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Abstract. Kademlia is a peer-to-peer distributed hash table (DHT) cur-
rently used in the P2P eDonkey file sharing network. Kademlia offers a
number of desirable features that result from the use of a notion of dis-
tance between objects based on the bitwise exclusive or of the n-bit
quantities that represent both nodes and files. Nodes keep information
about files close or near to them in the key space and the search algo-
rithm is based on looking for the closest node (or almost closest node, if
the information is replicated) to the file key. The structure of the routing
table defined in each peer guarantees that the lookup algorithm takes no
longer than logn steps.

This paper presents the distributed specification of the behavior of a
P2P network that uses the Kademlia DHT in the formal specification
language Maude. We use sockets to connect different Maude instances
and create a P2P network where the Kademlia protocol can be used. This
protocol is executed on top of a previously developed routing protocol
that provides real-time by connecting Maude to an external Java server
and allows peers to enter and leave the network dynamically. Then, we
show how to represent this distributed system in one single term in order
to simulate and analyze the system using Real-Time Maude.

Keywords: Kademlia, distributed specification, formal analysis, Maude,
Real-Time Maude.

1 Introduction

Distributed Hash tables (DHTs) are becoming an essential factor in the imple-
mentation of P2P networks since the Kad DHT was incorporated in the eMule
client [3] of the eDonkey file sharing network. Previously a large number of DHTs
were studied through theoretical simulations and analysis, such as Chord [21],
CAN [17], Pastry [20], and also Kademlia [9], in which the Kad DHT is based.

P2P networks are mainly used for file sharing applications, due to its lack of
security. The large number of users involved in the networks and the absence of a
central authority that certificates the trust of the participating nodes imply that
the system must be able to operate even though some participants are malicious.
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Several attacks to P2P networks have been studied in the literature [22,4], in
particular, the problem of ensuring efficient and correct peer discovery despite
adversarial interference like the Sybil attack or the Eclipse attack. However, the
majority of these studies examine the problems, drawing examples from exist-
ing systems, or experimentally evaluate the attacks over the networks. Formal
methods, which have had a great success in the analysis of distributed networks
and protocols, have almost not contributed to P2P networks, nor to the DHT
implementations. One of the first formal proposals is due to Borgströn et al.,
who prove in [2] correctness of the lookup operation of the DHT-based DKS
system, developed in the context of the EU-project [7], for a static model of the
network using value-passing CCS. Moreover, Bakhshi and Gurov, give in [1] a
formal verification of Chord’s stabilization algorithm using the π-calculus. Lately
Lu, Merz, and Weidenbach [8] have modeled Pastry’s core routing algorithms in
the specification language TLA+ and have proved properties of correctness and
consistency using its model checker.

This paper presents a distributed specification in Maude [5], a formal specifi-
cation language based on rewriting logic, of the behavior of a P2P network that
uses the Kademlia DHT. Rewriting logic [10] was proposed in the early nineties
as a unified model for concurrency in which several well-known models of con-
current and distributed systems can be represented. The specification language
Maude supports both equational and rewriting logic computations. It can be
used to specify in a natural way a wide range of software models and systems
and, since (most of) the specifications are directly executable, Maude can be
used to prototype those systems. Moreover, the Maude system includes a series
of tools for formally analyzing the specifications. Since version 2.2, Maude sup-
ports communication with external objects by means of TCP sockets, which al-
lows the implementation of real distributed applications. Real-Time Maude [15]
is a natural extension of the Maude language that supports the specification
and analysis of real-time systems, including object-oriented distributed ones. It
supports a wide spectrum of formal methods, including: executable specifica-
tion, symbolic simulation, breadth-first search for failures of safety properties in
infinite-state systems, and linear temporal logic model checking of time-bounded
LTL formulas. Real-Time Maude has strengthened that analyzing power by al-
lowing to specify sometimes crucial timing aspects. It has been used, for example,
to specify the Enhanced Interior Gateway Routing Protocol (EIGRP) [19], em-
bedded systems [14], and the AER/NCA active network protocol [12]. Moreover,
analysis of real-time systems using Maude sockets, and thus requiring a special
treatment for them, has been studied [?,?]. While the algebraic representation
of the distribution used in these works follows, as well as our work, the approach
presented in [19], the way used to relate logical and physical time allows a more
precise and formal analysis than the one used here, allowing the system to syn-
chronize only when needed. We consider this approach an interesting subject of
future work.

As part of an ongoing work to develop distributed applications in Maude, we
specified a distributed version of the mobile agents language Mobile Maude and



algorithmic skeletons in [18]. Both specifications used Maude sockets to connect
different Maude instances. These systems were executed on different topologies,
being available star, ring, and centralized ring architectures. These topologies
were improved in a later work when we developed the Enhanced Interior Gateway
Routing Protocol (EIGRP) in Maude [19]. This protocol allowed us to build
dynamic (nodes can be added anytime) and reconfigurable (when a node leaves
the network alternative paths are found) topologies, on top of which we can
execute any distributed Maude specification. This work used Maude sockets to,
in addition to connecting different Maude instances, connect Maude to a Java
server that communicates the time elapsed to the Maude specification. In this
way, it was possible to use Real-Time in Maude for analyzing the system.

In this paper we present, from the point of view of the implementation of
distributed applications in Maude, the first system implemented on top of the
routing protocol described in [19]. Our implementation of the Kademlia pro-
tocol uses real-time by sharing the “tick” messages sent from the Java server
and allows peers to be added and removed dynamically, while the underlying
protocol takes care of redirecting the messages. In this way we show that “real”
distributed applications can be implemented in Maude in an incremental and
easy way. From the point of view of the analysis, this distributed system can
be simulated and analyzed in Maude by using an algebraic specification of the
sockets provided by Maude; an abstraction of the underlying routing protocol,
which allows the analysis tools to focus on the properties; and by using Real-
Time Maude. That is, we abstract some implementation details but leave the
protocol implementation unmodified, which allows us to use the centralized pro-
tocol to prove properties that must also hold in the distributed version. The
analyses that can be performed on the protocol include the simulation of the
system to study, for example, how its properties change when its parameters,
like the redundancy constant, are modified; examine the reaction of the system
to different attacks; and check properties such as that any published file can be
found or that files remain accessible even if their publishing peers become offline.

The use of formal methods to describe the behaviour of the Kademlia DHT
may help to understand the informal description in [9]. In particular, the Maude
language, that we proposed, gives us the opportunity of executing the distributed
specification taking into account the time aspects of the protocol. It also allows
us to analyze all possible executions of the system, using the centralized model
that mirrors the distributed one, either by searching in the execution tree or by
using model checking techniques.

The rest of the paper is structured as follows: Section 2 presents how to
specify generic distributed systems in Maude, and the Kademlia protocol. Sec-
tion 3 describes the distributed specification in Maude of this protocol. Section 4
shows how the distributed system can be represented in one single term, while
Section 5 describes how to simulate and analyze it. Finally, Section 6 concludes
and presents some future work.



2 Preliminaries

We present in this section the basic notions about Maude and Kademlia.

2.1 Maude

In Maude [5] the state of a system is formally specified as an algebraic data
type by means of an equational specification. In this kind of specification we
can define new types (by means of keyword sort(s)); subtype relations between
types (subsort); operators (op) for building values of these types; and equations
(eq) that identify terms built with these operators.

The dynamic behavior of such a distributed system is then specified by
rewrite rules of the form t −→ t′ if C, that describe the local, concurrent
transitions of the system. That is, when a part of a system matches the pattern
t and satisfies the condition C, it can be transformed into the corresponding
instance of the pattern t′.

In object-oriented specifications, classes are declared with the syntax class

C | a1:S1,. . ., an:Sn, where C is the class name, ai is an attribute identifier,
and Si is the sort of the values this attribute can have. An object is represented
as a term < O : C | a1 : v1, . . ., an : vn > where O is the object’s name,
belonging to a set Oid of object identifiers, and the vi’s are the current values of
its attributes. Messages are defined by the user for each application (introduced
with syntax msg).

In a concurrent object-oriented system the concurrent state, which is called
a configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting. The rewrite rules specify the behavior
associated with the messages. By convention, the only object attributes made
explicit in a rule are those relevant for that rule. We use Full Maude’s object-
oriented notation and conventions [5] throughout the whole paper; however, only
the centralized specification is specified in Full Maude (which is required by
Real-Time Maude), while the actual implementation of the distributed protocol
is in Core Maude because Full Maude does not support external objects. The
complete Maude code can be found at http://maude.sip.ucm.es/kademlia.

In [19], we described a methodology to implement distributed applications in
such a way that the distributed behavior remains transparent to the user by using
a routing protocol, the Enhanced Interior Gateway Routing Protocol (EIGRP).
Figure 1 presents the architecture proposed in that paper, where the lower layer
provides mechanisms to translate Maude messages from and to String (Maude
sockets can only transmit Strings); to do so, the user must instantiate a theory
requiring a (meta-represented) module with the syntax of all the transmitted
messages. The intermediate layer, EIGRP, provides a message of the form to_:_,
with the first argument an object identifier (the addressee of the message) and
the second one a term of sort TravelingContents, that must be defined in
each specific application. We have slightly modified this layer to share the tick!

http://maude.sip.ucm.es/kademlia
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Fig. 1. Layers for distributed applications

message obtained from the Java server in charge of dealing with time.1 This layer
provides a fault-tolerant and dynamic architecture where nodes may join and
leave at any moment, and where nodes are always reached by using the shortest
path, thus allowing us to implement realistic systems. Finally, the upper layer is
the application one, which in our case corresponds to Kademlia. It relies on the
lower layers to deliver the messages and focus on its specific tasks, just like the
real Kademlia protocol.

2.2 Kademlia

Kademlia is a peer-to-peer (P2P) distributed hash table used by the peers to
access files shared by other peers. In Kademlia both peers and files are identified
with n-bit quantities, computed by a hash function. Information of shared files
is kept in the peers with an ID close to the ID file, where the notion of distance
between two IDs is defined as the bitwise exclusive or of the n-bit quantities.
Then, the lookup algorithm which is based on locating successively closer nodes
to any desired key has O(log n) complexity.

Each node stores contact information about others. In Kademlia, every node
keeps a list of: IP address, UDP port and node ID, for nodes of distance between
2i and 2i+1 from itself, for i = 0, . . . , n and n the ID length. In the Kademlia
paper [9] these lists, called k-buckets, have at most k elements, where k is chosen
such that any given k nodes are very unlikely to fail within an hour of each other.
k-buckets are kept sorted by the time they were last seen. When a node receives
any message (request or reply) from another node, it updates the appropriate
k-bucket for the sender’s node ID. If the sender node exists, it is moved to the
tail of the list. If it does not exist and there is free space in the appropriate
k-bucket it is inserted at the tail of the list. Otherwise, the k-bucket has not free
space, the node at the head of the list is contacted and if it fails to respond it
is removed from the list and the new contact is added at the tail. In the case
the node at the head of the list responds, it is moved to the tail, and the new

1 In the standard implementation, tick! messages are introduced into the configura-
tion each second. However, the time can be customized to get these messages in the
time span defined by the user.



Fig. 2. A routing table example for node 00000000

node is discarded. This policy gives preference to old contacts, and it is due to
the analysis of Gnutella data collected by Saroiu et al. [6] which states that the
longer a node has been up, the more likely it is to remain up another hour.

k-buckets are organized in a binary tree called the routing table. Each k-
bucket is identified by the common prefix of the IDs it contains. Internal tree
nodes are the common prefix of the k-buckets, while the leaves are the k-buckets.
Thus, each k-bucket covers some range of the ID space, and together the k-
buckets cover the entire ID space with no overlap. Figure 2 shows a routing
table for node 00000000 and a k-bucket of length 5. IDs have 8 bits.

The Kademlia protocol consists of four Remote Procedure Calls (RPCs):

– PING checks whether a node is online.
– STORE instructs a node to store a file ID together with the contact of the

node that shares the file to publish it to other nodes.
– FIND-NODE takes an ID as argument and the recipient returns the contacts

of the k nodes it knows that are closest to the target ID.
– FIND-VALUE takes an ID as argument. If the recipient has information about

the argument, it returns the contact of the node that shares the file; oth-
erwise, it returns a list of the k contacts it knows that are closest to the
target.

In the following we summarize the processes of looking for a value and pub-
lishing a shared file from the Kademlia paper [9].

Looking for a value. To find a file ID, a node starts by performing a lookup to find
the k nodes with the closest IDs to the file ID. First, the node sends a FIND-VALUE

RPC to the α nodes it knows with an ID closer to the file ID, where α is a system
concurrency parameter. As nodes reply, the initiator sends new FIND-VALUE

RPCs to nodes it has learned about from previous RPCs, maintaining α active
RPCs. Nodes that fail to respond quickly are removed from consideration. If a



round of FIND-VALUE RPCs fails to return a node any closer than the closest one
already seen, the initiator resends the FIND-VALUE to all of the k closest nodes
it has not queried yet. The process terminates when any node returns the value
or when the peer that started the query has obtained the responses from its k
closest nodes.

Publishing a shared file. Publishing is performed automatically whenever a file
needs it. To maintain persistence of the data, files are published by the node
that shares them from time to time. Nodes that know about a file publish it
more frequently than the node that shares it.

To share a file, a peer locates the k closest nodes to the key, as it is done in
the looking for a value process, although it uses the FIND-NODE RPC. Once it
has located the k closest nodes, it sends them a STORE RPC.

3 Distributed Implementation

We present in this section the main details of the distributed implementation of
the Kademlia protocol. A more detailed explanation of the data types, classes,
and messages in the specification may be found in [16].

The Kademlia network is modeled as a Maude configuration of objects and
messages. Peers in our specification are objects of class Peer, defined as follows:

class Peer | RT : RoutingTable, Files : TFileTable,

Publish : TPublishFile, SearchFiles : TSearchFile,

SearchList : TemporaryList .

where the object identifier is the node ID, which we have simplified from its
original version and is expressed with the operator peer, that takes a natural
number, which is the decimal representacion of the reverse of the node n-bit ID,
as argument. The attributes related to the Kademlia network are:

– RT is a list that keeps the information of the routing table.

– Files is a table that keeps the information of the files the peer is responsible
for publishing. It includes the file ID, the identification of the peer that shares
the file, a time for republishing the file and keep it alive, and a time to remove
the file from the table.

– Publish is a table that keeps the information of the files shared by the peer.
The information includes the file ID, the file’s location in the peer and a time
for republishing the file. This time is greater than the time for republishing
of the Files table, and prevents the information in the Files table from
being removed.

– SearchFiles is a table that keeps the files a peer is looking for. The infor-
mation includes the file ID, and a waiting time to proceed with the search.
This time is used when the file is not found and it should be researched later.



– SearchList is an auxiliary list used in the search and publish processes to
keep the information of the nodes that have been already contacted by the
searcher/publisher and the state in which the searching/publishing process
is. As the searcher/publisher finds out new closer nodes to the file ID, it
stores them in this file, and starts sending them messages.

The messages represent the RPCs. There is a message for each RPC defined
in the Kademlia protocol. For example, the FIND-NODE message and its reply are
defined as follows:

op FIND-NODE : Nat Nat -> TravelingContents [ctor] .

op FIND-NODE-REPLY : Nat Nat NatList -> TravelingContents [ctor] .

Note that terms of this form will be used to form messages with the operator
to_:_ described in Section 2.1, where the first parameter is the identifier of the
addressee. The first parameter of these operators identifies the peer sending the
message, while the second one represents the key the sender is looking for. The
reply has also an additional parameter that keeps a list of the k nodes the peer
knows that are the closest ones to the target, where k is the bucket dimension.

The specification of the different processes follows their definition. For ex-
ample, the searching process starts automatically when there are IDs in the
SearchFiles attribute of some connected peer with time for searching equal
to one. A greater value indicates that the file has already been searched for, it
was not found, and now it is waiting for repeating the search. When the search
starts, the auxiliary list SearchList is filled with the closest nodes the searcher
has in its routing table, and the time of this file in the searchFiles table is set
to INF. It will remain with this value until the search process ends.

The process continues by sending FIND-VALUE RPCs to the first nodes in the
list to find closer nodes to the file ID. The RPC is only sent if the number of
parallel messages is less than the given constant, ParallelSearchRPC, the peer
in charge of the search has not received response yet from a certain number of
peers given by the kSearched constant, and there are nodes in the search list
that have not been contacted yet. Notice that we have to ask as many nodes as
possible, because there can be nodes not so close to the objective as others but
that have in their routing tables information of the closest ones. Once the RPC
is sent, a flag is activated in the search list that marks this node as in process
with set-flag:

crl [lookfor-file21] :

< peer(SENDER) : Peer | SearchFiles : < I1 & (S1 ; INF) > # SF,

SearchList : SL >

=> < peer(SENDER) : Peer | SearchFiles : < I1 & (S1 ; INF) > # SF,

SearchList : set-flag(Tr,SrchListRmve,SL) >

to peer(Tr) : FIND-VALUE(SENDER, I1)

if not all-sended(SL) /\ Tr := first-not-send(SL) /\

messages-in-process(SL) < ParallelSearchRPC /\

number-nodes-reply(SL) < kSearched .



The receiver may find the file the searcher is looking for in his table or
it may return the closest nodes it knows about. In the first case, it sends a
FIND-VALUE-REPLY2 message to the searcher including the node ID of the peer
that shares the file. When the searcher receives this reply the process finishes
by sending a FILE-FOUND message and the file is removed from its searching
table. The FILE-FOUND message remains in the configuration to show the files
that have been searched and found, easing the proof of properties. In the second
case, the receiver sends a FIND-VALUE-REPLY1 message to the searcher including
the closest nodes to the file ID it knows about. When the searcher receives this
message it changes its search list, adding the nodes ordered by the distance to
the objective. Only nodes closer than the one which proposes them are added.
When the full list is traversed, a flag is activated to mark this node as done
in the search list. Additionally, the searcher routing table is updated with the
move-to-tail operation that puts the ID of the message sender first in the list,
so that it will not be removed from the routing table, as it is the last peer the
searcher knows it is alive:

rl [lookfor-file3] :

to peer(REC) : FIND-VALUE-REPLY2(SENDER, I1, P3)

< peer(REC) : Peer | RT : R1, SearchList : SL,

SearchFiles : < I1 & (S1 ; INF) > # SF >

=> < peer(REC) : Peer | RT : move-to-tail(SENDER, REC,R1),

SearchList : mt-list, SearchFiles : SF >

to peer(REC) : FILE-FOUND(SENDER,I1) .

rl [lookfor-file40] :

to peer(REC) : FIND-VALUE-REPLY1(SENDER, P3, L)

< peer(REC) : Peer | RT : R1, SearchList : SL,

SearchFiles : < I1 & (S1 ; INF) > # SF >

=> < peer(REC) : Peer | RT : move-to-tail(SENDER, REC,R1),

SearchFiles : < I1 & (S1 ; INF) > # SF,

SearchList : insert(L,SL,SENDER,REC,P3) > .

Another important rule in the system consists of updating the peer when a
tick! message arrives. In order to treat similarly the distributed and centralized
versions, we define a delta function [13] on peers that updates the time-related
attributes:

rl [tick!]:

tick! < O : Peer | >

=> delta(< O : Peer | >, 1) .

where delta just applies auxiliary delta functions to each of the attributes.
These auxiliary functions just traverse the tables and lists, decreasing the time
stored on the appropriate fields:

eq delta(< O : Peer | Files : FT1, Publish : PF, SearchFiles : SF,

SearchList : SL >, TC) =

< O : Peer | Files : delta(FT1, TC), Publish : delta(PF, TC),



SearchFiles : delta(SF, TC),

SearchList : delta(SL, TC) > .

Executable examples of the distributed protocol can be found at http://

maude.sip.ucm.es/kademlia.

4 Centralized Simulation

We use Real-Time Maude [13,15] to specify our timed system. It declares mod-
ules defining the natural numbers as the time values of sort Time, with op-
erations like plus, <=, monus, and a supersort TimeInf, which contains the
constant INF representing ∞ [13]. To ensure that time advances uniformly in
all the parts of a state, a new sort GlobalSystem is used, with constructor
{_} : System -> GlobalSystem.

In Real-Time Maude an object-oriented system is represented as a term of
sort Configuration (a subsort of System) and, since it has a rich structure, it is
useful to have an explicit operation delta, that defines the effect of time elapse
on each object and message in a configuration. An operation mte giving the
maximum time elapse permissible to ensure timeliness of time-critical actions,
and defined separately for each object and message, is also useful. Then, time
elapse is modeled by the tick rule

crl [tick] : { SYSTEM }

=> { delta(SYSTEM, T) } in time T

if T <= mte(SYSTEM) [nonexec] .

Real-Time Maude deals with in principle non-executable tick rules by offer-
ing a choice of different “time sampling” strategies, so that instead of covering
the whole time domain, only some moments are visited. We have selected the
sampling strategy that advances time by the maximal possible amount.

Thus, in order to use the analysis features provided by Real-Time Maude,
we need to represent the distributed configuration described in the previous
section as a single term and define the appropriate delta and mte functions.
We achieve the former by following a similar approach to the one we followed
in [18,19]. We provide a class Process with a single attribute conf that keeps
the configurations in different locations2 separated from each other:

class Process | conf : Configuration .

The mte function applied to objects of this class returns the mte of the
configuration, while delta is also applied to the objects in this attribute. We
also provide an algebraic specification of the built-in sockets. In our case, we use
an object of class Socket for each two connected locations in the distributed
(real) protocol. This class has attributes sideA and sideB, indicating the two

2 We will use the word location to denote the different Maude instances appearing in
the distributed system.

http://maude.sip.ucm.es/kademlia
http://maude.sip.ucm.es/kademlia


sides of the socket; delay, which stores the delay associated to this socket; and
listA and listB, the lists of DelayedMsg (pairs of messages and time) sent to
sideA and sideB, respectively:

class Socket | sideA : Oid, sideB : Oid, delay : Time,

listA : List{DelayedMsg}, listB : List{DelayedMsg} .

In this way, we can simulate the delay due to the network and specify the
architecture with only four rules, two for moving messages into the socket and
two more for putting the messages into the target configuration, depending of
the side of the socket. For example, the rule moving a message from the list
to the side of the socket indicated by sideA is specified as follows, where it is
important to note that the time of the element being moved has reached 0:

rl [receive1] :

< S : Socket | sideA : O, listA : dl(to O’ : TC, 0) DML >

< O : Process | conf : CONF >

=> < S : Socket | listA : DML >

< O : Process | conf : (to O’ : TC CONF) > .

The mte function applied to sockets returns the minimum time required by
the messages in the head of the lists, while delta updates the messages in the
lists. That is, we consider that this abstract architecture is initially connected
(there exists an object of class Socket) for each pair of locations connected,
directly or indirectly, in the real system, and it never fails, that is, connections are
never broken.3 In this way we prevent the search and model-checking commands
from using the rules for connecting the locations, for redirecting messages, and
for transforming the messages from/into String, which introduces a lot of non-
determinism (although the order in the creation of the connections and in the
redirection of messages is not important, these tools must traverse all the possible
paths to check the given properties).

In order to simulate errors and disconnections in the peers we have added
two attributes to the Peer class: Life and Reconnect, containing values of sort
TimeInf. Basically, when the Life attribute reaches the value 0, it is set to INF,
the peer cannot receive nor send messages, and the Reconnect attribute is set
to a random value. Similarly, when Reconnect reaches 0, it is set to INF, Life
is set to a random time, and the peer works again. Once this class has been
modified, we only need to (i) define the mte function on peers and messages; (ii)
modify the delta function on peers to take the Life and Reconnect values into
account, and define it over messages; (iii) add a condition in each rule saying
that the value in Life is greater than 0 and different from INF; and (iv) add the
rules for disconnecting and reconnecting the peer. For messages, mte and delta

are easily defined; mte returns 0 for all of them except for FILE-FOUND, that is

3 Note that errors in the connections will be simulated by making the peers to fail, as
we will see later. It is anyway easily simulated in sockets e.g. by adding an attribute
numMsgs indicating the number of messages that can be sent through the socket
before it fails; see [19] for details.



just used for information purposes and thus it is not processed,4 while delta

does not modify them:

eq mte(to O : FILE-FOUND(SENDER,I1)) = INF .

eq mte(MSG) = 0 [owise] .

eq delta(MSG, T) = MSG .

As explained above, the delta function for peers is very similar to the one
presented in the previous section, just including (and updating) the new at-
tributes, and thus we focus on mte. When the peer is connected, we return the
minimum between all the other time-related attributes, while when it is discon-
nected (K2 is a variable of sort Nat) then nothing else “works” and mte returns
the time left for reconnecting:

eq mte(< O : Peer | Files : FT1, Publish : PF, SearchFiles : SF,

Life : K1, Reconnect : INF >) =

min(minTime(FT1), min(minTime(PF), min(minTime(SF), K1))) .

eq mte(< O : Peer | Reconnect : K2 >) = K2 .

where the functions minTime computes the minimum time used in the tables.

5 Protocol Properties

We can use now Real-Time Maude in two different ways: to execute the central-
ized specification and to verify different properties. The former is achieved by
using the commands trew and tfrew, that execute the system (the second one
applies the rules in a fair way) given a bound in the time; with find earliest

and find latest, that allow the user to check the paths that lead to the first
and last (in terms of time) state fulfilling a given property; and with tsearch,
that checks whether a given state is reachable in the given time. The latter is
accomplished by using the tsearch command to check that an invariant holds;
by looking for the negation of the invariant we can examine whether there is a
reachable state that violates it. The specification can also be analyzed by using
timed model checking with the command mc, that allows the user to state linear
temporal logic formulas with a bound in the time.

We will use in this section two network topologies as case studies, of 6 and 20
nodes. We abstract the concrete connections and suppose total network connec-
tivity. The life time of each node is randomly chosen, although we use an upper
bound life constant to control the ratio of alive nodes. We change the peers that
share and search files, as well as the number and time of published and searched
files.

We can simulate how different attacks may affect a network. For example, in
the node insertion attack, an attacking peer catch search requests for a file, which
are answered with bogus information [11]. The attacking peer creates its own

4 We assume here that messages are attended as soon as they are received. For this
reason, a rule is in charge of deleting messages addressed to inactive peers.



ID such that it matches the hash value of the file. Then the search requests are
routed to the attacking peer, that may return its own file instead of routing the
search to the original one. Since the Kademlia network sends the request not only
to the closest peer the searcher may find the original file. The find earliest

command can be used to study different network parameters and check whether
this attack is effective. We study if a file may be found in a node that is not the
closest one to the file ID, with the following Real-Time Maude command:

Maude> (find earliest init =>* {< O : Process | conf :

(to O’ : FILE-FOUND(SENDER, N2) CONF) > CONF’} .)

Note that, since the FILE-FOUND message returns in its first parameter the peer
that is publishing the file, we only need to check whether the peer ID is the
closest to the file ID.

From the model-checking point of view, there are several properties that can
be proved over this protocol. The basic property all P2P networks should fulfill
is that if a peer looks for a file that is published somewhere, the peer even-
tually finds it. We define three propositions (of sort Prop, imported from the
TIMED-MODEL-CHECKER module defined in Real-Time Maude) over the configu-
ration expressing that a peer publishes a file; a peer is looking for that file; and
the peer that searches the file finds it. Note that, as in the command above,
all the properties are defined taking into account that the configurations are
wrapped into objects of class Process, that may contain other objects and mes-
sages on the conf attribute (hence the CONF variable used there) and that other
processes may also appear in the initial configuration (hence the CONF’ variable
used at the Process level):

op PublishAFile : Nat -> Prop [ctor] .

eq {< O : Process | conf : (< O’ : Peer | Publish :

< I1 & (S1 @ TC4) > # PF > CONF) > CONF’} |= PublishAFile(I1) = true .

op SearchAFile : Nat Nat -> Prop [ctor] .

eq {< O : Process | conf : (< peer(N) : Peer | SearchFiles :

< I1 & (S1 ; TC3) > # SF > CONF) > CONF’} |= SearchAFile(N,I1) = true .

op FindAFile : Nat Nat -> Prop [ctor] .

eq {< O : Process | conf : (to peer(Searcher) : FILE-FOUND(I2,I1)

CONF) > CONF’} |= FindAFile(Searcher,I1) = true .

Assuming an initial configuration where a peer publishes the file 200, that
is searched by peer(22), we can use the following command to check that the
property holds:

Maude> (mc init’ |=t PublishAFile(200) /\ SearchAFile(22,200) =>

<> FindAFile(22,200) in time < 20 .)

Result Bool : true

Another basic property is that once a file is published it remains published
in some peers unless the publisher is disconnected. We can define the properties



FilePublished, stating that a peer publishes a file, and PeerOffline, indicating
that a peer is offline, similarly to the properties above and use the following
command to check the property:

Maude> (mc init |=t (<> [] (FilePublished(53,0)) U PeerOffline(0)

in time < 40 .)

Result ModelCheckResult : counterexample(...)

In a network where peer(0) has published file 53. Notice that the model checker
finds a counterexample. The reason is that all the peers that share the file may
be offline at the same time. The property should be reformulated, stating that
if the file is published it will always be published again or the publisher will be
disconnected:

Maude> (mc init |=t ([] <> (FilePublished(53,0) \/ PeerOffline(0))

in time < 40 .)

Result Bool : true

See http://maude.sip.ucm.es/kademlia to obtain the source code of the
centralized specification, the complete initial terms used in the commands above,
and the different properties proved.

6 Conclusions and Ongoing Work

We have presented in this paper a distributed implementation of the Kadem-
lia protocol in Maude. This distributed system uses sockets to connect different
Maude instances and, moreover, to connect each one of these instances to a Java
server that provides tick messages notifying when a given amount of time has
elapsed. It can be used to share files (only text files in the current specification)
using this protocol, allowing peers to connect and disconnect in a dynamic way,
adding and searching for new files. Moreover, we also provide a centralized spec-
ification of the system, which abstracts most of the details of the underlying
architecture to focus on the Kademlia protocol. This centralized specification al-
lows us to simulate and analyze the system using Real-Time Maude to represent
the real time implemented in Java in the distributed version. We are currently
working to improve the analysis by defining a more precise relation between
physical and logical time, following the approach in [?,?].

There are some open issues from the model point of view. We want to incor-
porate more network processes, like the one that automatically connects a node
to the network. There are also some eMule facilities that we have not studied
yet, like the modification of the routing table to keep more contacts in it or to
allow the publication of keywords and notes related to files. There are also some
protections eMule implements to protect itself against possible attacks, like the
protection of hot nodes, that requires a deeper study. It will also be useful to
compare the eMule implementation with the aMule and BitTorrent ones. Finally,
we want to study and prove more complex properties over the protocol.

http://maude.sip.ucm.es/kademlia
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Guĺıas, J. Silva, and A. Villanueva, editors, Proceedings of the 10 Spanish Work-
shop on Programming Languages, PROLE 2010, pages 223–234. Ibergarceta Pub-
licaciones, 2010. http://www.maude.sip.ucm.es/kademlia. Informal publication–
Work in progress.

17. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. ACM SIGCOMM Computer Communication Review - Pro-
ceedings of the 2001 SIGCOMM conference, 31:161–172, October 2001.

18. A. Riesco. Distributed and mobile applications in Maude. Master’s thesis, Depar-
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