
Generalizing mobility for the Hurd

Fredrik Hammar

Examensarbete för 15 hp
Institutionen för datavetenskap, Naturvetenskapliga fakulteten, Lunds universitet

Thesis for a diploma in computer science, 15 ECTS credits
Department of Computer Science, Faculty of Science, Lund University

Abstract

The GNU Hurd features mobile objects in its implementation of �lesystem back-
ing stores. This thesis investigates the limitations and security concerns these
objects present, and how they can be overcome. This is done in preparation for
new applications that feature mobile code and mobile objects. In addition, one
such application is studied and implemented, in which mobile code is used to
make the ioctl system call more extensible.

Sammanfattning

I GNU Hurd förekommer rörliga objekt i dess implementering av lagring för �l-
system. Denna rapport beskriver de begränsningar och säkerhetsfrågor som rör
dessa objekt och hur de kan övervinnas. Detta görs i förberedning för nya app-
likationer av rörliga objekt och rörlig kod. Dessutom studeras och implementeras
ett sådant användningsfall, där rörlig kod används för att göra systemanropet
ioctl mer utvidgningsbart.

2

Contents

Acknowledgements 5

1 Introduction 7

1.1 Mobility example . 8

2 Background 11

2.1 Mach . 11

2.2 The Hurd . 14

3 Generalizing dependency transfer 19

3.1 Securely returnable stores . 20

3.2 Criteria for secure dependency transfer 22

3.3 Substitute dependencies . 23

4 Generalizing code transfer 27

4.1 Linking in the Hurd . 27

4.2 Code lookup for stores . 28

4.3 Port designated modules . 28

5 Server provided IOCTL handlers 33

5.1 IOCTLs in monolithic kernels . 34

5.2 IOCTLs in the Hurd . 35

5.3 Limitations of IOCTLs in the Hurd 36

5.4 From monolithic to mobile code, step by step 37

5.5 Implementation . 38

6 Conclusions 43

6.1 Transferring dependencies . 43

6.2 Transferring code . 43

6.3 Server provided IOCTL handlers 44

6.4 Future directions . 44

Bibliography 45

3

List of Figures

1.1 Example of mobility . 9

2.1 Remote procedure call . 13
2.2 Access control with handles . 14
2.3 Authentication protocol . 16

3.1 Example password comparison protocol 25

4.1 Role reversal . 30
4.2 Forwarding reverse authentication requests 31

List of Listings

5.1 Example IOCTL call . 34
5.2 IOCTL handler function type . 41

4

Acknowledgements

I would like to thank the Hurd community, especially Olaf Buddenhagen who
has su�ered through very long and often confusing discussions with me on this
topic. I also give thanks to my supervisor Jonas Skeppstedt, and also to my
examiner Ferenc Belik who helped me with both getting started and actually
getting done with this report. Finally, I thank my brother Peter Arvebro, my
father Claes Hammar, and fellow Hurd contributor Zheng Da, for their help in
proofreading this report.

5

6

Chapter 1

Introduction

The GNU Hurd is a Unix-like kernel that features a distinctive architecture.
Traditional Unix-like systems such as Linux are monolithic, which means that
all their services are implemented inside the kernel itself. Single-server operating
systems make use of a microkernel that implements a core set of services, on top
of which they run a user-space server that implements the remaining services
a monolithic kernel provides. The Hurd's multi-server architecture also builds
on a microkernel, but the other system services are implemented by several
separate servers.

This multi-server architecture has a number of advantages. The most in-
teresting of these is that it allows unprivileged users to run arbitrary system
services of their own, which allows them to extend the system.

The catch is that the di�erent components of the system can no longer com-
municate directly by manipulating memory and running code. Instead, the
server processes have to use IPC (inter-process communication), where pro-
cesses can only communicate through messages. This indirection makes the
implementations of the components more clumsy and less e�cient.

Mobile code is a technique which can circumvent this issue in certain situ-
ations. The idea is simple: instead of requesting which actions a server should
take, the client can request program code that performs those same actions
when executed. This code will now have direct access to the client's resources
and can therefore be simpler and more e�cient. A mobile object is an object
that not only has state that can be transferred between processes, but also has
a code base consisting of mobile code.

In this thesis the foundations for securely implementing mobile code and
objects in the Hurd will be explored. Since many readers will be unfamiliar
with the Hurd, an introduction to the parts that are necessary to be able to
follow this thesis is given in chapter 2.

The Hurd already supports one type of mobile objects: stores, which are
used to implement backing stores for �lesystems. They are very specialized to
their purpose, but I will investigate how it deals with the issues presented in
this thesis to see if the techniques used there can be generalized. This is done
in preparation for future applications of mobile code and objects; one of which
is implemented in this thesis.

This thesis is divided into three main chapters, which are outlined below.

7

3 Generalizing dependency transfer tackles the problem of how sensitive
information and references to other objects that a mobile object depends
on can be transferred in a secure manner. It starts of by analysing how
dependencies are handled for various types of stores, and tries to distill
them into a few general methods.

4 Generalizing code transfer deals with the issue of specifying and load-
ing the required code in a secure manner. Issues in the method used for
stores are identi�ed, and a new mechanism is proposed which solves them.

5 Server provided IOCTL handlers puts the lessons learned from chap-
ter 4 to use in a novel application: using mobile code to make the Hurd's
implementation of the ioctl (IO control) system call extensible at run
time, which is a major feature missing from the current implementation.

I will not implement anything that requires changes to existing IPC protocols
or servers; only additions are considered. This is because such changes can
cause incompatibilities, make upgrades more di�cult, and are more di�cult to
ultimately get accepted into the Hurd's code base. I will, however, investigate
such possibilities and make suggestions for such changes, which hopefully will
be of use in future developments.

1.1 Mobility example

Alice wants to edit her �le f.gz, which she has compressed to save storage
space. The normal way to do this is to decompress f.gz into a new �le f, edit
f, and then recompress it back into f.gz.

Alice thinks decompressing and recompressing the �le is tedious. Instead, she
decides to make use of the Hurd's extensible �lesystem. She starts a compressing
�lesystem server, which exports a �lesystem that contains the virtual �le f.
When Alice's editor tries to write data to f, the data is compressed and written
to f.gz instead. The situation is illustrated in �gure 1.1a.

Mobile code can be used to optimize this use case. Instead of reading and
writing to f, the editor can request a reference to f.gz, and the code required
to do the compression. In other words, a copy of f's implementation can be
transferred from the compressor to the editor, as shown in �gure 1.1b. After
this, the editor can make use of the copy to read and write to f.gz directly,
which is illustrated in �gure 1.1c.

But how can the editor know that the code will not hijack the editor and
make it do something completely di�erent? How can the compressor know that
the editor is allowed to use f.gz directly? These are the questions this thesis
will try to answer.

Using mobile code for optimization like this, is strictly an example of what
mobile code could be used for in the future. This particular application will
not be investigated any further in this thesis. Instead, the focus will be on the
underlying mechanisms needed to answer the aforementioned questions.

8

Editor Filesystem

Compressor

f.gz

g.gz · · ·

f

w
r
i
t
e

w
r
i
t
e

(a) The editor writes to the com-

pressed �le f.gz indirectly

though the compressor's �le f,

which compresses data before

writing it to f.gz.

Editor Filesystem

Compressor

f.gz

g.gz · · ·

f

f
'

(b) The compressor returns a copy

of f, after being requested

by the editor, along with the

needed reference to f.gz, and

code that can compress data.

Editor Filesystem

Compressor

f.gz

g.gz · · ·

f

f'

write

(c) The editor makes use of the

copy of f to write directly to

f.gz, thereby reducing the to-

tal number of writes.

Figure 1.1: Example of mobility

9

10

Chapter 2

Background

2.1 Mach

The microkernel Mach forms the foundation on which the Hurd is implemented.
It provides the means to multitask, the means for di�erent processes to com-
municate with each other, and also provides low-level device drivers.

This section is based on theMach 3 Kernel Principles[14] andMach 3 Kernel
Interfaces[13] manuals, unless otherwise noted.

2.1.1 Tasks and threads

Mach does not support the full-blown notion of the process as understood by
Unix-like systems. Instead it provides tasks, which are much more narrowly
de�ned.

A task is the smallest unit to which one can allocate resources in Mach. A
task is a collection of resources, such as virtual memory and port rights�which
will be explained in 2.1.2. It also contains one or more threads, each running
program code stored in the tasks memory, potentially in parallel.

While tasks can do nothing on their own�as actions are always taken by
threads�it is more convenient to say that a task took an action than it is to
explicitly say that one of its threads took it, even though it is not technically
true.

2.1.2 Ports

To enable tasks to communicate with each other, Mach provides message queues
called ports. Messages added to ports can later be read back in the order they
were added.

Tasks can access ports through port rights, which are kernel-protected ref-
erences that only allow a particular form of access. The kinds of port rights
that are relevant in this thesis are: send rights that let a task add messages to
a port, and receive rights that let a task read messages from a port.

Each task stores their port rights in their own port name space, and are
speci�ed through an index number called port name. These port names are
then used when invoking a particular port right. The port name space is local
to a task, and cannot be used by other tasks�unless it has access to its task

11

port, which will be presented in 2.1.6. Send and receive rights for the same port
are given the same name, so tasks can detect if they are given rights for the
same port more than once.

When a task requests that a port is created it is given a receive right to that
port, and this is the only receive right that will ever exist for this port. Holding
the receive right or any send rights for a port also allows a task to create new
send rights for that port.

As a convenience, details regarding port rights and port names will be omit-
ted where there is no confusion. Instead ports will be treated as directed commu-
nication channels to the tasks that holds their receive right, and no distinction
is made between a port name and the port it refers to. That is, the convo-
luted saying �task A has a send right for a port for which task B has a receive
right�, becomes �task A has a port to task B �, and �the function takes the port
name of this port as an argument� becomes �the function takes this port as an
argument�.

2.1.3 Messages

Messages sent through ports can not only carry data but also port rights, which
enables tasks to discover new ports from other tasks. While receive rights can
only be moved to other tasks because there is only one per port, send rights can
be both copied and moved.

Messages must follow a certain protocol so the receiver can make sense of
them. The protocol states what a message should contain, and how the receiver
should respond. For this purpose, messages always have ID numbers that dis-
tinguish them from other message types. It is also common for a message to
carry a reply port, which speci�es where the receiver should send a reply if one
is required.

2.1.4 Remote procedure calls

A basic pattern used when building protocols is the remote procedure call (RPC),
which is used to invoke procedures implemented in other tasks by using mes-
sages.

To make an RPC, a task begins by creating a reply port. It then sends an
RPC request message with the reply port and any additional arguments. The
receiving task then performs the speci�ed action and sends a reply with the
results to the reply port, which the calling task is waiting to receive. The reply
port is typically only used for a single RPC, as reusing the reply port would
allow previously called tasks to reply to later RPCs made to other tasks.

Figure 2.1 shows the notation used for RPCs in the �gures of this thesis.
Note that the details of the reply port is not shown.

2.1.5 Object system

Each object implemented by Mach is associated with a distinct port, so that
RPCs to that port will be interpreted as an operation on that particular object.
Most objects provided by Mach are manipulated in this fashion, including the
tasks themselves.

12

Client Server

request

(a) Client requesting an RPC.

Client Server

reply

(b) Server replying to an RPC.

Figure 2.1: Remote procedure call

Mach itself holds the receive right for such objects, but tasks cannot distin-
guish a port to Mach from a port to another task. This fact makes it possible
for user-space tasks to implement such objects themselves.

It also makes it possible to extend existing Mach objects, by interposing
a proxy object between the client task and the object. This proxy can then
selectively forward messages from the client to the proxy, alter the messages on
the �y, and even respond to new types of messages.

While ports are assigned to tasks and not to the objects themselves, it is
often convenient to treat them as such. However, objects within the same task
are not protected from one another and can access each other's ports, unlike
tasks which are protected from each other by Mach.

2.1.6 Task ports

Each task can be manipulated by other tasks through its task port. In fact, a task
can only manipulate its own properties�other than memory values�through
its task port.

A task's port name space can be manipulated through its task port, and
can be used to transfer port rights from one task to another. Transferring port
rights to and from other tasks is called injection and extraction, respectively.
The same applies to a task's memory mappings, which can also be manipulated
in a similar fashion, so that memory of one task can be made available to others.

A task port can also be used to create new tasks, which may inherit some or
all of the ports and memory mappings from the task referenced by the port.

2.1.7 Access control

Because ports can only be shared explicitly by sending messages to a task�or
by manipulating it through its task port�sharing objects can also only be done
explicitly. Access to an object is prevented by simply not sharing its port.

Note that access to an object is all or nothing. If a port is given out there is
nothing stopping the receiving task from invoking any of the object's operations,
and can even propagate this access to other tasks. Once access to an object has
been given, the only way to revoke it is to destroy the object's port�or simply
ignore all messages sent to it, which would in principal be the same.

The only way to restrict access to an object is to proxy it. That is, instead of
giving out a port to the object, a proxy object is created. This proxy responds
to a restricted RPC with an error, and forwards all other RPCs to the real

13

Alice Bob

Server

O

(a) Without any handles for

the underlying object O, the

server cannot di�erentiate

Alice and Bob.

Alice Bob

Server

O

OA OB

(b) With OA and OB as handles

that are speci�c for Alice and

Bob, respectivelly, the server

can di�erentiate them.

Figure 2.2: Access control with handles

object. Similarly the only way to selectively revoke access to an object is if
it is used through a proxy. When used in this manner to distinguish clients,
proxies are usually referred to as handles. This use is illustrated in �gure 2.2.
If a handle has been destroyed, the referenced object can clearly no longer be
accessed through it.

2.2 The Hurd

The GNU project aims to create a Unix-like operating system consisting entirely
of free software, and the Hurd is the GNU project's replacement for the Unix
kernel. This section is an introduction to the Hurd, and outlines the parts of its
architecture that are relevant to understand the di�culties faced in this thesis.

This section is based primarily on the excellent presentation of the Hurd's
design goals and architecture outline given by Wal�eld and Brinkmann in A
Critique of the GNU Hurd Multi-Server Operating System[17]; and to a lesser
degree on the outline given in Towards a New Strategy of OS Design[9] by
Bushnell, who was the original architect of the Hurd.

The Hurd is implemented on top of Mach, and extends the primitive objects
exposed by it to provide Unix-like objects such as �les, network connections,
and processes.

The Hurd consists of several servers and protocols. The servers are normal
user-space processes that implement Hurd objects. Their typical function is to
decompose some large object into smaller ones. For instance, a �lesystem server
takes a backing store, and exposes this �at array of bytes as a hierarchy of �les
and directories.

14

2.2.1 The Hurd's name

Hurd stands for Hird of Unix-Replacing Daemons, and in turn Hird stands for
Hurd of Interfaces Representing Depth. Though it is an acronym, it is treated
as a concrete noun, and as a title rather than a name. So it should be preceded
with a de�nite article, as in the Hurd. [7]

The names Hurd and Hird where invented as alternate spellings of the En-
glish word herd, and are pronounced the same. The intention was to make GNU
Hurd allude to a herd of gnus. [7]

2.2.2 Credentials

The Hurd has two types of entities to which one may grant access: users and
groups. A user in the system might not coincide with a physical user. For
instance, a physical user may use several system users, each for a di�erent pur-
pose, or may share a single system user with others. System users might also
be allocated for use by system services. Since physical users are not interest-
ing in this context, system users will be referred to unless otherwise speci�ed.
Users can be members of groups, which are associated with permissions that
are usually weaker than those associated with users.

Each user is identi�ed by a user identi�er, and each group by a group identi-
�er. These identi�ers are unique numbers, which are typically small. Users and
groups are normally given human-readable names as well, so that they are more
memorable. However, these names are implemented by higher-level parts of the
system and are only loosely connected with the identi�ers. The same identi�er
can even be given several names, though this is not typical. [3]

Each process in the Hurd can be run on behalf of several users and groups,
and other processes may grant access to it by virtue of being run by these
principals. To invoke the authority of its principals a process makes use of
its credentials, with which it can prove the identity of its principals to other
processes. The set of credentials is a protected object implemented by the
authentication server. The credentials of a process are passed to it by its parent
process on startup, and they are usually the same as those used by its parent.

The credentials are nothing more than a protected collection of user and
group identi�ers. The authentication server has operations that allow the cre-
ation of new credentials as long as they are subsets or unions of other credentials.
If the credentials contain the special root user identi�er, then it can also be used
to create credentials that contain arbitrary identi�ers.

In more traditional Unix-like systems, each process can only have a single
user identi�er in its credentials. In the Hurd, credentials can have any number
of user identi�ers, including zero. This also allows processes to drop creden-
tials when it no longer needs them, which lessens the impact if a process is
compromised.

2.2.3 Authentication protocol

For a process to prove its authority to another process, it must prove that it
has the necessary credentials containing the required principal's identi�ers.

The naive way to do this would be for the client to send the port to its
credentials to the other process for inspection. However, this would allow a

15

Client Server

Auth. server

OC

O∅ O

C S

R

reauth

(a) The client requests that the

server reauthenticates the O∅
handle for the underlying ob-

ject O. It sends along a ren-

dezvous port to the object R,

which exists only for this pur-

pose.

Client Server

Auth. server

OC

O∅ O

C S

R

(b) Both the client and server

sends the rendezvous port to

their respective credential ob-

jects C and S. The server also

sends a port to the OC handle.

Client Server

Auth. server

OC

O∅ O

C S

R

C

(c) The authentication server

pairs the two requests using

the rendezvous port. It replies

with the port to OC to the

client, and the identi�ers in

C to the server. The server

now knows the identity of the

client.

Figure 2.3: Authentication protocol

malicious server to steal the credentials by passing them on to other processes
and claim that these credentials are its own.

Instead, the authentication server provides a three-way handshake, where
the two parties independently contact the authentication server through their
own respective credentials. The authentication server then pairs the requests,
using a rendezvous port, which the parties previously exchanged before passing
it along to the authentication server. The authentication server then responds
to the client with a port provided by the server, and responds to the server with
a list of identi�ers stored in the client's credentials. The protocol is illustrated
in �gure 2.3.

The server never comes in direct contact with the client's credentials, but
it can still rely on them being correct, since the information came from the
authentication server.

Note that only the port that was passed through the authentication server
is authenticated. If the server associates the port on which it got the authenti-
cation request with the credentials that resulted from the authentication, then
another malicious server could fool it by forwarding an authentication request
it got from one of its own clients. The malicious server would then be authen-
ticated with its client's credentials. This is an example of a man-in-the-middle
attack.

2.2.4 Virtual �lesystem

The protocols for �lesystems are especially central to the Hurd. They can be
implemented by arbitrary processes and it is possible to connect two �lesystems
so that they are presented as a single large �lesystem tree. This makes it

16

possible for normal users to make arbitrary extensions to �lesystems. The only
requirement is that the user owns the �lesystem node that the other �lesystem
will be attached to.

Servers that implement �lesystems are called translators because they trans-
late �lesystem operations to domain speci�c operations. For traditional �lesys-
tems, this means operating on the storage that contains the �lesystem, but
�lesystems could just as well use network communication, or even be completely
virtual and only use pure computation.

Most of the Hurd's components are translators, even if they do not have any
operations that can be expressed through the �lesystem interface itself. Such
translators typically implement �lesystems that contain just a single �le, which
cannot be read or written to. In these cases the �lesystem's only function is
to make the translator available through the �lesystem. In other words, the
�lesystem acts as a namespace for the Hurd's various operating system services.
Examples of such translators are the network stack and the password server.

2.2.5 File permissions

Each �le has four sets of permissions that apply to clients based on which users
and groups are in its credentials.

Owner permissions used for credentials with the user that owns the �le.

Group permissions used for credentials with the owning group.

Others permissions used for credentials with any users.

Unknown permissions used for credentials without any users at all.

The unknown permission set is an extension speci�c to the Hurd, since pro-
cesses in traditional Unix-like systems always have a user identity.

Each permission set can contain permissions to read, write, and execute a
�le. When the �le is a directory, the permissions have di�erent meanings: read
permission allows the entries to be read, write permission allows entries to be
added or removed, and execute permission allows the entries to be opened, but
is usually called search permission when referring to directories.

2.2.6 Process server

Every Hurd process has a port to the process server, which keeps track of all
running processes in the system. Its primary purpose is to allow users to man-
age their processes and obtain information such as which program a process is
running and which process started it.

It also keeps track of the task port of each process, and hands it out on
request if the client has the necessary authorization. This task port can then be
used to access the memory and ports of the target process, which is useful when
debugging. This access to the resources of other processes will prove useful in
later parts of this thesis.

17

2.2.7 Sub-Hurds

At start-up, a process gets a port to the root directory, through which it makes
lookups in the �lesystem. It is possible for the parent process to give the new
process a completely di�erent root than the one it uses itself.

This together with the fact that most operating system services are reached
through the �lesystem, or inherited in the same manner as the root directory,
makes it possible to start sub-Hurds. A sub-Hurd is an instance of the Hurd
running under another instance of the Hurd, which can replace some or all of
this super-Hurd's services.

The fact that di�erent processes can be in di�erent but partially overlapping
environments, is one of the Hurd's most interesting and distinctive features. I
will therefore take special consideration of this in my work.

2.2.8 Stores

Mobility is already present in the Hurd, but only for block devices implemented
through the store abstraction. A block device is a special �le that represents the
content of a block divided medium, such as a hard drive, and stores are mobile
objects used to implement block devices.

Block device translators can implement the file_get_storage_info RPC,
which returns a marshaled version of the store. This marshaled store can then
be unmarshaled by clients and used directly in a manner similar to the example
in 1.1.

The most often used stores are just simple wrappers around ports to device
drivers implemented by Mach, so called device stores, or wrappers around ports
to regular �les, which are called file stores.

Other more interesting store types include zero stores, which are totally self-
contained immutable stores that only contains zeroed bytes, and do not rely on
external servers to implement the actual storage functionality. The concat and
stripe stores are also interesting, as they allow users to combine several stores
into larger ones, in di�erent combinations.

2.2.9 Channels

Character devices are �les that correspond to input and output devices such
as terminals, mouses, and sound cards. I made an attempt to create a channel
abstraction, which was to be similar to stores, but for character devices instead
of block devices.

I abandoned the attempt because the semantics of di�erent kinds of character
devices di�er too much to be used through a single interface. It became clear
that it was just as well to generalize the problem to arbitrary objects, which led
me to the subject of this thesis.

18

Chapter 3

Generalizing dependency

transfer

To transfer a mobile object from one process to another, any dependencies it
has must also be transferred, or somehow be substituted. These dependencies
can be data, ports to objects, or other mobile objects.

Technically, this is trivial as Mach's message passing facilities provide the
means to transfer the data and ports that make up a mobile object. However,
once an object has been transferred it is no longer protected from the client,
and the client will gain direct access to all of its private dependencies. The real
question is whether the transfer can be done securely.

The goal of security is to prevent any unauthorized access, and a secure
system will not grant any access unintentionally. A situation where a process
gains unauthorized access is usually referred to as a privilege escalation. For
instance, consider a translator that exposes a stored �lesystem. File objects in
such a translator depend on a store object. If a process that has access to one
of these �les were given access to the entire store by loading the �le object, then
it would also be able to access all other �les in the �lesystem.

Since access is all or nothing unless an object is proxied�which would mean
adding indirection when the aim is to remove it�the only option is to demand
that the client already has access to the required dependencies.

Any dependencies that are mobile objects are not interesting here, since any
method that can transfer the dependant object securely can also be used to
transfer its mobile object dependencies. Also, it will be assumed that the server
has no knowledge of the implementation of any object dependencies, which is a
prerequisite for handling them in a generic manner. Such dependencies will be
referred to as being external. When it comes to data, focus will be on sensitive
information such as passwords, because generic data does not pose any security
threats.

Which brings us to the problem addressed in this chapter: how can a server
determine whether the client can access an object that is not implemented by
the server itself?

The objects a process may access are determined mainly by the ports it holds,
and which additional ports it can acquire by using them. Access can also be
gained through passwords, or similar pieces of information such as cryptographic

19

keys. For instance, a process could use one to log in as a di�erent user, log in
to a remote system, or decipher an encrypted �le.

Finally, a process can also extend its access through indirect means. For
instance, it might be able to change the permissions of a �le, be able to read a
�le containing passwords, or even be able to request a user to manually grant
it the needed access. But these cases will not be considered, as manual in-
tervention should not be required, and because changing �le permissions could
inadvertently grant access to other processes as a side-e�ect.

To tackle the main issue of this chapter, I will �rst analyse how it is handled
by the existing store framework, then use the information obtained to derive two
complementary ways of determining that the client has access to the dependen-
cies. The �rst�in section 3.2�makes use of privileged access to the server itself
if available, and the second�in section 3.3�attempts to re-acquire the depen-
dencies from the ports already available to the client, though ultimately this
way will be found too uncertain and complicated to be followed through.

3.1 Securely returnable stores

The mechanism for determining whether a store can be securely loaded by a
client is divided between the store itself, the libstore library, and the translator
providing the store. As this process is not documented, I have studied the Hurd's
source code[5] directly and will document my �ndings here.

The file_get_storage_info RPC is used to load the underlying store of
a �le. When it is called, the translator marshals the store into a format that
can be sent in a reply message. When the client gets the reply, the store is
unmarshaled, and is then ready to be used directly.

But before the store is returned, the translator must make sure that the store
is securely returnable. Because the storeio translator does nothing else than
expose a single store as a single block device �le, it will serve as the reference
implementation for what a proper store translator should check on a file_-

get_storage_info call.

If the client is the root user, storeio always returns the store. For users
other than the root user, storeio makes use of the store_is_securely_-

returnable function provided by libstore, which takes the store and the open
mode as arguments�the open mode being whether the �le has been opened for
reading, writing, both, or neither. This function examines the open mode and
various store variables, and returns an error if the client should not be allowed
to load the store.

I have broken down the various properties of a store that makes it considered
securely returnable or not, and will present them below. I will also analyse why
they are used, and if there are any problems with them.

3.1.1 Innocuous stores

A store is innocuous if it is impossible to do anything harmful by possessing
it, as the comment of the innocuous �ag states. The only store like that in
libstore is the zero store, which is a store that only contains bytes that are
zero, and silently ignores all writes. [12, Section 7.3.4.6]

20

Analysis

It is easy to see why a zero store is safe to return. As it is completely virtual,
it would be possible for the client to implement the store without any contact
with other processes. But because zero stores do not have any dependencies,
they are not very interesting in this context.

Rather, the question is whether an object with external dependencies can
be considered innocuous. Answering this question requires intimate knowledge
of the dependencies, and such information is only available to the implementer
of the dependency. To get this information, the server must either implement
the dependency itself, in which case it is not external, or query the information
from the dependency itself.

There is no generic interface that supports such a query in the Hurd, and
extending existing objects to support such an interface is beyond the scope of
this thesis, so this property will not be useful here.

3.1.2 Stores with an enforced range

Every store has a range that speci�es which portions of the store access should
be restricted to. The range is encoded in the store variable that is�somewhat
confusingly�named runs. A store is enforced if it is not possible to access areas
outside of the range, even if the range is later modi�ed. For instance, device,
file, and task stores only set the enforced �ag if the range already covers the
entire backing store, in which case there simply are not any areas outside the
range. If the range is enforced, the store is considered securely returnable if it
has been opened for both reading and writing.

A hard read-only store is one that cannot be made writable, unlike regular
read-only store, which can be made writable by the holder of the store. If a
store that has an enforced range is also hard read-only, then it only needs to be
opened for reading to be securely returnable.

Analysis

The justi�cation for considering enforced stores securely returnable was presum-
ably that the client already has access to the entire range when using it remotely
through the normal �lesystem interface, or stated more generally, that there is
no access to the dependency that is not already exposed by the dependant.

I believe this reasoning is �awed for the same reason stores with external
dependencies cannot be considered innocuous. That is, answering it requires
intimate knowledge of the dependency's implementation, in which case the de-
pendency is not external, or the necessary information must be queried from
the dependency, which there is currently no generic operation for.

For instance, �les support other operations than just reading and writing,
such as changing the �le's permissions, but this functionality is not exposed by
file stores.

3.1.3 Inactive stores

An inactive store is one that only carries symbolic descriptions of its dependen-
cies. When activated, it attempts to open any resources it requires, for instance,
by opening �les speci�ed by paths. A store may be deactivated again later, at

21

which point it drops all of its external resources. I deduced the meaning of the
inactive �ag by examining under which conditions device, file, and task

stores set or clear it.
An inactive store is always considered securely returnable. If a store is not

securely returnable, storeio tries to make an inactive copy of the store and
return that instead.

Analysis

The reason inactive stores are securely returnable is presumably because the
client is then forced to reopen any needed external resource on its own, which
it fails to do if it lacks the required access.

The main problem is that this assumes that the symbolic descriptions will
resolve to the same object. For instance, this is not the case for paths if the
client and server do not share the same root directory. But even then, the
original �le may since have been replaced by another �le.

Another problem is that this also assumes that the symbolic description is
already known by the client. For instance, if one of a path's components is
in a directory that is readable but not searchable by the client, then giving
it the path grants it access to the �le named by the component. That is, the
path component would act as a password for accessing the �le. This might sound
exotic, but it is just a manner of setting the read permission bit and clearing the
search permission bit of the directory, which is possible on any Unix-like system.
The Hurd also makes it possible to implement translators that support hidden
�les that do not show up when listing directories but could still be opened. This
is an interesting future possibility which this assumption undermines.

3.1.4 Nontransferable stores

When a store is to be transferred, it is �rst marshaled into a format suitable for
the task by calling its encode method. This o�ers stores a chance to categori-
cally refuse any transfer by not supporting the encode method.

The copy store is an example of such a store. It implements a copy-on-write
copy of another store, storing blocks that are modi�ed in memory. It is clear
that if such a store is loaded into the client, the data structure for in-memory
blocks can not just be copied to it, otherwise they will di�er as soon as either
of the copies are written to.

Analysis

This does not give any additional cases under which conditions dependencies
are transferred; it is only here to complete the description of when stores can
be securely returnable.

3.2 Criteria for secure dependency transfer

Store transfers are always allowed if the client is the root user, which is not an
uncommon policy for a Hurd server, as the root user represents the owner of the
system. For instance, the authentication server allows the root user to create
arbitrary credentials. Because of its dominant role it is easy to see why it is

22

pointless to deny any access to the root user. This raises the question: can such
dominance be found in processes run by regular users?

The server is trying to protect the data and ports of the mobile object. As
explained in 2.1.6, the memory and port name space of a process can be accessed
by other processes through its task port. It should be clear that if the client has
this access then there is no point for the server to protect any of its resources
from it. In other words, the client can completely bypass the server's defenses.

This privileged access is not as uncommon as one might expect. In fact,
it is even used by the debugging program gdb.[6] The access is granted by the
process server�presented earlier in 2.2.6�which does so by handing out the
task port of a named process. It grants this access to the root user, the owner
of the process, or if the process has no owner, to any other process in the same
login collection.

If the client has authenticated against the server, then the server can easily
tell whether the client is run by the root user or the owner of the server's process.
This provides a very straightforward way of determining when dependencies can
safely be transferred.

Checking whether the client is in the same login collection is harder, as login
collections can only be speci�ed by an easily forgeable ID number. To check
this properly also requires extensions to the process server, which is beyond the
scope of this thesis.

A better alternative is for the server to ask the process server directly whether
the client has access to the server's task port. This also allows for the possibility
that the access policy of process server changes. While this option also requires
extensions to the process server, it could be a good follow up project.

3.3 Substitute dependencies

If it is not possible for the client to extract the dependencies directly from the
server, it might be possible for the client to �nd suitable substitutes on its own.

I got this idea from how inactive stores are handled, where instead of sending
dependencies directly, a description of the dependencies is sent. This forces the
client to reopen the dependencies using its own authority.

The main problems with inactive store transfer�as explained in 3.1.3�is
that there are no checks whether the description actually resolves to the same
object, and that it assumes that �le paths are not sensitive information, which
may not be the case.

In the following sections, I will examine when two objects can be consid-
ered equal, and whether they can safely be compared with each other without
exposing the server's object to the client, or the client's object to the server.
I will then examine when two �le handles can be considered equal, and if it
is possible to resolve �le paths while testing that the path is readable to the
client. As will be shown, the Hurd is currently not well equipped to deal with
this properly, which will lead to the conclusion that substituting dependencies
is not yet viable. It does, however, present future opportunities for study.

23

3.3.1 Object equality

To �nd a proper substitute for the dependency of an object to be transferred,
there must be a way to determine whether two objects can be considered equal.

The ideal scenario is if the exact same object is used, because then both the
client and the server would use it through the same port. Since port rights to
the same port are given the same port name when in the same process, the test
is just a simple integer comparison.

However, as I explained earlier in 2.2.3, most objects are referenced indirectly
through handles that remember the credentials of the client. Also, many handles
carry additional state, such as the current position when reading or writing a
�le. Given this, it is unlikely that the server gives out the same port twice.

For two handles to be equal they must permit the same operations. The only
general mechanism to test whether an object permits a certain operation, is to
actually call it. Which means that the test is postponed until the procedure is
needed, in which case it may be too late to recover. More importantly, it is not
possible to detect that an operation has succeeded where it would have failed
using the original dependency, which would mean that the dependency behaves
di�erently in the client than in the server.

In summary, the only way two objects can be determined to be equal in
general, is if they are in fact the same object. As this is a fairly rare occurrence,
there is little point in going further with this idea.

3.3.2 Secure comparison

Though there seems to be little reason in comparing objects when there are only
a few cases they can be determined to be equal, it is interesting to consider how
two objects can be compared as it poses interesting problems, and can still be
useful in the future for both existing and future special cases.

The problem is that the comparison cannot be made in either the server or
the client. This is because if neither can access the other's object now, granting
any access to do the comparison will lead to privilege escalation. The same is
true for passwords: sending a password to anyone who does not know it, is a
poor test to see if they have it.

The answer is to do the comparison in a server trusted by both parties. The
same technique that the authentication server uses can be used here to establish
a three-way handshake. Each participant sends their port to the object, along
with a previously shared rendezvous port, to their own trusted comparison server
which then matches up the requests using the rendezvous port, and proceeds to
compare the two objects. It then returns the result of the comparison to the
server, and a new handle to the object to the client. After this, the server knows
that holder of the new handle passed the test.

The �gure 3.1 illustrates a similar protocol for passwords. Note the similarity
with �gure 2.3, which depicts the authentication protocol. The main di�erence
is that the comparison server does not keep track of the clients identity and no
results are returned to the server since it is enough to know that messages to
the new handle must be from someone who knows the password.

24

Client Server

Comparator

Ot

Of O

R

(a) The client requests a compari-

son to see if it has access to the

same password as the server,

it includes a rendezvous port

unique for this comparison.

Client Server

Comparator

Ot

Of O

R

p
w

p
w

(b) Both the client and server

sends the rendezvous port and

the password to the compara-

tor. The server also sends a

port to the Ot handle.

Client Server

Comparator

Ot

Of O

R

(c) The comparator pairs the two

requests using the rendezvous

port. It replies with the port

to Ot to the client. The server

needs no reply since it knows

any messages to Ot must be

from someone that knows the

password.

Figure 3.1: Example password comparison protocol

3.3.3 File handle equality

File handles are almost certainly the most common form of object in the Hurd,
so it would be useful to be able to compare them. However, because each client
of the same �le has a di�erent handle, comparing ports are not enough.

The io_identity procedure of the io interface�which is implemented by
all �le handles�returns a send right to a port that is unique for the underlying
IO object. However, it does not follow that �le handles with the same identity
port can be used as substitutes for each other.

This is mainly because what constitutes an underlying IO object is not well
de�ned for any �le that has di�erent semantics than regular �les. I know of
no example where �le handles to di�erent �les would return the same identity
port, but it is de�nitely possible to implement such �les in the Hurd. Arguably
handles to such �les should not return the same identity ports, but that is a
new requirement of the interface, and changing existing operations is beyond
the scope of this thesis.

Another problem is whether the two handles permit the same operations,
which one can only be certain of if both have been authenticated using the same
credentials. This is a very strong requirement that cannot be examined using
existing interfaces. But if the handles were authenticated using empty creden-
tials, then there is no possibility of privilege escalation, since empty credentials
are available to everyone.

Only using empty credentials may sound like a severe limitation to the op-
erations that are permitted, but permission for the most common operations�
read and write�is only checked when opening the �le and can later be examined
with the io_get_openmodes procedure from the io interface. If the �le handle is

25

reauthenticated after it has been opened, the handle will only permit operations
whose permission can be examined, or is already available to everyone.

Still, the limitations of establishing whether two �le handles are equal in the
�rst place means that this is mostly a curiosity at this point.

3.3.4 Secure �le resolution and comparison

While being able to compare two �le handles is not very useful when it is not even
practical to do so without the requirement of security, I have again examined
the issues involved in the hope it will help future e�orts on the subject.

For the client to know which object to send to the comparison server, the
server must �rst name it somehow. For �les this is naturally done with a path.
However, as explained in the analysis of inactive stores (3.1.3), paths can be
considered passwords.

To get around this, the entire lookup can be done in a comparison server
for �les. The server can send the path and a port to the �le it should lead to,
and the client can send a port to its root directory. The comparison server can
then lookup the path in the client's root directory and compare the resulting �le
port with the server's �le port. In addition, during the lookup, the comparison
server should check that each component of the path is listed in its containing
directory. This makes absolutely sure that the component does not refer to a
hidden �le.

Note that it is not necessary that the directories on the path are equal to
each other. It is possible for the client to use a di�erent root directory but still
have access to the �le under the same path. For instance, this occurs if the same
translator is mounted in the same location on both the client's and the server's
root �le system. Only the �nal component needs to be directly compared with
the �le used by the server.

26

Chapter 4

Generalizing code transfer

In this chapter, I will examine how mobile code can be transferred from the
server to the client, and how the client can determine if it can trust the code
enough to load it without fear of being hijacked.

I will �rst give some background on how code linking and loading is handled
in the Hurd, which should give the reader an overview of the available options.

Then, I will present how code loading is handled by stores, which is secure,
but inadequate if the client and server are running in di�erent environments.

Finally, I will then propose using ports to reference the required code mod-
ules directly, explain why doing so unconditionally is insecure, propose a condi-
tion for when it is secure, and propose a method for testing this condition.

4.1 Linking in the Hurd

In this section, I will present the di�erent methods of linking together modules
to form a single program that are supported by the Hurd.

Each �le of source code in a program is typically compiled into a single
object �le. Such a �le contains the named binary objects that correspond to
the procedures and variables of the program. As a program is typically made
up of several modules which reference each other, these object �les need to be
combined into a single executable program.

This process is called linking. There are three types of linking supported
by the Hurd, which are listed below. They are distinguished by the time at
which they are performed. Note that they are not mutually exclusive and often
complement one another.

Static linking is done as part of the compilation. It links together object �les
into a single executable �le.

Dynamic linking is done by the system when a program is to be run. It is
typically used to link objects that are shared with other programs so that
they do not need to be relinked each time an object �le is modi�ed.

Dynamic loading is done at the request of the program itself when it is run-
ning. It is typically used to add extra functionality to the program in a
plug-in fashion.

27

An object �le that can be linked or loaded dynamically is called a shared
object �le. By convention, normal and shared object �les end their �le names
with .o and .so, respectively.

Shared object �les are searched for in the directories /lib and /usr/lib by
default, and additional directories can be speci�ed in the environmental variable
LD_LIBRARY_PATH. [2]

Dynamic loading is done with the dlopen function provided by the GNU
C Library. Shared object �les at any location can be loaded, in addition to
searching for them in the same way as dynamic linking. [1]

4.2 Code lookup for stores

In this section, I will examine how a store's code is loaded into the client's
program, and present the main disadvantages with this approach.

Each store class is identi�ed with an ID number, and this number is included
in a store's marshaled form. When a store is to be loaded, a lookup is �rst made
in a collection of standard store classes provided by the libstore library. This
lookup is done by the store_decode function[5].

If this lookup fails, an attempt is made to dynamically load a shared object
�le containing the class. It tries to load a �le named:

libstore_type-id.so.version

where id is the ID number and version is current version number of the Hurd.
This part is handled by the store_module_decode function[5].

As the lookup is done using dlopen, normal users can install their own store
classes if they set the environment variable LD_LIBRARY_PATH so that it lists a
directory containing the shared object �les.

4.2.1 Analysis

I have not been able to identify any security issues with the code lookup mech-
anism used by stores. If the server can write to the directories where the client
searches for modules, then it would have already been able to replace any shared
object �le the client program relies on, such as the GNU C Library. And there
is no risk of the server tricking the client into loading a shared object �le that
is not a store module, since they do not stick to the store naming convention.

However, there is a problem associated with using symbolic names such as
ID numbers: they may not refer to the same �le over time, or in di�erent
environments. In particular, it is possible that the client has installed its own
version of the requested store class. This version could be out-dated, which
may lead to errors. It could even be a completely di�erent store type which
has mistakenly been assigned the same ID number, which could happen if the
clashing classes were developed independently from each other.

4.3 Port designated modules

A straightforward way to avoid the problems of symbolic names is to use direct
references, which means ports in the Hurd. So instead of transferring an ID

28

number, the server can transfer a port to the shared object �le the client is
to load. Since the object �le is directly referenced, it is guaranteed that the
server and client will not use di�erent modules by mistake. For the same rea-
son, di�erent environments for the client and server does not pose problems.
The server can avoid escalating the client's privileges by using the dependency
transfer techniques developed in chapter 3.

But as I will explain, while loading code speci�ed by ports does away with
the practical problems associated with symbolic names, it instead poses new
security issues. In this section, I will examine these issues and propose methods
to overcome them.

4.3.1 Trusting port designated code

The security issue of trusting port designated modules is that the server can
now specify arbitrary code, instead of naming modules that the client already
trusts.

From a security perspective, loading arbitrary code speci�ed by the server is
equivalent to the server having direct access to the client's ports and memory.
This is easy to see. If the server can modify the client's memory, it can simply
write the program code into a location of the client's memory where it will be
executed. If the server can make the client load arbitrary code, the code can
read any data and ports the client possesses, and send them back to the server.
The last part assumes that the client can still communicate with the server when
the code is run, because even if the connection used to request the code has been
closed, it should not be assumed that the code cannot reopen the connection
again by using other open ports.

Because they are equivalent, the server having access to the memory and
ports of the client, can be used as a criterion for loading code. In chapter 3.2, I
established that the client has access to the server's memory and ports, if it is
run by the same user or the root user, which in turn can be found out by using
the authentication protocol.

There is only one problem with this: the authentication protocol is designed
to let a server establish the identity of a client, and not the other way around.

Reverse authentication

The client can establish the identity of the server using the normal authenti-
cation protocol with the roles reversed. That is, the client gets the server's
credentials, while the server gets a port supplied by the client, as illustrated
in �gure 4.1a. But the goal is to supply the client with a port as well as the
server's credentials.

My solution to this problem is very straight forward: the client only serves
a single request in which the authenticated process returns a port on which it
later services requests. That is, a reply port is given to the server instead of
an object, as shown in �gure 4.1b. After this their roles have been reversed, so
that the client can act as a client, and the server can act as a server, as �gure
4.1c shows. I will refer to this variant of the authentication protocol as reverse
authentication.

Since the client knows the credentials of the process that received the reply
port, it also knows that only that process�or another process that process has

29

Client Server

ORe

(a) After authenticating the

server, the roles of client and

server have been reversed.

Client Server

ORe

reverse

(b) The client serves a single re-

quest, in which the server pro-

vides a port to an object.

Client Server

O

(c) Now that the roles have been

corrected, the client can drop

the temporary reply object.

Figure 4.1: Role reversal

delegated to�could have replied the new server port. That is, the client can
now trust that the server port has been vouched for by the principals speci�ed
in the credentials.

The client can now safely load any code returned by the server port, without
the risk of escalating the server's privileges, as long as the credentials specify a
user that already has access to its memory and ports.

4.3.2 Indirect port designated modules

Port designated modules have one practical disadvantage: it requires that the
server is run by a user that has privileged access to the client's memory and
ports. This means two normal unprivileged users cannot make use of each
other's mobile code services.

This can be mitigated by using privilege separation[16], in which privileged
components of a program are factored out as separate programs. Here, that
means separating the privileged service of designating trusted code from the
server into a code providing server. The server can now simply delegate a
request for mobile code to the code provider which has privileged access to the
client's memory and ports. Two unprivileged users can now collaborate with
the help of a privileged user that runs the provider.

In fact, the request is already indirect in that the server sends a port to a
shared object �le that most likely resides in another server.

Unfortunately, it is not possible to determine which user controls the �le, as
the Hurd's �lesystem interface does not provide any operations for this. It is
possible to get the user identi�er of the �le's owner, but as this is just a plain
integer, it is no proof that this user actually controls the �le. This could be
made possible by implementing reverse authentication in existing �lesystems,
but that is beyond the scope of this thesis.

For now, it is possible for servers to simply forward the request for a code
module to specialized code providers run by privileged users, as shown in �gure
4.2.

30

Client Code provider

Server

R

O

P

r
e
v
a
u
t
h

r
e
v
a
u
t
h

Figure 4.2: Reverse authentication requests can be forwarded by the server to
a code module provider that is more privileged than itself, along
with the rendezvous port.

31

32

Chapter 5

Server provided IOCTL

handlers

Implementing the ioctl (IO control) system call in a user-space server is prob-
lematic. This is because ioctl has a variadic argument that may be a memory
address to an arbitrarily complex data structure spread out in memory. To
read or write to this data structure, the server needs access to the client's mem-
ory. But as such access is privileged, only privileged servers would be able to
implement ioctl.

To get around this, the Hurd relies on the support of the GNU C Library,
which does all the necessary memory accesses, and marshals the ioctl call into
an RPC speci�c to the requested IOCTL operation. The functions responsible
for this are called IOCTL handlers.

This �xes the problem at hand, but leads to a new limitation: adding a new
IOCTL operation requires that either the client program or the GNU C Library
is modi�ed.

This is where mobile code comes in. Instead of relying on hard-coded IOCTL
handlers, new handlers can be dynamically loaded from the server. The only
requirement then, is that the client trusts the provided code. This allows an
unprivileged user to add new IOCTL operations without modifying the GNU C
Library or the client program. It also makes it possible to serve other users as
long as the code is provided by a source that is trusted by those users.

I will start by giving background on how the ioctl system call is imple-
mented in a traditional monolithic kernel, namely Linux. Then, I will give
background on how it is currently implemented in the Hurd, and present the
limitations of this implementation compared with the implementation in Linux.
I will then show how a mobile code implementation is equivalent to a monolithic
implementation, with the help of an intermediate hypothetical multi-server im-
plementation. Finally, I will go through the speci�cs of my mobile code imple-
mentation, and the di�culties I encountered during the course of implementing
it.

33

#include <i o c t l . h> /∗ For i o c t l () and FIONREAD. ∗/
#include <f c n t l . h> /∗ For open () and O_RDONLY. ∗/

int amount ;
int fd ;

fd = open (" foo " , O_RDONLY) ; /∗ Open f i l e foo . ∗/
i o c t l (fd , FIONREAD, &amount) ; /∗ Ca l l FIONREAD to ge t how

many by t e s can be read
wi thou t b l o c k i n g . ∗/

Listing 5.1: Example IOCTL call

5.1 IOCTLs in monolithic kernels

In this section, I will provide an overview of the ioctl system call, and how it
is implemented in the monolithic Unix-like system Linux, as described in the
book Linux Device Drivers[10].

The ioctl system call �rst appeared in Seventh Edition Unix [8]. Its primary
purpose is to provide device speci�c operations to �les that are hard to express
through normal �le operations, such as reading and writing. For instance, the
GNU C Library manual [11] lists the following example operations:

• Change the font of a terminal

• Ejecting a disk from a drive

• Play an audio track from a CD-ROM drive

• Change routing tables for a network

Such an operation is referred to as an IOCTL. Each IOCTL is speci�ed by a
code number, which is passed to the ioctl system call when invoking it. These
codes are named by macros, which are de�ned in header �les, so that calling
programs can include them. Listing 5.1 demonstrates how an IOCTL is called.

Each IOCTL also takes an integer argument, which it can either ignore, use
as a value, or use as a memory pointer. If it is a pointer, then the IOCTL can
use it to return data by writing to the memory location. It can also use it to
access more data than can be encoded into a �xed-width integer. This data may
contain additional pointers, which enables the IOCTL to manipulate arbitrarily
complex data structures.

The details of the code number varies from system to system, but in general
it consists of:

Device class A number specifying the type of device that the IOCTL can be
applied to. Sometimes referred to as the IOCTL's type, or magic number.
The number is usually derived from the �rst letter of the device class, such
as t for terminal, or u for USB.

Operation A number that speci�es the requested operation. They are usually
assigned sequentially.

34

Direction This determines in which direction the data is to be transferred. It
can be none, read, write, or both. The direction is none if the argument
is not a pointer.

Size The size of the referred data to be read or written. It is only applicable if
the argument is a pointer.

When the system call is made, the IOCTL code is passed directly to the
device driver. It is up to the driver to give the code a meaning. In particular,
there's nothing stopping two di�erent device drivers from responding to the
same code in completely di�erent ways. This situation will be referred to as an
IOCTL clash.

The driver is also responsible for interpreting the IOCTL argument, though
supporting procedures can make use of the size information in the IOCTL code
to handle reading or writing to the referenced memory in a generic manner.
However, the size can only describe �at data and not arbitrarily complex data
structures, so drivers must have complete access to the memory of the calling
process if the argument's type cannot be described in the IOCTL code.

All this enables a device driver to de�ne arbitrary operations without chang-
ing the kernel or any other device drivers. This is the key feature of the ioctl
system call, as it allows third-party developers to independently add new device
interfaces.

5.2 IOCTLs in the Hurd

Here, I will describe how the ioctl system call is currently implemented in the
Hurd, which I discovered by studying the source code of the Hurd[5] and the
GNU C Library[4].

Accessing client memory is not a problem for drivers implemented in the
kernel, as is normally the case for traditional Unix-like kernels. But for device
drivers implemented in user-space�as is possible in the Hurd�only a privileged
process has access to the memory of another process. And even if the device
driver is privileged, it is not aware which process is making the request. Note
that the user-space device drivers are typically not self-contained, rather they
most likely extend some Mach driver to support a more Unix-like interface.

Therefore, in the implementation of the ioctl system call in the Hurd, each
IOCTL is converted to a proper RPC by the GNU C Library. The Hurd has a
range of RPC message IDs reserved for just this purpose. The range is split so
that each possible device class has its own block big enough to hold one RPC
per possible operation in the class. The IOCTL argument is also marshaled into
the RPC message using the size information stored in the code of the IOCTL.
This conversion is enough to handle most IOCTLs, but there are three cases
that cannot be handled this way.

Firstly, some IOCTLs operate on functionality which in the Hurd is imple-
mented by the GNU C Library itself, and not in the kernel as would be the
case on other Unix-like systems. For instance, calling FIOCLEX on a �le descrip-
tor makes the GNU C Library close it if the exec system call is later invoked.
However, such operations cannot be provided by a device driver, since their
implementations depend on the internals of the GNU C Library.

35

Secondly, some IOCTLs take arguments that cannot be encoded in their
code. For instance, if the size of the argument is too large to �t in the code, or
if it contains additional pointers which must also be dereferenced.

Thirdly, if the IOCTL can be implemented using RPCs that are already
de�ned in other interfaces, then using the standard RPC conversion would lead
to two types of RPCs that do the same thing. For instance, FIONREAD is im-
plemented by calling the RPC io_readable, which return the number of bytes
that can be read without blocking the caller.

In these cases the GNU C Library has a list of IOCTL handlers, which
are functions that can handle a range of such IOCTLs properly. The list also
associates each handler with the range of operations it can handle.

The GNU C Library's ioctl function will call the �rst handler it �nds whose
range contains the IOCTL code. If the handler cannot handle the operation after
all, it can return an error that states this. If the IOCTL was not handled by
any handler, the function will try the standard RPC conversion.

5.3 Limitations of IOCTLs in the Hurd

In this section, I will list which features I have found in the ioctl system call
of a traditional Unix-like system, but are not present in the Hurd's current
implementation.

5.3.1 Automatic inclusion

As the GNU C Library is responsible for converting IOCTL requests into RPCs,
the only way for a user to provide additional IOCTL types is to override the
library, and add the required handlers. Doing this requires control over which
libraries the client program is linked to, which servers generally do not have.

Such overrides can be done by using the LD_PRELOAD environment variable.[2]
And doing it this way does not require that the client's program is modi�ed or
relinked in any way. The problem with this is that setting LD_PRELOAD only
takes e�ect when a process is started, so it cannot be used to add handlers in
already running clients.

But even if that was possible, no such action is required in traditional Unix-
like systems. That is, the fundamental problem is that support for new IOCTL
types in the Hurd is not automatic.

5.3.2 Not device speci�c

The GNU C Library assumes that there are no clashes. It always uses the �rst
handler it �nds that claims that it can handle a particular IOCTL. This means
that if two handlers that handle two clashing IOCTLs, one of the handlers is
always preferred over the other.

In Linux, the device driver is responsible for interpreting the IOCTL. And
so, the call will always be interpreted as the IOCTL that applies to the called
device. [10]

36

5.4 From monolithic to mobile code, step by

step

Here I will demonstrate how mobile code can be used to remove the limita-
tions listed above, while still allowing unprivileged users to implement arbitrary
IOCTLs.

I will show this by �rst analysing a hypothetical implementation modeled
after a monolithic kernel implementation, which does not have these limitations,
but which other users cannot use if run by an unprivileged user.

I will then present a second hypothetical implementation, which uses priv-
ilege separation to break out the parts that require privileges into a separate
server.

Finally, I will show how mobile code can simplify that implementation, and
accomplish the same thing more conveniently, with no new requirements, and
virtually no new disadvantages. Naturally, it supports the missing features,
since it is functionally equivalent to the traditional implementation.

5.4.1 Privileged client-aware servers

An obvious implementation would be to mimic a traditional Unix-like system,
that is, make the server aware of the client process, and require that the server
has access to its memory.

One disadvantage compared to the translation done in the GNU C Library,
is that access to the memory of the client is indirect. It needs to make use
of virtual memory operations to make the relevant memory pages of the client
available to the server, making it less e�cient. In addition, this memory will
most likely be mapped to a di�erent address, so for each memory access the
server must recompute the address, which is much more awkward.

However, the most glaring disadvantage is that it goes against one of the
central goals of the Hurd, which is to allow normal, unprivileged users to extend
the system. This is actually worse than the current situation where normal users
can implement a prede�ned class of IOCTLs, but not arbitrary ones.

5.4.2 Privileged client-aware translation servers

It is clear that memory access is a requirement to implement IOCTL operations
which take pointer arguments. However, like the IOCTL handlers do in the
GNU C Library, a separate server can marshal the IOCTL request into an RPC
message, and then forward it to the server that actually implements the IOCTL.

Now, only this translation server needs the privilege to access the memory
of the client process. This is an example of a technique known as privilege
separation, which has been successfully used elsewhere to factor out required
privileges into separate components�though for a di�erent reason.[15]

The obvious disadvantage is that an extra RPC now has to be made to the
translation server with the unmarshaled IOCTL request. That is, there is an
additional indirection per request.

Also the client must now maintain a separate port to the translation server.
It is not possible to send an unmarshaled IOCTL to an unprivileged server
that then forwards it to the privileged translation server, without also making

37

it possible for the server to make arbitrary accesses to the client's memory by
sending bogus request. That is, it can escalate the server's privileges.

5.4.3 Mobile code IOCTL handlers

The translation server requires access to the client's memory, which is the same
requirement that is needed to load code into another process, as was argued
in section 4.3.1. Therefore, the translation server can instead provide IOCTL
handlers�like those already present in the GNU C Library�as mobile code.

Since the translation code now runs inside the client, it now has direct access
to its memory. And since the IOCTL request is also directly available, there is
no longer any need for the extra RPC indirection.

The port to the translation server can be discarded once the handler code has
been loaded. However, a reference to the loaded code must still be associated
with the �le it is speci�c to, so this is not an advantage in itself.

The only disadvantage is that the client must now take time to load the
code, which is an additional overhead. This should be weighed against the
decreased cost per IOCTL request. But since performance is not critical, I have
not done any measurements to determine whether mobile code leads to increased
performance in all cases, or only once a certain number of requests have been
made.

5.5 Implementation

In this section, I will describe how I made it possible for servers to provide mobile
IOCTL handlers. The implementation required adding the new ioctl_handler

protocol to the Hurd, as well as several changes to the GNU C Library.

5.5.1 Protocol

The protocol for obtaining a port to a �le's IOCTL handler module uses reverse
authentication, as was described in section 4.3.1. It uses three new messages
in addition to the four messages used by the standard authentication proto-
col. These are: ioctl_handler_request, ioctl_handler_acknowledge, and
ioctl_handler_reply.

Essentially the protocol uses the authentication protocol to establish a se-
cure channel on which the module provider can return a port to the IOCTL
module. Not only is this channel safe from man-in-the-middle attacks, but the
authentication server also provides the user and group identi�ers of the module
provider. This enables the client to determine whether it can trust the server
to provide a module that is safe to load.

The protocol is as follows:

1. The client sends an ioctl_handler_request message to the server, which
carries a rendezvous port.

2. The server sends an ioctl_handler_acknowledge message in reply. This
is needed so that the client does not wait inde�nitely for a reply to the
auth_server_authenticate message if the server does not support this
protocol.

38

3. The client sends an auth_server_authenticate message with the ren-
dezvous port and a reply port to the authentication server. Note the
reversal of the roles of client and server from the normal authentication
protocol.

4. The server sends an auth_user_authenticate message with the ren-
dezvous port it got in step 1 to the authentication server.

5. The authentication server matches up the requests using the rendezvous
port, and returns the reply port to the server and the server's credentials
to the client.

6. The server �nally sends an ioctl_handler_reply message to the reply
port with a port to a code module that exports an IOCTL handler function
named hurd_ioctl_handler.

After this the client can examine the server's credentials to determine whether
it can trust it. The policy implemented in the ioctl function is to trust the
server if it is run by the root user or by the same user as the client.

It is also possible for the server to delegate this task to a privileged server
by simply forwarding the initial ioctl_handler_request message.

5.5.2 Changes to the GNU C Library

The changes I made to the GNU C Library were mostly done to the ioctl

function itself. It now uses the ioctl_handler protocol to get a port to the
module �le from the server. If no module is provided, or the IOCTL handler
does not accept the IOCTL, it is handled as before.

Changes were also made to the �le descriptor table. File descriptors are in
most other Unix-like systems kernel protected references to open �les, and have
characteristics similar to Mach's ports. In the Hurd, �le descriptors are imple-
mented by the GNU C Library, and consists primarily of a port to the server
implementing the �le, but also an alternative port and auxiliary information
used for purposes that are not relevant for this thesis.

Module management

I extended the ioctl function to retrieve and load a �le's IOCTL handler mod-
ule when it is called for the �rst time on a particular �le descriptor. An opaque
reference to the module is then stored in the �le descriptor table, so it can later
be unloaded when the �le descriptor is closed.

If the module fails to load for any reason, a dummy IOCTL handler that
rejects all requests is installed in the �le descriptor table. I did this so that no
further attempts are made to request a handler module on later calls to ioctl.

If the port stored in the �le descriptor table is ever exchanged for any reason,
the module is unloaded and the reference cleared so that later calls to ioctl

loads the module provided by this potentially di�erent �le.

Consistency

The GNU C Library can be used by multiple threads concurrently. This means
that the port to the underlying �le server stored in a �le descriptor can be
changed whenever the �le descriptor is not locked.

39

However, locking a descriptor for extended periods harms concurrency. Not
only does it block other uses of the same �le descriptor, it also blocks asyn-
chronous signals from other processes. In particular, a �le descriptor should not
be locked while waiting for another process, for instance, when waiting for a
reply to an RPC.

To reduce the duration of locks, GNU C Library code typically makes a local
copy of the �le descriptor's contents. The copy can then be used as a snapshot
of the �le descriptor's state at the time of the copy, and as long as the �le
descriptor is not modi�ed by the current operation after the snapshot, it will
act as if the �le descriptor was locked during the entire operation. I will refer
to this process as resolution of the �le descriptor.

The �le descriptor must be resolved before searching for an accepting han-
dler. This is because the code module is speci�c to the �le descriptor's under-
lying port. If done after, the handler that accepted the IOCTL may no longer
be consistent with the �le descriptor's port, as it can change in the meantime.

This is problematic since some handlers operate on the �le descriptor itself
and therefore must have it locked. However, relocking the descriptor means an
additional resolution of the �le descriptor, which opens the possibility of the
port being changed, which in turn could a�ect the choice of the handler.

For instance, consider a thread making an IOCTL call to a �le which does
not provide any mobile handlers, instead it accepts the RPC that the call is
converted to by default. It has already been determined by the ioctl function
that this �le provides no handlers for this IOCTL, but the RPC has not yet
been sent. In the meantime, a second thread changes the �le descriptor to refer
to a di�erent �le that does override the IOCTL with a handler, which converts
the IOCTL to a di�erent RPC. The �rst thread then proceeds with the default
conversion to RPC. However, the new �le will not accept the default RPC and
the IOCTL fails, whereas it would have succeeded if the �le descriptor had been
properly locked either before or after it was modi�ed by the second thread.

To deal with this issue, I have changed the ioctl function to leave the
resolution to the accepting handler, and keep the �le descriptor locked while
searching for one. If a handler accepts the IOCTL it should unlock the descriptor
before it does any RPCs. This required changing the signature for handler
functions, and changing existing handlers in the GNU C Library accordingly.

Distinguishing rejection from failure

When a handler does not accept an IOCTL, it fails with the error code ENOTTY.
This is problematic if a handler makes an RPC that fails with the same error
code, as even if the handler does accept the IOCTL, the remaining handlers are
still called.

The problem is aggravated when the accepting handler is responsible for
unlocking the �le descriptor, as now it will be passed unlocked to the remaining
handlers and the default RPC conversion.

To work around this issue, I have changed handlers to return two separate
error codes. The �rst one for whether the IOCTL was rejected, and the second
one for whether the IOCTL failed.

Code listing 5.2 shows how the �nal type used for IOCTL handler functions,
and how it has changed since the original.

40

int (∗ i oct l_handler_t) (int fd , int code , void ∗ arg) ;
(a) The original IOCTL handler type, which has the same type as the ioctl

function itself. Argument arg is a pointer, but its value may still be used

as an integer.

error_t (∗ i oct l_handler_t) (int fd ,
struct hurd_fd ∗d , void ∗ c r i t ,
int code , void ∗arg ,
int ∗ r e s u l t) ;

(b) The new IOCTL handler type, where d is the locked �le descriptor and crit is a

critical section lock needed to lock d. The return value is now the rejection error,

while the original return value will be stored in result.

Listing 5.2: IOCTL handler function type

41

42

Chapter 6

Conclusions

In this chapter I will conclude my thesis by summarizing the results of the three
main parts of my thesis, as well as pointing to future directions for mobility
within the Hurd.

6.1 Transferring dependencies

I have argued how the dependency transfer for stores is de�cient to use for more
general mobility use-cases, and perhaps for stores as well. The assumption that
an external dependency is innocuous or enforced does not hold in all cases, and
the practise of transferring inactive stores assumes that symbolic names resolve
to the same objects, which may not be the case.

Instead, I followed up on the assumption used by stores that the root user
will already have access to the dependencies, but argued more speci�cally that
if the client has access to the server's memory and ports, then it does indeed
already have access to the dependencies. This lead to the conclusion that it is
reasonably safe to assume that the client has access to the dependencies, if also
run by the same user as the server. It is an assumption that does not hold in
all cases, but this could be �xed by querying the Hurd's process server directly,
which will be possible if it in the future is extended to support such queries.

I also explained that comparing objects in the Hurd is currently only pos-
sible if they are identical, which is rare in the Hurd as objects are most often
referenced indirectly through object handles. Comparing handles in general re-
quires cooperation from the objects themselves, which no interface in the Hurd
currently supports. And even if this was possible, doing so safely is hard for �le
handles, which are the most common objects found in the Hurd. This is because
determining whether a process can access a �le is problematic, since the path
to the �le can be considered a password, which itself needs protection.

6.2 Transferring code

The code loading mechanism used by stores was found unsuitable for use-cases
where loading code should work even if client and server are executing in di�er-
ent environments.

43

The solution was to reference which code modules to load directly with
ports instead of using symbolic names. As loading arbitrary code supplied by
the server can be used to gain access to the client's memory and ports, and vice
versa, this became the criterion for when loading the code is secure. But as the
authentication protocol is not designed to be used to authenticate the server to
the client, I had to devise a workaround solution: reverse authentication.

I also found that the task of supplying the code can be delegated to a separate
third server. This makes it possible for two unprivileged users to cooperate using
mobile code, as long as they are supported by a third, privileged user.

6.3 Server provided IOCTL handlers

I used mobile code to make the ioctl system call more extensible. This is a
concrete implementation of loading code by port and reverse authentication.
It makes the Hurd's ioctl system call as powerful as the traditional imple-
mentation needed in monolithic Unix-like systems such as Linux. The privilege
required to provide code modules that add new types of operations is comparable
to that needed in those systems, but the ability to implement these operations
are available to regular, unprivileged processes.

While the infrastructure is somewhat complex, the IOCTL handlers that
add new operation types are themselves pretty straightforward, making it easy
to make use of it.

But there is still plenty of room for improvement. In particular, if the re-
quirement to pass a locked �le descriptor to the IOCTL handlers can be relaxed,
they can be made even simpler.

My patches to the Hurd and the GNU C Library work, but as the GNU C
Library in particular is complicated, they need further review before they can
be included in a release.

6.4 Future directions

Overall this thesis has laid the groundwork for future use-cases that make use
of mobility. One interesting possibility is to use mobility for optimizing the use
of Hurd objects by loading them into the client instead of using them remotely
through IPC. The main issue remaining is how to make a framework that allows
this, while still being similar enough to how servers currently implement objects,
so it becomes easy to port existing implementations to the new framework.

Of course, the techniques used in this thesis should also be applied the
existing mobile objects, namely stores, as they too would bene�t from them.

44

Bibliography

[1] dlopen(3) Manual Page. From the Debian GNU/Hurd package manpages-
-dev version 3.22-1.

[2] ld.so(8) Manual Page. From the Debian GNU/Hurd package libc0.3 ver-
sion 2.9-23.

[3] passwd(5) Manual Page. From the Debian GNU/Hurd package passwd

version 1:4.1.4.2-1.

[4] The GNU C Library Source Code. From the Debian GNU/Hurd source
package eglibc version 2.9.18.

[5] The GNU Hurd Source Code. From Git repository, commit 08aa7edb-

495445c0bfa54cb5d207e85c1df9008a.

[6] The GNU Project Debugger Source Code. Version 7.0.

[7] Grammatically speaking... http://www.gnu.org/software/hurd/hurd/

what_is_the_gnu_hurd/gramatically_speaking.html, 2008. Veri�ed:
2009-11-08.

[8] Bell Telephone Laboratories, Inc. UNIX Time-sharing system: Unix Pro-
grammer's Manual, 7th edition, January 1979.

[9] M. I. Bushnell. Towards a new strategy of OS design. GNU's Bulletin,
1(16), January 1994.

[10] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux De-
vice Drivers, chapter 6, pages 135�147. O'Reilly Media, Inc., 005 Graven-
stein Highway North, Sebastopol, CA 95472, 3rd edition, February 2005.

[11] Free Software Foundation, Inc. The GNU C Library, 0.12 edition, March
2009. For version 2.9 of the GNU C Library.

[12] Free Software Foundation, Inc. The GNU Hurd Reference Manual, 2009.
For version 0.2 of the GNU Hurd.

[13] K. Loepere. Mach 3 Kernel Interfaces, 1992.

[14] K. Loepere. Mach 3 Kernel Principles, 1992.

[15] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege
escalation. In Proceedings of the 12th USENIX Security Symposium, pages
231�241, Berkeley, CA, USA, 2003. USENIX Association.

45

http://www.gnu.org/software/hurd/hurd/what_is_the_gnu_hurd/gramatically_speaking.html
http://www.gnu.org/software/hurd/hurd/what_is_the_gnu_hurd/gramatically_speaking.html

[16] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. In Proceedings of the IEEE, volume 63, pages 1278�
1308, September 1975.

[17] Neal H. Wal�eld and Marcus Brinkmann. A critique of the GNU Hurd
multi-server operating system. SIGOPS Oper. Syst. Rev., 41(4):30�39,
2007.

46

	Acknowledgements
	Introduction
	Mobility example

	Background
	Mach
	The Hurd

	Generalizing dependency transfer
	Securely returnable stores
	Criteria for secure dependency transfer
	Substitute dependencies

	Generalizing code transfer
	Linking in the Hurd
	Code lookup for stores
	Port designated modules

	Server provided IOCTL handlers
	IOCTLs in monolithic kernels
	IOCTLs in the Hurd
	Limitations of IOCTLs in the Hurd
	From monolithic to mobile code, step by step
	Implementation

	Conclusions
	Transferring dependencies
	Transferring code
	Server provided IOCTL handlers
	Future directions

	Bibliography

