
KISS: “Key it Simple and Secure” Corporate Key

Management

Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, Virgil Gligor

CyLab and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

{stephenzhou, junhan, tenma, perrig, gligor}@cmu.edu

Abstract. Deploying a corporate key management system faces fundamental

challenges, such as fine-grained key usage control and secure system administra-

tion. None of the current commercial systems (either based on software or hard-

ware security modules) or research proposals adequately address both challenges

with small and simple Trusted Computing Base (TCB). This paper presents a new

key management architecture, called KISS, to enable comprehensive, trustwor-

thy, user-verifiable, and cost-effective key management. KISS protects the entire

life cycle of cryptographic keys. In particular, KISS allows only authorized ap-

plications and/or users to use the keys. Using simple devices, administrators can

remotely issue authenticated commands to KISS and verify system output. KISS

leverages readily available commodity hardware and trusted computing primi-

tives to design system bootstrap protocols and management mechanisms, which

protects the system from malware attacks and insider attacks.

Key words: Key Management, Trusted Computing, Isolation, Trusted Path

1 Introduction

As consumers and corporations are increasingly concerned about security, deployments

of cryptographic systems and protocols have grown from securing online banking and e-

commerce to web email, search, social networking and sensitive data protection. How-

ever, the security guarantees diminish with inadequate key management practices, as

exemplified by numerous real-world incidents. For example, in 2010 Stuxnet targeted

Iranian uranium centrifuges, installing device drivers signed with private keys stolen

from two high-tech companies [11]. In another incident, the private keys of DigiNotar,

a Dutch certificate authority, were maliciously misused to issue fraudulent certificates

for Gmail and other services [23]. Even high-profile, security-savvy institutions fall

prey to inadequate key security, let alone companies with a lower priority for security.

Despite its indisputable significance, none of the current corporate key management

systems (KMS) – either industrial solutions based on software, or hardware security

modules (HSM), or research proposals known to us – provide comprehensive key man-

agement with small and simple trusted computing base (TCB). There are at least two

significant challenges that lead to the insufficiency of the KMS, as shown in Table 1.

Fine-grained Key Usage Control. A comprehensive life-cycle KMS should enforce

fine-grained key usage control (i.e., whether an application operated by a user has the

permission to access a specific cryptographic key). This problem is exacerbated with

the current trend of Bring Your Own Device (BYOD), which allows client devices (e.g.,

2 Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, Virgil Gligor

Systems Key Usage Control Administration Interfaces TCB ROT

HSM

[18,20,7,16,17]

coarse-grained (applica-

tion or machine control)

HSM & complex admin dev, non-

verifiable

large HSM, ad-

min dev

SW [15,19,9] insecure (rely on OS) keyboard/display, non-verifiable large OS

TPM

[5,11,2,13,14]

coarse-grained (only ap-

plication control)

keyboard/display, non-verifiable large TPM

KISS fine-grained (both appli-

cation and user control)

trusted path & simple admin dev,

verifiable

small TPM, ad-

min dev

Table 1. A comparison between KISS and current key management systems. “HSM”,

“SW”, and “TPM” represent the KMS that are based on HSM, software packages, and

TPM seal storage, respectively. “ROT” denotes the root of trust of the systems.

tablets and laptops) to increasingly host both personal and security-sensitive corporate

applications and data.

Although commercial HSMs [18, 20, 7, 15, 17] provide high-profile physical pro-

tection of cryptographic keys and algorithms, they fail to control key usage requests

from outside their physical protection boundary (e.g., the users and applications on

other client computers). The attackers can cause key misusage [23] by compromising

client computers and submitting fake key usage requests to the HSMs. Some HSMs en-

able porting key usage applications to an in-module secure execution environment [18,

20]. This method only provides application-level key usage control, and is not scal-

able due to the limited resources of the dedicated environment. Some HSMs enforce

key usage control by accepting requests from client machines that deploy special hard-

ware tokens only. This mechanism is insecure because it cannot block requests from a

compromised operating system (OS) or an application on an authenticated machine.

Cost-sensitive companies commonly deploy key management software [14, 19, 8]

on commodity servers, and rely heavily on the underlying OS services to protect cryp-

tographic keys and management operations. These systems are untrustworthy because

modern OSes are large and routinely compromised by malware.

Research proposals (e.g., credential protection systems [5, 10, 2] and hypervisor-

based solutions [12, 13]) leverage Trusted Platform Modules (TPM) sealed storage. It

assures that the cryptographic keys sealed by an application can only be accessed by the

same software. However, this approach is coarse-grained; it does not enforce any user

authentication of the sealed keys.

Secure System Administration. A trustworthy KMS should allow benign administra-

tors to securely manage the system and defend against attacks from malicious insiders.

It must guarantee the authenticity of the communication between the administrators and

the KMS. Otherwise, an adversary can cause unintended key management operations by

stealing administrator login credentials, modifying or spoofing the administrator com-

mand input or the KMS output (e.g., operation result, system status).

The HSMs usually mandate the administrators to perform management operations

via the I/O devices (e.g., keyboard and display) that are physically attached to the mod-

ules. For remote administration, they need complicated management software running

on a commodity OS or a dedicated administrator device. Both mechanisms signifi-

KISS: “Key it Simple and Secure” Corporate Key Management 3

cantly increase system TCB and thus exposes larger attack surface. For software-based

KMS, the I/O interfaces and authentication-relevant devices are controlled directly by

the underlying OS, which means that the administrator credentials, input commands,

and KMS output can easily be compromised by malware in the OS. Similarly, research

proposals [5, 2, 10] do not support trustworthy remote management mechanisms. More

importantly, none of KMS solutions provide intuitive ways for administrators to ver-

ify the status of the administration interfaces. Without such verification, administrators

cannot trust any displayed system output and may mistakenly perform operations.

Contributions. To address the above challenges, this paper presents KISS (short for

“Key it Simple and Secure”), a comprehensive, trustworthy, user-verifiable, and cost-

effective enterprise key management architecture. Table 1 compares KISS with main-

stream KMS and research proposals. Among them, KISS is the first KMS that supports

fine-grained key usage control based on users, applications, and configurable access-

control policies. To do this, KISS isolates authorized corporate applications from the

untrusted OS and measures the code identities (cryptographic hash) of the protected

applications. KISS also directly accepts user authentication by isolating user-interface

devices and authentication relevant devices from the OS. Moreover, KISS enables se-

cure system administration, leveraging a simple external device with minimal soft-

ware/hardware settings. The KISS administrators execute thin terminal software on

commodity machines. The thin terminal accepts administrator input via trusted paths,

remotely transfers the input to and receives system output from the KISS system. The

administrators use the external devices to verify the execution of the thin terminal and

trusted paths and guarantee the authenticity of the input/output.

KISS leverages hypervisor-based isolation to protect the key management software

and cryptographic keys from the large untrusted OS, applications, and peripheral de-

vices. The administrators securely bootstrap the KISS system using the simple admin-

istrator devices and lightweight protocols, regardless of malware attacks and insider

attacks from malicious administrators. These mechanisms together significantly reduce

and simplify the KISS TCB, enabling higher security assurance. Because KISS lever-

ages commodity hardware and trusted computing techniques, it is cost-effective and

makes the wide adoption of KISS in small- and medium-sized business possible, in ad-

dition to financial or governmental institutions. KISS showcases how trusted computing

technologies achieve tangible benefits when used to design trustworthy KMS.

Paper Organization. First, we describe the KISS attacker model and introduce the

background in Sections 2 and 3, respectively. Section 4 describes in detail the KISS sys-

tem model and administrative policies. In Section 5, we illustrate the KISS hypervisor-

based architecture and the simplicity of the external administrator devices. Sections 6, 7,

and 8 introduce the detailed mechanisms for system bootstrap, secure administration,

and fine-grained key usage control, respectively. We analyze potential attacks on KISS

and our defense mechanisms in Section 9. Section 10 discusses KISS extensions with

stronger security properties or address real-world application issues. We then compare

our solution with related work (Section 11) and conclude the paper.

4 Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, Virgil Gligor

2 Attacker Model

We consider an adversary that remotely exploits the software vulnerabilities of the OS

and applications on KMS machines. The adversary can then access any system re-

sources managed by the OS (e.g., memory, chip-set hardware, peripheral devices) and

subvert any security services provided (e.g., process isolation or file system access-

control). However, we trust the correctness of the key management software, and as-

sume that it cannot be exploited by the adversary. The mechanisms to guarantee the

correctness is out of the scope of this paper.

We also consider insider attacks from malicious administrators that attempt to leak,

compromise, or misuse the cryptographic keys. They can actively issue unauthorized

key management operations, intentionally misconfigure the KMS and corporate appli-

cations, or steal the administrator devices or credentials (e.g., password, smart cards)

of benign administrators. However, benign administrators are trusted to protect their

administrator devices and credentials and comply with the KISS protocols.

We do not address the following three types of attacks in this paper: (1) physical

attacks to the hardware that KISS relies on (e.g., TPM), (2) side-channel attacks to

cryptographic keys and algorithms, and (3) denial-of-service attacks. Countermeasures

against these attacks are complementary to KISS.

3 Background

This section introduces the technical building blocks of KISS: program isolation [12,

13] and trusted paths [25, 3]. They are implemented based on readily available trusted

computing primitives, such as dynamic root of trust for measurement (or Late Launch) [1,

9], remote attestation, and sealed storage [21].

Program Isolation. Recent research contributions [12, 13] demonstrate the capability

of removing large commodity OS from the TCB of small program modules. These

systems isolate program modules by leveraging a small and trustworthy hypervisor with

higher privilege level than the OS. The hypervisor guarantees that the OS, applications,

and DMA-capable devices cannot compromise the execution integrity, data integrity,

and secrecy of the isolated program modules. The protected code modules are self-

contained, and they should not rely on OS services.

Trusted Path. A Trusted Path (TP) is a protected channel providing secrecy and au-

thenticity of data transfers between a user’s I/O devices (e.g., keyboard, display, USB

devices) and an isolated program trusted by the user. Recent research advances demon-

strate the usage of a small, dedicated hypervisor to establish trusted paths, completely

bypassing the commodity OS [25, 3]. The hypervisor exclusively redirects the I/O com-

munications (e.g., memory-mapped I/O, DMA, interrupts) of the trusted-path devices

to the isolated software module. The TP device drivers are included in the isolated soft-

ware module and redesigned to communicate with the devices via the hypervisor.

KISS: “Key it Simple and Secure” Corporate Key Management 5

(1) Server
Bootstrap

(2) Client Bootstrap

(3) Remote
Management

(4) Key Generation
and Distribution

(5) Key Usage
Control

TADs

Administrators

Key Management Server Key Management Clients

Applications

Remote
Managers

Legend

Remote Connection

(e.g., network)

Local Connection

(e.g., USB)

Trusted Software

Key Usage Requests

Trusted Hardware

Fig. 1. KISS system model.

4 Overview

Corporate key management in this paper refers to the establishment and usage of cryp-

tographic keys in corporate and distributed environments. In this section, we provide

a high-level overview of KISS system entities and model, and demonstrate how this

model enables scalable and hierarchical enterprise key management.

4.1 System Entities

Figure 1 shows the four major entities in the KISS system.

Key Management Server (KISS Server). A commodity server machine that executes

the key management software to perform server-side key life-cycle operations (e.g., key

generation, registration, backup, revocation, de-registration, and destruction).

Key Management Clients (KISS Clients). Distributed machines (e.g., employees’

desktops or corporate web servers) that install the KISS client software to receive cryp-

tographic keys from the KISS server and use the keys to provide services to corporate

applications. For example, On employees’ desktops, the cryptographic keys stored in

the KISS client software can be used to encrypt confidential documents. For a corpo-

rate web server, the keys are used to authenticate the outgoing network traffic.

Remote Managers (KISS Managers). Commodity machines used by KISS adminis-

trators to perform remote management. These machines install the KISS manager soft-

ware to securely transfer administrative commands to and receive system output from

the KISS server or clients.

Trusted Administrator Devices (KISS TAD). Small, dedicated devices that are di-

rectly connected (e.g., via USB) to the KISS server or clients for local administration,

or connected with the KISS managers for remote management.

6 Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, Virgil Gligor

4.2 System Model

Figure 1 also demonstrates a basic workflow of bootstrapping and using the KISS sys-

tem. In Steps (1) and (2), administrators install and execute the KISS software on the

server or clients, and perform bootstrap protocols to establish cryptographic channels

between the server software, client software and TADs. We design our system to protect

the server/client software and the channel keys against malware attacks (see Section 5).

The bootstrap protocols must be performed by a quorum of administrators to defend

against malicious insider attacks. Each participating administrator use his/her TAD to

confirm that the KISS bootstrap process succeeds. After bootstrap, the KISS server soft-

ware starts recording subsequent system operations in a tamper-evident audit log, which

helps the administrators detect insider attacks. Section 6 illustrates the KISS bootstrap

protocols, cryptographic channel establishment, and audit log in detail.

In Step (3), the administrators remotely manage the KISS server/client software,

leveraging their TADs and KISS managers. The KISS system protects the manager soft-

ware (acting as a thin terminal) and user-interfaces devices (e.g., keyboard, and display)

against malware attacks from the KISS manager OS. The administrators can securely

input commands and review system output via the KISS manager user interfaces. The

administrators use their TADs to authenticate the outgoing commands, and verify the

authenticity of the operation results back from the KISS server/client software. Sec-

tion 7 describes the remote management process and how our design significantly re-

duces KISS TCB.

In Step (4), new cryptographic keys (which are our key management products) are

generated in the KISS server and securely distributed to the clients via the cryptographic

channels established in step (2). In Step (5), the KISS client software protects the dis-

tributed keys, and handles key usage requests from various applications. KISS enables

more fine-grained control of key usage than previous key management systems and pro-

posals. It isolates the applications (similar to the isolation of KISS server software from

the server OS) and measures their code identities. It also provides protected channels

between authentication devices and the KISS client software, so that the KISS client

software can directly authenticate the users of the applications. If the requests are from

authorized users (e.g., company employees) and corporate applications (e.g., corporate

document editors), the KISS client software uses the corresponding cryptographic keys

to process the requests (e.g., decrypt confidential documents). The KISS client software

rejects any key usage request from unauthorized users (e.g., visitors that are not allowed

to read any confidential document) or applications (e.g., personal web browsers, media

players). Section 8 describes the detailed mechanisms of our fine-grained key usage

control.

The KISS client is necessary for collecting application and user information to per-

form key usage control. By receiving keys from the server, it also supports offline key

usage, which reduces the key access latency and allows key usage when network con-

nections are unavailable (e.g., while traveling on flights). However, offline key usage

increases the risk of key abuse (e.g., when client machines are stolen). Companies

might enforce special key usage policies to reduce this risk, such as requiring client

machines to periodically obtain key usage permissions from the KISS server. Note that

KISS can easily be modified to serve as the key usage control front end of the HSM.

KISS: “Key it Simple and Secure” Corporate Key Management 7

Untrusted CorporateKey Mgmt
Regime Regime Regime

(only on client)

Legend

Hardware

Software

Isolation
Boundary

TCB
USB

Other KISS machines NIC

TAD

Sec Dev UI Dev Auth Dev

KISS Hypervisor

KISS

Software

Corporate

Application

App App

OS

Fig. 2. System architecture for KISS client, server, and manager. Sec Dev is the hard-

ware (e.g., TPM) that provides trusted computing primitives. UI Dev denotes the user-

interface devices, such as a keyboard and a display. Auth Dev is the device used for au-

thentication (e.g., fingerprint scanner, and keypad). The KISS machines communicate

via the network interface cards (NIC), and connects with TADs via USB interfaces.

The KISS server software receives approved key usage requests from the clients, and

securely transfers them to the HSM on the server machines via trusted paths. Both the

cryptographic keys and algorithms are always protected inside HSM.

5 System Architecture

In this section, we introduce the unified hypervisor-based architecture for the KISS

server, client, and manager, and the hardware/software settings of TAD. We demonstrate

how our architectural design significantly reduces and simplifies the TCB of the whole

system, which is necessary for achieving high security assurance.

5.1 KISS Server, Client, and Manager

KISS server, client, and manager share the same architecture, hence we only illustrate

the KISS client in detail here. As shown in Figure 2, the KISS hypervisor is a thin layer

of software running in a higher privilege than the commodity OS of the client. Unlike

commercial hypervisors/virtual machine monitors (VMM) (e.g., VMware Workstation,

Xen), the KISS hypervisor does not virtualize all hardware resources or support the

concurrent execution of multiple OSes. Thus, the code base of the KISS hypervisor is

orders of magnitude smaller and demonstrably simpler than an OS or a full-functioning

hypervisor/VMM. The TCB of a KISS client is only the hypervisor, the client software,

the corporate applications that utilize the keys, and some commodity hardware (e.g.,

Sec, Auth, and UI Dev in Fig. 2). The KISS hypervisor is dedicated to three main tasks:

Isolation. The KISS hypervisor divides the client to three isolated software regimes,

which are lightweight “virtual machines” as described in Section 3. The key manage-

ment regime runs the KISS client software and stores all cryptographic keys during its

run time. We also leverage TPM sealed storage to protect the cryptographic keys at rest.

8 Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, Virgil Gligor

Each authorized application that uses the keys is isolated in its own corporate regime.

The untrusted regime consists of the commodity OS, other applications, and devices.

Trusted Paths. When the administrators locally manage the client machine, the hyper-

visor establishes trusted paths between the client software and the UI Dev or Auth Dev

(Figure 2). The trusted paths protect the administrator command input and the client

software output and safeguard the user authentication credentials. We defer the detailed

explanation to subsequent sections.

Key Usage Control. The hypervisor helps the KISS client software to collect the iden-

tifier of the corporate applications and users that request key usage. When isolating the

corporate applications in corporate regimes, the KISS hypervisor computes a crypto-

graphic hash of the corporate application code and static data, and transfers the hash

value as application identifiers to the KISS client software. The hypervisor also es-

tablishes trusted paths between the authentication-relevant devices and the KISS client

software, for user authentication. Section 8 describes the key usage control procedure.

5.2 TAD

TAD is a small, dedicated, embedded device that assists system administration, both

locally and remotely. TAD employs much simpler software/hardware than the typical

administrator devices in current KMS. TAD does not need a full user-interface hardware

for the key management command input and system output. Instead, the administrator

can leverage the trusted paths provided by the KISS hypervisor on the server, client or

manager. TAD does not implement complicated key management software to interpret

operation input/output. These are directly handled by the KISS server/client software.

During remote management, the KISS manager software only collects and transfers

administrator input to server/client, and receives returning operation results.

TAD implements software for the KISS bootstrap protocol, standard cryptographic

primitives, remote attestation protocol, and necessary hardware drivers (note that the

USB driver code is included, but not in the TCB). The TAD software is responsible for

three tasks: (1) performing server/client bootstrap; (2) remotely attesting to the KISS

server, client, and manager software; and (3) authenticating the administrator input and

verifying the authenticity of the server/client output. To meet these functional require-

ments, TAD includes only a low-end CPU, small on-chip RAM and flash storage, a

USB controller, a few buttons, a minimal display to show hexadecimal values, and a

physical out-of-band channel receiver (e.g., QR code scanner).

6 System Bootstrap

In this section, we introduce the lightweight KISS bootstrap protocols. These protocols

allow a quorum of administrators to verify that the “known good” KISS software is

executing on the server/clients, and to establish cryptographic channels between their

TADs, the server software and the client software. These channels (depicted in Figure 3)

are used in secure system administration and key life-cycle operations. The bootstrap

protocols are resilient against malware and insider attacks.

KISS: “Key it Simple and Secure” Corporate Key Management 9

Server Client

Srv-TAD Channel

(Authenticity)

TAD

KTPM_S

KTPM_S
-1

KTPM_C

KTPM_C
-1

 KSrv KTAD
-1

KTPM_S
 KTAD

 KSrv

 KSrv
-1 KTAD

TPM TPM

(a) Server Bootstrap

Server Client

Srv-TAD Channel

(Authenticity)

Cli-TAD Channel

(Authenticity)

TAD

KTPM_S

KTPM_S
-1

KTPM_C

KTPM_C
-1

 KSrv KTAD
-1 KCli

KTPM_S KTAD KTPM_C

 KSrv

 KCli

 KSrv
-1 KTAD

 KCli

 KSrv

 KCli
-1 KTAD

Srv-Cli
Channel

(Authenticity

& Secrecy)

TPM TPM

(b) Client Bootstrap and Registration

Fig. 3. Cryptographic channels established during KISS bootstrap. Before the bootstrap,

the server and clients only have their TPM keys, and TADs has no pre-injected keys.

1. TPM
OOB
−→TADi : KT PM S

2. TADi : Generates device key pair {KTADi
,K−1

TADi
}

3. TADi → Server : {Ci,KTADi
}, where Ci lists the configurations of the Server,

e.g., # of involved administrators N, and quorum threshold t.

4. Server : Gathers N messages from TADi before timeout,

late launches HYP and Server (their measurement is stored in TPM).

5. Server : Checks that all Ci are consistent, and N ≥ t,

generates Server key pair {KSrv,K
−1
Srv}

6. Server → TPM : Stores the measurement of {KSrv,Ci,Λ = {K1, · · · ,KN}}
7. TADi → TPM : Nonce Ri

8. TPM → Server : Signature Si = {Ri,M}
K−1

T PM S
,

where M is the measurement of {HY P,Server,KSrv,Ci,Λ}.

9. Server → TADi : IDi, Si, Λ , KSrv, where IDi is a unique identifier for TADi

10. TADi : Verifies Si and M, checks KTADi
∈ Λ , #(Λ) = N, and stores KSrv

Fig. 4. KISS Server Bootstrap Protocol. Each administrator possesses a TADi.

6.1 Server Bootstrap

During the KISS server bootstrap, a quorum of administrators execute authentic KISS

server software and establish the Srv-TAD cryptographic channel (Figure 3(a)). Our

lightweight server bootstrap protocol needs minimal administrator involvement. It does

not require pre-sharing secrets in TAD (e.g., vendor-injected device private keys). After

the bootstrap, the server software starts recording subsequent system operations in a

tamper-evident audit log, which help the administrators detect insider attacks.

Bootstrap Protocol. Figure 4 illustrates the server bootstrap protocol. Before the pro-

tocol begins, we assume that the administrators creates the necessary configuration file,

Ci, of the KISS server software independently and store them in TADs. The Ci in-

cludes the number of participating administrators, N, a quorum threshold, t, and other

necessary server parameters. In Step 1, each administrator gathers the information of

the hardware root of trust, i.e., the TPM public key KT PM S of the server, via a trusted

10 Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, Virgil Gligor

out-of-band (OOB) channel. We suggest a secure and practical OOB channel, in which

KT PM S is encodes as a tamper-evident physical label, e.g., an etched QR code on TPM

chip surface. Each TADi securely attains KT PM S by scanning the QR code.

After that, each TADi generates a device key pair, {KTADi
,K−1

TADi
}, and sends Ci

along with the public key, KTADi
, to the server (Steps 2 and 3). In Steps 4–6, the server

executes the KISS hypervisor and server software via late launch primitives [1, 9]

Late launch resets a special Platform Configuration Register (PCR) of the TPM, and

stores the cryptographic measurement of the HYP and the server software in this reg-

ister for further remote attestation. After that, the server software generates a key pair,

{KSrv,K
−1
Srv}, and a key list, Λ , by receiving the public keys, KTADi

, from all participating

TADs. The server software stores the measurement of KSrv, Ci, and Λ into other PCRs

of the TPM. The accumulated measurement, together with its signature generated by

TPM attestation keys (linked with the TPM private key, K−1
T PM S), are sent to the verifier

during remote attestation (Step2 7– 9).

Upon receiving the attestation response, TAD verifies the signature using KT PM S,

and trusts the authenticity of the accumulated measurement, M (Step 10). TAD re-

computes M using its pre-installed knowledge (e.g., cryptographic hash of HYP and

server software, configuration file Ci), the received KSrv and Λ . If the verification suc-

ceeds, TAD trusts that an authentic hypervisor/server instance is executing on the KISS

server with the appropriate configurations, and that the server instance has the server

private key and a correct list of TAD public keys. TAD also verifies that its own public

key is included in the public key list, Λ , and the number of keys in Λ equals to the

number of participating administrators. If all verification passes, TAD notifies its ad-

ministrator via the display. The only task that each administrator needs to perform is

to visually check that all TADs display verification success messages. KISS introduces

an additional computational overhead (e.g., remote attestation and quorum checking)

compared to traditional system bootstrapping. However, we argue that this cost is ac-

ceptable, considering the security guarantees it achieves.

Audit Log. During the server bootstrap, malicious administrators may inject spurious

configuration files with a small quorum threshold, or even forge administrator public

keys. These administrators are then capable of passing the quorum check that is nec-

essary for any key management operations. In KISS, the server software maintains an

operation log to record all of the system administration operations, including bootstrap

operations. This helps legitimate administrators/auditors detect any insider attacks dur-

ing the server bootstrap. In addition, the audit log helps relaxes the quorum control and

improves system usability. Becasue all key management operations are held account-

able, KISS may allowing a smaller number of administrators or even merely one to

perform operations.

The audit log is stored in the untrusted regime. The KISS server software maintains

an aggregated hash of the log entries in the TPM non-volatile memory (NVRAM). The

TPM NVRAM access-control (similar to sealed storage) ensures that only KISS server

software can access/update that hash, Note that frequent NVRAM updates are imprac-

tical on TPM. To minimize NVRAM updates, we leverage an update mechanism that is

similar to the PCR-NVRAM two stage update technique presented in [16]. During the

KISS: “Key it Simple and Secure” Corporate Key Management 11

audit procedure, the auditor verifies the integrity of the log by recomputing the aggre-

gated hash and comparing it with the hash stored in TPM NVRAM.

6.2 Client Bootstrap and Registration

Bootstrapping a KISS client is similar to the server bootstrap. A quorum of admin-

istrators verifies the authenticity of the KISS hypervisor, client software, and its con-

figuration file. The client software securely sends its public key, KCli, to each of the

participating TADs, and collects the device public keys KTADi
(generated during the

server bootstrap). The configuration file sent to the client software differs from the

one established during the server bootstrap. It contains the server public key, KSrv, and

the client-side system parameters (e.g., access-control policies of key usage, user au-

thentication information, and the corporate application information). These client-side

configurations are used in the fine-grained key usage control (See Section 8). Upon a

successful client bootstrap, TADs establish Cli-TAD cryptographic channels with the

KISS client, which allows subsequent client administration.

The administrators then register the client to the server by sending the client soft-

ware public key, KCli, to the server software, via Srv-TAD cryptographic channels. This

establishes the Srv-Cli cryptographic channel (see Figure 3(b)). This channel diffs from

the Srv-/Cli-TAD channel in that it provides both secrecy and integrity protection to the

data transferred between the server and the clients (e.g., KISS product keys).

7 Secure System Administration

This section describes how the KISS administrators perform local and remote opera-

tions using their TADs and remote managers. Unlike traditional KMS, our remote man-

agement mechanism introduces a very small TCB that consists of a thin terminal, the

KISS hypervisor, the user-interface devices on KISS manager, and the simple TADs. In

addition, it enables flexible administrative policies for better usability.

Secure Local Management. Administrators physically present at the KISS server or

client connect the TADs directly with the machines to perform management. TADs first

perform remote attestation to verify that the connected KISS machine is executing the

desired hypervisor, software, and trusted paths. Thus, any command input (or KISS

system output) is securely directed to (or displayed by) the KISS server/client software.

The administrators also use the TADs to authenticate their command input, by allowing

the KISS server/client to display the command input with its digest (a cryptographic

hash, H(input)) to the administrators. The alleged digest H(input) is sent to the TADs

via untrusted USB connection. The administrator confirms that the digest value dis-

played on his/her TAD is identical to the one on the server/client display. Then, the

administrator press a button on the TAD to generate an authentication blob (digital sig-

nature) on digest H(input) with the Srv-/Cli-TAD channel keys. The KISS server/client

software verifies this blob to ensure the authenticity of launched commands.

Secure Remote Management. Administrators not physically present at the KISS server

or client leverage the KISS managers and the TADs to perform maintenance tasks. The

KISS manager software is isolated from the untrusted regime, and connects with the

12 Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, Virgil Gligor

Category Operations
Local or Quorum Manual or

remote? or any? automatic?

1 server bootstrap, adding administrators local quorum manual

2
server software and config update,

either quorum manual
removing administrators

3 client bootstrap local either manual

4
client registration, software and config update

either either manual
(e.g., change key usage control policy)

5
server/client key life-cycle operations

either either either
(e.g., key generation, distribution, usage)

Table 2. KISS System Operation Categorization.

user-interface devices via hypervisor-established trusted paths. The administrators not

only use their TADs to authenticate the command input (the same as in local manage-

ment), but also to verify the authenticity of the system output returning from the KISS

server or client software. The KISS server/client generate similar authentication blobs

for each of their responses, using the Srv-/Cli-TAD channel keys. The KISS manager

software recomputes the digest H(response), and displays it to the administrators via

the trusted paths. It also forwards the digest and the authentication blob to the TADs.

The TADs verify the authenticity of the blobs, and display the digest on the screen. If

the two digests are identical, the administrators trust that the response indeed originated

from the KISS server/clients. Note that our remote management mechanism can be ex-

tended to protect the secrecy of the command input and system output, and avoid the

hash computation overhead and comparison efforts (Section 10).

Administrative Policies. KISS fully considers the balance between security and us-

ability when making administrative policies. We categorize different system operations

according to their administrative requirements, as is shown in Table 2.

In KISS, only three operations require the physical presence of administrators at

the KISS server/client; the majority of operations can be performed remotely. In Cat-

egory 1, server bootstrap and adding new administrators require the physical presence

of a quorum of administrators. These two operations bootstrap cryptographic channels

between TADs and the KISS server software and require our server bootstrap protocol

(Section 6.1). Client bootstrap also mandates the physical presence of administrators,

because administrators scan the TPM public key to their TADs.

In KISS, only a few operations mandate a quorum of administrators. We require all

server-side administrative operations in Category 1 and 2 to be performed by an admin-

istrator quorum in an attempt to prevent malicious insider attacks on the KISS server.

However, once the server audit log is bootstrapped, all subsequent client-side admin-

istrative operations in Categories 3 and 4 and server/client key life-cycle operations in

Category 5 could possibly relax the quorum requirement, because we can always detect

insider attacks by analyzing the audit log.

In addition, for efficiency and usability, all Category 5 operations can be automati-

cally performed by the KISS server/client software, without the involvement of admin-

istrators. For example, once an authorized corporate application requests a new key, the

KISS: “Key it Simple and Secure” Corporate Key Management 13

(4) User
Authentication

User
Untrusted
Regime

Corporate
Application

KISS Client
Software

KISS
Hypervisor

(1) App
Execution

(2) App
Verification

(3) Remote
Attestation

(5) Key Usage
Control

select and execute

protect and measure

verify

notify via TP

store measurement

authenticate via TP

attestation

operate key usage

Sec DEV

UI DEV

Auth DEV

UserV

Fig. 5. Work flow of key usage control on KISS client. Dashed lines are interactions via

trusted paths. UI, Sec, and Auth Dev are identical to those in Fig. 2. UserV denotes the

users’ dedicated verifier that can remotely attest to the KISS client.

KISS client software can immediately contact the server for the new key. These auto-

matic operations are controlled by the administrator-configured key usage policies (see

Section 8), and can be recorded in the server audit log (or similar audit logs on clients).

8 Fine-grained Key Usage Control

This section explains how the KISS client software and hypervisor performs fine-grained

control of key usage. Figure 5 presents a typical workflow where a user executes a

KISS-capable application that uses the cryptographic key generated by KISS.

Application Verification. The user selects the corporate application he/she intends to

run via the untrusted regime (e.g., via a pop-up dialog by the OS). The OS loads and

executes the selected corporation application and notifies the KISS hypervisor of the

application execution. The hypervisor creates a corporate regime and protects the ex-

ecuted application in this regime. The hypervisor then measures that application and

sends the measurement as the application identifier to the KISS client software. The

software compares the received measurement with the known-good value in its ap-

plication database and notifies the result to the user via trusted paths. Recall that the

authorized application database in the KISS client software was configured during the

client bootstrap and can be updated by the administrators via remote management.

The KISS-capable corporate applications are not legacy applications. They are de-

veloped to execute in corporate regimes, communicating with the hypervisor instead

of the OS [12, 13]. Note that recent research [6] eases this development effort by al-

lowing protected applications to securely use OS services. The corporate application

should also be modified to communicate with the KISS client software for key usage.

While allowing key usage control, this introduces context switch overhead between the

application and the KISS client software. A corporate application can be a stand-alone

14 Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, Virgil Gligor

application (e.g., a KISS-capable document editor) or the security-sensitive modules

of a legacy application that uses cryptographic keys (e.g., the ServerKeyExchange au-

thentication module in an HTTPS server software). This is an application-specific de-

sign choice that depends on the application complexity (e.g., how the application is

modularized and privilege-separated) and the strictness of the key usage control policy

(application-wise or module-wise).

Remote Attestation. To trust the application verification results displayed in last step,

and to defend against subtle user-oriented credential stealing attacks (e.g., tricking the

user to input passwords), the users should leverage a small, dedicated device, called

UserV, to attest that they are interacting with the correct KISS software and corporate

applications. The UserV is similar to, but much simpler than TAD. The only task of

the UserV is to perform standard remote attestation to the KISS hypervisor and client

software. It does not generate or store any secrets (e.g., shared secrets or private keys).

It merely needs one button to start the attestation, and a LED to display attestation

results [25]. Upon successful remote attestation, the user verifies that the application

displayed is the one that he/she intends to run. Otherwise, the user should stop interact-

ing with the corporate applications to prevent any sensitive information leakage.

User Authentication. In order to use the corporate application, the user needs to au-

thenticate to the KISS client software. If the authentication fails, the KISS hypervisor

immediately teminates the corporate application. KISS can support all types of common

authentication methods (knowledge, inherence, and ownership-based) and multi-factors

authentication. For knowledge-based authentication (e.g., password, PIN) or inherence-

based methods (e.g., fingerprint scanning, voice pattern recognition), the users should

leverage the trusted paths between the authentication-relevant devices (e.g., keyboard,

fingerprint reader) and the KISS client software. With the trusted paths, malware in the

untrusted regime cannot intercept the users’ credentials 1. For ownership-based authen-

tication, users usually carry certain authenticators (e.g., smart cards, security tokens)

and rely on the embedded secrets to respond to the challenges of the KISS client soft-

ware. No trusted path is needed between the authentication devices (e.g., smart card

reader) and KISS client software. For all the authentication methods above, the KISS

client software should be configured with necessary authentication information (e.g.,

password hash, fingerprint database, and keys to verify smart cards’ responses) by the

administrators during client bootstrap or remote management.

Key Usage Control. During execution, the corporate applications trigger key usage re-

quests to the KISS client software via KISS hypervisor. The key usage requests can be

driven by the users (e.g., the user wants to encrypt a confidential document) or by the

application itself (e.g., the HTTPS web server software digitally signs its ServerKeyEx-

change messages). Upon receiving the key usage requests, the KISS client software

knows the identifiers of the requesting application and the user. The KISS client soft-

ware leverages the pre-configured access control policies to decide whether to approve

or deny the requests. KISS supports flexible access-control policies with different gran-

ularity. It can perform simple ON/OFF key usage control. For example, KISS allows

1 Even if the attackers have the users’ credentials, they still need to physically be present at the

KISS client to input the credentials. The KISS client software takes inputs directly from the

hardware devices via trusted-paths, not from any software.

KISS: “Key it Simple and Secure” Corporate Key Management 15

user Alice to use the authorized document editor to decrypt her own documents, but

restricts other users who are using the same editor or Alice using different software

(e.g., an email client, or a compromised document editor) from accessing the docu-

ments. It can also support more complicated policies, such as rate limiting, access time

restriction, and role-based access control. The administrators decide the access control

policies, configure them in the client software during bootstrap, and update the policies

via remote management.

9 Security Analysis

This section analyzes potential attacks on KISS and our defense mechanisms.

System Bootstrap. During the system bootstrap, malicious administrators or malware

on KISS server/clients may tamper with the code or configurations of the hypervisor

and the KISS software. The benign administrators can detect this attack via TAD remote

attestation. Malicious administrators may also launch Sybil attacks by creating bogus

administrator accounts during the bootstrap process. As described in Section 6, the

administrators visually check that all TADs display success messages. This confirms

that the server/client software receives only the public keys of the participating TADs,

not any bogus key.

Key Life-cycle Operations. Malware in the server/client untrusted regime may try to

modify the KISS software code, interfere with its execution, or access the cryptographic

keys generated or stored by the software. The KISS hypervisor prevents these attacks by

protecting the code and data memory of the KISS software from the untrusted regime.

When the KISS software is at rest, the cryptographic keys are protected by the TPM

sealed storage. Only the same KISS software can unseal the keys; the malware or the

compromised KISS software cannot. Malware attacks that compromise the client soft-

ware to trigger unintended KISS server operations also fail, because the client private

key for authenticating operation requests is sealed by the TPM.

System Administration. Any manual administrative operation requires at least one au-

thorized TAD. The malware cannot steal the private keys in TADs, nor can it intercept

other administrator credentials, such as bio-metric information or passwords, which are

transferred to the KISS software via trusted paths, and/or Srv-/Cli-TAD authentic chan-

nels (Section 7). Similarly, the administration commands and system output are also

transferred via trusted paths or Srv-/Cli-TAD channels. The attackers cannot modify

any command or forge any system output. Though malicious administrators may use

their TADs to execute operations that do not require the quorum, those operations are

recorded in the server/client audit log and held accountable.

Key Usage Control. As described in Section 8, unauthorized applications and users

cannot bypass the KISS hypervisor and the client software to use any cryptographic key.

A malicious administrator may intentionally update the application and user database in

the KISS client software to allow key mis-uses. However, this administrative operation

is recorded in the client audit log and held accountable. The malware cannot steal users’

authentication credentials, because those credentials are delivered to the KISS client

software via trusted paths. The users also verify that they are communicating with the

authentic KISS client software before inputting their authentication credentials.

16 Zongwei Zhou, Jun Han, Yue-Hsun Lin, Adrian Perrig, Virgil Gligor

10 Discussion

This section discusses the KISS system extensions that provide higher security guaran-

tees and address some real-world application issues (e.g., cloud computing).

Administrative Operation Secrecy. Section 7 describes how KISS protects the au-

thenticity of administrative inputs and system outputs. We could extend KISS to protect

input/output secrecy by establishing encryption keys for Srv-/Cli-TAD channels, and

an extra trusted path on KISS manager between the manager software and the USB

controllers that connects the TAD. Note that this trusted path also avoids the hash com-

putation overhead and comparison efforts described in Section 7, because it protects the

authenticity of data between the TAD and the manager software.

TPM 2.0 Enhanced Authorization. The TPM 2.0 library specification [22] is currently

under public review. It supports enhanced authorization by allowing the construction of

complex authorization policies using multiple authorization qualifiers (e.g., password,

command HMAC, PCR values, NVRAM index values, and TPM time information).

KISS can reduce its TCB by offloading some authorization checking to TPM 2.0, given

that it can securely collect the authorization information, deliver it to the TPM, and

protect it from the untrusted OS. However, it is not clear how the performance of TPM

authorization checking compares to that of the KISS software.

Compatibility to Cloud Computing. The KISS hypervisor is a small, dedicated hy-

pervisor that runs on bare metal. If the KISS servers and clients are deployed on an

enterprise private cloud, we could consider (1) integrating KISS hypervisor with the

full-functioning the hypervisor/VMM or (2) adding nested virtualization support [24]

to KISS hypervisor and running the full-functioning hypervisor/VMM upon it. Option

(1) has much larger TCB, but has better compatibility and performance than option (2).

11 Related Work

We review the state-of-the-art key management systems and related technologies. The

first category of KMS solutions are software-based solutions, such as OpenSolaris

Crypto KMS Agent Toolkit [14], IBM Tivoli Key Manager [8], and StrongKey open-

source KMS software [19]. These rely on process isolation, user privilege control, and

file permissions provided by the OS to protect cryptographic keys and control the ap-

plications’ access to them. Their implementation of trusted paths for administrators is

based on the OS services (e.g., Ctrl+Alt+Del command or trusted window manager).

Compared with KISS, the software-only approaches are more cost-effective and easier

to deploy on commodity computers (e.g., no hypervisor, work with legacy corporate ap-

plications, no security hardware requirement). However, they rely heavily on the large

OS and thus fail to provide the same level of security assurance as KISS.

An alternative is leveraging high profile HSMs [20, 18, 15, 7, 17]. An HSM pro-

vides hardware-level tamper-resistant protection to cryptographic keys and algorithms

for both run-time and at rest, while KISS provides hypervisor-based software isolation

for keys and algorithm during run-time, and TPM level hardware protection for keys

at rest. For performance, an HSM may employ customized hardware engine to accel-

erate cryptographic algorithms. It is more efficient than KISS and the software-only

KISS: “Key it Simple and Secure” Corporate Key Management 17

solutions. The downside of the HSM is that it fails to provide the same secure level

of key usage control as in KISS, as we have explained in Section 1. Indeed, the KISS

system can be extended to serve as the key usage control front end of the HSM, which

may achieve the benefits of both systems. For system administration, some high-end

HSMs [20, 18] achieve the same level of security guarantees as KISS (e.g., quorum

control, trusted paths using on-HSM I/O devices, remote management using adminis-

trator devices). However, their administrator devices introduce larger TCB than KISS

(e.g., complicated key management software stack for interpreting commands and op-

eration results). The HSM administrators usually blindly trust the devices, and have no

intuitive way to verify their software status.

There are research proposals that seek to offer similar protections for user creden-

tials in the key management systems. Wallet-based web authentication systems (e.g., [5])

isolate user credentials in an isolated domain (e.g., a L4 process upon L4 Micro-kernel)

during run-time and protect the credentials at rest by TPM-based sealed storage. They

only allow authenticated websites to access their own credentials. These systems have a

reasonable TCB size, but do not provide fine-grained and flexible key usage control as

in KISS (e.g., user-based control). Bugiel and Ekberg [2] propose a system that only al-

lows the application to access its own credentials (protected in mobile trusted module).

The On-board Credentials (ObC) [10] approach enables an isolation environment (like

KISS) for both third-party credential algorithms/applications and credentials, on smart-

phones and conventional computers. However, one faces multiple challenges extending

these systems for corporate key management. For example, ObC approach lacks pro-

tection mechanisms against malicious administrators and do not support trusted paths

for administrator management. PinUP [4] binds files to the applications that are autho-

rized to use them by leveraging the SELinux capability mechanisms. This suggests that

PinUP introduces a larger TCB to provide security assurance on par with KISS.

12 Conclusion

In this paper, we leverage widely-deployed trusted computing techniques to design a

trustworthy key management system architecture. KISS aims to reduce cost by relying

solely on commodity computer hardware, and minimize the system TCB by the thin-

hypervisor-based design and lightweight administrator devices. KISS is the first key

management system to support fine-grained control of key usage. KISS is bootstrapped

and operated in the face of software attacks from malware in the OS and insider attacks

from malicious administrators. KISS provides user-verifiable trusted paths and simple

dedicated external devices for secure system administration. KISS showcases the ben-

efits of applying trusted computing techniques to designing trustworthy systems. KISS

offers trustworthy key management systems at a price point that enables wide-spread

adoption beyond the security-sensitive financial or governmental institutions.

Acknowledgments. We are grateful to the reviewers and Aziz Mohaisen for their in-

sightful suggestions. We also want to thank Geoffrey Hasker, Yueqiang Cheng, and

Miao Yu for stimulating conversations and valuable feedback.

Bibliography

[1] AMD. AMD64 architecture programmer’s manual. No. 24594 rev. 3.19, 2012.
[2] S. Bugiel and J. Ekberg. Implementing an application-specific credential platform using

late-launched mobile trusted module. In Proc. ACM STC, 2010.
[3] Y. Cheng, X. Ding, and R. H. Deng. DriverGuard: A fine-grained protection on I/O flows.

In Proc. ESORICS, 2011.
[4] W. Enck, P. McDaniel, and T. Jaeger. Pinup: Pinning user files to known applications. In

Proc. ACSAC, 2008.
[5] S. Gajek, H. Löhr, A. Sadeghi, and M. Winandy. Truwallet: trustworthy and migratable

wallet-based web authentication. In Proc. ACM STC, 2009.
[6] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. Inktag: secure applications

on an untrusted operating system. In Proc. ASPLOS, 2013.
[7] HP. Enterprise Secure Key Manager. http://h18006.www1.hp.com/products/

quickspecs/13978_div/13978_div.PDF.
[8] IBM. Tivoli Key Lifecycle Manager. http://www-01.ibm.com/software/

tivoli/products/key-lifecycle-mgr.
[9] Intel. Intel trusted execution techonology. No. 315168-008, 2011.

[10] K. Kostiainen. On-board Credentials: An Open Credential Platform for Mobile Devices.

PhD thesis, Aalto University, 2012.
[11] A. Matrosov, E. Rodionov, D. Harley, and J. Malch. Stuxnet Under the Micro-

scope. http://www.eset.com/us/resources/white-papers/Stuxnet_

Under_the_Microscope.pdf.
[12] J. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor: Efficient

TCB reduction and attestation. In Proc. IEEE Symp. on Security and Privacy, 2010.
[13] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An execution

infrastructure for TCB minimization. In Proc. EuroSys, 2008.
[14] Oracle. Opensolaris project: Crypto kms agent toolkit. http://hub.opensolaris.

org/bin/view/Project+kmsagenttoolkit/WebHome.
[15] Oracle. Oracle Key Manager. http://www.oracle.com/us/products/

servers-storage/storage/tape-storage/034335.pdf.
[16] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune. Memoir: Practical

state continuity for protected modules. In Proc. IEEE Symp. on Security and Privacy, 2011.
[17] RSA. RSA Data Protection Manager. http://www.emc.com/security/

rsa-data-protection-manager.htm.
[18] SafeNet. SafeNet hardware security modules. http://www.safenet-inc.com/

products/data-protection/hardware-security-modules-hsms/.
[19] StrongAuth. StrongKey SKMS. http://www.strongkey.org.
[20] Thales. Thales hardware security modules. http://www.thales-esecurity.

com/en/Products/Hardware%20Security%20Modules.aspx.
[21] Trusted Computing Group. TPM specification version 1.2, 2009.
[22] Trusted Computing Group. Trusted platform module library family “2.0”, 2011.
[23] VASCO. Diginotar reports security incident. http://www.vasco.com/company/

about_vasco/press_room/news_archive/2011/news_diginotar_

reports_security_incident.aspx, 2011.
[24] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor: retrofitting protection of virtual

machines in multi-tenant cloud with nested virtualization. In Proc. ACM SOSP, 2011.
[25] Z. Zhou, V. Gligor, J. Newsome, and J. McCune. Building verifiable trusted path on com-

modity x86 computers. In Proc. IEEE Symp. on Security and Privacy, 2012.

