76

◦ If f is differentiable at x0 ∈ dom(f), then ∇f(x0) is the unique subgradient77

of f at x0.78

◦ In R, we say that f has a supporting line with slope α.79

• Subdifferential: Set of all subgradients of f at x0: (VT, §5.30)80

∂f(x0) = {α ∈ Rn : f(x) ≥ f(x0) + α · (x− x0),∀x}. (5)

◦ ∂f(x0) is a convex subset of Rn.81

◦ ∂f(x) = {∇f(x)} if f is differentiable at x.82

◦ If f : R→ R is differentiable at x, then ∂f(x) = {f ′(x)}.83

◦ dom(∂f) = {x ∈ Rn : ∂f(x) 6= ∅}.84

• Convex function: f is convex if (VT, §5.9)85

f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y). (6)

for all x, y ∈ Rn and a ∈ [0, 1].86

◦ f is strictly convex if the inequality is strict for all a ∈ (0, 1).87

◦ Proper convex function: f 6= +∞. (VT, §5.11)88

◦ Improper convex function: f(x) = −∞ for all x ∈ ri(dom(f)). If f is lower89

semi-continuous, then dom(f) is closed, so that f(x) = −∞ on dom(f) in90

this case. (VT, §5.12)91

• Properties of convex functions: Let f be a proper convex function. Then,92

◦ epi(f) is convex. (VT, §5.10)93
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Figure 5: (a) (i) Point admitting a strict supporting line; (ii) point admitting no
supporting line; (iii) non-strict supporting line. (b) ∂f(x) = [f ′−, f

′
+]. (c) Supporting

lines for boundary points: the left boundary point has no supporting lines, while the
right boundary point has an infinite number of supporting lines with slope in [f ′−,∞).

◦ Convex level sets: f has convex level sets, i.e., {x : f(x) ≤ a} is a convex set94

for all a ∈ R.95

◦ dom(f) is convex. (VT, §5.11)96

◦ f has no isolated (−∞) singularities in its domain. (Fig. 6)97

◦ ri(dom(f)) ⊆ dom(∂f) ⊆ dom(f). (R, §227)98

∗ This shows that ∂f(x) is defined for all x ∈ dom f except possibly at99

relative boundary points.100

∗ A proper convex function has supporting lines everywhere except possibly101

relative boundary points.102

∗ Example of convex function that is not subdifferentiable (in fact differen-103

tiable) everywhere: (R, §215)104

f(x) =
{
−
√

1− |x|2 |x| ≤ 1
+∞ otherwise.

(7)

Then dom ∂f = (−1, 1) but dom f = [−1, 1].105

◦ Continuity: f is continuous on int(dom(f)). (VT, §5.20)106

◦ Relative continuity: The restriction of f to ri(dom(f)) is continuous. (VT, §5.23)107

◦ Semi-continuity: f is lower semi-continuous at each point in ri(dom(f)).108

◦ Subdifferential: f is everywhere subdifferentiable in its relative interior, i.e.,109

∂f(x) 6= ∅ for all x ∈ ri(dom(f)). (VT, §5.35)110

◦ In R, f has left- and right-derivatives everywhere in int(dom(f)).111

◦ In R, ∂f(x) = [f ′+(x), f ′−(x)] for all x ∈ int(dom(f)).112

◦ If f : R→ R is convex, differentiable, then f ′(x) is monotonically increasing.113

◦ af(x) + b, a > 0, is convex.114

◦ Affinisation: f(ax+ b) is convex.115

◦ Minimizers: f has no local minimum which is not a global minimum.116

◦ Minimizers set: The set of minimizers of f is a convex set.117
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• Other useful properties:118

◦ Jensen’s inequality: f(E[X]) ≤ E[f(X)], where E[·] denotes the expected119

value. (VT, §5.14)120

◦ Hessian: If f is twice continuously differentiable, then f is convex if and only121

if its Hessian is semi-definite (non-negative determinant). (VT, §5.29)122

◦ If f : R → R is twice differentiable and f ′′(x) > 0, then f is convex. The123

converse does not hold (counterexample: f(x) = x4). (VT, §1.11)124

◦ Convex superposition: g(x) =
∑

i fi(x) is convex if the fi(x)’s are convex. (VT, §5.14)125

◦ Convex maximization: g(x) = supλ fλ(x) is convex if fλ(x) is convex for all λ.126

Equivalently, g(x) = supy f(x, y) is convex if f(x, y) is convex in x for all y.127

◦ Convex minimization: g(x) = infy f(x, y) is convex if f(x, y) is jointly convex,128

i.e., convex as a “surface”.129

◦ Pointwise limit: f(x) = limn fn(x) is convex if fn is convex for all n.130

• Convex hull: (VT, §5.16)131

co(f)(x) = inf{a : (x, a) ∈ co(epi(f))}. (8)

◦ co(f) is the largest convex minorant of f .132

◦ co(f) is the largest lower semi-continuous, convex minorant of f .133

3. Duality134

• Conjugate or dual function: (VT, §6.1)135

f∗(k) = sup
x∈Rn
{k · x− f(x)}. (9)

• Bipolar or double dual:136

f∗∗(x) = sup
k∈Rn
{k · x− f∗(k)} = (f∗)∗(x). (10)

• Properties:137

◦ If f ≤ g, then f∗ ≥ g∗. (VT, §6.3)138

◦ (+∞)∗ = −∞.139

◦ If there is a point where f has the value −∞, then f∗ = +∞. In this case,140

f∗∗ = −∞, and so f∗∗ may not necessarily be equal to f .141

◦ f∗∗ ≤ f .142

◦ (infλ fλ)∗ = supλ f∗λ .143

◦ (supλ fλ)∗ ≤ infλ f∗λ .144

◦ (λf)∗(k) = λf∗(k/λ), λ > 0.145

◦ (f + λ)∗ = f∗ + λ.146

◦ [f(x− y)]∗(k) = f∗(k) + k · y.147

◦ inf f(x) = −f∗(0).148
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◦ f∗ is convex, lower semi-continuous. (VT, §6.8)149

◦ f∗∗ is convex, lower semi-continuous. (VT, §6.11)150

◦ f∗∗∗ = f∗.151

◦ Fenchel’s inequality: f(x) + f∗(k) ≥ k · x. (VT, §6.9)152

• Closure of f : cl(f) = f̄ if f has nowhere the value −∞; otherwise cl(f) = −∞. (VT, §6.13)153

◦ f is said to be closed when cl(f) = f .154

• Duality: (Fig. 6) See also (HT) for figures. (R, §23, 25)155

◦ k ∈ ∂f(x)⇔ f∗(k) = k · x− f(x). (R:Thm 23.5:218) (VT, §6.10)156

◦ k ∈ ∂f∗∗(x)⇔ x ∈ ∂f∗(k).157

◦ k ∈ ∂f(x) ⇔ f(x) = f∗∗(x) except possibly at relative boundary points.158

(See Rockafellar’s example).159

◦ ∂f(x) 6= ∅ f(x) = f∗∗(x) except possibly at relative boundary points.160

(See Rockafellar’s example).161

◦ f∗∗ = cl(co(f)) in general; f∗∗ = co(f) if f is nowhere equal to −∞. (VT, §6.15)162

◦ f∗∗ = f if f is proper convex. (VT, §6.16)163

◦ f∗∗ = f if f is convex, lower semi-continuous or else f = ±∞. (VT, §6.18)164

◦ dom f ⊆ dom f∗∗.165

∗ Examples: f is not lower semi-continuous or f has a middle +∞ (non-166

convex) part, i.e., dom f is not convex.167

∗ Corollary: If f(x) <∞, then f∗∗(x) <∞.168

◦ The map f → f∗ is bijective for convex, lower semi-continuous functions. (VT, §6.19)169

◦ f > f∗∗ if f 6= f∗∗.170

◦ If f is nonconcave or affine somewhere, then f∗ is non-differentiable some-171

where.172

◦ If f is non-differentiable somewhere, then f∗ has an affine region.173

◦ The dual is the same as the Legendre transform for strictly convex, differen-174

tiable functions.175

• Concave points vs supporting lines:176

◦ Convex hull points: Γ(f) = {x : f(x) = f∗∗(x)}.177

◦ Concave points: Γ(f) ∩ dom f .178

The intersection with dom f comes from not wanting +∞ points as concave.179

◦ Supporting line points: C(f) = {x : ∂f(x) 6= ∅} = dom ∂f .180

◦ C(f) = Γ(f) ∩ dom ∂f∗∗ = Γ(f) ∩ dom ∂f .181

◦ Γ(f) ∩ ri(dom f) ⊆ C(f) ⊆ Γ(f) ∩ dom f .182

∗ Proof : Take Γ(f)∩ of Rockafellar’s inclusion result.183

∗ This shows that concave points are supporting line points except possibly184

at relative boundary points.185

7



x

f

+∞

(a)

x

f

(c)

∞−x

f

+∞

(b)

**

Figure 6: (a)-(b) f and its convex, lower semi-continuous hull. (c) f has the value −∞
somewhere. Then f∗ = +∞, so that f∗∗ = −∞.

4. Optimization186

• Fenchel’s duality Theorem: Let f be a proper convex function and g be a187

proper concave function such that ri(dom(f)) ∩ ri(dom(g)) 6= ∅. Then, (VT, §7.15)188

inf
x∈Rn
{f(x)− g(x)} = max

k∈Rn
{g∗(k)− f∗(k)}.

g∗ is the dual defined for concave functions.189

• Constrained minimization: Let C be a convex, non-empty subset of Rn. Then, (VT, §7.16)190

inf
x∈C

f(x) = inf
x∈Rn
{f(x)− g(x)} = max

k∈Rn
{g∗(k)− f∗(k)},

where g(x) = −δC(x) (indicator function). Note that (VT, §5.15)
(VT, §6.5)

191

δ∗C(k) = sup
x∈Rn
{k · x− δC(x)} = sup

x∈C
k · x.

5. Convex inequalities192

• Jensen inequality: Let f be a convex function. Then193

f(E[X]) ≤ E[f(X)] (11)

with equality if X is deterministic or if f is affine. The sign is reversed for concave194

functions.195

• Examples:196

◦ eE[X] ≤ E[eX ] or197

lnE[X] ≤ lnE[eX ]. (12)

Simple proof (from wiki).

E[eX ] = eE[X]E[eX−E[X]] ≥ eE[X]E[1 +X − E[X]] = eE[X] (13)

where the inequality follows from eX ≥ 1 +X.198
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◦ lnE[X] ≥ E[lnX]. Compare with previous result.199

• Relative entropy: D(p||q) ≥ 0 with equality iff p = q.200

• Gibbs inequality:201

x− x lnx ≤ y − x ln y, x, y > 0 (14)

with equality iff x = y.202

• Gibbs inequality (sums or integrals):203

−
∑
i

pi ln pi ≤ −
∑
i

pi ln qi (15)

or204

−
∫
dx p(x) ln p(x) ≤ −

∫
dx p(x) ln q(x) (16)

with equality iff p = q.205

◦ Equivalent to positive relative entropy.206

◦ q(x) uniform:207

H(p) ≤ ln |X | (17)

with equality iff p is uniform.208

◦ q(x) = e−βU(x)/Z(β):209

H(p) ≤ βEp[U(X)] + lnZ(β) (18)

with equality iff p = q. This result is what is most often referred to as Gibbs210

inequality or sometimes as the Gibbs-Bogoliubov inequality.211

◦ q(x) = ekxp(x)/W (k):212

kE[X] ≤ lnE[ekx], (19)

that is,213

λ(k) ≥ kλ′(0). (20)

See PR2009:13.214

◦ p(x) = ekxq(x)/Eq[ekx]:215

D(p||q) = kEp[X]− lnEq[ekx] ≥ 0. (21)

• Gibbs inequality (two Hamiltonians):216

lnZ1(β) ≥ lnZ0(β) + β〈U0 − U1〉0 (22)

for217

pi(x) =
e−βUi(x)

Zi(β)
, Zi(β) =

∑
x

e−βUi(x). (23)
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• Donsker-Varadhan variational formula:218

D(p||q) = sup
f∈Cb(X )

{Ep[f(X)]− lnEq[ef(X)]}

= sup
f∈Cb(X )

{∫
X
fdP − ln

∫
X
efdQ]

}
(24)

◦ Remark: The name ‘DV variational formula’ comes from Dupuis-Ellis p. 29.219

◦ Resulting inequality:220

D(p||q) ≥ Ep[f(X)]− lnEq[ef(X)] (25)

for any function f .221

◦ Particular case: For f(x) = kx:222

D(p||q) ≥ kEp[X]− lnEq[ekX ] (26)

with equality iff p and q are related by exponential tilting; see (21).223

Proof. Functional GE applied to Sanov:224

D(p||q) = sup
k(x)
{k · p− lnEq[ek(X)]} = sup

k(x)
{Ep[k(X)]− lnEq[ek(X)]} (27)

225

• Csiszàr’s inequality:226

D(p||q) ≥ D(p||p0) +D(p0||q) (28)

where p0 is such that D(p0||q) = infp∈AD(p||q) and A some convex set.227

• Exponential Chebyshev inequality:228

P (X ≥ a) ≤ e−kaE[ekX ], k > 0. (29)

Proof. Use ek(x−a) ≥ θ(x− a) = 11[a,∞)(x),229

P (X ≥ a) = E[11[a,∞)(X)] ≤ E[ek(X−a)]. (30)

230

• Markov inequality:231

P (|X| ≥ a) ≤ E|X|
a

, a > 0. (31)

Proof. Use the exponential Chebyshev inequality for k = −1/a or notice that232

11[a,∞)(y) ≤ y/a for y ≥ 0 to obtain233

P (|X| ≥ a) = E[11[a,∞)(|X|)] ≤
E|X|
a

. (32)

234
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• Chebyshev inequality:235

P (|X − µ| > kσ) ≤ 1
k2
, k > 0 (33)

(actually k > 1 since the RHS is above 1 otherwise) or236

P (|X − µ| > k) ≤ σ2

k2
, k > 0. (34)

Follows from the exponential or the Markov inequalities. Gives rather loose bounds.237

• Other useful function inequalities (real x):238

◦ ekx ≥ θ(x), k ≥ 0239

◦ lnx ≤ x− 1240

◦ eax ≥ 1 + ax, a > 0241

◦ xex − ex + 1 ≥ 0242

◦ ex ≥ u− u lnu+ ux for all u > 0 with equality iff u = ex. Hence,243

ex = max
u>0
{u− u lnu+ ux}. (35)

◦ Geometric vs arithmetic mean:244 (
n∏
i

xi

)1/n

≤ 1
n

n∑
i=1

xi, xi > 0. (36)

◦ If g(x) > f(x) on the support of X, then E[g(X)] > E[f(X)].245

6. Some Legendre transforms246

• Absolute value:247

|k| = sup
x
{kx− ξ(x)}, ξ(x) =

{
0 x = ±1
∞ otherwise.

(37)

• Parabola 1 (general): For p(x) = ax2 + bx+ c, a > 0248

p∗(k) =
b2 − 4ac− 2bk + k2

4a
(38)

• Parabola 2 (Gaussian): p(x) = (x− b)2/(2a)249

p∗(k) =
ak2

2
+ bk (39)

• Parabola 3 (pure): p(x) = x2/2,250

p∗(k) =
k2

2
. (40)

• Parabola 4 (concave):251

kb− ak2

2
= min

x

{
xk +

(x− b)2
2a

}
(41)
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