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THEME 

Accelerated computing with GPUs 

 

SUMMARY  

Current trends in HPC (High Performance Computing) are moving towards the 

use of many core processor architectures in order to achieve speed-up through 

the extraction of a high degree of fine-grained parallelism from the 

applications. This hybrid computing trend is led by GPUs (Graphics Processing 

Units), which have been developed exclusively for computational tasks as 

massively-parallel co-processors to the CPU. Today’s GPUs can provide 

memory bandwidth and floating-point performance that are several factors 

faster than the latest CPUs. In order to exploit this hybrid computing model and 

the massively parallel GPU architecture, application software will need to be 

redesigned. MSC Software and NVIDIA engineers have been working together 

on the use of GPUs to accelerate the sparse direct solvers in MSC Nastran for 

the last 2 years. This presentation will address the recent GPU computing 

developments including support of NVH solutions with MSC Nastran 2013. 

Representative industry examples will be presented to demonstrate the 

performance speedup resulting from GPU acceleration. A rapid CAE 

simulation capability from GPUs has the potential to transform current 

practices in engineering analysis and design optimization procedures. 
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1:  Introduction  

The power wall has introduced radical changes in computer architectures 

whereby increasing core counts and hence, increasing parallelism have 

replaced increasing clock speeds as the primary way of delivering greater 

hardware performance. A modern GPU consists of several hundreds or 

thousands of simple processing cores; this degree of parallelism on a single 

processor is typically referred to as ‘many-core’ relative to ‘multi-core’ that 

refers to processors with at most a few dozen cores.  

 

Many-core GPUs often demand a high degree of fine-grained parallelism – the 

application program should create many threads so that while some threads are 

waiting for data to return from memory other threads can be executing – 

offering a different approach in terms of hiding memory latency because of 

their specialization to inherently parallel problems. 

  

With the ever-increasing demand for more computing performance, the HPC 

industry is moving towards a hybrid computing model, where GPUs and CPUs 

work together to perform general purpose computing tasks. In this hybrid 

computing model, the GPU serves as an accelerator to the CPU, to offload the 

CPU and to increase computational efficiency. In order to exploit this hybrid 

computing model and the massively parallel GPU architecture, application 

software will need to be redesigned. MSC Software and NVIDIA engineers 

have been working together over the past 2 years on the use of GPUs to 

accelerate the sparse solvers in MSC Nastran. 

 

2:  GPU Computing  

While parallel applications that use multiple cores are a well-established 

technology in engineering analysis, a recent trend towards the use of GPUs to 

accelerate CPU computations is now common. Much work has recently been 

focused on GPUs as an accelerator that can produce a very high FLOPS 

(floating-point operations per second) rate if an algorithm is well-suited for the 

device. There have been several studies demonstrating the performance gains 

that are possible by using GPUs, but only a modest number of commercial 

structural mechanics software have made full use of GPUs. Independent 

Software Vendors (ISVs) have been able to demonstrate overall gains of 2x-3x 

over multi-core CPUs, a limit which is due to the current focus on linear 

equation solvers for GPUs vs. complete GPU implementations. Linear solvers 
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can be roughly ~50% of the total computation time of typical simulations, but 

more of the typical application software will be implemented on the GPU in 

progressive stages. 

  

Shared memory is an important feature of GPUs and is used to avoid redundant 

global memory access among threads within a block. A GPU does not 

automatically make use of shared memory, and it is up to the software to 

explicitly specify how shared memory should be used. Thus, information must 

be made available to specify which global memory access can be shared by 

multiple threads within a block. Algorithm design for optimizing memory 

access is further complicated by the number of different memory locations the 

application must consider. Unlike a CPU, memory access is under the full and 

manual control of a software developer. There are several memory locations on 

the GPU which is closely related to the main CPU memory. Different memory 

spaces have different scope and access characteristics: some are read-only; 

some are optimized for particular access patterns. Significant gains (or losses) 

in performance are possible depending on the choice of memory utilization. 

  

Another issue to be considered for GPU implementation is that of data transfers 

across the PCI-Express bus which bridges the CPU and GPU memory spaces. 

The PCI-Express bus has a theoretical maximum bandwidth of 8 or 16 GB/s 

depending on whether it is of generation 2 or 3. When this number is compared 

to the bandwidth between GPUs on-board GDDR5 memory and the GPU 

multi-processors (up to 250 GB/s), it becomes clear that an algorithm that 

requires a large amount of continuous data transfer between the CPU and GPU 

will unlikely achieve good performance. For a given simulation, one obvious 

approach is to limit the size of the domain that can be calculated so that all of 

the necessary data can be stored in the GPU’s main memory. Using this 

approach, it is only necessary to perform large transfers across the PCI-Express 

bus at the start of the computation and at the end (final solution). High-end 

NVIDIA GPUs offer up to 6 GB of main memory, sufficient to store a large 

portion of the data needed by most engineering software, so this restriction is 

not a significant limitation. 

 

3:  Sparse solver acceleration with MSC Nastran  

A sparse direct solver is possibly the most important component in a finite 

element structural analysis program. Typically, a multi-frontal algorithm with 

out-of-core capability for solving extremely large problems and BLAS level 3 

kernels for the highest compute efficiency is implemented. Elimination tree 
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and compute kernel level parallelism with dynamic scheduling is used to 

ensure the best scalability. The BLAS level 3 compute kernels in a sparse 

direct solver are the prime candidate for GPU computing due to their high 

floating point density and favourable compute to communication ratio.  

 

The proprietary symmetric MSCLDL and asymmetric MSCLU sparse direct 

solvers in MSC Nastran employ a super-element analysis concept instead of 

dynamic tree level parallelism. In this super-element analysis, the 

structure/matrix is first decomposed into large sub-structures/sub-domains 

according to user input and load balance heuristics. The out-of-core multi-

frontal algorithm is then used to compute the boundary stiffness, or the Schur 

compliment, followed by the transformation of the load vector, or the right 

hand side, to the boundary. The global solution is found after the boundary 

stiffness matrices are assembled into the residual structure and the residual 

structure is factorized and solved. The GPU is a natural fit for each sub-

structure boundary stiffness/Schur compliment calculation.  

 

Today’s GPUs can provide memory bandwidth and floating-point performance 

that are several factors faster than the latest CPUs. In MSC Nastran, the most 

time consuming part is the BLAS level 3 operations in the multi-frontal 

factorization process. To date, most of solve and all of rank-N updates are done 

on the GPU implemented as CUDA kernels. Specifically: 

 Factorization of diagonal block on CPU; 

 Solve of panel (beneath diagonal block) largely on GPU; and, 

 Trailing sub matrix update of the front factorization (rank N update) on 

GPU.  

The sparse solver does better when things are “blocky” as they tend to generate 

larger front sizes.  Models using solid elements provide for more concentrated 

computational work in the sparse matrix factorization, which is highly 

desirable for the GPU; while with models using shell/plate elements the matrix 

is sparser. In other words, the computational work is less concentrated for a 

shell model compared to a solid model.  

 

4:  GPU Computing implementation & target analyses (Solution 

Sequences) in MSC Nastran: 
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NVIDIA’s CUDA parallel programming architecture is used to implement the 

compute intensive sparse solver components on the GPU. CUDA is the 

hardware and software architecture that enables NVIDIA GPUs to execute 

programs written with C, C++, FORTRAN, OpenCL, and other languages. 

 

The GPU computing functionality in MSC Nastran was first released in 

2012.1, and updated and enhanced in 2013.  The MSC Nastran GPU 

acceleration is delivered by a set of compute kernels for the symmetric 

(MSCLDL) and the non-symmetric (MSCLU) sparse direct solvers, for 

NVIDIA CUDA-capable GPUs.   

  

A good GPU kernel implementation, such as the one in MSC Nastran as shown 

in Figure 1, overlaps compute on GPU, data transfer in the PCIe bus, and 

compute on CPU, with multiple CUDA streams.   To have enough floating 

point computations, such that these overlaps can occur, the front size, i.e. 

nfront, has to be sufficiently large. In addition, to make the task more compute 

bound instead of PCIe communication bound, the rank update size, i.e. nrank 

also needs to be sufficiently large since PCIe limits the GPU performance for 

small ranks for Schur complement calculation with small inner dimension. 

   

Therefore improved performance occurs for relatively large models.  In 

particular, only matrices whose front sizes are larger than a certain threshold 

benefit.  To get good performance the GPU capability works in conjunction  

with the Nastran system cells (sys653=1 and sys653=3), so that rank update 

sizes greater than 320 can be used effectively with MSCLDL and MSCLU. 

The three options, ie.sys653=0, 1 and 3, offer different levels of computational 

efficiency, numeric accuracy, and hardware resource requirement. In general, 

sys653=0 provides the most numerically stable solution and the least memory 

consumption, but also the lowest performance.  For slightly more memory 

consumption, a positive definite, or diagonally dominant, model can be solved 

by sys653=1; since sys653=1 does not do numeric pivoting, the performance is 

typically the best among these three options.  For SOL101 and SOL108 jobs, 

sys653=3 is set as the default in MSC Nastran; the user can expect improved 

performance at the possibility of larger memory requirement and less stable 

numeric pivoting results. The user is advised to select the one option that is 

most appropriate for the particular Nastran analysis model. 
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Vastly reduced use of pinned host memory and the ability to handle arbitrarily 

large fronts, for very large models (greater than 15M DOF) on a single GPU 

with 6GB device memory, are some strengths of the GPU implementation in 

MSC Nastran 2013. 'Staging' is a term that is used to describe how very large 

fronts are handled.  If the trailing submatrix is too large to fit on the GPU 

device memory, then it is broken up into approximately equal-sized 'stages' and 

the stages are completed in order.  Multiple streams are used within a stage. So, 

an arbitrarily large submatrix, say 40GB, can be solved in, say, 10 stages of 

4GB each. The implementation in MSC Nastran is the lowest granularity GPU 

implementation of a sparse direct solver that solves very large sparse matrix 

sizes. 

 

                                                                            

Figure 1: Sparse direct solver GPU kernel implementation 

  

The MSC Nastran implementation also supports multiple GPU computing 

capability for DMP (Distributed Memory Parallel) runs. In such cases of 

DMP>1, multiple fronts are factorized concurrently on multiple GPUs. The 

matrix is decomposed into two domains, and each domain is computed by a 

MPI process. 
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Typical MSC Nastran job submission commands with single and multiple 

GPUs are shown below: 

1) SMP (Shared Memory Parallel) + GPU acceleration of SOL101 analysis: 

nast20130 jid=job101.dat mode=i8 mem=24gb parallel=4 gpuid=0 sys655=32 

sys656=1024 bat=no scr=yes sdir=/tmp sys205=320 

2) DMP + SMP + GPU acceleration of SOL108 analysis: 

nast20130 jid=job108.dat mem=8gb dmp=2 parallel=4 gpuid=0:1 sys655=16 

sys656=1024 bat=no scr=yes sdir=/tmp sys219=384 

gpuid is the ID of a licensed GPU device to be used in the analysis. Multiple 

IDs may be assigned to MSC Nastran DMP runs; 

sys655 represent fronts with rank sizes equal to or greater than the specified 

value are computed on GPU: 16 (for complex data types) or 32 (for real); 

sys656 represents fronts with front sizes equal to or greater than the specified 

value are computed on GPU; 

sys205 is real symmetric sparse decomposition rank update size; 

sys219 is complex symmetric sparse decomposition rank update size. 

 

Any 'fat' BLAS3 code path would be potential candidate for GPU computing. 

In MSC Nastran, several solution sequences are impacted to varying levels by 

the sparse solver acceleration using GPUs - SOL101 (linear statics), SOL103 

(normal modes), SOL108 (direct frequency), SOL111 (modal frequency), 

SOL200 (design sensitivity and optimization) and SOL400 (nonlinear) fall into 

this category.  

  

It is noteworthy that in SOL101 and SOL108, the sparse matrix factorization 

and solver times are a higher percentage of the overall job time (> 50%) and 

hence higher speed-ups can be realized with GPU acceleration while with 

SOL103 and SOL111 it is lesser. With a SOL103 normal modes analysis, say, 

using a Lanczos algroithm, there are multiple compute intensive parts 

including sparse matrix factorization, iteration on a block of vectors (solve) and 

orthogonalization of vectors. Only the sparse matrix factorization is performed 

on the GPU and hence lesser speedup from GPU acceleration. 
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The GPUs supported with this implementation are the Tesla Fermi GPUs 

(C2050, C2070, C2075, M2090), Quadro 6000, Tesla Kepler GPUs (K20, 

K20X). Any GPU supporting CUDA compute level 2.0 or better will run. 

Memory will be the most limiting factor for other. Linux and Windows 64-bit 

platforms are supported. 

 

5:  Performance analysis on industry standard models and solution 

sequences 

Structural analysis solutions that use the sparse direct solvers are the target 

applications for illustrating the use of GPU computing in MSC Nastran 2013. 

Industry standard models for SOL101, SOL103 and SOL108 are used to 

demonstrate the benefits of GPU computing. A range of models with varying 

fidelity, from solids only to a mix of shells, solids and bars is considered. 

Performance acceleration are reported relative to a serial Nastran run, which is 

still widely adopted within the customer community, as well as relative to 

multi-core CPU runs. 

 

The hardware configuration used with the performance analysis consists of 

NVIDIA PSG cluster with each server node having 2x 8-core Sandy Bridge 

CPUs, 2.6GHz, Tesla 2x K20X GPU, 128GB memory, QDR IB interconnect. 

 

Case 1: Stress analysis of automotive engine block (SOL101): 

Number of elements: ~786K (CHEXA) 

Number of nodes: ~811K 

Number of degrees of freedom: ~2.4M  

Estimated Maximum Front Size: ~41K 

 

Table 1 summarizes the speed-up observed from using a single GPU. 
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 Elapsed Time 

in minutes for 

full analysis 

Speed-up 

Serial (CPU only) 150 1 

4-core (CPU only) 55 2.7 

4-core + 1 GPU 25 6 

Table 1: Single GPU speedup of SOL101 engine block  

 

Case 2: Normal modes analysis of aerospace piston design (SOL103): 

Number of elements: ~561K (CTETRA) 

Number of nodes: ~881K 

Number of degrees of freedom: ~2.6M  

Estimated Maximum Front Size: ~19K 

Table 2 summarizes the speed-up observed from using a single GPU. 

 Elapsed Time 

in minutes for 

full analysis 

Speed-up 

Serial (CPU only) 128 1 

4-core (CPU only) 67 1.9 

4-core + 1 GPU 45 2.8 

Table 2: Single GPU speedup of SOL103 piston model  
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As noted in Section 4, with a SOL103 normal modes analysis using a Lanczos 

algroithm, there are multiple compute intensive parts including sparse matrix 

factorization, iteration on a block of vectors (solve) and orthogonalization of 

vectors. Only the sparse matrix factorization is performed on the GPU and 

hence lesser speedup from GPU acceleration. 

 

Case 3: Trimmed Car body frequency response analysis (SOL108 - NVH) with 

multiple GPUs: 

Number of elements: ~1.04M (CQUAD4); ~109K (CTETRA); ~41K 

(CTRIA3), CBARs, CELAS1s, CBUSHs, CONM2, …  

Number of nodes: ~1.2M 

Number of degrees of freedom: ~7.5M  

Estimated Maximum Front Size: ~14K 

There are a total of 100 frequency increments in the FREQ1 card and the 

Lanczos algorithm (EIGRL) is used for computing the modes. 

Figure 2 shows the speedup obtained from using a single GPU per node across 

multiple nodes of the cluster. 

          

Figure 2: Multi-GPU acceleration of trimmed car body NVH analysis 
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Case 4: Coupled Structural-Acoustics simulation (SOL108 NVH) with multiple 

GPUs: 

Number of elements: ~3.8M (CTETRA) 

Number of nodes: ~710K 

Number of degrees of freedom: ~710K  

Estimated Maximum Front Size: ~8.9K 

The Nastran analysis is a coupled structural-acoustics analysis using SOL108. 

Within the internal cavity, the typical responses are the sound pressures at the 

ear locations of driver and passengers. There are a total of 100 frequency 

increments in the FREQ1 card and the Lanczos algorithm (EIGRL) is used for 

computing the modes. 

 

Figure 3 shows the speedup obtained from using single and multiple GPUs. We 

observe around 5X with a single GPU acceleration over a serial run; about 2x 

with a single GPU over a 4-core SMP run, and comparing the last 2 lines 

another 2x speedup with 2 GPUs over a 8 core DMP run. 

 

Figure 3: Multi-GPU acceleration of a vehicle system SOL108 analysis 
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6:  Summary 

GPU computing is implemented in MSC Nastran to significantly lower the 

simulation times for industry standard analysis models. Vastly reduced use of 

pinned memory; the ability to handle arbitrarily large front sizes for very large 

models and support for the various data types (real, complex, symmetric, 

unsymmetric) are some of the strengths of this implementation. Further, 

multiple GPUs can be used with Nastran DMP analysis. The performance 

speed-ups enabled by GPU computing will facilitate MSC Nastran users to add 

more realism to their models thus improving the quality of the simulations. A 

rapid CAE simulation capability from GPUs has the potential to transform 

current practices in engineering analysis and design optimization procedures. 
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