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Abstract

We examine the dielectric constant of non-polar fluids by direct Monte Carlo simulations on the

basis of the polarizable hard sphere (PHS) model where the spheres carry molecular polarizabilities.

Point dipoles are induced in the spheres partly by an external electric field and partly by other

molecules. It has been known that the Clausius-Mosotti equation needs a correction due to mutual

polarization between molecules. We reproduce the qualitative behavior found in experiments: the

correction increases with increasing density, reaches a maximum, and decreases at high densities.

We show that the classic theory of Kirkwood and Yvon is quantitatively correct for the PHS model.
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I. INTRODUCTION

It has been known since the first measurements for carbon dioxide1, argon2, and carbon

disulfide3,4 that the Clausius-Mosotti (CM) formula5,6 for the dielectric constant, ǫ, of non-

polar fluids is not strictly valid at high pressures. The CM equation in its corrected form

can be expressed as
ǫ − 1

ǫ + 2
=

4π

3
αρ(1 + S) (1)

where α is the molecular polarizability, ρ = N/V is the density, and S is the correction factor.

When S = 0, the CM equation is recovered, which is the low density limit. Measurements

showed that S first increased with increasing density, reached a maximum, then decreased

at high densities (high pressures).

The CM equation is based on the Lorentz formula7 for the internal field and ignores the

fact that a molecule is also polarized by other molecules not only by the external field8.

Kirkwood9 and Yvon10 developed a molecular theory (KY) for the dielectric constant of

non-polar fluids. Their equations used second and third order correlation functions that

were not available at that time.

Böttcher11,12 developed an approximate formula based on Onsager’s treatment. It was

critically reviewed by Brown13 stating that the apparent success of the formula may be a

consequence of cancellation of errors. The theory of KY was further analyzed and developed

by Van Vleck14 and de Boer et al.15.

As modern theories of liquids raised in the 60s and 70s16, the KY theory was revisited and

the dielectric constant was computed using the correlation-functions now available. Stell and

Rushbrooke17 used the hard sphere (HS) potential, while Graben et al.18 used the Lennard-

Jones potential as the basic model for the non-polar fluid. Wertheim19 developed a theory

for the dielectric constant of non-polar fluids on the basis of graph theoretical techniques.

He considered a sample of arbitrary shape and expressed the relation of the external field

to polarization as a sum of graphs. Approximations resulted in analytic expressions similar

to those of the mean spherical approximation of polar fluids.

In this paper, we simulate dielectric constant of non-polar fluids directly, to our knowl-

edge, for the first time. We use Monte Carlo (MC) simulations to study systems of HS

molecules that carry molecular polarizabilities – the so called polarizable hard sphere (PHS)

model – in an external electric field. We calculate the correction to the CM equation and
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compare our results to the theoretical data of Stell and Rushbrooke17 and show that the

KY theory is accurate for the PHS model. We also discuss the deviations of the MC results

from experimental data.

II. MODEL AND METHOD

We use the PHS model to represent non-polar fluids. This is the simplest model in which

the particles have finite size. In the absence of a polarizing external electric field, this system

reduces to the HS fluid:

uHS(r) =







∞ for r ≤ d

0 for r > d ,
(2)

where d is the diameter of the sphere (we consider a one-component system).

When a uniform external electric field, E, is applied, a dipole moment with magnitude

µ0 = αE is induced on each molecule, where α is the molecular polarizability of the molecules

We assume that the molecular polarizability is a scalar. The dipole moments point to the

direction of the electric field so we use scalar quantities from now on.

We simulated this system with the MC simulation method in the canonical ensemble,

where the temperature T , the volume V , and the number of molecules N is fixed (we used

N = 256 in our simulations). We used a cubic simulation cell with periodic boundary

conditions. We applied the minimum image convention without any long range correction,

which practically corresponds to using a reaction field with ǫRF = 1. Because the dielectric

constant is close to unity in our systems, this assumption is reasonable. (We performed a

few simulations with the CM value for ǫRF and found little effect on the correction.) The

dipoles induced by other dipoles were computed by an iteration procedure20,21. The details

of our simulation methodolgy can be found in other papers22–24.

The dielectric constant can be computed from the following polarization formula derived

by Neumann25:
ǫ − 1

ǫ + 2
=

4π

3

〈P 〉

E
, (3)

where P is the polarization density. The total polarization of the N -particle system is a sum

of the dipoles µ0 = αE induced directly on a particle by the external field and the average

induced dipoles 〈µind〉 (induced by other molecules):

V 〈P 〉 = Nµ0 + N 〈µind〉 (4)
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The brackets denote ensemble averages. Eqs. 3 and 4 results in

ǫ − 1

ǫ + 2
=

4π

3
αρ

(

1 +
〈µind〉

µ0

)

, (5)

which is the corrected CM equation and the correction S can be computed as the average

induced dipole due to other molecules normalized by the dipole due to the external field.

The classical theory of nonpolar fluids as developed by Kirkwood9 and Yvon10 can be

summarized as

S = α2

[

8πρ

∫

g2(r)

r4
dr

+ 2ρ2

∫

g3(r, s) − g2(r)g2(s)

r3s3
P2(cos θ) dr ds

]

+ O(α3) (6)

The term proportional to α2 can be given as

S(2) =

(

4π

3
α∗

)2 [

3

2π
ρ∗I2(ρ

∗) −
15

16
(ρ∗)2J3(ρ

∗)

]

(7)

where the reduced polarizability α∗ = αd−3 and density ρ∗ = ρd3 were introduced.

The integrals I2(ρ
∗) and J3(ρ

∗) depend on the pair and triplet correlation functions g2(r)

and g3(r, s) and can be found in the paper of Stell and Rushbrooke17. Stell and Rushbrooke

also analyzed the graph-theory of Wertheim19 that provides a closed formula for the dielectric

constant. They showed that Wertheim’s equations recovered Eq. 7 when I2(ρ
∗) and J3(ρ

∗)

were replaced by 1 (their low density limits).

III. RESULTS AND DISCUSSION

First, we analyze our results as a function of the strength of the external field. We present

our results in terms of the dipole moment µ0 = αE induced by the external field in reduced

unit (µ∗)2 = µ2
0/kTd3. Figure 1 shows the correction S as a function of (µ∗)2 for a fixed value

of the polarizability α∗ = 0.06 at various densities ρ∗ = 0.05, 0.5, and 0.8. The correction

increases with increasing fixed dipole moment because stronger dipoles can polarize each

other more strongly.

The figure shows the results for experimentally unattainable, very large dipole moments

to demonstrate different behavior at low and high densities. At high densities, S increases
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linearly with (µ∗)2, while at low density (ρ∗ = 0.05) a clearly nonlinear behavior is observed.

This is a consequence of chain-formation that was found in low-density highly polar dipolar

fluids26. There, the molecules spontaneously form chains with dipoles in head-to-tail po-

sition. Here, the dipoles already point in the same direction and chain-formation is more

likely. When the dipoles are in a chain, they are in a low-energy configuration, and their

mutual polarizing effect is maximal. Thus, the correction increases non-linearly as longer

chains form because the second neighbor in the chain has a considerable polarizing effect.

At high densities this non-linearity vanishes because energetically less favorable (parallel)

positions are also present due to close packing.

These high-field results might be irrelevant for ordinary non-polar molecular fluids, but

they represent attainable states for electrorheological fluids that are suspensions of fine non-

conducting particles in an electrically insulating fluid. In an external electric field, dipoles

are induced on the particles because they have a dielectric constant different from that of the

fluid. Properties of the system (for example, viscosity) change in an external field because

of chain formation of the suspended particles.

For ordinary non-polar fluids, we should use the zero-field limit. The values at very small

dipole moments converge to a well defined limit (see the inset of Fig. 1). From now on, we

use (µ∗)2 = 0.005 in our simulations.

The theoretical works of KY and others imply that the dominant term in the expansion

of S as a function of α is the second order term (see Eq. 7). In Fig. 2, we demonstrate that

MC simulations reproduce this result at least for the PHS model, where the elecrostatic

forces dominate the problem: S varies linearly with (α∗)2. This result is a strong support

for the KY theory.

Therefore, we plot S/(α∗)2 in Fig. 3, where we compare our simulation results to theo-

retical data taken from the paper of Stell and Rushbrooke17. The two simulation curves for

α∗ = 0.04 and 0.06 practically coincide; the small differences are due to statistical uncer-

tainties of the simulations. The three curves without symbols show results computed from

Eq. 7 using various approximations. The dotted line represents the approximation that the

pair-correlation function is a step function (e(r) = 0 for r < d, e(r) = 1 for r > d). In

this case, I2(ρ
∗) = I2(0) = 1, namely, we replace the integral by its low density limit. The

other integral is also 1, J3(ρ
∗) = J3(0) = 1 , if we use the superposition approximation (SA)

where the triplet correlation function is a product of the three pair functions. This curve
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underestimates the simulation results and becomes negative at higher densities.

The next approximation uses computed data for I2(ρ
∗) (we show the results of Stell and

Rushbrooke17 who use unpublished MC data of Verlet and Schiff for g2(r)), while still uses

the approximation J3(ρ
∗) = 1 for the other integral (green dashed line). The agreement

with MC data is much better indicating the importance of the correct calculation of I2(ρ
∗).

Deviations from simulations appear above ρ∗ = 0.4.

A better approximation is to apply the SA for g3(r, s) using simulation data for g2(r) and

to compute J3(ρ
∗) accordingly (magenta dot-dashed line). This approximation works well

up to ρ∗ = 0.55 and it overestimates the simulation data above that. This implies that a

correct calculation of the integral J3(ρ
∗) is necessary.

Stell and Rushbrooke17 used a direct MC estimate by Alder et al.27 for J3(ρ
∗) at the

density ρ∗ = 0.884. The result using this value is shown by a red square in the figure.

The agreement with our simulation results is excellent. This agreement is an even stronger

support of the KY theory for the PHS model and indicates that higher order terms in the

series expansion of S (Eq. 6) are really negligible.

Finally, we discuss the ability of the PHS model to reproduce experimental data. It

is advantageous to plot S against the dielectric constant when we compare to experiments.

Figure 4 shows the results for various polarizabilities. The inset shows the experimental data

for carbon dioxide1. Comparison of the two plots (the range of ǫ) implies that the reduced

polarizability that roughly corresponds to CO2 is about α∗ = 0.06. The experimental

correction at the maximum point is about 2 %. For α∗ = 0.06, the MC value is less than 1

%. The simplistic PHS model can only partially reproduce the experimental correction to

the CM equation in the case of CO2 but the qualitative behavior is correct.

IV. DISCUSSION

The qualitative shape of the S vs. ρ∗ (and also the S vs. ǫ) curves can be reproduced

by the PHS model. The quantitative disagreement with experiments may be due to various

approximations of the model. It ignores the attractive dispersion potential between the

molecules. The theoretical calculations of Graben et al.18 for the polarizable Lennard-Jones

fluid show that the correction is slightly larger than in the case of the PHS model, but

the difference is not decisive. The shape of the molecules might also be important at high
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densities, but not at ρ∗ ≈ 0.5, where the maximum appears.

The PHS model uses idealized point dipoles to treat electrostatic interactions so it ignores

higher order terms in the multipole expansion. The non-ideality of the charge distribution

of the molecule is probably an important issue that captured the attention of several re-

searchers over the years who modified the KY theory by including quadrupole28–35 and

octopole moments36. All these authors conclude that the effect of higher order terms is not

negligible (supported by the experimental result that the correction is larger for CO2 than

for Ar).

With the improvement of experimental techniques37,38, the density dependence of the

dielectric constant of various gases were measured and analyzed in term of the dielectric

virial expansion, which is the density expansion of the CM function (ǫ − 1)/(ǫ + 2)ρ. The

results were fitted to theories and higher order multipole moments were estimated. Examples

include the quadrupole moment of CO2
39, C2H4

40, and N2
41 on the basis of the theory of

Buckinhgam and Pople32,34. The octopole moments of He, Ar, N2, and CH4
36 as well as

CH4 and CF4
42 were computed on the basis of the theory of Johnston et al.36. All these

measurements, nevertheless, were conducted for relatively low densities where the underlying

theories can be assumed to be valid. Reliable models – studied either by simulations or

theories – that are able to describe the dielectric anomalies of non-polar gases even at high

densities are desirable in order to understand the internal structure of the molecules and to

obtain accurate values for the multipole moments.

Jansen et al.28–31 raised the possibility that the molecular polarizability, α, is no longer

a well defined molecular quantity, but it depends on the density. At high densities, the

molecules can modify each others’ structure and the apparent polarizability of colliding

molecules can be different from that of the isolated molecules. The difference, the incre-

mental polarizability can be studied by collision-induced light scattering43,44. The effect of

anisotropic, tensorial polarizability can also be important at high densities45.

A heuristic explanation of the maximum in the S vs. ρ∗ curve can be the following.

Increasing the density, the molecules tend to be closer to each other in average. Further-

more, they tend to polarize each other strongly and ion pairs (sometimes triplets) form in

head-to-tail positions. As density increases, the positive polarizing effect of the head-to-tail

configurations is gradually diminished by parallel configurations that necessarily appear at

high densities. These are repulsive configurations with an opposite polarizing effect, but
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this effect is smaller than that of the head-to-tail configurations, so the correction is never

negative.

We have presented direct MC simulations for the dielectric constant of non-polar fluids

and showed that the KY theory is correct in second order in α in describing the behavior of

the PHS model. Experimental corrections to the CM equations are reproduced partially, so

consideration of other effects will be necessary.
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Captions of figures

Figure 1 MC results for the correction to the CM equation as a function of (µ∗)2 for

α∗ = 0.06 at various densities. The inset shows the results for small dipole moments.

Figure 2 MC results for the correction to the CM equation as a function of (α∗)2 for

(µ∗)2) = 0.005 at various densities.

Figure 3 The correction to the CM equation normalized by (α∗)2 as a function of the

density as obtained from simulations (symbols with lies) and the KY theory (Eq. 7)

using different approximations as described in the text.

Figure 4 MC results for the correction to the CM equation as a function of the dielectric

constant for different polarizabilities. The inset shows experimental data for carbon

dioxide1.
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