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Abstract

We characterize the unique equilibrium of an asymmetric all-pay auction

with incomplete information. The two bidders’ types are independently drawn

from different two-point probability distributions: Types as well as probabil-

ities differ among bidders.

Next we apply our results to information disclosure in contests. Recent re-

search shows that bidders do not disclose any information if they can only

decide between full disclosure or none. In contrast, we find that bidders al-

ways disclose some information if disclosure can be partial.
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1 Introduction

This paper studies an asymmetric incomplete information all-pay auction. We as-

sume that there are two bidders whose valuations for winning are drawn from asym-

metric two-point distributions. Types as well as type-probabilities are asymmetric

across bidders. The paper provides a complete and explicit characterization of the

unique Nash equilibrium. Our model covers many qualitatively different cases – such

as overlapping supports, disjoint supports, or bidders varying to different extent

around the same mean valuation. The flexibility of our general two-types approach

is reflected in the rich structure of equilibrium we obtain.

Since our model is both tractable and flexible, it is ideally suited for use within

applications. We demonstrate this by studying the question of information sharing

in all-pay auctions. We consider a model where contestants are either of a strong or a

weak type with asymmetric probabilities. Initially, both types and type probabilities

are private information. In a preliminary stage, bidders have the possibility to

share some of their private information with their opponent by revealing their type

probability. We can show that contestants are always willing to share some private

information about their type with their opponent. This result is derived from our

previous equilibrium analysis with little additional effort.

Only recently, Siegel (2009, 2010) has contributed significantly to the understanding

of asymmetries in complete information all-pay auctions.1 The incomplete informa-

tion case is considerably less well-understood, mostly due to the fact that explicit

solutions are typically difficult to obtain even for elementary examples. A better

understanding is important for at least two reasons as outlined in the next two

paragraphs.

From a theoretical point view, the fact that the revenue-equivalence theorem breaks

down under asymmetries2 necessitates a separate study of different auction types.

This was begun by Maskin and Riley (1985) who characterize equilibria of first- and

second-price winner-pay auctions for the two-bidder case with asymmetric two-point

distributions. Our results can be seen as a direct continuation of this work.3

1For the earlier literature, see among others Hillman and Samet (1987), Hillman and Riley
(1989), Baye, Kovenock and de Vries (1996), and Clark and Riis (1998).

2See Fibich, Gavious and Sela (2004) for a recent reference.
3The setting of Maskin and Riley is more restrictive than the one we consider here since they

assume that the weak types of both bidders have a valuation of zero.
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From a more applied perspective, a need to study asymmetric all-pay auctions with

incomplete information arises from the fact that all-pay auctions are very popular

models of contests and related competitive situations.4 Though theoretically highly

interesting, most of the few existing results on all-pay auctions with asymmetries

and incomplete information are too abstract for easy use within applications. As a

consequence, the vast majority of the applied all-pay auctions literature studies ex

ante asymmetries only for the tractable complete information case.5 As we show in

our application of information sharing, this is clearly not without loss of generality.

More specifically, the theoretical literature on asymmetric incomplete information

all-pay auctions consists mainly of two contributions: For the case of continuously

distributed valuations, Amann and Leininger (1996) analyze the two bidder case.

They show existence and uniqueness of the equilibrium and characterize some of

its properties, e.g. that at most one participant bids zero with positive probability.

Parreiras and Rubinchik (2010) generalize the setting of Amann and Leininger to

n bidders with asymmetric risk-attitudes. They characterize classes of examples

where the equilibrium has properties that have been found in experimental studies,

such as non-decreasing densities of bids and complete drop-out of some bidders.

Both of these studies make an important theoretical contribution. Yet neither of

them provides (or aims at providing) a flexible model that allows for an explicit

characterization of equilibrium suitable for applications.6 Similarly, their results are

too abstract to allow for a non-technical analysis of the way the equilibrium reacts

to small changes in the distribution of valuations. Our more specialized but explicit

results overcome both of these limitations while still addressing a rich spectrum of

asymmetries.

Technically, while we retain most of the tractability of the complete information case

in our model, Siegel’s (2009, 2010) approach of first identifying bidders’ equilibrium

4Konrad (2009) provides an overview with many references.
5We are aware of only two contributions in the applied all-pay auctions literature which consider

ex ante asymmetries and private information simultaneously: Sahuguet (2006) analyzes all-pay auc-
tions with bid-caps where bidders’ valuations are drawn from uniform distributions with different
upper bounds of the support. Münster (2009) studies a model of repeated all-pay auctions where
asymmetries arise endogenously over time. He considers two-point distributions where the weak
types have infinite bidding costs and where the strong types to have symmetric costs. Clearly,
both models are considerably less flexible than the one we consider here.

6Amann and Leininger (1996) obtain explicit results for distributions of the form F (v) = vα.
Yet this (one-parameter) class of distributions captures only a limited spectrum of asymmetries
between bidders, and – probably for this reason – has not been picked up by applied research.
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payoffs through abstract arguments and then constructing a corresponding equilib-

rium does not carry over to our setting. Instead, our approach is more similar to the

one employed by Amann and Leininger (1992) in the case of continuously distributed

valuations: We construct a family of equilibrium candidates downwards from the

upper boundary of the supports, using the observation that bidders’ payoffs must

be balanced locally. We then identify the equilibrium by observing that the lower

end of supports must be zero.

Our results on information sharing in contests nicely complement recent results by

Kovenock, Morath and Münster (2010) on the same subject. They consider the case

of continuously distributed types. They restrict the choice about information sharing

to either full or no revelation of the contestants’ private information. Obviously, this

is for technical reasons – if bidders would reveal some (but not all) information, an

asymmetric incomplete information all-pay auction would arise with the well-known

technical difficulties. Our two-types approach allows to consider partial release of

information without any technical complications. Kovenock, Morath and Münster

(2010) show that in their setting bidders never prefer to share information. In

contrast, we find that bidders are always willing to share some of their private

information if partial disclosure is possible.

The paper proceeds as follows: In Section 2, we introduce the model and state some

elementary observations. Section 3 characterizes the unique equilibrium. In Section

4, we apply our results to the problem of information sharing in contests. Section 5

concludes.

2 The Model

There is an all-pay auction with 2 bidders, who each have a valuation of 1 for

winning. With probability pi ∈ (0, 1), bidder i is of strong type and has low marginal

costs of exerting effort, ci. With probability 1− pi, he is of weak type and has high

marginal costs of Ci. We assume ci < Ci < ∞. The probability distributions are

common knowledge. Each bidder knows his own type but not the type-realizations

of his opponents. The bidder who exerts the highest effort e wins the auction.

Ties are broken arbitrarily. The symmetric case of this model has been analyzed in

Konrad (2004). Münster (2009) studies the case ci = c and Ci =∞.7

7To keep the notation simple, we thus assume that bidders and types differ in bidding costs
but have the same valuation for winning. It is straightforward to extract from our results the
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It follows easily that any equilibrium of this game must be in mixed strategies and

that there are no atoms except possibly in zero just as in the complete information

auction.8 Thus each bidder’s strategy can be represented by two distribution func-

tions which are atomless (with zero as the possible exception): Bidder i utilizes F c
i

if he has low marginal costs ci and FC
i if he has high marginal costs Ci.

For fixed i, the supports of F c
i and FC

i must be disjoint (except possibly for boundary

points and zero): Let Pi(e) denote bidder i’s probability of winning via an effort of

e (given the other bidder’s strategy). Note that Pi(e) does not depend on i’s type.

Thus bidder i maximizes either

Pi(e)− cie or Pi(e)− Cie.

At no e both maxima can be attained (except in zero when the first summands are

zero), as the respective first order conditions are P ′i (e) = ci and P ′i (e) = Ci.
9

Taking this argument one step further, we see that the strong type’s payoff from

exerting effort in the weak type’s interval must be increasing in effort: The weak

type earns constant expected payoffs on his interval. Since the strong type has lower

marginal costs, increasing the effort must then be profitable for the strong type on

these effort levels. Likewise, the weak type’s payoff must be decreasing in effort

on the strong type’s interval. This implies that the strong type of a bidder must

play strictly higher effort levels than the weak type in equilibrium. Note that the

arguments given so far carry over to the case of n bidders and k types as well. We

conclude by collecting our observations so far in the following corollary:

Corollary 1 In any equilibrium, the union of all bidders’ types’ supports must be a

bounded interval with lower boundary zero. At least one bidder never sets an atom

on zero. Moreover, no bidder puts an atom on strictly positive effort levels. With

two bidders, the union over all types’ strategy supports must be the same for both

bidders, i.e., both bidders mix down to zero, no bidder leaves gaps and both bidders

mix up to the same highest bid. At a given effort level, a bidder competes either

corresponding results for the case where bidders differ in both respects: Multiplying a type’s
valuation for winning and costs by the same constant θ leaves the type’s equilibrium strategy
unchanged and changes his equilibrium payoff by the factor θ.

8See Corollary 1.
9If one of bidder i’s types has an open interval I in the support of his equilibrium strategy then

Pi(e) must be linear on I since costs are linear. This implies differentiability.
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against the strong type of the other bidder, or against the weak type. The strong type

of a bidder plays higher effort-levels than the weak type.

3 The Unique Equilibrium

We now characterize the unique equilibrium explicitly. Depending on the values of

the parameters c1, C1, p1 and c2, C2 and p2, let us distinguish six different cases

defined with the help of the following conditions:

p1c1 > p2c2, (A1)

p1c1 > p2c2 + (1− p2)C2, (A2)

p1c1 + (1− p1)C1 > p2c2 + (1− p2)C2. (A3)

Before we come to the intuition for these conditions, we introduce some notation by

recalling from Corollary 1 the following properties any equilibrium must possess: A

bidder i mixes in equilibrium on a gapless support. His strong type will mix up to

some e which is the same for both bidders and down to some lower boundary which

we call ei. His weak type plays all the effort-levels between ei and zero.

Let us first consider the effort interval on which the strong types of both bidders

compete against each other. Which strong type has to play the more concentrated

strategy, i.e. has to mix with a higher density? If (A1) is fulfilled,

p1c1 > p2c2, (A1)

it must be the strong type of bidder 1 (which we call “strong 1” from now on).

Let us see why: Consider the strong type of bidder 2, strong 2. Increasing his effort

slightly by ε inside the equilibrium support must not affect his payoffs. An effort

increase can only pay out if strong 1 is active, which happens with probability p1.

(Winning over weak 1, the weak type of bidder 1, is certain.) Hence it has to hold:

p1(F
c
1 (e2 + ε)− F c

1 (e2)) = c2ε, (1)

where the left hand side denotes the expected additional gain by increasing the

effort by ε. The right hand side denotes the additional cost. Taking ε to zero we
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also obtain the density strong 1 has to play on the interval where strong 2 is active.

It must be given by f c
1 = c2

p1
. Yet then, p1

c2
denotes the length of the interval strong

1 would have to mix on if he always played against strong 2.

Let us compare the lengths of the intervals strong 1 and strong 2 would have to play

on if they always played against the strong type of the other bidder:

p1

c2
>
p2

c1
. (A1’)

If (A1’) holds, as both strong types mix up to the same upper boundary e (whose

value we still have to determine), strong 1 has to mix down to lower effort levels

than strong 2. So we see that strong 2 indeed always competes against the strong

type of his competitor, in contrast to strong 1, who is left with some probability

mass he has to “spend” elsewhere. Note that (A1’) and (A1) are equivalent.

Let us for the rest of the section without loss of generality assume that (A1) is

fulfilled. Hence we know that strong 1 has to mix over a larger interval than strong

2. We know he cannot mix over higher effort levels than strong 2. Hence he has to

mix down to lower effort levels than strong 2. Will he even mix down to effort level

zero? This depends on (A2):

p1c1 > p2c2 + (1− p2)C2, (A2)

If (A2) holds, strong 1 even has to mix over a larger interval than both strong 2

and weak 2 together. Note that (A2) resembles (A1) very much: The left hand side

is identical in both conditions, as in both situations it is always the strong type of

bidder 1 who is active. The left hand side of (A2) is analogous to the left hand side

of (A1) if we reinterpret bidder 2 as a bidder 2′ who is always of strong type (p=1),

but who has costs of p2c2 + (1− p2)C2. Then (A2) reads:

p1c1 > 1 · (p2c2 + (1− p2)C2), (A2’)

Note that such a reinterpretation is valid here because bidder 2 always competes

against strong 1, and never against weak 1 under (A2). Let us consider the corre-

sponding picture of the shape of the equilibrium:

Strong 1 has to mix over such a long interval that there is no room for weak 1 to

mix over any positive effort levels. Hence weak 1 has to put all his probability-mass

on zero.
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Figure 1: Supports of the bidders’ strategies if (A1) and (A2) hold, strong types in
black, weak types in blue.

Our third condition, Condition (A3),

p1c1 + (1− p1)C1 > p2c2 + (1− p2)C2, (A3)

is relevant only if (A2) is not fulfilled, i.e. in the case where the weak types of both

bidders exert positive efforts with some probability. Then it depends on (A3) which

of the weak types puts an atom on zero. If (A3) is fulfilled, weak 1 has to play the

atom in zero (and consequently earn zero profits):

Figure 2: Supports of the bidders’ strategies if (A1) holds, (A2) does not hold, but
(A3) holds. Strong types in black, weak types in blue.

Conversely, if (A3) is violated, the weak type of bidder 2 puts an atom on zero and

makes no profits.

Proposition 1 formally characterizes the unique equilibria for the three cases in which

(A1) holds. The cases in which (A1) does not hold can of course be extracted from

Proposition 1 by exchanging the roles of the indices 1 and 2. As one can see from

the proposition, it is quite lengthy to state the equilibria explicitly. Yet note that

the bidders just mix uniformly over the intervals specified before, with densities such

that the opponent’s active type would not gain or lose from marginally changing his

effort level.
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Figure 3: Supports of the bidders’ strategies if (A1) holds, but (A2) and (A3) do
not hold. Strong types in black, weak types in blue.

Proposition 1 Consider the two bidder case and assume that (A1) holds. Then we

have to distinguish three cases:

1. Assume (A2) holds. Define boundaries e1, e2, and e by e1 = 0,

e2 =
(1− p2)C2

c1C2

=
1− p2

c1
, e = e2 +

p2c2
c1c2

=
1

c1
.

In the unique equilibrium, weak 1 places an atom of size 1 on 0. Strong 1

mixes over (e1, e2] with constant density C2

p1
and over (e2, e] with density c2

p1
.

Additionally, strong 1 places an atom of size

p1c1 − p2c2 − (1− p2)C2

p1c1

on e1. Weak 2 mixes over (e1, e2] with density c1
(1−p2)

. Strong 2 mixes over

(e2, e] with density c1
p2

.

2. Assume (A2) does not hold but (A3) does. Define boundaries e1, e2, and e by

e1 =
p2c2 + (1− p2)C2 − p1c1

C1C2

, e2 = e1 +
p1c1 − p2c2

c1C2

, e = e2 +
p2c2
c1c2

.

Then the unique equilibrium is given by the following strategies: Weak 1 mixes

over (0, e1] with density C2

1−p1
and places an atom of size

p1c1 + (1− p1)C1 − p2c2 − (1− p2)C2

(1− p1)C1

on 0. Strong 1 mixes over (e1, e2] with density C2

p1
and over (e2, e] with density

c2
p1

. Weak 2 mixes over (0, e1] with density C1

1−p2
and over (e1, e2] with density

c1
1−p2

. Strong 2 mixes over (e2, e] with density c1
p2

.
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3. Assume (A2) and (A3) both do not hold. Define boundaries e1, e2, and e by

e1 =
(1− p1)C1

C1C2

, e2 = e1 +
p1c1 − p2c2

c1C2

, e = e2 +
p2c2
c1c2

.

Then the unique equilibrium is given by the following strategies: Weak 1 mixes

over (0, e1] with density C2

1−p1
. Strong 1 mixes over (e1, e2] with density C2

p1
and

over (e2, e] with density c2
p1

. Weak 2 mixes over (0, e1] with density C1

1−p2
and

over (e1, e2] with density c1
1−p2

. Additionally, weak 2 places an atom of size

p2c2 + (1− p2)C2 − p1c1 − (1− p1)C1

(1− p2)C2

on 0. Strong 2 mixes over (e2, e] with density c1
p2

.

From Proposition 1 it is easy to calculate the expected equilibrium payoffs:

Corollary 2 In the setting of Proposition 1, the payoff of strong i equals 1 − cie.
The payoff of weak i equals A−i, where A−i is the probability that i’s opponent exerts

an effort of zero.

Just like bidders in a complete information all-pay auction, the strong types earn

the same expected payoffs if c1 = c2. Yet the same is not true for weak type bidders.

Even if C1 = C2 their expected payoffs will generally differ: Due to the atom, one

of them earns a positive expected payoff while the other obtains zero payoff.

To gain some more intuition, and since we work with this case in Section 4, we

finish our analysis of the two bidder case with a closer look at the situation where

asymmetries lie only in the probabilities, i.e. c1 = c2 = c and C1 = C2 = C. Then,

assumption (A1), i.e. p1 > p2, immediately implies that (A2) and (A3) must be

violated. Hence we are then always in the third case of Proposition 1. Then we get

the following simplified formulas for the payoffs:

Corollary 3 Assume that in the setting of Proposition 1 it holds that c1 = c2 = c

and C1 = C2 = C. Then the atom of the opponent is given by

A−i = (pi −min(p1, p2))(1−
c

C
).

The upper bound of supports e is given by

e =
min(p1, p2)

c
+

1−min(p1, p2)

C
.
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Accordingly, the expected payoff of weak i is given by

πw
i = (pi −min(p1, p2))

(
1− c

C

)
.

The expected payoff of strong i

πs
i = (1−min(p1, p2))

(
1− c

C

)
.

Note that the corollary is written in a way that it holds regardless of whether (A1)

is fulfilled or not.

4 Information Sharing in Contests

In this section we apply the analysis of Section 3 to the study of incomplete informa-

tion contests where bidders have the opportunity to share some information about

their type. Our aim in studying this problem is twofold: First, the issue is inter-

esting in itself. Our results add an interesting new perspective to recent results of

Kovenock, Morath and Münster (2010) (KMM in the following) as outlined below.

Second, studying this problem allows us to demonstrate how easily our previous

results can be applied to richer frameworks.

We consider the following setting: There are two bidders, both with a valuation of 1

for the object for sale in an all-pay auction.10 Bidder i’s marginal costs of exerting

effort are c with probability pi and C with probability 1− pi where 0 < c < C <∞.

The probabilities pi are independent random variables drawn from a distribution F

on [0, 1] with E[pi] = µ. Ex ante, the bidders only know F , c, and C. They know

neither their realization of pi nor the realization of their costs of bidding.11 The

timing is as follows:

1. The bidders decide whether to share information later in the game, at stage 3.

The decision game is either modeled through simultaneous voting or through

individual decisions as described below.

2. The bidders learn their realization of pi. Hence, each bidder receives a more

concrete estimate of his type.

10Our results also hold when bidders are heterogeneous in valuations instead of effort costs.
11For the sake of brevity, we focus on ex ante decisions here. Yet all our results of this sec-

tion carry over to the situation where bidders decide about sharing after they have learned their
valuations.
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3. Depending on the decision at stage 1, the realizations of the pi become common

knowledge or remain private information.

4. The bidders learn the realization of their types and the all-pay auction takes

place.

We consider two different decision frameworks for information-sharing:

1. Simultaneous Voting: Both bidders simultaneously cast a vote for or against

sharing information. If both bidders vote for sharing, valuations are revealed

and a complete information all-pay auction takes place in the final stage. Oth-

erwise, an incomplete information all-pay auction takes place.

2. Independent Decisions: The bidders independently make an ex ante com-

mitment about sharing information or not. Depending on the bidders’ deci-

sions, either both valuations, or only one, or none become common knowledge

before the auction takes place.

KMM also analyze an independent private values12 all-pay auction with two bid-

ders where bidders are ex ante uninformed about their valuations. Bidders decide

whether they would like to share information. Depending on the bidders’ sharing

decision, which is modeled like in our setting, the bidders play either a complete in-

formation all-pay auction or an incomplete information all-pay auction. Thus unlike

in our model, bidders do not have the possibility to partially disclose their private

information.

KMM obtain the following results: For the simultaneous voting case, KMM show

that the complete and incomplete information auctions yield the same payoffs for

the bidders, implying that any choice of actions is a Nash equilibrium.13 The loss in

informational rents from disclosing is exactly off-set by the economic rents arising

from the bidders’ different strengths becoming common knowledge. For the case of

independent decisions, KMM show that sharing information is strictly dominated.

We now analyze bidders’ sharing decisions in our framework where partial disclo-

sure is possible. It turns out that we obtain essentially the opposite of the results

12The second part of KMM considers common value auctions. These will not be discussed here.
13To see this, recall that in a complete information all-pay auction the stronger bidder earns the

difference in valuations while the other bidder earns zero payoffs. To see that the same is true for
the incomplete information case, note that these payoffs are identical to those of an incomplete
information second price auction. Thus by revenue equivalence these are also the payoffs of the
incomplete information all-pay auction.
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of KMM. We find that the trade-off between gaining economic rents and losing in-

formational rents is not as simple as one might think: For any partial release of

information, the gain in economic rents strictly dominates the loss in informational

rents.

For the case where both bidders disclose their pi, Corollary 3 provides the payoffs of

the all-pay auction. It is easy to see that when bidder i does not share his realization

of pi, it is an equilibrium that both bidders still play the equilibrium of Corollary 3

but with µ instead of pi.
14

The following corollary - which is an immediate consequence of Corollary 3 - states

the bidders’ ex ante expected payoffs for the different decisions about sharing infor-

mation.

Corollary 4 Define θ = 1 − c
C

. Denote by π1(1r, 2n) bidder 1’s ex ante expected

payoff if bidder 1 reveals his p1 and bidder 2 does not reveal p2. π1(1r, 2r), π1(1n, 2r)

and π1(1n, 2n) are defined analogously. The ex ante expected payoffs from the all-pay

auction for the different disclosure decisions are as follows:

1. If both bidders decide to reveal their pi, the ex ante expected payoff of bidder 1

is

π1(1r, 2r) = E[p1(1−min(p1, p2)) + (1− p1)(p1 −min(p1, p2))]θ.

2. If bidder 1 decides to reveal but bidder 2 does not, the ex ante expected payoff

of bidder 1 is

π1(1r, 2n) = E[p1(1−min(p1, µ)) + (1− p1)(p1 −min(p1, µ))]θ.

3. If bidder 1 does not reveal but bidder 2 does, the ex ante expected payoff of

bidder 1 is

π1(1n, 2r) = E[p1(1−min(µ, p2)) + (1− p1)(µ−min(µ, p2))]θ.

14There are further equilibria where the bidders utilize their realizations of pi as a randomizing
device. These equilibria are however all payoff-equivalent to the one of Corollary 3. The reason
for the payoff-equivalence is that - as during the auction the bidders know their own types - the
private information about the pi is useless unless it is shared.
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4. If both bidders decide not to reveal, the ex ante expected payoff of bidder 1 is

π1(1n, 2n) = E[p1(1−min(µ, µ)) + (1− p1)(µ−min(µ, µ))]θ = µ(1− µ)θ.

Let us now consider the bidders’ disclosure decisions in the simultaneous voting

regime. Since each bidder can veto against information-sharing, it is always a weak

Nash equilibrium that both bidders vote against disclosure. In the model of KMM,

payoffs are the same regardless of disclosure decisions. Thus in their setting any

vector of strategies is a weak Nash equilibrium. In our model we obtain instead:

Corollary 5 Consider the simultaneous voting case. Assume that neither pi = µ

a.s. nor pi ∈ {0, 1} a.s.. Then π1(1r, 2r) > π1(1n, 2n). Thus in the only strict

Nash equilibrium both bidders vote for information-sharing. This equilibrium is also

strictly payoff-dominant.

In the corollary we excluded two cases: If pi is deterministic, disclosure transports

no information. If pi is always either zero or one, disclosure is fully revealing such

that we are essentially in the setting of KMM. The corollary follows immediately

from observing that (except in the two excluded cases)

π1(1r, 2r) > E[p1(1− p2)]θ = µ(1− µ)θ = π1(1n, 2n).

Let us now turn to the game with individual decisions on information sharing. Under

this regime, KMM show that in their setting committing to reveal information is a

strictly dominated action. Accordingly, the unique Nash equilibrium is that both

bidders do not disclose. This is in contrast to our model with partial revelation:

Corollary 6 Consider the individual decisions case. Assume that neither pi =

µ a.s. nor pi ∈ {0, 1} a.s.. Then it holds that π1(1r, 2n) > π2(1n, 2n). Thus,

given that the opponent does not reveal, it is a strict best response for a bidder to

reveal. Hence it is not a Nash equilibrium that both bidders withhold their private

information.

The corollary follows immediately from the observation that

π1(1r, 2n) > E[p1(1−min(p1, µ))]θ > E[p1(1− µ)]θ = π1(1n, 2n).

It depends on the distribution F whether a bidder prefers to reveal or not, given
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that his opponent reveals. Yet in any case, some bidder will reveal at least with

some probability in equilibrium.15

Combining our results and those of KMM shows that it will be difficult to settle

the issue of information sharing in contests without a model that has both a suffi-

ciently rich type-space and a sufficiently rich model of information revelation. This

is a challenging direction for further research. In the situation with simultaneous

voting, the result of KMM looks essentially like a boundary case of our result. We

hence conjecture that the result of Corollary 5 is quite robust. The situation with

individual decisions is more complex. KMM rightly point out that the two-types

case is an extreme case concerning individual sharing decisions: With two types,

bidders are indifferent between completely revealing and not revealing regardless of

the opponent’s behavior. This does not carry over to a state space with more than

two types. Yet we have seen that partial sharing is a strict best response to an

opponent who does not share. It seems highly intuitive that this strict advantage of

sharing will not disappear instantly, e.g., whenever a third (possibly very unlikely)

type is introduced. We thus conjecture that it will depend sensitively on the distri-

bution of types and other model parameters whether bidders want to independently

share information or not.

5 Conclusion

We have analyzed an asymmetric all-pay auction with incomplete information about

the different bidders’ types and their different type-probabilities. The assumption

of two different types enabled us to carry out an explicit analysis of equilibrium in

an asymmetric auction setting when information is incomplete.

With our results, one can study asymmetries in all areas in which all-pay auctions are

popular models, such as lobbying, rent-seeking, R&D activities, or sport contests.16

Our results may also serve as an easy-to-use tool for the analysis of richer models.

For instance, we considered models with multiple stages, where asymmetries often

arise naturally in the course of the game.

15For example, if F is the uniform distribution on [0, 1], there are three Nash Equilibria: two
equilibria where one bidder reveals for sure while the other does not, and a symmetric mixed
equilibrium.

16For an overview, see Konrad (2009).
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A Proofs

Proof of Corollary 1

We first show that bidders do not set atoms except possibly in zero: Assume a

type of bidder i placed an atom in e > 0. If some type of the other bidder j was

active right below e, then j would prefer to bid slightly more than e. If bidder j was

inactive right below e, then i would prefer to shift his atom downwards a little. Next

we observe that at most one bidder has types who set an atom on zero: Assume both

bidders played zero with positive probability. Then at least one of them (depending

on the tie-breaking rule) would prefer to shift his atom slightly upwards.17 Next

observe that both bidders must mix over the same support which is an interval:

Assume a type of bidder i mixed over an interval I on which no type of bidder j

is active. Then bidder i would prefer to shift his mass in the interval to its lower

boundary. This argument also implies that both bidders must mix up to the same

highest bid. Likewise, assume there is an interval I on which neither bidder is active

but some bidders are active right above I. Then it would be profitable for such a

bidder to deviate by moving mass from slightly above I into the interval. By the

same argument, there cannot be an interval above zero on which no bidder is active.

Thus bidders’ supports must go down to zero. In the main text we have argued why

different types of a bidder must mix over distinct supports and why stronger types

mix over higher supports. �

Proof of Proposition 1

The proof is structured as follows: We collect observations about the shape of the

equilibrium until we know enough to calculate a unique equilibrium candidate. It is

then easy to verify that this candidate is indeed an equilibrium.

From Corollary 1 we know that the supports form an interval [0, e] for some e > 0.

We also know that there are points e1 and e2 in this interval such that weak i mixes

over [0, ei] and strong i mixes over [ei, e]. Additionally, the weak type of at most

one of the bidders may place an atom on zero. (Only) if weak i puts all his mass

on zero, strong i may play an atom in zero as well. Moreover, as argued in the

main text, we explicitly know the densities chosen by the different types against

different opponents: If on an interval I strong i and weak j are active, strong i

mixes with density Cj/pi and weak j mixes with density ci/(1 − pj). Generally a

17As can be seen from the explicit equilibrium given in Proposition 1, there are cases where both
types of one bidder place an atom in zero.
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type’s density is always the quotient of the opponent type’s marginal cost and his

own type probability.

We can thus sequentially calculate an equilibrium candidate: Fix some value of e.

Let the strong types of both bidders mix down from e until one of them, say i, has

used up all his probability mass. We call this point (known only in reference to e) ei.

At this point, the weak type of bidder i comes in. Repeat this procedure downwards

to the point e0 where both types of one bidder have used up all their probability

mass. The opponent must put his remaining probability mass on an atom in e0

since both bidders’ have to mix over the same support. Note that for any e, this

procedure necessarily produces unique values e0, e1 and e2. Now recall that e0 must

equal zero in equilibrium. This uniquely determines the values of e1, e2 and e. We

thus find a unique equilibrium candidate. It is tedious but straightforward to verify

that this sequential procedure leads to the candidate stated in the proposition and

that it is indeed an equilibrium. �
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