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In continuous-time predator-prey models, the per capita rate of consumption (the 
functional response or "trophic function") is usually interpreted as a behavioral 
phenomenon. The classical assumptions are that predators encounter prey at random 
and that the trophic function depends on prey abundance only. We argue that this 
approach is not always appropriate. The trophic function must be considered on 
the slow time scale of population dynamics at which the models operate--not on 
the fast behavioral time scale. We propose that, in cases where these two time scales 
differ, it is reasonable to assume that the trophic function depends on the ratio of 
prey to predator abundances. Several field and laboratory observations support this 
hypothesis. We compare the consequences of the two types of dependence with 
respect to the dynamical properties of the models and the responses of population 
equilibria to variations in primary production. In traditional prey-dependent models, 
only the predator population responds to primary production, while both levels 
respond in ratio-dependent models. This result is generalized to food chains. We 
suggest that the ratio-dependent form of the trophic function is a simple way of 
accounting for many types of heterogeneity that occur in large scale natural systems, 
while the prey-dependent form may be more appropriate for homogeneous systems 
like chemostats. 

Introduction 

In predat ion theory, differential equations are used in cases where it can be assumed 
that generations overlap and that populat ions vary continuously in time. For this 
approach to be reasonable,  the time scale must be chosen in a way appropr ia te  to 
the organisms under study. For most mammals ,  for example,  variation should be 
described on a yearly t ime scale; for many  planktonic organisms, a daily scale is 
required. In cases where populat ion dynamics cannot  be approximated  by con- 
tinuous functions, difference equations may be more appropriate .  The Lotka-  
Volterra model  with which predation theory originated has many  shortcomings that 
are widely recognized. Nevertheless, the use of  differential equations has remained 
an invaluable tool in subsequent  elaboration of  the theory, and this approach 
permeates  much of  current ecological thinking. 

The consumpt ion rate of  a single predator  (its "funct ional  response"  g) is a key 
component  of  predat ion models since it is considered to determine both the prey 
death rate and the predator  rate of  increase (usually modeled as proport ional  to 
the rate of  feeding). For this reason, it might better  be called the " t rophic  funct ion" 
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(Svirezhev & Logofet, 1983, p. 80). A common assumption is that this function is 
determined by prey abundance N as the only variable: 

g = g ( N ) .  ( l )  

This assumption was used in the Lotka-Volterra theory as well as in the other 
seminal studies of  predator-prey systems (Holting, 1959a; Rosenzweig & 
MacArthur, 1963; Rosenzweig, 1971; May, 1973), and it is still not questioned in 
recent monographs dealing with the subject (Taylor, 1984; Curry & Feldman, 1987). 

Any dependence on predator abundance P is neglected on the strength of  an 
analogy to the "law of  mass action" in chemistry. The initial idea is that, like an 
agitated solution of  reacting molecules, predators and prey encounter  each other 
randomly, the number of  encounters per predator being proportional to prey density 
(e.g. Royama, 1971). Bacteria feeding in a stirred chemostat can be viewed as a 
good biological exemplification of this model. Deviations from this simple propor- 
tional relationship are attributed to additional complexities in patterns of  behavior. 
For example, prey handling time leads to the well known "disk equat ion" (Holling, 
1959b) and to its generalization for parasitoids (Arditi, 1983); sigmoid responses 
are generated by prey switching (Murdoch & Oaten, 1975) or by density-dependent 
searching efficiency (Hassell et al., 1977). This behavioral approach underlies most 
of  the theoretical and experimental work on the functional response (review by 
Hassell, 1978). In this approach,  it has been pointed out that interference competition 
between individual predators will be a source of predator-dependence in g, which 
must decline with P (Beddington, 1975; DeAngelis et al., 1975; Kuno, 1987). 
Estimates of  mutual interference for arthropods in field and laboratory conditions 
show that this effect cannot be neglected (Hassell, 1978). 

In our view, the foregoing behavioral arguments are not sufficient for constructing 
models of population dynamics because they must operate on a generation time 
scale much longer than the behavioral time scale. In such cases, the trophic function 
must be calculated on the same time scale as reproduction and mortality, and it 
may be completely different from the behavioral response. Overviewing the import- 
ance of spatial and temporal scales, Wiens et al. (1986) have shown how changing 
scales can yield different answers to the same question. Taking their example of  
coyotes and jackrabbits, eqn (1) means that the number of  rabbits consumed per 
coyote in a unit of  time would remain unchanged if the coyote population were 
doubled. On a daily time scale, the individual feeding rate can probably be modeled 
as the result of random encounters between prey and predators hunting indepen- 
dently from one another. However, when calculated on the yearly time scale of  
population dynamics, intuition suggests that the feeding rate should take account 
of predator abundance: over a year there will be less food available for each coyote 
(unless food is not limiting). Whatever the behavioral mechanisms are, the final 
outcome must reflect the fact that, for a given number of  prey, each predator 's  share 
is reduced if more predators are present. This suggests that the yearly consumption 
rate should be a function of  prey abundance per  capita: 
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The rationale behind the exclusion of predator-dependence in eqn (1) was made 
explicit by Rosenzweig & MacArthur (1963). In recognition of the fact that predator 
density is expected to adversely affect the number of predators being produced, the 
authors stated: " . . .  the greater the number of predators, the faster the [prey] density 
is reduced, still the instantaneous rate of change of the predator population depends 
only on the instantaneous rate of kill, which depends on the instantaneous density 
of prey." Restating the same idea, Rosenzweig (1977) explained that the effect of 
predator density on predator growth passes through prey dynamics. This argument 
holds well if all "instantaneous" values refer to variables varying on the same time 
scale--if an instant of feeding is of the same order of magnitude as an instant of 
reproduction/mortality. This will only be the case in homogeneous systems with 
high turnovers, comparable to chemostats. Significantly, all examples given by 
Rosenzweig (1977) are from microbial or planktonic systems. 

In more general situations, the time scales of feeding and reproduction/mortality 
will be different and the trophic function must account in a simple "macroscopic" 
way for the intricacies of the predation process. Because of the spatial and temporal 
heterogeneities that are present on the "microscopic" scale, various phenomena will 
induce predator-dependence in the feeding rate when calculated on the generation 
scale, even if predators do not interfere directly. This can arise, for example, because 
of predator aggregation in patches and local prey extinctions. This "pseudo-interfer- 
ence" has been clearly demonstrated in many detailed models of host-parasitoid 
interaction (e.g. Free et al., 1977). Other types of heterogeneities, like intermittent 
prey reproduction, will have similar effects. When described in continuous time, 
that is, when viewed on large spatial and temporal scales, predators will appear to 
share food as a result of the cumulated effects of such heterogeneities, in addition 
to direct interference. 

In general, a predator-dependent trophic function will be of the form g = g(N, P). 
The specific ratio-dependent form (2) is the extreme case of "perfect sharing", as 
the prey-dependent form (1) is the extreme case of "non-sharing'. The purpose of 
the present paper is to determine which of the ends of this spectrum better describes 
general predator-prey systems: 

It is of great interest to be able to model predation with a simple expression. It 
is needed, for example, in theoretical studies of general ecosystem properties, like 
food web dynamics. In such studies, authors usually retreat to predator independence 
(1), often in the form of the Lotka-Volterra expression g (N)=  a N  (e.g. Pimm, 
1982). We propose that, as an alternative, eqn (2) can be used as a simple description 
of sharing effects, with no necessity of modeling individual predator behavior or 
individual prey patches. We expect the function g ( N / P )  to be of the general shape 
indicated on Fig. 1. With the ratio as abscissa, the per capita consumption rate first 
increases linearly for low ratios of abundances, goc N/P,  but it is then limited by 
some upper value when food is superabundant. Getz (1984) has shown how a 
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FtG. 1. The per capita rate of consumption is expected to be concave and monotonic, characterized 
by an initial slope ~ and an upper asymptote. 

ratio-dependent approach can provide a unified structure for modeling the dynamics 
of  a single population, of  predation, and of  competition. 

As the law of  mass action is the idealization of  prey-dependence,  an idealized 
mechanism that would induce ratio-dependence is the following. Let the time scale 
of  population dynamics be much slower than the time scale of  feeding. When viewed 
from the slow time scale, prey abundance is assumed to appear as a continuous 
function. However, when viewed from the fast behavioral time scale, prey production 
is no longer continuous but appears .as successive "bursts".  Between these bursts, 
the predators consume the prey (or the fraction of  the prey available to predation) 
by some mechanism (possibly random search). If the prey bursts are sufficiently 
poor  or infrequent for the available prey to be entirely consumed, each predator 
obtains a share inversely proportional to the number of  predators. The resulting 
response, when calculated on the slow scale, is therefore linear for low values of  
N/P. On the contrary, if the prey bursts are very rich, the predators are saturated. 
This imposes an upper asymptote for high values of  N/P. Intermediate responses 
for intermediate ratios complete the curve. Prey reproduction is assumed to be 
accomplished by a constant fraction of  the prey that are inaccessible to predators. 
An example of such refuging is given by Hassell (1976, p. 33). Flour moth caterpillars 
are protected from their parasitoid enemies when they are sufficiently deep in the 
flour to be out of  reach of  the ovipositor. In this way, a fixed proportion a N  of the 
hosts will be attacked, and the per capita attack rate will be aN/P.  Other examples 
could be piscivorous birds that can only prey upon the upper layer of  fish schools, 
plants that have a non-edible fraction, etc. 

The feeding method used by Slobodkin in his classical experimental studies of 
long term dynamics of  Daphnia (1954) and hydras (1964) follow this kind of  pattern. 
The populations were fed daily, what can be considered as continuous feeding with 
respect to these animals' life cycle, but the food supply was exhausted within a 
short time (3-4 hr with Daphnia and 30 min with hydras). This forces a sharing 
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mechanism,  and therefore a trophic function o f  the form g = g ( N / P ) .  The  necessary 
refugia are s imply provided by a separate container for raising the prey. 

These s imple examples  are certainly not the only  possible  causes o f  ratio-depen- 
dence.  This should  also be favored by factors like mutual interference, s imple refugia, 
proportional  refugia, temporal  refugia, non-random search, and other aspects o f  
spatial and temporal  heterogeneity.  As diverse as these behavioral  processes  can be 
on the microscopic  scale, and although they may occur as discrete events on this 
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FIG. 2. A marine system studied in the field. Number of prey (barnacles Balanus balanoides) eaten 
per predator (snails Urosalpinx cinerea) in 24.7 hr, at different prey densities N and predator densities 
P. The data points align on a single curve much better when plotted against the ratio N / P  (b) than 
when plotted against N (a) (data from Katz, 1985). 
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FIG. 3. A mite system in a heterogeneous experimental environment. Number of prey (Tetranychus 
urtieae) eaten per predator (Phytoseiulus persimilis) in 24 hr, when prey and predator densities are varied 
in a constant ratio of 4:  1. There is no significant difference (after Bernstein, 1981). 
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scale, we hold that they have a cumulative effect that can be rendered, in the 
continuous setting of  the macroscopic scale, by the single function g(N/P) .  

Apart from these theoretical considerations, a number of  empirical data strongly 
support  the ratio-dependent form. R. Arditi & H. R. Akgakaya (unpublished results) 
have analyzed several predation experiments where the consumption rate was 
observed for various numbers of  predators and prey. They found that previously 
published values of  mutual interference suffered an underestimation bias and that, 
after correction, the rat io-dependent form could be used for the trophic function. 
As an example, Fig. 2 presents the observations of  Katz (1985). It is clear that the 
form g ( N / P )  represents the data far better than the form g(N) .  Another evidence 
is provided by A. A. Berryman (personal communication) who reports two cases 
of field observations where the growth rate of  herbivores and parasitoids can be 
plotted as a linear function of the consumer/resource ratio. Finally, Fig. 3 presents 
the results of  an experiment using an acarine predator-prey system in a complex 
environment (Bernstein, 1981 ). When the numbers of  prey and predators were varied 
with a constant ratio of  4: 1, the number of  prey eaten per predator did not vary 
significantly. 

The Models 

The general model for predator-prey dynamics, in its classical form of  first order 
differential equations, can be written as 

d N  
- f ( N ) N - g ( N , P ) P  (3) 

dt 

dP  
- h(N, P ) P - I x P  (4) 

dt 

where f (N)  is the per capita rate of  increase of  the prey in the absence of  predation 
and /z is the food-independent  predator mortality, assumed to be constant. The 
function g describes the amount  of  prey consumed per predator per unit time, while 
h describes predator production per capita. There is ample evidence that predator 
production can be modeled, to a very good approximation, as simply proportional  
to food intake 

h(N, P) = eg(N, P) (5) 

where e is the conversion efficiency. Specific examples are given by Slobodkin (1986) 
for hydras, by Beddington et al. (1976) for numerous arthropods, and by Coe et al. 
(1976) for large African herbivores. Normally, a minimum threshold reflecting 
maintenance needs should be subtracted from g in eqn (5), but this can be ignored 
since its effect can be incorporated into the predator death rate/z in eqn (4). Equation 
(5) makes the trophic function g(N, P)  the sole link between prey and predator 
dynamics. 

For the eqns (3-5) to be internally consistent, g(N, P)  must be interpreted as an 
average rate of  consumption over an interval of  time on the order of  a generation: 
in an ecological context where continuity is certainly an approximation,  the subtrac- 
tion in eqn (3) can only make sense if both terms describe rates on the same time 
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scale; the same is true for the two sides of eqn (5). As explained in the Introduction, 
we propose to examine the hypothesis that the rate of consumption may be modeled 
as g = g ( N / P )  when it is averaged on a slow time scale, comparable to that of 
reproduction. 

The following analysis applies to concave increasing functions g ( N / P )  (Fig. 1). 
Convex functions (e.g. sigmoid or with a threshold) require a specific analysis but 
do not lead to any important property qualitatively different from those that will 
be examined in the rest of the paper. Particular models with ratio-dependent trophic 
functions have been studied by Ginzburg et al. (1971, 1974), Arditi (1975, 1979), 
Arditi et ai. (1977, 1978), Getz (1984), Ginzburg (1986), Ak~akaya et al. (1988). An 
early use of ratio-dependence was done by Leslie (1948) who built such a model 
for the predator equation, while keeping the Lotka-Volterra equation for the prey-- 
strangely ignoring any relationship between the rate at which prey are killed and 
the rate at which predators reproduce (Maynard Smith, 1974, p. 24). 

We next compare the static and dynamic properties of the general prey-dependent 
model 

dN 
- - = f ( N ) N - g ( N ) P  (6) 
dt 

dP 
- e g ( N ) P - l x P  (7) 

dt 

vs. the general ratio-dependent model 

d----N= f(N) N -  g P (8) 
dt P- 

(N) -P- P- P (9) 

Comparative Analysis of the Two Types of Systems 

The analysis can be performed graphically by the isocline method. Prey-dependent 
models were analyzed by Rosenzweig (1969, 1971). The predator isocline, obtained 
by setting eqn (7) equal to zero, is always vertical and its position is 

where g-i is the inverse function of g. Because g-I is monotonic, A decreases with 
increasing predator efficiency e. The prey isocline, obtained by setting eqn (6) to 
zero, can be "humped" or not. The hump cannot appear if the slope of g(N) at 
the origin, a, is relatively low. The equilibrium is unstable and gives rise to limit 
cycles if the isoclines intersect on the ascending part of the prey isocline. If ~ / e  is 
greater than the upper asymptote of g, A does not exist and predators can never 
grow. The humped case is usually considered as generic since it includes all 
dynamical behaviors of the non-humped case. 
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In the ratio-dependent model, the total predator  consumption satisfies the 
inequality 

/ N \  
g~--~) P<-aN (11) 

because of  the concavity of  g, and irrespective of  the predator abundance;  c~ is the 
slope of  g (N /P)  at the origin. Figure 4 shows the construction of  the prey isocline. 
It is given by the intersections of  the prey production curve f ( N ) N  and the family 
of  consumption curves g ( N / P ) P ,  plotted against N. The inequality (11) means that 
the consumption curves are limited by the line aN. As in the prey-dependent  model, 
two cases must be considered according to a. If the limiting consumption line crosses 
the production curve, the prey equilibria are limited by a lower value NL [Fig. 4(a)]. 
For prey densities under this value, prey production is always greater than the 
maximum amount that may be consumed. For this reason, we call this case "limited 
predation".  In the case of  high ce [Fig. 4(b)], the limitation on the consumption 
rate has practically no effect: at any prey density, more prey may be consumed than 
can be produced,  if there are enough predators. 

P, 

,g 

(a) 

AtL At At 

FIG. 4. Possible values of  prey equilibria in rat io-dependent  models.  The thick curve is prey production.  
The family of  light curves are consumpt ions  by increasing numbers  of  predators. For a fixed value of  
P, the prey equilibrates where consumpt ion  equals production.  The consumpt ion  curves all start with 
the same slope a. (a) If a is small, the prey equilibria cannot  be lower than NL; this is the "limited 
predat ion"  case. (b) If a is large enough,  all prey values are possible equilibria. 

The isoclines of ratio-dependent models are presented on Fig. 5. The prey isocline 
is very different depending on a. If t~ is small, the prey equilibrium cannot drop 
lower than the value NL, as was seen on Fig. 4(a). As a result, the prey isocline has 
a vertical asymptote [Fig. 5(a)]. If a is large, the consumption curves cross the prey 
production curve twice, as was shown on Fig. 4(b), and the prey isocline is always 
humped and passes through the origin [Fig. 5(b)]. The predator isocline is a straight 
line passing through the origin, with a slope equal to 1/A, where A is defined as 
above. This slope increases with increasing predator efficiency. In the case of  limited 
predation, the equilibrium always exists and is always stable. In the other case, the 
equilibrium is unstable and gives rise to limit cycles if the isocline intersection lies 
on the ascending part of  the prey isocline. If the predator isocline is very steep, the 
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FIG. 5. lsocline analysis of ratio-dependent models. The predator isocline is always a slanted line. 
(a) In the "limited predation" case, the prey isocline has a vertical asymptote at NL; the equilibrium 
point is always stable. (b) If predation is not limited, the prey isocline is always humped; the equilibrium 
point is unstable if it lies on the ascending part of the hump. (c) For very efficient predators, the only 
equilibrium point is the origin which is a global attractor; typical trajectories are presented. 

isoclines intersect only at the origin, which is a higher order global attractor [Fig. 
5(c)]. As in the prey-dependent  model,  the case of  high a must be considered as 
generic. 

In summary,  increasing the conversion efficiency e moves to the left the vertical 
predator  isocline of  the prey-dependent  model,  and makes steeper the slanted 
predator  isocline of  the rat io-dependent  model. For low efficiencies, the outcomes 
of  the models  do not differ very much. In both models,  there is a minimal efficiency 
under  which A does not exist: predators become extinct and the prey stabilize at 
the carrying capacity. Above this minimal value, the equilibrium point first lies on 
the rightmost part  of  the prey isocline. In both models,  the predator  equilibrium 
increases while the prey equilibrium decreases. The models differ for higher efficien- 
cies. In the prey-dependent  model ,  the prey equilibrium can tend to zero while the 
predator  equilibrium tends to a positive constant. In the rat io-dependent  model,  a 
parallel effect of  the p reda to r -p rey  ratio tending to infinity exists only in the limited 
predation case (low t~): Fig. 5(a) shows that when the predator  isocline becomes 
steeper, the prey equilibrium tends to the constant NL, and the predator  tends to 
infinity. In the generic case of  large a, both equilibria decrease as the slope increases 
[Fig. 5(b)], and both populat ions become extinct above a maximal  conversion 
efficiency [Fig. 5(c)]. Thus, the rat io-dependent  model can describe the extinction 
of  the system by complete prey exhaustion; the prey-dependent  model  is unable to 
generate this outcome. In both models,  limit cycles can arise when the conversion 
efficiency exceeds a certain critical value. 

The preceding graphical description can be confirmed by an analytical study of  
the specific systems obtained from eqns (6)-(7) and eqns (8)-(9) by choosing for 
instance the "disc"  model  (Holling, 1959b) for g (Arditi, 1979; Getz, 1984). 

Response to Primary Production 

Further contrasts between the two models are revealed by the response of  popula-  
tion equilibria to variations in prey production.  In prey-dependent  models,  the prey 
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equilibrium is entirely determined by the predator equation. It does not depend in 
any way on the rate of prey production. In ratio-dependent models, on the contrary, 
the predator equation determines the equilibrium ratio; the equilibrium values of 
both populations depend on prey production. More precise statements can be made 
by considering different types of prey production. 

E X T E R N A L  P R E Y  I N P U T  

If the prey production term f (N)N is replaced by an exogeneous input flux F, 
the equilibrium values become the following for the prey-dependent case: 

N * = A  

e 
P * = - -  F 

and for the ratio-dependent case: 

a e  
N * = - - F  

tz 

e 
P* = - -  F 

Iz 

where the parameter A given by eqn (10) is independent of the input flux. 
Increasing the external input does not increase the prey equilibrium in the 

prey-dependent model, while the ratio-dependent model shows a proportionate 
response of both populations. The response of the predator equilibrium is identical 
in both models. 

L O G I S T I C  G R O W T H  

If the prey production follows the logistic growth f(N) = r(1 - N / K ) ,  the popula- 
tion equilibria are in the case of prey-dependence 

N* = A 

A) 
and in the case of ratio-dependence 

1 ~ 

t. P* = ~  

The responses are similar to the case of an external input; if, for whatever reason, 
prey production is improved by increasing r or K, it will benefit the predator alone 
in prey-dependent models, while both equilibria will increase in ratio-dependent 
models. 
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C O N T R O L L E D  PREY A B U N D A N C E  

If the prey abundance is artificially maintained at a constant level .~r different 
from the equilibrium N*, the prey-dependent model has no predator equilibrium: 
the predators will either grow (if ~ t>  N*) or decline (if N <  N*) exponentially. 
In the ratio-dependent model, however, they equilibrate at a level proportional to N: 

p ~ - - .  

A 

Table 1 summarizes the responses in these different conditions. In every case the 
predictions of the prey-dependent model seem to apply to homogeneous systems 
with fast dynamics while the ratio-dependent model seems to give more reasonable 
predictions for heterogeneous systems with slow dynamics, like large terrestrial 
carnivores and their prey. 

T A B L E  1 

Responses to changes in prey production. Arrows show the variation 
of prey and predator equilibria, in the two types of models. Symbols: 
--~ no response; ~ proportionate response; ~ weakly increasing 

response 

Prey-dependence Rat io-dependence 

Cause N* P* N* P* 

Increase of  F --~ /~ /~ /~ 
Increase of  K --* 7 T 
Increase of r -~ t ,~ ,~ 
Main ta ined  /~ < N* to 0 to I~/A 
Mainta ined  /~ > N* to oo to l(l/A 

Food Chains 

The two types of models also show striking differences in the properties of 
population equilibria in food chains of increasing length. For simplicity, let us 
assume that the production of the first level is controlled by an exogeneous input 
flux F, and that only the last level suffers the non-predatory mortality/~. Alternately, 
the first-level production could be assumed to follow the logistic law, but this 
complicates the calculations without bringing any new qualitative feature, as we 
have already shown for the two-level system. 

Table 2 shows the responses of the different trophic levels to variations of the 
input flux F in the two types of models. In the ratio-dependent model, all levels 
respond proportionately to F. In the traditional prey-dependent model, the responses 
are extremely different depending on the level and on the number of levels. The 
only level that responds proportionately to F is the last, top predator, level. The 
next to the last always remains constant. The lower levels can even decrease with 
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TABLE 2 

Responses of  food chains to primary input F. Arrows show 
the variation o f  population equilibria to an increase of  F, 
in food chains o f  length 2 to 5, in the two types of  models. 
Symbols: --~ no response; ,,~ proportionate response; 'r 
non-linear increasing response; ~, non-linear decreasing 

response 

Prey-dependence Ratio-dependence 

Level 2 3 4 5 2 3 4 5 

p *  / ,  - .  ~, 

increasing primary production. Additionally, chains longer than two levels cannot 
reach an equilibrium when F exceeds a certain critical value. 

Discussion 

DYNAMICAL PROPERTIES 

The graphic expression of ratio-dependence is the slanted predator isocline and 
possibly the vertical asymptote of the prey isocline (e.g. Emlen, 1984, pp. 110-118; 
Taylor, 1984, pp. 70-81; Begon et al., 1986, pp. 361-366). We have seen that these 
systems can have different dynamical patterns according to whether they have 
"limited predation" or not, i.e. whether a is small or large. 

In limited predation systems, the total amount of prey killed by all predators 
g ( N / P ) P  cannot exceed a N  and it tends to this value for small N and large P. In 
other words, the amount of prey made available to predators is only determined by 
prey density. This has a similarity to the "donor control" mechanism described and 
modeled by Pimm (1982, p. 16). In this model, the predators only consume dying 
prey. They do not affect the prey equilibrium, which would remain unchanged were 
the predators removed. As far as the prey equation is concerned, this is, in fact, a 
very special case of limited predation in which the value of a is equal to zero, 
making Nt_ equal to the carrying capacity K [see Fig. 4(a)]. Donor control is 
therefore a case of ratio-dependence but not a necessary consequence of it, and it 
is probably rare, as discussed by Pimm (1982, p. 96). In the general situation where 
NL < K, predator removal leads to an increase in prey equilibrium. In summary, in 
ratio-dependent models, the number of prey "offered" to predators is "controlled" 
by the prey, but the level of prey equilibrium does react to predator removal. 

When the limited predation condition does not hold (large a), the stability pattern 
of the system becomes closer to that of a prey-dependent system, although by no 
means identical. Stability depends above all on the conversion efficiency e, and limit 
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cycles can arise for efficient predators. Thus, both conversion efficiency e and 
capturing efficiency a have a destabilizing effect, as in prey-dependent models. 

Population equilibria of  both prey and predators decrease with increasing conver- 
sion efficiency, and with very efficient predators the only possible outcome is 
complete extinction of the system: the predators die out after exhausting the prey. 
This very reasonable outcome of predation, routinely observed in the laboratory 
(e.g. Gause, 1934), cannot be described by traditional prey-dependent models. 

R E S P O N S E S  T O  P R I M A R Y  I N P U T  

The responses of the two types of systems to variations in prey production differ 
sharply. Ratio-dependent models predict proportional increases of both populations, 
while prey-dependent models predict that only predators benefit from increased 
prey production. This contrast is due to the shape of the predator isocline which is 
a vertical line in the case of prey-dependence. Natural cases that seem to present 
this feature are plankton communities where it has been reported that an increase 
of primary production can lead to a sharp increase of the zooplankton but not of 
the phytoplankton, which may even decrease. Other examples are Gause's classical 
experiments on microbial systems (see Rosenzweig, 1977). 

Prey-dependent models with humped prey isoclines present the "paradox of 
enrichment" (Rosenzweig, 1971) by which an increase in the prey carrying capacity 
destabilizes the system. Ratio-dependent models do not present this effect if the 
prey production follows the logistic law, but it can be obtained, very weakly, with 
other production curves. Again, clear evidence for this effect only comes from 
chemostat-like microbial systems (Luckinbill, 1973, 1974). 

When considering the response of food chains, ratio-dependence predicts that all 
levels would benefit from increased primary production. On the contrary, prey- 
dependent models predict that in similar environments differing in the primary 
production, the top carnivores would be more numerous in the richer places, while 
the standing biomass of their prey would not differ. Very clear evidence supporting 
the ratio-dependent hypothesis is given by Ricklefs (1979, p. 623) who shows that 
wolf populations and their prey vary among localities in the same biomass ratio. 

The concepts of population regulation "from above" and "from below" are 
associated to prey-dependence. Because of the vertical predator isoctine, the prey 
equilibrium is necessarily determined by the predators (i.e. from above), while the 
predator equilibrium is determined by the height of the prey isocline (i.e. from 
below). In the ratio-dependent model, on the other hand, the characteristics of both 
populations jointly determine both population equilibria because of the slanted 
predator isocline. If the slope of this isocline is low, the system can be viewed as 
being essentially "bottom-up controlled" because it will be very sensitive to the 
prey carrying capacity. For steeper slopes, predator characteristics play an increasing 
part and the system becomes more "top-down controlled". However, all intermediate 
situations exist, making these concepts rather inadequate. 

The prey-dependent model underlies the famous HSS theory to explain why the 
world is "green" (Hairston et al., 1960): being regulated by the carnivores, the 



324 R. A R D I T I  A N D  L. R. G I N Z B U R G  

herbivores are unable to devastate the vegetation. The same hypothesis was later 
generalized by Fretwell (1977): trophic chains with an odd number of  levels would 
produce "green"  ecosystems (top-down controlled), while even numbers would 
produce "brown"  ecosystems (bottom-up controlled). This property is akin to the 
alternating pattern shown by Table 2. Thecruc ia i  importance attached to the parity 
of  the chain length is disturbing. In ratio-dependent models, on the contrary, the 
abundance of  any level can be high or low for any chain length. "G re e n "  or "brown"  
systems can exist for any length, the "color"  being determined by the full set of  
parameters and, in particular, by factors related to primary productivity. 

In principle, a simple qualitative observation could be made that would help 
assess the proposed ratio-dependent form: resource richer but otherwise similar 
ecosystems should exhibit higher equilibrium abundances on all trophic levels, 
including the amount  of  unused primary resource. This seemingly reasonable 
expectation is in complete contradiction with the prey-dependent model. On one 
hand, a possible illustration is given by the worldwide comparison of  forest ecosys- 
tems done by Whittaker (1975, pp. 224-226). Forests of  increasing productivity show 
a responding pattern both in plant and animal biomasses (Fig. 6). One the other 
hand, Oksanen et al. (1981) and Oksanen (1983) claimed corroboration of  Fretwell's 
hypothesis in aquatic ecosystems and in tundras. One may consider that these 
systems are much more homogeneous and uniform than forests. Of  course, these 
gross comparisons are fraught with disputable interpretations because of  the difficul- 
ties of counting the trophic levels, of  evaluating the similarity of  different ecosystems, 
and of  ascertaining their state of equilibrium. We trust that much more convincing 
evidence will be drawn from experiments undertaken in the field as well as in the 
laboratory. 

In conclusion, a number of  comparisons between the two types of  models indicate 
that many aspects of ecological theory rely on the particular assumption of  prey- 
dependence. The alternative ratio-dependent form gives in many instances predic- 
tions that seem more reasonable. This form is also directly supported by many 
empirical observations, some of  which were presented in the Introduction. We 
suggest that the traditional prey-dependent form may apply to simple, homogeneous 
systems with rapid turnovers, comparable to chemostats where predation is essen- 
tially a continuous and local process. The ratio-dependent form seems more 
appropriate in complex, heterogeneous systems where the final, large scale, outcome 
of  predation is a sharing process. We expect that future work will investigate 
more closely how behavioral and physiological mechanisms must be translated on 
the large scale of population dynamics, and we hope that accumulation of  evi- 
dence will allow clear delineation of  the areas of  applicability of  the two opposite 
idealizations. 
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FIG. 6. Standing plant (D) and animal (A) biomasses vs. net annual primary productivity in forest 
ecosystems (data from Whittaker, 1975). From left to right: boreal forest, temperate deciduous forest, 
temperate evergreen forest, tropical seasonal forest, tropical rainforest. 
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