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Algebraic K-Theory and Quadratic Forms 

JOHN MILNOR (Cambridge, Massachusetts) 

The first section of this paper defines and studies a graded ring K .  F 
associated to any field F. By definition, K~F is the target group of the 
universal n-linear function from F ~ x ... • F ~ to an additive group, satisfy- 
ing the condition that al • " '  x a, should map to zero whenever 
a i -q-a i + ~ = 1. Here F ~ denotes the multiplicative group F - 0 .  

Section 2 constructs a homomorphism ~: K,F---, K~__I_~ associated 
with a discrete valuation on F with residue class field F. These homo- 
morphisms ~ are used to compute the ring K, F(t) of a rational function 
field, using a technique due to John Tate. 

Section 3 relates K . F  to the theory of quadratic modules by defining 
certain " Stiefel-Whitney invariants" of a quadratic module over a field F 
of characteristic . 2 .  The definition is closely related to Delzant [-5]. 

Let W be the Witt ring of anisotropic quadratic modules over F, and 
let I c W be the maximal ideal, consisting of modules of even rank. 
Section 4 studies the conjecture that the associated graded ring 

(W/I, 1/12, 12/13 .... ) 

is canonically isomorphic to K , F / 2 K ,  F. Section 5 computes the Witt 
ring of a field F(t) of rational functions. 

Section 6 describes the conjecture that K , F / 2 K ,  F is canonically 
isomorphic to the cohomology ring H*(GF; Z/2Z); where Gr denotes 
the Galois group of the separable closure of F. An appendix, due to 
Tate, computes K,  F/2 K,  F for a global field. 

Throughout  the exposition I have made free use of unpublished 
theorems and ideas due to Bass and Tate. I want particularly to thank 
Tate for his generous help. 

w 1. The Ring g .  F 

To any field F we associate a graded ring 

K.F=(KoF,  K1F, KzF .... ) 

as follows. By definition, K 1F is just the multiplicative group F ~ written 
additively. To keep notation straight, we introduce the canonical iso- 

morphism I: F~ KI F, 
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where I(a b)= I(a)+ l(b). Then K ,  F is defined to be the quotient of the 
tensor algebra 

(Z, K1F, K1F| K1F|174 . . . .  ) 

by the ideal generated by all l(a)| with a:t:0, 1. In other words 
each K,  F, n > 2, is the quotient of the n-fold tensor product K x F|174 K 1 F 
by the subgroup generated by all l(al)|174 l(a.) such that at + ai+ 1 = 1 
for some i. 

In terms of generators and relations, K ,  F can be described as the 
associative ring with unit which is generated by symbols l(a), a~F ~ 
subject only to the defining relations l(a b) = l(a) + l(b) and l(a) l(1 - a) = 0. 

Explanation. This definition of the group K 2 F is motivated by work 
of R. Steinberg, C. Moore, and H. Matsumoto on a~gebraic groups; and 
has already been the object of much study. (Compare references [ 2 - 4 ,  
7 - 9 ,  17].) For  n->3, the definition is purely ad hoc. Quite different 
definition of K, for n > 3 have been proposed by Swan [18] and by 
Nobile and Villamayor [11]; but no relationship between the various 
definitions is known. 

First let us describe some fundamental properties of the ring K ,  F. 
(Examples will be given in w167 1.5 - 1.8.) 

Lemma 1.1. For every ~ K m F  and every t leK,  F, the identity 

r /~---(-  1)mn ~ q 

is valid in Km+,F. 

Proof (following Steinberg). Clearly it suffices to consider the case 
m = n = 1. Since - a = (1 - a)/(1 - a -  1) for a :# 1, we have 

l(a) l ( -  a)= l(a) l(1 - a ) -  I(a) l(1 - a-1) 

= l(a) l(1 - a ) +  l(a -1) l(l - a - l ) =  0. 

Hence the sum l(a) I(b)+ l(b) l(a) is equal to 

l(a) l( - a) + l(a) l(b) + l(b) l(a) + I(b) l ( -  b) 

= l(a) l ( - a  b)+ l(b) I ( - a  b) 

=t(ab) l ( -ab)=O;  

which completes the proof. 

Here are two further consequences of this argument: 

Lemma 1.2. The identity l(a)2 = l(a) l ( -1)  is valid for every l(a)eK1F, 

For  the equation l(a) l ( -  a) = 0 implies that l(a) 2 = l(a) ( l ( -  1) + l ( - a ) )  
must be equal to l(a) l ( -  1). 
23 Inventmnes math,Vol. 9 
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Lemma 1.3. I f  the sum a 1 +.. .  + a, of non-zero field elements is equal 
to either 0 or 1, then l(aO .../(an)=0. 

Proof by Induction on n. The statement is certainly true for n = 1, 2; 
so we may assume that n>3 .  If al+a2=O, then the product I(aO t(a2) 
is already zero. But if a I + a 2 =t=0, then the equation 

al/(al + a2) + a2/(al + a2) = 1 
implies that 

(l(a~)- l(a~ + a2) ) ( l (a2)-  l(a~ + a2) ) = 0. 

Multiplying by l(a3) ... l(an), and using 1.1 and the inductive hypothesis 

that l(al + a2) l(a3).., l(an) = O, 

the conclusion follows. 

Here is an application. 

Theorem 1.4. The element - 1 is a sum of squares in F if and only if 
every positive dimensional element of K ,  F is nilpotent. 

Proof. If - 1  is not a sum of squares, then F can be embedded in a 
real closed field, and hence can be ordered. Choosing some fixed ordering, 
define an n-linear mapping from K~ F • ... • K~ F to the integers modulo 
2 by the correspondence 

1 - sgn (a0 1 - sgn (an) 
l(aO x ... • l(an)~--~ 2 2 

Evidently the right hand side is zero whenever a~+ai+~= I. Hence this 
correspondence induces a homomorphism 

KnF--~ Z/2Z;  

which carries l ( - 1 )  n to 1. This proves that the element l ( - 1 )  is not 
nilpotent. 

Conversely, if say - l = a 2 + . - . + a  2, then it follows from 1.3 that 

l ( -a2) . . ,  l ( - a 2 ) = 0 ;  
hence 

l( - 1) r = 0 mod 2 K,  F. 

Since 2 l ( - 1 ) =  0, it follows immediately that l ( -1)"  § ~= 0. 

For  any generator ~= l(al).., l(an) of the group KnF, it follows from 
1.2 that y~ is equal to a multiple of l ( - 1 )  nt~-l). Hence ys=0  whenever 
n(s -1 )>  r. Similarly, for any sum ~ + . . .  + Yk of generators, the power 
(~ + . . .  + yk) ~ can be expressed as a linear combination of monomials 
y~l.., y~k with il + . . .  + ik = S. Choosing s > k, note that each such monomial 
is a multiple of l( - 1)" (~- k). If S > k + r/n, it follows that (~1 + " "  + ~k) ~ = 0; 
which completes the proof. 
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To conclude this section, the ring K.F will be described in four 
interesting special cases. 

Example 1.5 (Steinberg). If the field is finite, then K 2 F = 0 .  In fact 
K 1F is cyclic, say of order q - 1 ;  so w 1.1 implies that K 2 F is either trivial 
or of order < 2, according as q is even or odd. But, if q is odd, then an 
easy counting argument shows that 1 is the sum of two quadratic non- 
residues in F;  from which it follows that K 2 F = 0. This implies, of course, 
that K,  F = 0 for n > 2 also. 

Example 1.6. Let R be the field of real numbers. Then every KnR, 
n > 1, splits as the direct sum of a cyclic group of order 2 generated by 
l ( -  1)", and a divisible group generated by all products l(aO.., l(an) with 
al,  ..., a, > 0. This is easily proved by induction on n, using the argument 
of w 1.4 to show that l ( -1)"  is not divisible. 

Example 1.7. Let F be a local field (i.e. complete under a discrete 
valuation with finite residue class field), and let m be the number of roots 
of unity in F. Calvin Moore [10] proves that K 2 F is the direct sum of a 
cyclic group of order m and a divisible group. 

We will show that KnF is divisible for n>3 .  Consider the algebra 
K. F/p K. F over Zip Z; where p is a fixed prime. If p does not divide m, 
then Moore's theorem clearly implies that K 2 F/pK 2 F = 0. Suppose that 
p does divide m. We claim then that: 

(1) the vector space K1F/pK~F has dimension >2  over Z/pZ; 
(2) the vector space K2F/pK2F has dimension 1; and 

(3) for each ~ = 0  in K,F/pKIF there exists fl in K~F/pKIF so that 
~ / ~ 0 .  

In fact (1) is clear; (2) follows from Moore's theorem; and (3) is an 
immediate consequence of the classical theorem which asserts that, for 
each aeF ~ which is not a p-th power, there exists b so that the p-th power 
norm residue symbol (a, b)F is non-trivial. (See for example [20, p. 260].) 
The correspondence 

l(a) I(b)~-~ (a, b)F 

clearly extends to a homomorphism from K 2 F to the group ofp-th roots 
of unity. So, taking ct = l(a), fl=-l(b), the conclusion (3) follows. 

Proof  that every generator ~//~ of K3F/pK3F is zero. Given ~,//, 7 
one can first choose/ / '4 :0  so that ~ / / ' = 0  (using (1) and (2)), and then 
choose 7' so that / / '  7' = ~ 7 (using (2) and (3)). The required equation 

follows. 

Thus K3F/pKaF=O for every prime p; which proves that KaF is 
divisible. 
23* 
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Example 1.8. Let F be a globalfield (that is a finite extension of the 
field Q of rational numbers, or of the field of rational functions in one 
indeterminate over a finite field). Let Fo range over all local or real com- 
pletions of F. The complex completions (if any) can be ignored for our 
purposes. The inclusions F ~ Fv induce a homomorphism 

K 2 F -~ 0~ K2 Fff(max. divis, subgr.), 

where each summand on the right is finite cyclic by 1.6 and 1.7. Bass and 
Tate [3] have shown that the kernel of this homomorphism is finitely 
generated, but the precise structure of the kernel is not known. Moore 
has shown that the cokernel is isomorphic to the group of roots of unity 
in F. 

The structure of K~F is not known for n>3,  but Tate has proved 
the following partial result: The quotient K n F/2 Kn F maps isomorphically 
to the direct sum, over all real completions Fv, of 

K~Fff2KnFo~Z/2Z. 

Thus the dimension of K~F/2KnF as a mod 2 vector space is equal to 
the number of real completions. Tate's proof of this result is presented 
in the Appendix. 

It may be conjectured that the subgroup 2K~F is actually zero for 
n > 3, so that K~ F itself is a vector space over Z/2 Z. As an example, for 
the field Q of rational numbers the isomorphism 

K~Q~Z/2Z  

for n > 3 can be established by methods similar to those of w 2.3. 

w 2. Discrete Valuations and the Computation of K. F (t) 
Suppose that a field F has a discrete valuation v with residue class 

field ff (=~) .  The group of units (elements u with ordv u=0)  will be 
denoted by U, and the natural homomorphism U--~ff" by u~-~ ft. An 
element n of F" is prime if ordv n = 1. 

Lemma 2.1. There exists one and only one homomorphism t~ = ~ from 
KnF to Kn_ 1 P which carries the product l(n) l(u2).., l(u,) to l(fi2)... I(~) 
for every prime element ~ and for all units u2 . . . . .  u,. This homomorphism t~ 
annihilates every product of the form l(ul).., l(un). 

(For n =  1 the defining property is to be that ~l(n)= 1.) 

Remarks. Evidently 9 is always surjective. For n =  1 the homo- 
morphism ~9 can essentially be identified with the homomorphism 

ordv: F ~  
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and for n = 2 it is closely related to the classical " tame symbol" 

which is utilized for example in [3-1. 

To begin the proof, note that any unit u~ can be expressed as the 
quotient n Ul/n of two prime elements. So the property 

( t (u , ) . . .  t(u.)) = 0 

follows immediately from the defining equation. 

Proof of Uniqueness. Choose a prime element rr. Since F ~ is gen- 
erated by n and U, it follows that K n F is generated by products of the 
form l(n)'l(u,+t)...l(u,). If r =  1, then the image of any such product 
under t~ has been specified; and if r >  1 then using the identity l(n) '= 
l(n) t ( -  1) r -  ~ it is also specified. But if r = 0, then any such product maps 
to zero. This proves that O is unique, if it exists. 

Proof of Existence ~. It will be convenient to introduce an indeterminate 
symbol x which is to anticommute with all elements of K~ ft. Given any 
n-tuple of elements 

l(rc 11Ul) . . . .  , l(Iri"un) 6 K1 F, 

construct a sequence of elements ~oj e Kj ff by the formula 

(x i 1 + l ( ~ t ) ) . . . ( x  i n +  I(~.)) = x" 9 0  + x " - I  ~01 + ' - "  + ~o.. 

Evidently each ~o~ is n-linear as a function of l(n i' uO . . . . .  log" u.). Now 
consider the linear combination 

(P = I(---~) "-1 (Po + I( - 1) n - 2  tPl + "'" '{- (fin- 1 �9 

Thus ~0eKn_tff, and evidently ~p is also linear as a function of each 
l (~z i' uj). 

If two successive rd~uj add up to 1, we will prove that (p=0. This 
will show that the correspondence 

l(Tt ~' u t ) . . ,  l (n  i" u.)  v-* cp 

1 Added in Proof. A much better construction of the homomorphism CO has been 
suggested by Serre. Adjoin to the ring K ,  P a new symbol ~ of degree 1 which is to anti- 
commute with the elements of K~ F, and to satisfy the identity ez = ~ l ( -  1), but is to satisfy 
no other relations. Thus the enlarged ring ( K , F )  [~1 is flee over K , F  with basis {1, ~}. 
It is not difficult to show that the correspondence 

l(n i u) ~ i ~ + 1(~) 

extends uniquely to a ring homomorphism 0~ from K , F  to this enlarged ring. Now, 
setting 0~ (a) = r (a) + r CO (a) 

with ~,(ct) and c0(a) in K .  F, we obtain the required homomorphism ct. 
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is well defined and extends to a homomorph i sm  

K,, F-'* Kn_ x ff . 

Since it is clear that  l(rcu)l(uz). . ,  l(u.) maps to l(•2)...l(fi,), this will 
complete  the proof. 

T o  avoid complicated notat ion,  we will carry out details only for 
the case 

rei1111 + 7zi2 u2 = 1. 

There  are four possibilities to consider. 

If il >0 ,  then it follows easily that  

i 2 = 0 ,  ~2 = 1. 

Hence  the factor x i 2 + l(fi:) is zero and it certainly follows that  cp = 0. 

The  case i x = 0, i 2 > 0 is disposed of  similarly. 

If i x = i 2 = 0, then fil + fi2 = 1, hence 

(x i 1 + l(Ul)) (x i 2 + l(~t2) ) = 0, 

so again q~ = 0. 

Finally suppose that  i 1 <0.  Then  clearly i~ = i z and fi2 = - ~ .  In this 
case the p roduc t  (x i x + l (~)){x i2 + t(fi2)) evidently simplifies to 

x 2 i~ + x  il I ( -  1 )+0 .  

Hence  the expression ~ x" - j  ~o~ can be writ ten as 

x ( x  i 2 + i x l ( -  1))(x i s +/(fi3)).. .  (x i n + l(fi,)). 

Cancelling the initial x, and then substituting l ( -  1} for the remaining x's, 
we evidently obtain an expression for ~0. But  this substi tut ion carries 
x i 2 + ix l ( -  1) to l ( -  1) i~ + ia l ( -  1) =0 .  So q~ = 0 in this case also; which 
completes  the p roo f  of  2.1. 

A similar a rgument  proves the following. 

L e m m a  2.2. Choosing some f i xed  prime element 7t, there is one and 
only one ring homomorphism 

~k: K , F ~  K ,  ff 

which carries l(n i u) to l(~) for  every unit u. 

In fact ~b is defined by the rule 

l(zc i' uO.. .  l(rt i" u,)v-~ l(fiO.., l(fi,,). 

Details will be left to the reader. Evidently this h o m o m o r p h i s m  ~b is less 
natural  than O, since it depends on a part icular  choice of  re. 
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Now let F be an arbitrary field. We will use 2.1 and 2.2 to study the 
field F(t) of rational functions in one indeterminate over F. 

Each monic irreducible polynomial rc~F[t] gives rise to a (n)-adic 
valuation on F(t) with residue class field F [t]/(n). Here 0t) denotes the 
prime ideal spanned by n. Hence there is an associated surjection 

t~:  K .  F(t)  ~ K n_ 1 F [t]/(rt). 

Theorem 2.3. These homomorphisms t3~ give rise to a split exact sequence 

O--~ K,F--~ K~F(t)--~G K~_I F [t]/(n)--~O, 

where the direct sum extends over all non-zero prime ideals (rr). 

This theorem is essentially due to Tate. In fact the proof below is an 
immediate generalization of Tate's proof for the special case n = 2. 

Proof Keeping n fixed, let La c K ,  F(t) be the subgroup generated by 
those products l(fO.., l(fn) such that f l ,  ..., fn~F[t] are polynomials of 
degree <d. Thus 

L o c L 1 c L 2 c . . .  

with union K~ F(t). Using the homomorphism 

~ :  K ,F( t ) -*  KnF 

of 2.2, where ~ is any monic (irreducible) polynomial of degree 1, we see 
easily that L o is a direct summand of K,  F(t), naturally isomorphic to K,  F. 

Let n be a monic irreducible polynomial of degree d. Then each 
element ~, of the quotient F [t]/(~z) is represented by a unique polynomial 
g~F[t]  of degree <d. 

Lemma 2.4. There exists one and only one homomorphism 

h~: Kn_ 1 F [t]/(r 0 --~ La/L e _ 1 

which carries each product l(~,2).., l(g'n) to the residue class ofl (n) / (g 2) . . . l (gn) 
modulo La_ 1. 

Proof First consider the correspondence 

l(~2) x . . .  x l(~,) ~-~ l(;z) l(g2).., l(g,) mod La_t 

from K 1 F[t]/(n)• x K 1F[t]/(~) to Ld/La_l. We will show that this 
correspondence is linear, for example as a function of g2. Suppose that 

_ _  t I t  

g2 =g2 g2 mod(rt), 

where g2, g~, g~ are polynomials of degree < d. Then 

gE=Trf +g'2g' ~ 
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where f is also a polynomial of degree < d. Hence, if f#:  0, 

1 =  f/g2 +g'2 gJ/g2 
and therefore 

(l(~) + l ( f ) -  I(g2))(l(g~) + l(g~)- l(g~)) = O. 

Multiplying on the right by l(g3).../(g,), and then reducing modulo 
Ld-1, we obtain 

I(rc) (l(gh)+ l(g'~)- l(gz)) t(g3).., l(g,)= O. 

Since the case f =  0 is straight forward, this proves that our correspond- 
ence is ( n -  D-linear. 

To prove that this correspondence gives rise to a homomorphism 

l(g:).., l(g.)~, l(~) l(g2).., l(g,) 

from K,_  1 ff to L d L  d_ 1, it is now only necessary to note that the image 
is zero whenever ~'j+gj+l = 1 and hence gi+gs+l = 1. This proves 2.4. 

Lemma 2.5. The hornornorphisrns ~ give rise to an isomorphism 
between La/Ld_ 1 and the direct sum of K ,_ l  F[tJ/(u) as 7r ranges over 
rnonic irreducible polynomials of degree d. 

Proof. Inspection shows that each 0, induces a homomorphism 

LffLa- 1 ~ K._  1 F [t]/(z O. 

Furthermore it is clear that the composition 

K,_  x F [t]/(n) k~ LdLa_ I ~ K~_ t F [t]/Ot') 

is either the identity or zero, according as n = ~' or r~ 4: u'. So to complete 
the argument we need only to show that Ld/La_I is generated by the 
images of the h,. 

Consider any generator of L a, expressed as a product l(fl) . . .  
l(f~) l(gs+O...l(g,) where fl  . . . . .  ~ have degree d and gs+~ . . . . .  g, have 
degree < d. If s > 2  then we can set 

f2 = - - a f l + g  

with a~F  ~ and degree g<d. I f g ~ 0  it follows that 

aA/g  + f d g  = 1 

(l (a) + l(f~) - l(g)) ( l ( f z )  - I(g)) = 0. 

Thus the product 1(fl)/(f2) can be expressed as a sum of terms 

l(fO l(g) + l(g) l(f2) -- l(a) l(f2 ) + l(a) l(g) - l(g) 2, 

hence 
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each of which involves at most one polynomial of degree d. A similar 
situation obtains when g = 0. It follows, by induction on s, that every 
element of L a can be expressed, modulo La_l, in terms of products 
l(fO l(g2).., l(gn) where only f t  has degree d. If f l  is irreducible, then 
setting f =  a n this product evidently belongs to the image of h~. But if 
f l  is reducible then the product is congruent to zero modulo La_ 1. Thus 
Ld/La-1 is generated by the images of the homomorphisms h~, which 
completes the proof of 2.5. 

An easy induction on d now shows that the homomorphisms 8~ 
induce an isomorphism from La/L o to the direct sum of K~_ 1 F [t]/(rc), 
taken over all monic irreducible n of degree < d. Passing to the direct 
limit as d --* oo, this completes the proof of Theorem 2.3. 

To conclude this section, let us record a similar, but easier statement. 

Lemma 2.6. Suppose that a field E is complete under a discrete valuation 
with residue class field E= F. Then for any prime p distinct from the 
characteristic of ft, there is a natural split exact sequence 

0---~ K,F/p KnF--~ K~E/p K~E ~ Kn_ 1 F/p K,_ 1F--, O. 

Proof. If a unit of E maps to 1 in F, then it has a p-th root. Hence the 
correspondence l (~)~  l(u)mod p K 1E is well defined. This correspond- 
ence extends to a ring homomorphism 

K,F---~ K,E/p  K ,  E. 

Further details will be left to the reader. 

w 3. The Stiefel-Whitney Invariants of a Quadratic Module 

For the rest of this paper we will only be interested in the quotient of 
the ring K ,  F by the ideal 2 K ,  F. To simplify the notation, let us set 

kn F = Kn F/2 K, F. 

Thus k , F  is a graded algebra over Z/2Z, with klF~-F'/F ~ We will 
always assume that F has characteristic ~ 2. 

The symbol knF will stand for the algebra consisting of all formal 
series ~o+~t + 32 + "'" with ~iekiF. Thus knF is additively isomorphic 
to the cartesian product ko F x kl F x k 2 F x .... 

Let M be a quadratic module over F. That is M is a finite dimensional 
vector space with a non-degenerate symmetric bilinear inner product. 
Then M is isomorphic to an orthogonal direct sum (a l )~ . . .~(a , )  of 
one dimensional modules. Here ( a )  denotes the one dimensional 
quadratic module such that the inner product of a suitable basis vector 
with itself is a. 
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Define the Stiefel-Whitney invariant 

w(M)~knF 

of a quadratic module M ~ (al  ~ ~-"  �9 ( a t )  by the formula 

w(M) =(1 + l(al))(1 + l(a2))... (1 + l(ar)). 

Thus w(M) can be written as 

1 + wl(M) + . . .  + w~(M) 

where wi(M), the i-th Stiefel-Whitney invariant, is equal to the i-th 
elementary symmetric function of l(al) . . . . .  l(a,) considered as an element 
of ki F. 

Evidently wl is just the classical "discriminant" of M, and w2 is 
closely related to the classical Hasse-Witt invariant. 

Remark. This definition is very similar to the definition proposed by 
Delzant [5]. However Delzant's Stiefel-Whitney classes belong to the 
cohomology H* (GF; Z/2Z) of the maximal Galois extension of F. They 
are precisely the images of our w i under a canonical homomorphism 

k , F ~  H*{GF; Z/2Z) 

which is described in w 6. 

Lemma 3.1. 7he invariant w(M) is a well defined unit in the ring knF 
and satisfies the Whitney sum formula 

w (M �9 N) = w (M) w (N). 

Proof Just as in the classical proof that the Hasse-Witt invariant is 
well defined, it suffices to consider the rank 2 case. (Compare O'Meara 
[12, p. 150].) Suppose then that 

( a )  �9 ( b )  ~ ( c t ) ,  ( f l ) .  

Then the discriminant a b must be equal to ~ fl multiplied by a square; 
or in other words 

(4) l(a)+ l(b)- l(~:)+ l(fl) mod 2K1F.  

Furthermore,  the equation ~ = a x 2 + b y2 must have a solution x, y ~ F. 
Since the case x = 0 or y = 0 is easily disposed of, we may assume that 
x 4 = 0, y 4: 0. Then the equation 

1 = a x2/0: + b y2/o: 

implies that 
0 = (l (a) + 2 l (x)-  l(oO) (l (b) + 2 l(y) - l(oO) 

-(l(a)-l(o:))(l(b)-l(oO) mod 2K2F. 
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Rearranging terms, and then substituting (4) this implies that 

l(a) l(b)=--l(a) (l(a)+ l(b)-l(a)) 

=l(~)l(fl) m o d 2 K 2 F ;  

which completes the proof. 

Remark. Delzant shows that a quadratic module over a number 
field is determined up to isomorphism by its rank and Stiefel-Whitney 
cohomology classes. But Scharlau points out that the corresponding 
statement for an arbitrary field is false. The same statements, proofs, 
and examples apply to our Stiefel-Whitney invariants. 

Now let us introduce the Witt-Grothendieck ring WF, consisting of 
all formal differences M - N  of quadratic modules over F; where M - N  
equals M ' - N '  if and only if the orthogonal direct sum M ~ N' is iso- 
morphic to M ' e  N. (Compare [5, 14].) The product operation in I~F 
is characterized by the identity 

( a )  (b)  = (a  b).  

The augmentation ideal, consisting of all M - N  in I?r with rankM 
= rank N, will be denoted by IF, and its n-th power by ~n F. 

Evidently the function w extends uniquely to a homomorphism from 
the additive group of I~F to the multiplicative group of units in knF; 
where 

w (M - N) = w (M)/w (N) 
by definition. 

Next consider a generator 

(5) ~ = ((a 1) - (1))  ((a2) - ( 1))... ((an) - ( 1 )) 

of the ideal 7 n F. Let t = 2 n- 1. 

Lemma 3.2. The Stiefel-Whitney invariant w of such a product ~ is 
equal to either 1 + I(aO... l(an) l ( -  1) t - n  

o r  

(I + l(al).., l(an) l(-- 1)'-n) - '  

according as n is odd or even. 

Proof. Multiplying out the formula (5), we obtain 

~ = ~ + ( a ~ ' . . . a ~ " ) ,  

to be summed as ~1 . . . . .  en range over 0 and 1. Here and subsequently, 
+ stands for the sign ( -  1) '~ ++ '*+n.  Therefore 

w(r = I-I (1 l (aO+ - . .  
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Consider the corresponding product 

(6) I - I ( l + ~ , x l + ' " + ~ . x . )  • 

in the ring of formal power series with rood 2 coefficients in n indeter- 
minates. If we substitute 0 for some x~, then evidently this product 
becomes 1. Hence the product (6) must be equal to 

1 + x l . . .  x , f ( x l  . . . . .  x,) 

for some formal power series f. Therefore 

w(~) = 1 + l(aO... I (a , ) f ( l (a l ) , . . . ,  I(a,)) 

= 1 + l(al)..,  l ( a . ) f ( l ( -  1) . . . . .  1 ( -  1)); 
using w 1.2. 

To compute the power series f ( l ( - 1 )  . . . . .  I ( -1))  it suffices to sub- 
stitute xl . . . . .  x , = x  in (6), so as to compute f ( x ,  . . . ,  x). Evidently the 
product reduces to either ( l+x )  t or ( l+x)  - t  according as n is odd or 
even; where t = 2"-1. For n odd it follows that 

1 + x" f (x  . . . . .  x) = (1 + x ) '  = 1 + x ' ,  

so that 
f ( x  . . . . .  x) = x t -"  ; 

and a similar computation can be carried out for n even. This completes 
the proof. 

Corollary 3.3 I f  t = 2 "-~, then the invariants w~ . . . .  wt_ a annihilate the 
ideal "[" F, while wt induces a homomorphism 

wt: "[" F/I"+ I F --* k tF  

whieh carries the product 

((a j ) -  (1)) . .. ( ( a , )  - (1)) 

to l(al).. ,  l(a,) l ( -  1) t-". 

Proof. Since the elements ( a ) -  (1)  form an additive set of generators 
for iF,  it is clear that the n-fold products of such elements generate ~?" F. 
The conclusion now follows immediately. 

Remark3.4.  These formulas suggest that the Stiefel-Whitney in- 
variants are not independent of each other. In fact the following is true: 
I f  n is not a power of  2, then w, (M)  can be expressed as a product 
w, (M)  w ,_ , (M)  where r is the highest power o f  2 dividing n. 

(Compare also [14, w The proof  can be outlined as follows. 
Interpreting w~ as an elementary symmetric function, and using w 1.2, 
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it is not difficult to show that 

w,w~=~,(i, r - i ,  s - i )  wr+~_i/(-1) i, 

to be summed over 0 < i <  Min {r, s}. Here (i,j, k) stands for the trinomial 
coefficient (i +j  + k) !/i ! j ! k !. But if r is a power of 2, and if 

s_-_0 naod 2r,  

then this identity takes the simple form 

Wr Ws ~- Wr +s 

which completes the outlined proof. 

w The Surjeetion K . / 2 K . - ~  I"/I n+ 1 

Let F be a field of characteristic 4= 2. The Witt ring W= WF can be 
defined as the quotient W/H, where W is the Witt-Grothendieck ring 
of w and H is the free cyclic additive group spanned by ( 1 ) e ( - 1 ) .  
Clearly H is an ideal, so that W is a ring. Note  that the augmentation 
ideal i in I~V maps bijectively to a maximal ideal in W. This image ideal 
will be denoted by I = 1F. 

(Remark. The utility of working with W, rather than ~, will become 
apparent only in w 5.) 

As in w 3, we set k . F =  K , F / 2 K . F .  This will sometimes be abbreviated 
as k, = K./2 K, .  

Theorem 4.1. There is one and only one homomorphism 

s.: knF--* I"F/I"+I F 

which carries each product l(aO.., l(a.) in k ,F  to the product 

( (a l )  -- (1 ) ) . . .  ( ( a , ) - -  (1) )  

modulo I"+ I F. The homomorphisms sl and sz are bijective (compare [13]); 
and every s. is surjective. 

Proof The correspondence 

l(aO x ... • l ( a . ) ~ l - I ( ( a i ) - ( 1 ) )  mod I "+1 

from K 1 x .-, • K1 to 1"/1 T M  is n-linear since 

( a )  - (1)  + (b )  - (1)  = (a  b)  - (1)  mod 12. 

Furthermore, if ai +a~+l = 1 then an easy computation shows that 

((ai)  - (1)) ((a~+ l)  - ( 1 ) ) = 0 ,  
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so the image is zero. Thus this correspondence gives rise to a homo- 
morphism K,---, 1"/1 "+~. This homomorphism annihilates 2K,  since 

21(a0... l(a,) = l(a~) t(a2).., l(a.) 
with 

(a~) - (1) =0 .  

Thus we have shown that the homomorphism 

s.: K./2 K .  ~ I"/I" + 1 

exists and is well defined. This homomorphism is clearly surjective, since 
the elements ( a ) -  (1) form an additive set of generators for the ideal I. 

Now let t = 2"-1, and consider the homomorphism 

w,: l"/I "+1 ~ i " / l  "+a--~ k, 

of w Evidently the composition wtos. is just multiplication by 
l ( -  1)'-". 

But if n equal 1 or 2, then t = n, and the appropriate statement is that 
w, o s, is the identity. This shows that s~ and s2 are bijective; which com- 
pletes the proof of 4. i. 

Remark 4.2. For n > 2, this argument proves the following: I f  multi- 
plication by l ( -1)  t-" carries k .F  injectively into ktF, then the homo- 
morphism s,: k. F -*  P / I  n + 1 

is necessarily bijective. 

Evidently there are two key questions in relating k.  to the Witt ring W. 
Let F be any field of characteristic ~ 2. 

Question 4.3. Is the homomorphism s.: k . F - *  1"/1 "+1 bijective for all 
values of n ? 

Question 4.4. Is the intersection of the ideals I" equal to zero ? (Compare 
[13, 14].) 

This section will conclude by proving two preliminary results. (See 
also w167 5.2 and 5.8.) 

Lemma 4.5. I f  F is a global field, or a direct limit of global fields, then 
both questions have affirmative answers. 

Proof. Using Tate's explicit computation of k.  F for a global field 
(w or the Appendix), we see that multiplication by l ( -1)  induces 

isomorphisms k a F-~  k 4 F-~  k s F-~- . . .  

Together with w this proves that s, is bijective in the case of a global 
field. The corresponding statement for a direct limit follows immediately. 



Algebraic K-Theory and Quadratic Forms 333 

As to the intersection of the ideals I", first note that each embedding 
of F in the real field gives rise to a ring homomorphism 

WF---~ WR ~- Z 

called the signature. Note that an element of I3F is zero if and only if 
its signature at every embedding F ~ R is zero. In the case of a global 
field, this statement follows immediately from the Hasse-Minkowski 
theorem; and for the direct limit of a sequence 

F t ~ F 2 c F a c . . .  

of global fields it follows easily using the isomorphisms 

Wlim F, = lim WF, 
and 

Emb(li_mm F~, R)=lim_m Emb(F~, R). 

But each such signature carries the ideal IF  to 2Z, and hence carries 
the intersection of the ideals I"F to ~ 2"Z = 0. This completes the proof. 

Lemma 4.6. Now suppose that F is a field such that k 2 F has at most 
two distinct elements. Then again the s, are bijective and ~ I"= O. 

Notice that this includes the case of a finite, or local, or real closed, 
or quadratically closed field; as well as any direct limit of such fields. 

Proof If k 1, modulo the null-space of the pairing k ~ |  2, has 
dimension 4= 1, then Kaplansky and Shaker [6] show that a quadratic 
module is completely determined by its rank, discriminant, and Hasse- 
Witt invariant. It follows that 13 =0. But just as in w 1.7 one sees that 
k 3 ----0. Since s I and s2 are already known to be bijective, it certainly 
follows that every s, is bijective. 

On the other hand if k~ modulo this null-space has dimension l, then 
it is easy to define the "signature" of a quadratic module, and to show 
that the rank, discriminant, and signature form a complete invariant. 
(Compare [6, Lemma 1].) Since the signature of an element in I" is divisible 
by 2", it follows that ~ I "=  0. Futhermore, techniques similar to those of 
w 1.4 show that k, is cyclic of order 2, generated by l( - 1)", for every n > 2; 
hence w implies that every s, is bijective. This completes the proof. 

w 5. The Witt Ring of a Rational Function Field 

This section will study the Witt ring, using constructions very similar 
to those of w 2. 

First consider a field E which is complete under a discrete valuation v, 
with residue class field/~ of characteristic ~ 2. Let n be a prime element. 
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Theorem of Springer. The W~tt ring WE contains a subring W o canoni- 
cally isomorphic to Wff,. Furthermore WE, splits additively as the direct 
sum of W o and Qr ) W o . 

In fact Wo can be defined as the subring generated by (u)  as u ranges 
over units of E, and the isomorphism Wo---, WE is defined by the cor- 
respondence (u)  ~ (~). 

For the proof, see T.A. Springer [16]. Since (re)z=(1),  it follows 
that the ring WE is completely determined by WL 

Corollary 5.1. There is a split exact sequence 

O ~  W F , ~  WE ~ , WE---,O, 

where the first homomorphism carries (~)  to (u) ,  and where O is defined 
by the conditions 

a(u>=0, 0(~u)=(~). 

Note however that ~ depends on the particular choice of the prime 
element ~r. 

The proof is straightforward. 

Corollary 5.2. I f  the questions 4.3 and 4.4 have affirmative answers for 
the residue class field E, then they also have affirmative answers for E. 

Proof. It will be convenient to identify WE with the sub-ring Wo c WE. 
Note that the ideal IE then splits as a direct sum 

IE  = I E ~ ( ( T r ) -  (1)) W/~. 

It follows inductively that 

InE = I n E ~ ( ( n > -  (1)) I"-tE. 

Hence the sequence 5.1 gives rise to a split exact sequence 

(7n) 0 --* I" E--* In E-+ ln-1 ~__+ O. 

Consider the diagram 

k ,E  , knE , k . _ l E  

In P,/In+ l ~--* In E/I"+ I E-+ In-I E/ln E, 

where the top sequence comes from w the vertical arrows from w 
and the bottom sequence is the quotient of (7.) by (7.+0. Checking that 
this diagram is commutative, and then applying the Five Lemma, the 
conclusion follows. 
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Now consider a field E = F(t) of rational functions. For each monic 
irreducible neF[ t ]  we can form the n-adic completion E., with residue 
class field 

E:'~F[t]/Or). 
Let 

c3 .: WE--~ Wff.. 

denote the composition of the natural map WE --, WE,  with the homo- 
morphism a of 5.1. Evidently 0 , ( u ) = 0  and O~(zcu)=(fi). 

Theorem 5.3. These homomorphisms O, give rise to a split exact sequence 

0--* WF-* WE--~ @ WE.--~ O, 

where E = F(t), and where the summation extends over all monic irreducible 
polynomials z~ in Fit]. 

The proof will be based on the Tate technique already utilized in 
w Let Le~ WE denote the subring generated by all ( f )  such that 
f e F [ t ]  is a polynomial of degree <d. Thus 

L o c L 1 c L z c . . .  

with union WE. Additively, La is generated by all products (]'1 .-.fs) 
where the f~ are polynomials of degree __< d. 

Note that Lo is just the image of the natural homomorphism 
WF---, WE. 

Lemma 5.4. In fact WF maps bijectively to Lo. Furthermore L o is a 
retract of WE under a ring homomorphism 

p: WE--~ WF ~- Lo . 

Proof Choose some monic polynomial n of degree 1, and define p by 
the conditions 

p ( u )  = ( ~ ) ,  p (r~ u)  = ( ~ ) .  

Here u denotes any unit with respect to the Or)-adic valuation. It follows 
from Springer's theorem, applied to the Or)-adic completion, that p is a 
well defined ring homomorphism. Since the composition 

WF--* WE P , WF 

is the identity, this proves 5.4. 

Now suppose that d > 1. 

Lemma 5.5. The additive group La is generated, modulo La_I, by 
expressions (zr ga... gs) where x is an irreducible polynomial of degree d, 
and gl . . . . .  g~ are polynomials of degree <d. Furthermore if f is the poly- 
24a lnventlones math , Vol. 9 
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nomial of degree < d defined by 

f -  ga... g~ mod (n), 
then 

(n f )=(ng l . . . g s )  mod La_l. 

Proof. First note that the identity 

(8) (a  + b) = ( a )  + (b)  - (a  b (a + b)) 

holds in the Witt ring of any field. 

Consider a generator ( f l . . . f ,  gl . . .  gs) of La, where the polynomials 
f l ,  .-., f ,  are distinct, monic of degree d, and where gl . . . . .  g~ have degree 
< d. If r > 2, then defining a polynomial h of degree < d by 

f ,=f2+h, 
the identity (8) becomes 

/,f~) =/, fz)+<h)-<faf2h).  

Multiplying by <fz ...f,g~ ...g~) and cancelling all squared factors, it 
follows that ( f l - . . f ,g~ . . .  g~) is equal to 

( f3 . . .  g~) + (hf2... g~) - <fl hf3.., g~). 

Since each of these terms has at most r -  1 factors of degree d, it follows 
by induction on r that La is generated, modulo Le_I, by expressions 
( fg~ . . .  g~) where f is monic of degree d and the gi have degree < d. We 
may clearly assume that f is irreducible. 

Consider then such a generator <n ga... g~> with n monic and irre- 
ducible. Setting 

gl g2 --'-- h mod In) 

with degree h < d, we have 
gxg2=h+n k 

for some k of degree < d, hence 

(gx g2) = (h)  + (n  k ) -  (n  k h gl g2)" 

Multiplying by (n  ga...  g~), this shows that (n  g~... g,) is equal to 

(nhga. . .gs)+(kg3. . .g~)-(khgl . . .g~)=(nhg3. . .g~) mod La_l. 

An easy induction now completes the proof of 5.5. 

Now consider the field F,~=F[t]/(n), where n is monic irreducible 
of degree d. For each residue class f modulo (n), l e t fdenote  the unique 
polynomial of degree < d representing J~ 
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Lemma 5.6. The correspondence 

( f )  v-~ (zrf> mod La-1 

gives rise to a homomorphism from Wff~ to La/L a_ 1. 

Proof For any field F of characteristic 4:2 it is not difficult to show 
that the additive group of WF has a presentation in terms of generators 
(a>, where a ranges over F' ,  subject only to the relations 

(a b 2) = (a) ,  

<a + b) = (a)  + <b>-  <a b(a + b)), 

( 1 ) + ( - 1 ) = 0 ,  

and their consequences. But, substituting E= for F, each such relation in 
WE= maps to a valid relation in La/Ld_ 1. Thus if 

fg(f+g)=-h mod (re), 

where f, g, h are non-zero polynomials of degree <d, then the relation 

(f+ g> = <f> + <g>- (h) 
in WE~ corresponds to the relation 

(~r(f +g)> = (Try> + (zr g>- Qrf  g ( f  +g)> 

=-(Trf>+(r~g>-(nh> mod La_l; 

making use of Lemma 5.5. Similarly, i f fg  2 - k mod 00, then the relation 
( f >  = <fr corresponds to (n f> = (nfg2> _= (Tt k>. Finally, the relation 
( 1 ) + ( - 1 ) = 0  corresponds to (z r>+( - r r>=0 .  So it follows that the 
correspondence ( f > ~ ( r c f >  modLa_l does indeed define a homo- 
morphism from WE~ to La/Ld_I. This proves 5.6. 

Proof of Theorem 5.3. The argument is very similar to that in w 
First one checks that the composition 

Wff~ ~ La/La_ t ~ ' '  Wff~, 

is either the identity or zero according as n=zr' or 7t4:zr'. Using 5.5, it 
follows that La/La_l splits canonically as the direct sum of those WE~ 
for which degree n = d. 

Now induction on d shows that the homomorphisms c~ give rise to 
an isomorphism 

La/Lo --~ • degree ~ ~ d WEir. 

Passing to the direct limit as d--~oo, this completes the proof of 5.3. 
24* 
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Remark. More generally, suppose that E is a finite extension field 
of F(t). Every valuation v of E which is trivial on F gives rise to a 
homomorphism ~v: WE-*  WEv, 

well defined up to multiplication by a unit of the form (~). It would be 
very interesting to know something about the kernel and cokernel of 
the associated homomorphism 

WE--, @ WE~. 

For the special case E =  F(t), both kernel and cokernel turn out to be 
isomorphic to WF. 

Perhaps one may find some clue by applying the analogous construc- 
tion to a global field. As an example, for the field Q of rationals, there is 
an additive isomorphism 

WQ ~ Z �9 (Z/2 Z) ~ (~ p oaa W(Z/p Z), 

using the signature and the correspondence 

( q )  ~-~ ord2 q mod 2 

to map to the first two summands, and using the homomorphisms ~?p 
for the third. 

Now let us bring the multiplicative structure of W into Theorem 5.3. 
Again let E = F(t). 

Lemma 5.7. The sequence 5.3 gives rise to an exact sequence 

0 -*  I" F--~ I" E ---, (~ I "-1E~--, 0 
for any n ~ 1. 

Proof The proof  of 5.2 shows that each ~, maps I"E to I " - I E , .  
Consider any generator 

=((L)-(1))...((L)-(1)) 
of I " -  1 E~. Let degree ~ = d. Then the product 

= ((Tr) - (1)) ( ( f 2 )  - (1)) . . .  ( ( f , )  - (1)) 

in I" E, where each representative f~ has degree < d, satisfies 0~ ~ = r/, and 
satisfies ~,, ~ = 0 for every 7r' 4= ~r with degree 7r' > d. 

Now, given any element (q~) of @ I"-  1 ~ ,  let 

do = Max {degree 7r [ r /~ .  0}. 

Then it follows by induction on do that (ft,) is the image of some element 
in I" E. 



Algebraic K-Theory and Quadratic Forms 339 

To prove exactness in the middle of the sequence 5.7, consider any 
�9 In E which maps to zero in ~31 n- ~ E~. According to 5.3, ~ comes from 

some element ( of WF. Now apply the homomorphism p of w 5.4. Evi- 
dently p maps P E  into InF, and evidently p(~)=(. This proves that 
( �9 which completes the proof of 5.7. 

Corollary 5.8. I f  the questions 4.3 and 4.4 have affirmative answers for 
every finite extension ff~ of a field F, then they have affirmative answers 
for the field E = F(t) of rational functions. 

The proof is completely analogous to that of 5.2. 

w 6. Relations with Galois Cohomology 

The following construction is due to Bass and Tate. For any field F 
of characteristic 4: 2, let F~ be a separable closure, and let G = GF be the 
Galois group of F~ over F. Then the exact sequence 

1---,{__.I}--,F" 2 ,F~--,1,  

upon which G operates, leads to an exact sequence 

HO(G;F~) 2 , HO(G;F~)___~ H~(G; { +_I})___~ H~(G;F~) 

of cohomology groups; where the right hand group is zero. Identifying 
the first two groups with F ~ and substituting Z/2Z  for { + 1}, this yields 

F o 2 , F  o ~ ,HI(G;Z/2Z)__}O. 

The quotient F ' / F  "2 c a n  of course be identified with klF. 

Lemma6.1 (Bass, Tale). The isomorphism l(a)~--~6(a) from klF to 
Hi(G; Z/2Z) extends uniquely to a ring homomorphism 

hr: k.F--~ H*(G;Z/2Z).  

Proof It is only necessary to verify that each of the defining relations 
l (a) / ( l -a)=0 for the ring k . F  maps to a valid relation 

6(a) f (1 -a )=O 

in H2(G; Z/2Z). But in fact, if we identify H2(G; Z/2Z) with the set of 
elements of order 2 in the Brauer group H2(G;F~), then 6(a)6(b) cor- 
responds to the quaternion algebra associated with a, b. (Compare 
Delzant [5].) Since the quaternion algebra associated with a, 1 - a  splits, 
the relation 6 (a) 6 (1 - a) = 0 follows. 
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Remark. Bass and Tate [3] also consider the more general homo- 
morphism associated with the sequence 

1 ~  {m-th roots of 1 ) ~ F ~  " , F ~  1, 

but we will only be interested in the case m = 2. 

I do not know of any examples for which the homomorphism h = he 
fails to be bijective. Here is a list of special cases. 

Lemma 6.2. I f  the field F is finite, or local, or global, or real closed, 
then the homomorphism 

he: k ,F-- ,  H*(G; Z/2Z) 

is bijective. Furthermore if F is the direct limit of subfields F~, and if each 
he, is bijective, then he is bijective. 

Proof The finite, local, and real closed cases are straightforward. 
(Compare w together with Serre [15, II, pp. 10-20].)  Suppose then 
that F is a global field. Bass and Tate [3] prove that the homomorphism 

h2 : k2 F--* H2(G; Z/2Z) 

is bijective. But for n ~ 3 the group H"(G;Z/2Z) has been completely 
described by Tate [19, w 3.1]. Comparing with Tate's computation of k,F, 
as described in w 1.8 or the Appendix, it follows that h, is bijective also. 

FinaUy, the statement for direct limits follows easily from [-15, I, p. 9]. 
This completes the proof. 

Here is one final partial result. Let F((t)) be the field of formal power 
series in one variable over F. 

T h e o r e m  6.3. I f  he is bijective, then hv~t)) is bijective. 

Proof We will concentrate on the characteristic p case, leaving char- 
acteristic zero to the reader. Recall that p ,  2. 

Let V be the maximal tamely ramified extension of F((t)). (Compare 
Artin [1, pp. 70, 81].) Then V can be obtained from Fs((t)) by adjoining 
t 1/" for every integer r prime to p. The Galois group Gv is a pro-p-group; 
and the quotient Gr, t(o)/Gv, which we denote briefly by Gv:e~((t)), is iso- 
morphic to lim (Z/rZ), taking the inverse limit over integers r prime to p. 
Hence the mod 2 cohomology group 

n G~((o)= H Gv/e,((o) 

is cyclic of order 2 for n = 0, 1, and is zero otherwise. 

Clearly there is an exact sequence 

1 --', Gr,  ffol --) GFftO) - +  GF--~ 1. 
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Dividing the first two groups by Gv, we obtain a sequence 

1 ~ Gv/Fs((t) I ---4 Gv/F((t)) ~ G r - ~  1 

which is actually split exact, since each automorphism of F s over F 
lifts uniquely to an automorphism of V which keeps each t 1/" fixed. 

The associated cohomology spectral sequence now gives rise to a 
split exact sequence 

0 --~ H" GF ~ H" Gv/Fw))--~ Ha- 1 Gr--~ O. 

Note that the middle group is canonically isomorphic to H" GF~t)~. 

With a little work one can check that the homomorphism H n Gettt))--~ 
H" IG r carries each product cS(t)cS(u2)...,~(u,) to cS(fiE)...cS(fi~). Hence 
the following diagram is commutative: 

k~F , k~F((t)) , k,_ 1F 

HnGF > HnGr(to~ ~ H"-IG F. 

(Compare w Applying the Five Lemma, the conclusion 6.3 follows. 

Appendix: K./2K. for a Global Field 

The arguments in this appendix are due to Tate. 

Let F be a global field of characteristic ee 2. We will again use the 
abbreviation k,  F for the algebra K ,  F/2 K ,  F. 

The group k 2 F has been computed by Bass and Tate as follows. 

Lemma A.1. There is an exact sequence 

0--~ k2F---~ G k2Fv---~ Z / 2 Z  ~ O, 

where the summation extends over all completions Fv ofF. Here the homo- 
morphism k2F--~k2F~ is induced by inclusion, and the homomorphism 
k 2 F~ --~ Z /2Z  is injective. 

In fact we recall from w 1 that the group k2 Fv is cyclic of order 2, 
unless Fv is the complex field in which case k 2 F~ is clearly zero. The com- 
position 

k2F---~kzFv c Z / 2 Z  

evidently carries each generator l(a) l(b) of k 2 F to either 0 or 1 according 
as the quadratic Hilbert symbol (a, b)~ is trivial or not. 

For the proof, we refer to Bass and Tate [3]. (Alternatively, this lemma 
can be proved by comparing the isomorphism k 2 F ~  I2/I 3 of w with 
standard descriptions of the Witt ring of a global field.) 
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Theorem A.2 (Tate). For n > 3 the natural homomorphism 

k.F--* (~ k . F  o 
is an isomorphism. 

Here the group knF ~ is cyclic of order 2 if F~, is the real field, and is 
zero otherwise. So it follows that the groups 

k 3 F ~ _ k 4 F ~ k s F  ~-... 

are finite, and in fact are zero unless F has a real completion. 

To prove A.2, first consider any homomorphism �9 from k~F to the 
multiplicative group {_+1}. The image ~(l(aO. . .  l(a,)) will be denoted 
briefly by tp(a 1 . . . .  , a,). Thus q~ is a symmetric function of n variables, 
multiplicative in each variable, and (p ( a  1 . . . . .  an) = 1 whenever a 1 + a z = 1. 

If n=2 ,  then it follows from A.1 that any such function (p(a, b) can 
be expressed in terms of the Hilbert symbols (a, b)v as a product 

r (a, b) = [Iv (a, b)~L 

where each exponent ~v is 0 or 1. These exponents are well defined except 
that we may simultaneously replace each e o by 1 - e  v. 

Now suppose that n = 3. For fixed c the correspondence 

a, b~-~ q~(a, b, c) 

can be described as above. Thus there exist exponents ~o(c) so that 

q~(a, b, c)= No(a, b)~vtc( 

Fixing b and c, consider the idele (dr) whose v-th component is 

dv = b ~(~ c ~'(b). 

Using the symmetry relation 

9(a, b, c) = q~(a, c, b) 
it follows that 

(9) /-Io (a, do)o = 1. 

We will need the following classical result. 

Lemma A.3. I f  an idele (do) satisfies the product formula (9) for every 
non-zero f ield element a, then (do) can be expressed as the product of  a 

f ield element d and the square o f  an idele. 

This is proved for example in Weil [20, p. 262]. 
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Thus, given field elements b and c, we can construct the idele (d~), 
and hence the field element d, so that 

( I O) d ~ b ~ ~  c ~"~b~ F~ 2 

for every v. 

Consider the extension field F(~/b, V~). Since d is a square in every 
completion of this field, it follows that d is a square in the field F(1/~, l/Q-) 
itself. By Kummer theory, this implies that d can be expressed as b i c j 
times the square of an element of F. Here the exponents i and j are equal 
to 0 or 1. The assertion (10) now implies that 

(11) b~"~-i c~"~b)-J~F~ z 

for every v. 

Lemma A.4. I f  v and w are discrete valuations (i. e. corresponding to 
f inite primes), then e~(c)=ew(c) for  all c. 

Proof. Note that the groups F~/F~ 2 and F~/F~ 2 both have order at 
least 4. So given c it is possible to choose b so that the image of b in 
F~~ 2 is independent of c, and simultaneously so that the image of b in 
F~/F~ 2 is independent of c. Thus (11) implies that 

e~(c)--i=O, ew(c)--i=O; 
which proves A.4. 

Proof  of  Theorem A.2. Replacing every ev(c) by 1-ev(c) if necessary, 
we may assume that ev(c)=0 for every discrete valuation v. Hence in 
the formula 

(p (a, b, c) = I-I~ (a, b)~ ~r 

we need only take the product over real completions of F. It follows that 
~0(a, b, c)= 1 unless there exists a real completion at which both a and b 
are negative. 

But this is true for every ~0. So it follows that: 

Lemma A.5. The product l(a) l(b) l (c)~k3F is zero unless there exists 
a real completion at which both a and b are negative. 

The rest of the proof is easy. Let vl . . . .  , v, be the real valuations, and let 
e 1 . . . . .  e~ be field elements such that ej is negative in the vfth completion but 
positive in the other real completions. Then A.5 implies that a product 
l(ei~).., l(ei,) with n>  3 is zero unless i 1 . . . . .  i,. On the other hand the 
powers l(et) ~, . . . .  l(e,) ~ certainly are linearly independent, since they 
map into linearly independent elements of ~ v k ,  Fv. 
24b lnventmnes math, Vol 9 
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Since F ~ is generated by e 1 . . . . .  e, together with the totally positive 
elements, it follows immediately that these powers l (el)" ,  . . . .  l (e,)" 
actually form a basis for k, ,F,  n >  3. This completes the proof. 
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