
SESSION TITLE – WILL BE COMPLETED BY MSC SOFTWARE

GPU COMPUTING WITH MSC NASTRAN 2013

Srinivas Kodiyalam, NVIDIA, Santa Clara, USA

THEME

Accelerated computing with GPUs

SUMMARY

Current trends in HPC (High Performance Computing) are moving towards the

use of many core processor architectures in order to achieve speed-up through

the extraction of a high degree of fine-grained parallelism from the

applications. This hybrid computing trend is led by GPUs (Graphics Processing

Units), which have been developed exclusively for computational tasks as

massively-parallel co-processors to the CPU. Today’s GPUs can provide

memory bandwidth and floating-point performance that are several factors

faster than the latest CPUs. In order to exploit this hybrid computing model and

the massively parallel GPU architecture, application software will need to be

redesigned. MSC Software and NVIDIA engineers have been working together

on the use of GPUs to accelerate the sparse direct solvers in MSC Nastran for

the last 2 years. This presentation will address the recent GPU computing

developments including support of NVH solutions with MSC Nastran 2013.

Representative industry examples will be presented to demonstrate the

performance speedup resulting from GPU acceleration. A rapid CAE

simulation capability from GPUs has the potential to transform current

practices in engineering analysis and design optimization procedures.

KEYWORDS

High Performance Computing (HPC), Graphics Processing Units (GPUs),

MSC Nastran, Structural analysis, Sparse matrix solvers, Noise Vibration and

Harshness (NVH).

GPU COMPUTING WITH MSC NASTRAN 2013

1: Introduction

The power wall has introduced radical changes in computer architectures

whereby increasing core counts and hence, increasing parallelism have

replaced increasing clock speeds as the primary way of delivering greater

hardware performance. A modern GPU consists of several hundreds or

thousands of simple processing cores; this degree of parallelism on a single

processor is typically referred to as ‘many-core’ relative to ‘multi-core’ that

refers to processors with at most a few dozen cores.

Many-core GPUs often demand a high degree of fine-grained parallelism – the

application program should create many threads so that while some threads are

waiting for data to return from memory other threads can be executing –

offering a different approach in terms of hiding memory latency because of

their specialization to inherently parallel problems.

With the ever-increasing demand for more computing performance, the HPC

industry is moving towards a hybrid computing model, where GPUs and CPUs

work together to perform general purpose computing tasks. In this hybrid

computing model, the GPU serves as an accelerator to the CPU, to offload the

CPU and to increase computational efficiency. In order to exploit this hybrid

computing model and the massively parallel GPU architecture, application

software will need to be redesigned. MSC Software and NVIDIA engineers

have been working together over the past 2 years on the use of GPUs to

accelerate the sparse solvers in MSC Nastran.

2: GPU Computing

While parallel applications that use multiple cores are a well-established

technology in engineering analysis, a recent trend towards the use of GPUs to

accelerate CPU computations is now common. Much work has recently been

focused on GPUs as an accelerator that can produce a very high FLOPS

(floating-point operations per second) rate if an algorithm is well-suited for the

device. There have been several studies demonstrating the performance gains

that are possible by using GPUs, but only a modest number of commercial

structural mechanics software have made full use of GPUs. Independent

Software Vendors (ISVs) have been able to demonstrate overall gains of 2x-3x

over multi-core CPUs, a limit which is due to the current focus on linear

equation solvers for GPUs vs. complete GPU implementations. Linear solvers

GPU COMPUTING WITH MSC NASTRAN 2013

can be roughly ~50% of the total computation time of typical simulations, but

more of the typical application software will be implemented on the GPU in

progressive stages.

Shared memory is an important feature of GPUs and is used to avoid redundant

global memory access among threads within a block. A GPU does not

automatically make use of shared memory, and it is up to the software to

explicitly specify how shared memory should be used. Thus, information must

be made available to specify which global memory access can be shared by

multiple threads within a block. Algorithm design for optimizing memory

access is further complicated by the number of different memory locations the

application must consider. Unlike a CPU, memory access is under the full and

manual control of a software developer. There are several memory locations on

the GPU which is closely related to the main CPU memory. Different memory

spaces have different scope and access characteristics: some are read-only;

some are optimized for particular access patterns. Significant gains (or losses)

in performance are possible depending on the choice of memory utilization.

Another issue to be considered for GPU implementation is that of data transfers

across the PCI-Express bus which bridges the CPU and GPU memory spaces.

The PCI-Express bus has a theoretical maximum bandwidth of 8 or 16 GB/s

depending on whether it is of generation 2 or 3. When this number is compared

to the bandwidth between GPUs on-board GDDR5 memory and the GPU

multi-processors (up to 250 GB/s), it becomes clear that an algorithm that

requires a large amount of continuous data transfer between the CPU and GPU

will unlikely achieve good performance. For a given simulation, one obvious

approach is to limit the size of the domain that can be calculated so that all of

the necessary data can be stored in the GPU’s main memory. Using this

approach, it is only necessary to perform large transfers across the PCI-Express

bus at the start of the computation and at the end (final solution). High-end

NVIDIA GPUs offer up to 6 GB of main memory, sufficient to store a large

portion of the data needed by most engineering software, so this restriction is

not a significant limitation.

3: Sparse solver acceleration with MSC Nastran

A sparse direct solver is possibly the most important component in a finite

element structural analysis program. Typically, a multi-frontal algorithm with

out-of-core capability for solving extremely large problems and BLAS level 3

kernels for the highest compute efficiency is implemented. Elimination tree

GPU COMPUTING WITH MSC NASTRAN 2013

and compute kernel level parallelism with dynamic scheduling is used to

ensure the best scalability. The BLAS level 3 compute kernels in a sparse

direct solver are the prime candidate for GPU computing due to their high

floating point density and favourable compute to communication ratio.

The proprietary symmetric MSCLDL and asymmetric MSCLU sparse direct

solvers in MSC Nastran employ a super-element analysis concept instead of

dynamic tree level parallelism. In this super-element analysis, the

structure/matrix is first decomposed into large sub-structures/sub-domains

according to user input and load balance heuristics. The out-of-core multi-

frontal algorithm is then used to compute the boundary stiffness, or the Schur

compliment, followed by the transformation of the load vector, or the right

hand side, to the boundary. The global solution is found after the boundary

stiffness matrices are assembled into the residual structure and the residual

structure is factorized and solved. The GPU is a natural fit for each sub-

structure boundary stiffness/Schur compliment calculation.

Today’s GPUs can provide memory bandwidth and floating-point performance

that are several factors faster than the latest CPUs. In MSC Nastran, the most

time consuming part is the BLAS level 3 operations in the multi-frontal

factorization process. To date, most of solve and all of rank-N updates are done

on the GPU implemented as CUDA kernels. Specifically:

 Factorization of diagonal block on CPU;

 Solve of panel (beneath diagonal block) largely on GPU; and,

 Trailing sub matrix update of the front factorization (rank N update) on

GPU.

The sparse solver does better when things are “blocky” as they tend to generate

larger front sizes. Models using solid elements provide for more concentrated

computational work in the sparse matrix factorization, which is highly

desirable for the GPU; while with models using shell/plate elements the matrix

is sparser. In other words, the computational work is less concentrated for a

shell model compared to a solid model.

4: GPU Computing implementation & target analyses (Solution

Sequences) in MSC Nastran:

GPU COMPUTING WITH MSC NASTRAN 2013

NVIDIA’s CUDA parallel programming architecture is used to implement the

compute intensive sparse solver components on the GPU. CUDA is the

hardware and software architecture that enables NVIDIA GPUs to execute

programs written with C, C++, FORTRAN, OpenCL, and other languages.

The GPU computing functionality in MSC Nastran was first released in

2012.1, and updated and enhanced in 2013. The MSC Nastran GPU

acceleration is delivered by a set of compute kernels for the symmetric

(MSCLDL) and the non-symmetric (MSCLU) sparse direct solvers, for

NVIDIA CUDA-capable GPUs.

A good GPU kernel implementation, such as the one in MSC Nastran as shown

in Figure 1, overlaps compute on GPU, data transfer in the PCIe bus, and

compute on CPU, with multiple CUDA streams. To have enough floating

point computations, such that these overlaps can occur, the front size, i.e.

nfront, has to be sufficiently large. In addition, to make the task more compute

bound instead of PCIe communication bound, the rank update size, i.e. nrank

also needs to be sufficiently large since PCIe limits the GPU performance for

small ranks for Schur complement calculation with small inner dimension.

Therefore improved performance occurs for relatively large models. In

particular, only matrices whose front sizes are larger than a certain threshold

benefit. To get good performance the GPU capability works in conjunction

with the Nastran system cells (sys653=1 and sys653=3), so that rank update

sizes greater than 320 can be used effectively with MSCLDL and MSCLU.

The three options, ie.sys653=0, 1 and 3, offer different levels of computational

efficiency, numeric accuracy, and hardware resource requirement. In general,

sys653=0 provides the most numerically stable solution and the least memory

consumption, but also the lowest performance. For slightly more memory

consumption, a positive definite, or diagonally dominant, model can be solved

by sys653=1; since sys653=1 does not do numeric pivoting, the performance is

typically the best among these three options. For SOL101 and SOL108 jobs,

sys653=3 is set as the default in MSC Nastran; the user can expect improved

performance at the possibility of larger memory requirement and less stable

numeric pivoting results. The user is advised to select the one option that is

most appropriate for the particular Nastran analysis model.

GPU COMPUTING WITH MSC NASTRAN 2013

Vastly reduced use of pinned host memory and the ability to handle arbitrarily

large fronts, for very large models (greater than 15M DOF) on a single GPU

with 6GB device memory, are some strengths of the GPU implementation in

MSC Nastran 2013. 'Staging' is a term that is used to describe how very large

fronts are handled. If the trailing submatrix is too large to fit on the GPU

device memory, then it is broken up into approximately equal-sized 'stages' and

the stages are completed in order. Multiple streams are used within a stage. So,

an arbitrarily large submatrix, say 40GB, can be solved in, say, 10 stages of

4GB each. The implementation in MSC Nastran is the lowest granularity GPU

implementation of a sparse direct solver that solves very large sparse matrix

sizes.

Figure 1: Sparse direct solver GPU kernel implementation

The MSC Nastran implementation also supports multiple GPU computing

capability for DMP (Distributed Memory Parallel) runs. In such cases of

DMP>1, multiple fronts are factorized concurrently on multiple GPUs. The

matrix is decomposed into two domains, and each domain is computed by a

MPI process.

GPU COMPUTING WITH MSC NASTRAN 2013

Typical MSC Nastran job submission commands with single and multiple

GPUs are shown below:

1) SMP (Shared Memory Parallel) + GPU acceleration of SOL101 analysis:

nast20130 jid=job101.dat mode=i8 mem=24gb parallel=4 gpuid=0 sys655=32

sys656=1024 bat=no scr=yes sdir=/tmp sys205=320

2) DMP + SMP + GPU acceleration of SOL108 analysis:

nast20130 jid=job108.dat mem=8gb dmp=2 parallel=4 gpuid=0:1 sys655=16

sys656=1024 bat=no scr=yes sdir=/tmp sys219=384

gpuid is the ID of a licensed GPU device to be used in the analysis. Multiple

IDs may be assigned to MSC Nastran DMP runs;

sys655 represent fronts with rank sizes equal to or greater than the specified

value are computed on GPU: 16 (for complex data types) or 32 (for real);

sys656 represents fronts with front sizes equal to or greater than the specified

value are computed on GPU;

sys205 is real symmetric sparse decomposition rank update size;

sys219 is complex symmetric sparse decomposition rank update size.

Any 'fat' BLAS3 code path would be potential candidate for GPU computing.

In MSC Nastran, several solution sequences are impacted to varying levels by

the sparse solver acceleration using GPUs - SOL101 (linear statics), SOL103

(normal modes), SOL108 (direct frequency), SOL111 (modal frequency),

SOL200 (design sensitivity and optimization) and SOL400 (nonlinear) fall into

this category.

It is noteworthy that in SOL101 and SOL108, the sparse matrix factorization

and solver times are a higher percentage of the overall job time (> 50%) and

hence higher speed-ups can be realized with GPU acceleration while with

SOL103 and SOL111 it is lesser. With a SOL103 normal modes analysis, say,

using a Lanczos algroithm, there are multiple compute intensive parts

including sparse matrix factorization, iteration on a block of vectors (solve) and

orthogonalization of vectors. Only the sparse matrix factorization is performed

on the GPU and hence lesser speedup from GPU acceleration.

GPU COMPUTING WITH MSC NASTRAN 2013

The GPUs supported with this implementation are the Tesla Fermi GPUs

(C2050, C2070, C2075, M2090), Quadro 6000, Tesla Kepler GPUs (K20,

K20X). Any GPU supporting CUDA compute level 2.0 or better will run.

Memory will be the most limiting factor for other. Linux and Windows 64-bit

platforms are supported.

5: Performance analysis on industry standard models and solution

sequences

Structural analysis solutions that use the sparse direct solvers are the target

applications for illustrating the use of GPU computing in MSC Nastran 2013.

Industry standard models for SOL101, SOL103 and SOL108 are used to

demonstrate the benefits of GPU computing. A range of models with varying

fidelity, from solids only to a mix of shells, solids and bars is considered.

Performance acceleration are reported relative to a serial Nastran run, which is

still widely adopted within the customer community, as well as relative to

multi-core CPU runs.

The hardware configuration used with the performance analysis consists of

NVIDIA PSG cluster with each server node having 2x 8-core Sandy Bridge

CPUs, 2.6GHz, Tesla 2x K20X GPU, 128GB memory, QDR IB interconnect.

Case 1: Stress analysis of automotive engine block (SOL101):

Number of elements: ~786K (CHEXA)

Number of nodes: ~811K

Number of degrees of freedom: ~2.4M

Estimated Maximum Front Size: ~41K

Table 1 summarizes the speed-up observed from using a single GPU.

GPU COMPUTING WITH MSC NASTRAN 2013

 Elapsed Time

in minutes for

full analysis

Speed-up

Serial (CPU only) 150 1

4-core (CPU only) 55 2.7

4-core + 1 GPU 25 6

Table 1: Single GPU speedup of SOL101 engine block

Case 2: Normal modes analysis of aerospace piston design (SOL103):

Number of elements: ~561K (CTETRA)

Number of nodes: ~881K

Number of degrees of freedom: ~2.6M

Estimated Maximum Front Size: ~19K

Table 2 summarizes the speed-up observed from using a single GPU.

 Elapsed Time

in minutes for

full analysis

Speed-up

Serial (CPU only) 128 1

4-core (CPU only) 67 1.9

4-core + 1 GPU 45 2.8

Table 2: Single GPU speedup of SOL103 piston model

GPU COMPUTING WITH MSC NASTRAN 2013

As noted in Section 4, with a SOL103 normal modes analysis using a Lanczos

algroithm, there are multiple compute intensive parts including sparse matrix

factorization, iteration on a block of vectors (solve) and orthogonalization of

vectors. Only the sparse matrix factorization is performed on the GPU and

hence lesser speedup from GPU acceleration.

Case 3: Trimmed Car body frequency response analysis (SOL108 - NVH) with

multiple GPUs:

Number of elements: ~1.04M (CQUAD4); ~109K (CTETRA); ~41K

(CTRIA3), CBARs, CELAS1s, CBUSHs, CONM2, …

Number of nodes: ~1.2M

Number of degrees of freedom: ~7.5M

Estimated Maximum Front Size: ~14K

There are a total of 100 frequency increments in the FREQ1 card and the

Lanczos algorithm (EIGRL) is used for computing the modes.

Figure 2 shows the speedup obtained from using a single GPU per node across

multiple nodes of the cluster.

Figure 2: Multi-GPU acceleration of trimmed car body NVH analysis

GPU COMPUTING WITH MSC NASTRAN 2013

Case 4: Coupled Structural-Acoustics simulation (SOL108 NVH) with multiple

GPUs:

Number of elements: ~3.8M (CTETRA)

Number of nodes: ~710K

Number of degrees of freedom: ~710K

Estimated Maximum Front Size: ~8.9K

The Nastran analysis is a coupled structural-acoustics analysis using SOL108.

Within the internal cavity, the typical responses are the sound pressures at the

ear locations of driver and passengers. There are a total of 100 frequency

increments in the FREQ1 card and the Lanczos algorithm (EIGRL) is used for

computing the modes.

Figure 3 shows the speedup obtained from using single and multiple GPUs. We

observe around 5X with a single GPU acceleration over a serial run; about 2x

with a single GPU over a 4-core SMP run, and comparing the last 2 lines

another 2x speedup with 2 GPUs over a 8 core DMP run.

Figure 3: Multi-GPU acceleration of a vehicle system SOL108 analysis

GPU COMPUTING WITH MSC NASTRAN 2013

6: Summary

GPU computing is implemented in MSC Nastran to significantly lower the

simulation times for industry standard analysis models. Vastly reduced use of

pinned memory; the ability to handle arbitrarily large front sizes for very large

models and support for the various data types (real, complex, symmetric,

unsymmetric) are some of the strengths of this implementation. Further,

multiple GPUs can be used with Nastran DMP analysis. The performance

speed-ups enabled by GPU computing will facilitate MSC Nastran users to add

more realism to their models thus improving the quality of the simulations. A

rapid CAE simulation capability from GPUs has the potential to transform

current practices in engineering analysis and design optimization procedures.

GPU COMPUTING WITH MSC NASTRAN 2013

REFERENCES

1. S. Posey and P. Wang, GPU Progress in Sparse Matrix Solvers for

Applications in Computational Mechanics, Proceedings of 50
th

 Aerospace

Sciences Meeting, AIAA, Nashville, TN, January 2012.

2. C. Liao, MSC Nastran Sparse Direct Solvers for Tesla GPUs, GPU

Technology Conference, GTC2012, San Jose, CA, May 2012.

3. CUDA Toolkit 5.0 Performance Report, NVIDIA, January 2013.

http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0064-GTC2012-MSC-Nastran-Solvers.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/CUDADownloads/CUDA_5.0_Math_Libraries_Performance.pdf

