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Abstract

Over the last decade, the popularity of Bayesian data analysis in the em-
pirical sciences has greatly increased. This is partly due to the availability
of WinBUGS—a free and flexible statistical software package that comes
with an array of predefined functions and distributions—allowing users to
build complex models with ease. For many applications in the psycholog-
ical sciences, however, it is highly desirable to be able to define one’s own
distributions and functions. This functionality is available through the Win-
BUGS Development Interface (WBDev). This tutorial illustrates the use of
WBDev by means of concrete examples, featuring the Expectancy—Valence
model for risky behavior in decision—making, and the shifted Wald distribu-
tion of response times in speeded choice.

Keywords: WinBUGS, WBDev, BlackBox, Bayesian Modeling

Introduction

Psychologists who seek quantitative models for their data face formidable challenges.
Not only are data often noisy and scarce, but they may also have a hierarchical structure,
they may be partly missing, they may have been obtained under an ill-defined sampling
plan, and they may be contaminated by a process that is not of interest. In addition,
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the models under consideration may have multiple restrictions on the parameter space,
especially when there is useful prior information about the subject matter at hand.

In order to address these kinds of real-world challenges, the psychological sciences
have started to use Bayesian models for the analysis of their data (e.g., Lee, 2008; Rouder
& Lu, 2005; Hoijtink, Klugkist, & Boelen, 2008). In Bayesian models, existing knowledge is
quantified by prior probability distributions and updated upon consideration of new data to
yield posterior probability distributions. Modern approaches to Bayesian inference include
Markov chain Monte Carlo sampling techniques (MCMC; e.g., Gamerman & Lopes, 2006;
Gilks, Richardson, & Spiegelhalter, 1996) and these allow researchers to construct proba-
bilistic models that respect the complexities in the data, allowing almost any probabilistic
model to be evaluated against data.

One of the most influential software packages for MCMC—based Bayesian inference is
known as WinBUGS (BUGS stands for Bayesian inference Using Gibbs Sampling; Cowles,
2004; Sheu & O’Curry, 1998; Lunn, Thomas, Best, & Spiegelhalter, 2000; Ntzoufras, 2009).
WinBUGS comes equipped with an array of predefined functions (e.g., sqrt for square root
and sin for sine) and distributions (e.g., the Binomial and the Normal) that allow users to
combine these elementary building blocks into complex probabilistic models almost at will.

For some psychological modeling applications, however, it is highly desirable to define
one’s own functions and distributions. In particular, user—defined functions and distribu-
tions greatly facilitate the use of psychological process model such as the Attention Learn-
ing Covering map (ALCOVE; Kruschke, 1992), the Generalized Context Model for category
learning (GCM; Nosofsky, 1986), the Expectancy—Valence model for decision-making (Buse-
meyer & Stout, 2002), the SIMPLE model of memory (Brown, Neath, & Chater, 2007), or
the Ratcliff diffusion model of response times (Ratcliff, 1978).

The ability to implement these user—defined functions and distributions can be
achieved through the use of the WinBUGS Development Interface (WBDev; Lunn, 2003),
an add—on program that allows the user to hand—code functions and distributions in Com-
ponent Pascal (e.g., http://en.wikipedia.org/wiki/Component_Pascal). The use of
WBDev brings several advantages. For instance, complicated WBDev components lead
to faster computation than their counterparts programmed in straight WinBUGS code.
Moreover, some models will only work properly when implemented in WBDev. Another
advantage of WBDev is that it compartmentalizes the code, resulting in scripts that are
easier to understand, communicate, adjust, and debug. A final advantage of WBDev is
that it allows the user to program functions and distributions that are simply not available
in WinBUGS, but may be central components of psychological models (Donkin, Averell,
Brown, & Heathcote, in press; Vandekerckhove, Tuerlinckx, & Lee, 2009).

This tutorial aims to stimulate psychologists to use WBDev by providing four thor-
oughly documented examples; for both functions and distributions, we provide a simple and
a more complex example. All examples are relevant to psychological research.! Our tuto-
rial assumes no programming experience and is intended to be accessible to psychological
scientists.

!There already exists a concise tutorial on how to write a function and how to write a distribution. The
tutorials are written by David Lunn and Chris Jackson and they come with software for writing code in
WBDev. However, these examples require advanced programming skills and they are not directly relevant
for psychologists.
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We start by discussing the WBDev implementation of a simple function that involves
the addition of variables. We then turn to the implementation of a complicated function that
involves the Expectancy—Valence model (Busemeyer & Stout, 2002; Wetzels, Vandekerck-
hove, Tuerlinckx, & Wagenmakers, in press). Next, we discuss the WBDev implementation
of a simple distribution, first focusing on the Binomial distribution, and then turning to the
implementation of a more complicated distribution that involves the shifted Wald distribu-
tion (Heathcote, 2004; Schwarz, 2001). For all of these examples, we explain the crucial
parts of the WBDev scripts and the WinBUGS code. The thoroughly commented code is
available online at www.ruudwetzels.com and in the appendix. For each example, our ex-
planation of the WBDev code is followed by application to data and the graphical analysis
of the output.

Installing WBDev (Blackbox)

Before we can begin hard—coding our own functions and distributions we need to
download and install three programs; WinBUGS, WBDev and BlackBox.2 To make sure
all programs function properly, they have to be installed in the order given below.

1. Install WinBUGS

WinBUGS is the core program that we will use. Download the latest
version from http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml (Win-
BUGS14.exe). Install the program in the default directory ./Program Files/WinBUGS14.
Make sure to register the software by obtaining the registration key and following the
instructions—WinBUGS will not work without it.

2. Install WinBUGS Development Interface (WBDev)

Download WBDev from http://www.winbugsdevelopment.org.uk/ (WBDev.exe).
Unzip the executable in your WinBUGS directory ./Program Files/WinBUGS14. Then
start WinBUGS, open the“wbdev01_09_04.txt” file and follow the instructions at the top
of the file. During the process, WBDev will create its own directory /WinBUGS14/WBDev.

3. Install BlackBox Component Builder

BlackBox is a development environment for programs written in Component Pascal
and this includes WinBUGS. Blackbox can be downloaded from http://www.oberon.ch/
blackbox.html. At the time of writing, the latest version is 1.5. Install Blackbox in
the default directory: ./Program Files/BlackBox Component Builder 1.5. Go to the
WinBUGS directory and select all files (press “Ctrl-A”) and copy them (press “Ctrl4C”).
Next, open the BlackBox directory and paste the copied files in there (press “Ctrl4+V”).
Select “ Yes to all” if asked about replacing files. Once this is done, you will be able to
open BlackBox and run WinBUGS from inside Blackbox. This completes installation of
the software, and we can start to write our own functions and distributions.

2 At the time of writing, all programs are available without charge.
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Functions

The mathematical concept of a function expresses a dependence between variables.
The basic idea is that some variables are given (the input) and with them, other variables
are calculated (the output). Sometimes, complex models require many arithmetic opera-
tions to be performed on the data. Because such calculations can become computationally
demanding using straight WinBUGS code, it can be convenient to use WBDev and imple-
ment these calculations as a function. The first part of this section will explain a problem
without using WBDev. We then show how to use WBDev to program a simple and a more
complex function.

Ezample 1: A Rate Problem

A binary process has two possible outcomes. It might be that something either
happens or does not happen, or that something either succeeds or fails, or takes one value
rather than the other. An inference that often is important for these sorts of processes
concerns the underlying rate at which the process takes one value rather than the other.
Inferences about the rate can be made by observing how many times the process takes each
value over a number of trials.

Suppose that someone plays a simple card game and can either win or lose. We
are interested in the probability that the player wins a game. To study this problem, we
formalize it by assuming the player plays n games and wins k of them. These are known, or
observed, data. The unknown variable of interest is the probability 6 that the player wins
any one specific game. Assuming the games are statistically independent (i.e., that what
happened on one game does not influence the others, so that the probability of winning is
the same for all of the games), the number of wins k follows a Binomial distribution, which
is written as

k ~ Binomial (6, n) (1)

and can be read “the success count k£ out of a total of n trials is Binomially distributed
with success rate #”. In this example, we will assume a success count of 9 (k = 9) and a
trial total of 10 (n = 10).

A rate problem: the model file. A so—called model file is used to implement the model
into WinBUGS. The model file for inferring 8 from an observed n and k looks like this:

model

# prior on the rate parameter theta
theta ~ dunif(0,1)

# observed wins k out of total games n
k ~ dbin(theta,n)

The twiddles symbol (~) means “is distributed as”. Because we use a Uniform distri-
bution between 0 and 1 as a prior on the rate parameter 6, we write theta ~ dunif (0,1).
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This indicates that, a priori, each value of 0 is equally likely. Furthermore, k is Binomially
distributed with parameters 6 and n (i.e., k ~ dbin(theta,n)). Note that dunif and
dbin are two of the predefined distributions in WinBUGS. The hash symbol (#) is used for
comments. The lines starting with this symbol are not executed by WinBUGS.

Copy the text into an empty file and save it as “model_rateproblemfunction.txt” in
the directory from where you want to work. From this point, there are various ways in
which to proceed. One way is to work from within WinBUGS; another way is to control
WinBUGS calling it from a more general purpose program. Here, we use R (a statistical pro-
gramming language)? to call WinBUGS, but widely—used alternative research programming
environments such as MATLAB are also available (Lee & Wagenmakers, in preparation).

A rate problem: the R script. The next step is to construct an R—script to call Black-
box from R.* Copy all the lines from the rate problem R-script from the appendix into an
empty R—script. When you run the script, WinBUGS starts, the MCMC sampling is con-
ducted, WinBUGS closes, and you return to R. The object that WinBUGS has returned to
R is called “rateproblem”, and this object contains all the information about the Bayesian
inference for 6.

In particular, the “rateproblem” object contains a single sequence of consecutive draws
from the posterior distribution of 6, a sequence that is generally known as an MCMC chain.
Inspection of the MCMC chain is an important part of the analysis because the chain should
be converged to the posterior distribution. Lack of convergence can for example be due to
a high correlation between different parameters or high autocorrelation between successive
draws from a single parameter.

For this example, we will only conduct a visual inspection of the chain to assess
convergence. Specifically, we check if the chain looks like a “fat hairy caterpillar”: if the
chain does not look like a fat hairy caterpillar, there might be convergence problems. For
a more detailed discussion of convergence statistics see Cowles and Carlin (1996), Gilks et
al. (1996) or Gelman and Hill (2007).
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Figure 1. The MCMC chain of 9000 draws from the posterior distribution of the rate parameter 6.

Because we observed 9 wins out of 10 games, 6 is expected to be close to .90. After
you run the code, WinBUGS should show an MCMC chain similar to the one shown in
Figure 1. This chain looks like a “fat hairy caterpillar” and we therefore assume that the
chain has converged to the posterior distribution of 6.

R is, at the time of writing, freely available from the website: http://www.r-project.org/.
4All the scripts can be found on the website of the first author: http://www.ruudwetzels. com.
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Figure 2. The posterior distribution of the rate parameter 6 after observing 9 wins out of 10 games.
The dashed gray line indicates the mode of the posterior distribution at 8 = .90. The 95% confidence
interval extends from .59 to .98.

We use the samples from Figure 1 to estimate the posterior distribution of . To
arrive at the posterior distribution, the samples are not plotted as a time series but as a
distribution. In order to estimate the posterior distribution of 8, we applied the standard
density estimator in R. Figure 2 shows that the mode of the distribution is very close to .90,
just as we expected. The posterior distribution is relatively spread out over the parameter
space, the 95% confidence interval extends from .59 to .98. This indicates the uncertainty
about the value of . Had we observed 900 wins out of a total of 1000 games the posterior
of 6 would be much more concentrated around the mode of .90, as our knowledge about the
true value of # would have greatly increased.

Ezxample 2: ObservedPlus

In this section we examine the rate problem again, but now we change the variables.
Specifically, we design a function that adds 1 to the number of observed wins, and 10 to
the number of total games. So, when we use £k =9 and n = 10 as before, we end up with

bnew = kolg +1=9+1=10 (2)

and
Npew = Nolg + 10 = 10 + 10 = 20. (3)

Hence, when we use our new function, the mode of the posterior distribution should no
longer be .90 but .50 (10/20 = .50). To obtain these results, we are going to build a
function called “ObservedPlus”, using the template “VectorTemplate.odc”. This template
is located in the folder “...\ BlackBoxComponentBuilderl.5\W Bdev\Mod”.

ObservedPlus: the WBDev script. The online script file shows text in three colors.
The parts that are colored black should not be changed. The parts in red are comments and
these are not executed by Blackbox. The parts in blue are the most relevant parts of the
code, because these are the parts that can be changed to create the desired function. The
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templates for writing the functions and distributions in this tutorial come together with the
WBDev software and were written by David Lunn and Chris Jackson.”

We now give a detailed explanation of the ObservedPlus WBDev function. The
numbers (*¥X*) correspond to the numbers in the ObservedPlus WBDev script. For this
simple example, we show some crucial parts of the WBDev scripts below. In the other
examples throughout the article, we only describe the crucial parts of the code.

(*1*) MODULE WBDevObservedPlus;

The name of the module is typed here. We have named our module ObservedPlus.
The name of the module (so the part after MODULE WBDev...) has to start with a
capital letter.

(*2*) args := "ss";

Here you must define specific arguments about the input of the function. You
can choose between scalars (s) and vectors (v). A scalar means that the input is
a single number. When you want to use a variable that consists of more numbers
(for example a time series) you need a vector. This line has to correspond with
the constants defined at (*3*). In our example, we use two scalars, the number of
successes k and the total number of observations n.

(*3*) in = 0; ik = 1;

Because of what has been defined at (*2*), WBDev already knows that there
should be two variables here. We name them in and ik, with in at the first spot
(with number 0) and ik at the second spot (with number 1). WBDev always starts
counting at 0 and not at 1.

Note that we did not name our variables n and k, but in and ¢k. This is because it
is more insightful to use n and k later on, and it is not possible to give two or more
variables the same name. Finally, note that the positions of the constants correspond
to the positions of the input of the variables into the function in the model file. We
will return to this issue later.

(*4*) n, k: INTEGER;

The variables that are used in the calculations need to be defined. Both vari-
ables are defined as integers, because the Binomial distribution only allows integers
as input: counts of successes and the total games that are played can only be positive
integers.

(*5*) n :
k :

SHORT (ENTIER(func.arguments [in] [0] .Value()));
SHORT (ENTIER (func.arguments[ik] [0] .Value()));

®The homepage of David Lunn is http://www.mrc-bsu.cam.ac.uk/BSUsite/AboutUs/People/davidl.
xml, the homepage of Chris Jackson is http://www.mrc-bsu.cam.ac.uk/BSUsite/AboutUs/People/chris/
chris_Research.shtml.
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This code takes the input values (in and ik) and gives them a name. We de-
fined two variables in (*4*), and we are now going to use them. What the script
says here is: take the input values ¢n and ik and store them in the integer variables
n and k. Because the input variables are not automatically assumed to be integers,
we have to transform them and make sure the program recognizes them as integers.
So, in other words, the first line says that n is the same as the first input variable of
the function (see Figure 3), and the second line says that k is the same as the second
input variable of the function.

| The integer “n” H is assigned I the value of ‘ the function argument | with the name “in”

L %/

n:= SHORT ENTIER(func.arguments[in][0].Value()

v
This number indicates the position of the
This part is needed to convert value within the function argument. But,
the input (a real number) into because we input a scalar, the only
an integer, because n is possibility is 0, meaning the 15 number.
defined as an integer. Would we input a vector of length n, this
could be any number between 0 and n-1.

Figure 3. A detailed explanation of part (*5*) of “ObservedPlus.odc”.

(*6*) n:=n+10;

k:=k+1;
values[0] := n;
values[1] := k;

This is the part of the script where we do the actual calculations. At the end
of this part, we fill the output array values with the new n and k.

(*7*) END WBDevObservedPlus.

The last thing that needs to be done is to make sure that the name of the
module at the end is the same as the name at the top of the file. The last line has to
end with a period. Hence, the last line of the script is ENDWBDevObservedPlus..

Now you need to compile the function by pressing “Ctrl-k”. Syntax errors cause
WBDev to return an error message. Name this file “ObservedPlus.odc¢” and save it in the
directory “...\ BlackBoxComponentBuilderl.5\W Bdev\Mod”.

We are not entirely ready to use the function yet. WBDev needs to know that
there exists a function called ObservedPlus; WBDev also needs to know what the input
looks like (i.e., how many inputs are there, what order are they presented, and are they
scalars and vectors?), and what the output is. To accomplish this, open the file “func-
tions.odc” in the directory ...\ BlackBoxComponentBuilderl.5\W Bdev\Rsrc”. Add the
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line: v<-"ObservedPlus"(s,s) "WBDevObservedPlus.Install" and then save the file.
The next time that WBDev is started, it knows that there is a function named Observed-
Plus which has two scalars as input, and a vector as output. The function is now ready to
be used in a model file.

ObservedPlus: the model file. In order to use the newly scripted function Observed-
Plus we use a model file that is similar to the model file used in the earlier rate problem
example.

model

# Uniform prior on the rate parameter
theta ~ dunif(0,1)

# use the function to get the new n and the new k
data[1:2] <- ObservedPlus(n,k)

# define the new n and new k as variables
newn <- datal[1]
newk <- datal2]

# the new observed data
newk ~ dbin(theta,newn)

We assume a Uniform prior on 6 (i.e., theta ~ dunif(0,1)). The function Ob-
servedPlus takes as input the total number of games n and the number of wins k. From
them, the new n and new k can be calculated (i.e., data[1:2] <- ObservedPlus(n,k)).
Note that functions require the use of the assignment operator (<-) instead of the twiddles
symbol (~). Remember that in the WBDev function the location of in was 0 and the
location of ik was 1. Because that order was used, the input has to have n first and then k.

Next, newn is the first number in the vector data and newk is the second (i.e., newn <-
data[1], newk <- data[2]). Remember that when scripting in WBDev, the first element
has index 0, but in the model file the first element has index 1. Finally, we use our new
variables to do inference on the rate parameter 6 (i.e., newk ~ dbin(theta,newn)).

Copy the text from the model file into an empty text file and name this file
“model_observedplus.txt”. Copy this file to the location of the model file that was used
in the rate problem example.

ObservedPlus: the R script. To run this model from R, we can use the script of the
original rate problem. The only thing that needs to be changed is the name of the model file.
This should now be “model_observedplus.txt”. Change this name and run the R—script.

After you run the code, WinBUGS should show an MCMC chain similar to the one
shown in Figure 4. The chain looks like a fat hairy caterpillar, so for now we assume it has
converged to the posterior distribution of 6.

Figure 5 shows the posterior distribution of #. The mode of the distribution is .50,
because kpe, = 10 and npey = 20. Again, because the total number of games played is fairly
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Figure 4. The MCMC chain of 9000 draws from the posterior distribution of €, after using the
function ObservedPlus.
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Figure 5. The posterior distribution of the rate parameter 6, after using the function ObservedPlus.
The dashed gray line indicates the mode of the posterior distribution at = .50. The 95% confidence
interval extends from .30 to .70.

small, the posterior distribution of  is relatively spread out (the 95% confidence interval
ranges from .30 to .70), reflecting our uncertainty about the true value of 6.

Ezample 3: The Expectancy—Valence Model

In the example described above, we could have used plain WinBUGS code instead of
writing a script in Blackbox. But sometimes it can be very useful to write a Blackbox script
instead of plain WinBUGS code, especially if the model under consideration is relatively
complex. Implementing such a model into WBDev can speed up the computation time for
inference substantially. The present example, featuring the Exptectancy—Valence model to
understand risk—seeking behavior in decision making, provides a concrete demonstration of
this general point.

Suppose a psychologist wants to study decision making of clinical populations under
controlled conditions. A task that is often used for this purpose is the “Iowa gambling
task”, developed by Bechara and Damasio (IGT; Bechara, Damasio, Damasio, & Anderson,
1994; Bechara, Damasio, Tranel, & Damasio, 1997).

In the IGT, participants have to discover, through trial and error, the difference
between risky and safe decisions. In the computerized version of the IGT, the participant
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starts with $2000 in play money. The computer screen shows players four decks of cards
(A, B, C, and D), and then they have to select a card from one of the decks. Each card is
associated with either a reward or a loss. The default payoff scheme is presented in Table 1.

Bad Decks Good Decks
A B C D

reward per trial 100 100 50 50
number of losses per 10 cards 5 1 5 1

loss per 10 cards 1250 1250 250 250
net profit per 10 cards —250 —250 250 250

Table 1: Rewards and Losses in the IGT. Cards from decks A and B yield higher rewards than cards
from decks C and D, but they also yield higher losses. The net profit is highest for cards from decks
C and D.

At the start of the IGT, participants are told that they should maximize net profit.
During the task, they are presented with a running tally of the net profit, and the task
finishes after 250 card selections.

The Expectancy—Valence (EV) model proposes that choice behavior in the IGT comes
about through the interaction of three latent psychological processes. Each of these pro-
cesses is vital to producing successful performance, typified by an increase in preference for
the good decks over the bad decks with increasing experience. First, the model assumes
that the participant, after selecting a card from deck k, k € {1,2,3,4} on trial ¢, calculates
the resulting net profit or valence. This valence v is a combination of the experienced
reward W (t) and the experienced loss L(t):

we(t) = (1 — w)W (t) + wL(?). (4)

Thus, the first parameter of the Expectancy Valence model is w, the attention weight for
losses relative to rewards, w € [0, 1].

On the basis of the sequence of valences v experienced in the past, the participant
forms an expectation Ev of the valence for deck k. In order to learn, new valences need
to update the expected valence Fvy. If the experienced valence vy is higher or lower than
expected, Fv, needs to be adjusted upward or downward, respectively. This intuition is
captured by the equation

Evp(t + 1) = Bug(t) + a(vr(t) — Eug(t)), ()

in which the updating rate a € [0,1] determines the impact of recently experienced valences.
The EV model also uses a reinforcement learning method called softmax selection or
Boltzmann exploration (Kaelbling, Littman, & Moore, 1996; Luce, 1959) to account for the
fact that participants initially explore the decks, and only after a certain number of trials
decide to always prefer the deck with the highest expected valence.
Pr[Sy(t 4+ 1)] = —0 (6OEv) (6)
2]:1 exp (0(t)Ev;)
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In this equation, 1/6(t) is the “temperature” at trial ¢ and Pr(Sy) is the probability of
selecting a card from deck k. In the EV model, the temperature is assumed to vary with
the number of observations according to

0(t) = (t/10)°, (7)

where c is the response consistency or sensitivity parameter. In fits to data, this parameter
is usually constrained to the interval [—5,5]. When c is positive, response consistency 6
increases (i.e., the temperature 1/6 decreases) with the number of observations. This means
that choices will be more and more guided by the expected valences. When c is negative,
choices will become more and more random as the number of card selections increases.

In sum, the EV model decomposes choice behavior in the lowa gambling task in three
components or parameters:

1. An attention weight parameter w that quantifies the weighting of losses versus rewards.
2. An updating rate parameter a that quantifies the memory for rewards and losses.

3. A response consistency parameter ¢ that quantifies the level of exploration.

The EV model: the WBDev script. To implement the EV model as a function in
WBDev it is useful to first describe what data is observed and passed on to WinBUGS.
In this example, we examine the data of one participant who has completed a 250—-trial
IGT. Hence, the observed data are an index of which deck was chosen at each trial, and the
sequence of wins and losses that the participant incurred.

To construct the WBDev script we use the template called “VectorTemplate.odc”
again. As in the last example, only the blue parts in the text can be altered.

(*1*) The name of the module is typed here. We want to name our module EV. The name
of the module (so the part after MODULE WBDev...) has to start with a capital
letter.

(*2*) This line has to correspond with the constants at (*3*). In the EV example, we
use 3 scalars for the 3 parameters and 3 vectors for the wins, losses and index at each
trial.

(*3*) The input of the function needs to defined here. We begin with the data vectors
(the order is arbitrary, but needs to correspond to the one used in the model file) and
we name these constants iwins, ilosses and iindex. After that, the function has as
input the parameters of the EV-model, iw, ia and ic.

(*4*) In this section we define all the variables that we need to use in our calculations.

(*5*) Here we take our input EV parameters and assign them to the variables that we
defined in part (*4%*).

(*6*) This is the part of the script where we do the actual calculations. At the end of this
part, we fill the output variable called “values”, with the output of our EV—function,
the probability of choice for a deck.
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(*7*) The last thing that needs to be done is to make sure that the name of the module at
the end is the same as the name at the top of the file. The last line has to end with
a period.

Now you need to compile the function by pressing “Ctrl-k”. Syntax errors cause
WBDev to return an error message. Name this file “EV.odc¢” and save it in the directory
“.\BlackBoxComponentBuilder1.5\W Bdev\Mod”.

We need to add this function to the function file (like in the ObservedPlus example)
so that WinBUGS knows that the EV function exists, the next time it is started. Open the
file“functions.odc” in the directory “...\ BlackBox Component Builder 1.5\ WBdev\ Rsrc”.
Add the line: v <- "EV"(v,v,v,s,s,s) "WBDevEV.Install" and then save the file. The
next time that WBDev is started, it knows that there is a function named EV which has
three vectors and three scalars as input, and a vector as output. The function is now ready
to be used in a model file.

The EV-model: the model file. In order to use the EV—-model we need to implement
the graphical model in WinBUGS. The following model file is used in this example:

model
{
# EV parameters are assigned prior distributions
w ~ dunif(0,1)
a ~ dunif(0,1)
¢ ~ dunif(-5,5)

# data from the EV function
evprobs[1:1000] <- EV(will,lo[],ind[],w,a,c)

# only use the information from the chosen deck
# see explanation below
for (i in 1:250)

{
p-EV[i,1] <- evprobs[deckA[i]]
p-EV[i,2] <- evprobs[deckB[i]]
p-EV[i,3] <- evprobs[deckC[i]]
p-EV[i,4] <- evprobs[deckD[i]]
ind[i] ~ dcat(p.EV[i,])

}

The parameters of the model, w, a, ¢ are assigned Uniform prior distributions. w and
a are bounded between 0 and 1 and ¢ is bounded between -5 and 5 (i.e., w ~ dunif(0,1), a
~ dunif(0,1), ¢ ~ dunif(-5,5)). The wins and the losses from the 250-trials are stored
in the vectors wi and lo. The indices from the decks that were chosen are stored in the vector
ind. Together with the EV parameters they are input for the EV function that calculates
the probability per choice (i.e., evprobs[1:1000] <- EV(wi[],1lo[],ind[],w,a,c)).

Note that this function calculates 1000 probabilities for a 250—trial dataset. This is
because the probability for each deck is calculated, not only for the chosen deck but for all
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decks. So at each trial, four probabilities are calculated and for 250 trials this totals 1000
probabilities. However, we are only interested in the probability of the chosen deck.

To handle this problem, we make four vectors, deckA, deckB, deckC and deckD which
are rows of length 250. Each vector contains a sequence of numbers where the number at
position ¢ is calculated by adding four to the number at position ¢t — 1 (z; = 241 +4). The
vector deckA starts with number 1, deckB starts with number 2, deckC starts with number
3 and deckD starts with number 4. Using these vectors, we can disentangle the probabilities
for each deck at each trial, evprobs [deckA[i]] corresponds to the probabilities of choosing
deck 1 at each trial i, evprobs[deckB[i]] to the probabilities of choosing deck 2 at each
trial 4, evprobs[deckC[i]] to the probabilities of choosing deck 3 at each trial ¢ and
evprobs[deckD[i]] to the probabilities of choosing deck 4 at each trial.

Finally, we state that the choice for a deck at trial i (the observed data vector ind) is
Categorically distributed (i.e., ind[i] ~ dcat(p.EV[i,])). The Categorical distribution
is the probability distribution for the choice of a card deck. This distribution is a general-
ization of the Bernoulli distribution for a categorical random variable. (i.e., the choice for
one of the four decks at each trial of the IGT). Copy the text from the model into an empty
file and save it as “model_ev.txt” in the directory from where you want to work.

The EV model: the R script.

To run this model and to supply WinBUGS with the data, we use the R—script given
in the appendix. Copy the script from the appendix and change the working directory to
the directory where the model file is located. This script contains fictitious data from a
person who completed a 250-trial IGT.% After you run the code, WinBUGS should show
three MCMC chains similar to the ones shown in Figure 6.
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Figure 6. Three MCMC chains of 9000 draws each for the three EV parameters, the attention
weight parameter w, the updating rate parameter a and response consistency parameter c.

5The data can be downloaded from www.ruudwetzels.com.
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For all the EV—parameters, the chains look like fat hairy caterpillars and hence appear
to have converged to the posterior distribution. Because the EV—parameters are slightly
harder to estimate than the rate parameters from the earlier examples —due to the com-
plexity of the EV-model— we have to make sure that we are sampling from the correct
posterior distribution of w, a and c.

Besides visual inspection of the MCMC chain, we now compute the often used measure
of convergence, the R (Rhat) statistic (Gelman, Carlin, Stern, & Rubin, 2004, pp. 295-297).
Rhat allows the user to compare the within— to between—chain variance from the sampled
values, and then provides an easy—to—interpret measure of whether independent chains have
converged to sample from the same distribution. After convergence, Rhat should be very
close to 1 (at least smaller than 1.1). Note that Rhat can never be lower than 1.

To check for convergence, we run three chains, with all three having a different starting
position, and then calculate Rhat. In this example, we observe that for each EV—parameter,
the chains have converged properly (Rhat =~ 1). Note that it is important that the chains
for all parameters have converged.
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— — | 95% |
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=
[72]
c
[]
o

T T 1 I T 1 T T 1

0.0 0.5 1.0 0.0 0.5 1.0 1 0 1

w a c

Figure 7. The posterior distributions of the three EV parameters, w, a and ¢. The dashed gray
lines indicate the modes of the posterior distributions at w = .43, a = .25 and ¢ = 0.58. The 95%
confidence intervals for w, a and ¢ extend from .38 to .57, from .17 to .36 and from 0.31 to 0.74,
respectively.

After having assured ourselves that the chains have converged we can plot the resulting
posterior distributions. Figure 7 shows that the posterior mode of the attention weight
parameter w is .43, the posterior mode of the update parameter a is .25 and the posterior
mode of the consistency parameter c is 0.58.

On an average computer, it takes about 85 seconds to generate these chains. Had we
have used plain WinBUGS instead of WBDev code to compute these chains, the calculation
time would have taken approximately 15 minutes. Hence, implementing the function into
WBDev speeds up the analysis by a factor 10. However, the speed up is not the only
advantage of implementing functions into WBDev. Sometimes, complex models will only
work properly when implemented in WBDev. Another advantage of WBDev is that it
compartmentalizes the code, resulting in scripts that are easier to understand, communicate,
adjust, and debug.
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Distributions

Statistical distributions are invaluable in psychological research. For example, in
the simple rate problem discussed earlier, we use the Binomial distribution to model our
data. WinBUGS comes equipped with an array of predefined distributions, but it does
not include all distributions that are potentially useful for psychological modeling. Using
WBDev, researchers can augment WinBUGS to include these desired distributions.

In the next section we will explain how to write a new distribution, starting with the
Binomial distribution as a simple introduction, and then considering the more complicated
shifted Wald distribution.

Ezxample 4: Binomial distribution

Obviously, the Binomial distribution is already hard—coded in WinBUGS. But, be-
cause it is a very well-known and relatively simple distribution, it serves as a useful first
example.

To program a distribution in WBDev, we can use the distribution template
that is already in the Blackbox directory. This file is located in the folder:
“.\BlackBoxComponentBuilder1.5\W Bdev\Mod”. In order to program the distribu-
tion, we first need to write out the log likelihood function:

log (Pr(K = k)) = log (f(k;n,0))

Binomial distribution: the WBDev script. Please see the appendix for the WBDev
code of the Binomial distribution.

(*1*) The name of the module is typed here. We want to name our module BinomialTest.
The name of the module (so the part after MODULE WBDev...) has to start with a
capital letter.

(*2*) The parameters of the input of the Binomial distribution, theta and n.

(*3*) Here global variables can be declared. With global is meant that it is loaded only
once, while the value of the variable may be needed many times. This part of the
template does not need to be changed for this example.

(*4*) We have to declare what type of arguments are the input of the distribution. In this
case these are two scalars (i.e. two single numbers), theta and n.

(*5*) This describes whether the distribution is discrete or continuous. When the dis-
tribution is discrete, isDiscrete should be set to TRUE. When the distribution is

continuous, it should be set to FALSE. For the Binomial distribution isDiscrete is set
to TRUE.
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The other thing that is defined in this part of the script is if the cumulative distribution
is to be provided. If so, canIntegrate should be set to TRUE. If this is set to true, an
algorithm should be provided at (*11*). We set canlntegrate to FALSE because we
did not implement the cumulative distribution.

(*6*) This part of the code should define the natural bounds of the distribution. In our
case, we take 0 as a lower bound and n as an upper bound, because k£ can never be
larger than n.

(*7*) As the name implies, this part is the part where the full log likelihood of the dis-
tribution is defined. This is an implementation of the log likelihood as defined in
Equation 8.

(*8*) Sometimes WinBUGS can ignore the normalizing constants. When that is the case,
WinBUGS calls LogPropLikelihood(.). In our example, we refer back to the full log
likelihood function.

(*9%*) Occasionally, WinBUGS can make use of the LogPrior(.) procedure, which is pro-
portional to the real log—prior function. In other words, this procedure omits the
additive constants on the log scale. In our example, we just refer back to the full log
likelihood function.

(*10%*) This is the part where the cumulative distribution is defined when in part (*7%)
canlntegrate is set to TRUE. Because we set this to FALSE, we do not define anything
in this section.

(*11*) The DrawSample(.) procedure returns a pseudo-random number from the new
distribution. We do not use this function, because we do not need to draw values
from the new distribution. You would have to do this when you have missing values.

(*12%*) The last thing that needs to be done is to make sure that the name of the module
at the end is the same as the name at the top of the file. The last line has to end with
a period.

Now you need to compile the function by pressing “Ctrl-k”. Syntax errors cause WBDev
to return an error message. Save this file as “BinomialTest.odc¢” and copy this file into the
appropriate blackbox directory, ...\ BlackBoxComponentBuilder1.5\W Bdev\Mod”.

Open the distribution file “distributions.odc” in the directory “...\ BlackBozx
Component Builder 1.5\ WBdev\ Rsrc¢”. Add the line s ~ "BinomialTest"(s,s)
"WBDevBinomialTest.Install" and then save it. The next time you start Blackbox, the
program will know that there exists a distribution called BinomialTest, and that the inputs
are two scalars (single numbers).

Binomial distribution: the model file. To use the scripted Binomial distribution, we
write a model file that is very similar to the model file used in the rate problem example.
We only need to change the name of the distribution from dbin to BinomialTest.
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model

# prior on rate parameter theta
theta~dunif (0,1)

# observed wins k out of total games n
k~BinomialTest (theta,n)

This example is essentially the same statistical problem as the first example, the
rate problem. Ten games are played (i.e., n = 10) and nine games are won (i.e., k = 9).
We assume a Uniform prior on 6 (i.e., theta ~ dunif(0,1)). The observed wins k are
distributed as our newly made BinomialTest with rate parameter theta and total games
n (i.e., k~BinomialTest (theta,n)). With theta and k defined, this completes the model
for BinomialTest. Save this file as “model_rateproblemdistribution.txt” and copy it to your
working directory.

Binomial distribution: the R script. The last thing that we need to do is to start R
and copy the code from the appropriate R—script from the appendix into R. Change the
working directory to the directory where your modelfile is located. After you run the code,
the results should be similar to those shown in Figure 1 and Figure 2.

The shifted Wald distribution

Many psychological models use response times (RTs) to infer latent psychological
properties and processes (Luce, 1986). One common distribution used to model RTs is
the inverse Gaussian or Wald distribution (Wald, 1947). This distribution represents the
density of the first passage times of a Wiener diffusion process toward a single absorbing
boundary, as shown in Figure 8, using three parameters.

The parameter v reflects the drift rate of the diffusion process. The parameter a
reflects the separation between the starting point of the diffusion process and the absorbing
barrier. The third parameter, T,,, is a positive-valued parameter that shifts the entire
distribution. The probability density function for this shifted Wald distribution is given by:

B a [a —v(t —T.))?
f(tv,a,Te) = me}(p{ T }, 9)

which is unimodel and positively skewed. Because of these qualitative properties, it is a
good candidate for fitting empirical RT distributions. As an illustration, Figure 9 shows
changes in the shape of the shifted Wald distribution as a result of changes in the shifted
Wald parameters v, a, and T,,.

The shifted Wald parameters have a clear psychological interpretation (e.g., Heath-
cote, 2004; Luce, 1986; Schwarz, 2001, 2002). Participants are assumed to accumulate noisy
information until a predefined threshold amount is reached and a response is initiated. Drift
rate v quantifies task difficulty or subject ability, response criterion a quantifies response
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Wald distribution

Figure 8. A diffusion process with one boundary. The shifted Wald parameter a reflects the
separation between the starting point of the diffusion process and the absorbing barrier, v reflects
the drift rate of the diffusion process and T, is a positive-valued parameter that shifts the entire
distribution.
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Figure 9. Changes in the shape of the shifted Wald distribution as a result of changes in the
parameters v, a and T,,. Each panel shows the shifted Wald distribution with different combinations
of parameters.

caution, and the shift parameter T, quantifies the time needed for non—decision processes
(Matzke & Wagenmakers, in press). Experimental paradigms in psychology for which it
is likely that there is only a single absorbing boundary include saccadic eye movement
tasks with few errors (Carpenter & Williams, 1995), go/no—go tasks (Gomez, Ratcliff, &
Perea, 2007) or simple reaction time tasks (Luce, 1986, pp. 51-57). Here we show how to
implement the shifted Wald distribution in WBDev.

Shifted Wald distribution: the WBDeuv script. Please see the appendix for the WBDev
code. Open Blackbox, and save the content of this part of the appendix to a new file. Name
this file “ShiftedWald.odc”.

(*1%*) The name of the module is typed here. We want to name our module ShiftedWald.
The name of the module (so the part after MODULE WBDev...) has to start with a

capital letter.
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(*2*) The parameters of the distribution, which, in this case are the drift rate v, response
caution a and shift Tp,.

(*3*) Here global variables can be declared. A global variable is loaded only once, but the
value of the variable is usually needed many times.

(*4*) We have to declare what type of arguments are the input of the distribution. In this
case these are the three scalar parameters of the shifted Wald distribution.

(*5*) This part of the code describes whether samples from the distribution are discrete
or continuous. When the distribution is discrete, isDiscrete should be set to TRUE.
When the distribution is continuous, it should be set to FALSE. For the shifted—Wald
distribution isDiscrete is FALSE.

The other this part of the script defines is whether the cumulative distribution is to
be provided. If so, canlntegrate should be set to TRUE. If this is set to true, an
algorithm should be provided at (¥11%). We set canIntegrate to FALSE because we
did not implement the cumulative distribution.

(*6*) This part of the code should define the natural bounds of the distribution. In our
case, we take Ter as a lower bound and INF (meaning +00) as an upper bound.

(*7*) As the name implies, this part is the part where the full log likelihood of the distri-
bution is defined.

(*8*) Sometimes WinBUGS can ignore the normalizing constants. When that is the case,
WinBUGS calls LogPropLikelihood(.). In our example, we refer back to the full log
likelihood function.

(*9*) Occasionally, WinBUGS can make use of the LogPrior(.) procedure, which is pro-
portional to the real log—prior function. In other words, this procedure omits the
additive constants on the log scale. In our example, we just refer back to the full log
likelihood function.

(*10*) Here the cumulative distribution can be defined in case canlntegrate at (*7*) had
been set to TRUE. Because we have set canlntegrate to FALSE, we do not define
anything in this section.

(*11*) The DrawSample(.) procedure returns a pseudo-random number from the new
distribution. We do not use this function, because we do not need to draw values
from the new distribution. You would have to do this when you have missing values.

(*12%*) The last thing that needs to be done is to make sure that the name of the module
at the end is the same as the name at the top of the file. The last line has to end with
a period.

Now you need to compile the function by pressing “Ctrl-k”. Syntax errors cause WBDev
to return an error message. Save this file as “ShiftedWald.odc” and copy this file into the
appropriate blackbox directory, “...\ BlackBoxComponent Builder1.5\W Bdev\Mod”.
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Open the distribution file “distributions.odc” in the directory “...\ BlackBox
Component Builder 1.5\ WBdev\ Rsrc¢”. Add the line s ~ "ShiftedWald"(s,s,s)
"WBDevShiftedWald.Install" and then save it. The next time you start Blackbox, the
program will know that there exists a distribution called ShiftedWald, and that the inputs
are three scalars (single numbers).

The shifted Wald distribution: the model file. Once we implemented the WBDev
function in blackbox, we can use the function ShiftedWald in the model. The model file is
as follows:

model

{
# prior distributions for shifted Wald parameters
# drift rate
v ~ dunif(0,10)

# boundary separation
a ~ dunif (0,10)

# Non-decision time
Ter ~ dunif(0,1)

# data are shifted Wald distributed
for (i in 1:nrt)
{

rt[i] ~ ShiftedWald(v,a,Ter)
}

The priors for v and a, are Uniform distributions that range from 0 to 10 (i.e., v
~ dunif(0,10), i.e., a ~ dunif(0,10)). The prior for T, is a Uniform distribution
that ranges from 0 to 1 (i.e., Ter ~ dunif (0,1). With the priors in place, we can use our
ShiftedWald function to estimate the posterior distributions for the three model parameters
v, a and T,, (i.e., rt[i] ~ ShiftedWald(v,a,Ter)). Save the lines as a text file and name
it “model_shiftedwaldind.txt”.

Shifted Wald distribution: the R script. Now, copy the R—script into an R—file and
run it. Change the directory of the location of the model file and the location of your copy
of Blackbox to the appropriate directories. The R—script loads a real dataset from a lexical
decision task (Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). Nineteen participants
had to quickly decide whether a visually presented letter string was a word (e.g., table) or a
nonword (e.g., drapa). We will fit the response times of correct “word” responses of the first
participant to the shifted Wald distribution. The response time data can be downloaded
from www.ruudwetzels.com. After you run the code, WinBUGS should show an MCMC
chain similar to the one shown in Figure 10.

The chains do not look like fat hairy caterpillars. They seem to have a lot of freedom
to move around the parameter space, so we cannot be certain that the chains have converged
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Figure 10. The MCMC chains of of the marginal posteriors of all three individual Wald parameters,
v, a and Ter.

properly. To assess convergence more formally, we ran three chains using different starting
points for each chain. Next, we calculated Rhat to check whether the chains have converged
to the same stationary distribution. For each parameter, Rhat is smaller than 1.1, so we
can tentatively assume that the chains have converged.
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Figure 11. The posterior distribution of the three Wald parameters v, a and T,. The dashed gray
lines indicate the modes of the posterior distributions at v = 5.57, a = 1.09 and T, = .33. The 95%
confidence intervals for v, a and T, extend from 4.12 to 8.00, from 0.80 to 3.52 and from .09 to .36,
respectively.

Figure 11 shows the posterior distribution of the three shifted Wald parameters, v, a
and Tg.. One thing that stands out is that the posterior distributions of the shifted Wald
parameters are very spread out across the parameter space. The 95% confidence intervals
for v, a and Ty, extend from 4.12 to 8.00, from 0.80 to 3.52 and from .09 to .36, respectively.
It seems that data from only one participant are not enough to yield very accurate estimates
of the shifted Wald parameters. In the following section we show how our estimates will
improve when we use a hierarchical model and analyze all participants simultaneously.
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Shifted Wald distribution: a hierarchical extension. In an experimental setting, the
problem of few data per participant can be addressed by hierarchical modeling (Farrell &
Ludwig, 2008; Gelman & Hill, 2007; Rouder, Sun, Speckman, Lu, & Zhou, 2003; Shiffrin,
Lee, Wagenmakers, & Kim, 2008). In our shifted Wald example, each subject is assumed to
generate their data according to the shifted Wald distribution, but with different parameter
values. We extend the individual analysis and assume that the parameters for each subject
are chosen from a Normal distribution. This means that all individual participants are
assumed to have their shifted Wald parameters drawn from the same group distribution,
allowing all the data provided by all the partipants to be used for inferring parameter
values, without making the unrealistic assumption that participants are identical copies of
each other.

The model file that implements the hierarchical shifted Wald analysis is shown below:

model

# prior distributions for group means:
v.g ~ dunif(0,10)
a.g ~ dunif(0,10)
Ter.g ~ dunif(0,1)

# prior distributions for group standard deviations:
sd.v.g ~ dunif(0,5)

sd.a.g ~ dunif(0,5)

sd.Ter.g ~ dunif(0,1)

# transformation from group standard deviations to group
# precisions (i.e., 1/var, which is what WinBUGS expects
# as input to the dnorm distribution):

lambda.v.g <- pow(sd.v.g,-2)

lambda.a.g <- pow(sd.a.g,-2)

lambda.Ter.g <- pow(sd.Ter.g,-2)

# data come From a shifted Wald distribution

for (i in 1:mns) #subject loop

{

individual parameters drawn from group level
normals censored to be positive using the
I(0,) command:

.i[i] ~ dnorm(v.g,lambda.v.g)I(0,)

.i[i] ~ dnorm(a.g,lambda.a.g)I(0,)

Ter.i[i] ~ dnorm(Ter.g,lambda.Ter.g)I(0,)

p < H H H

# for each participant,
# data are shifted Wald distributed
for (j in 1:nrt[i])
{
rt[i,j] ~ ShiftedWald(v.il[il,a.i[i],Ter.i[il)
X
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The hierarchical analysis of the reaction time data proceeds as follows. The
prior for the group means is a Uniform distribution, ranging from 0 to 10 (i.e., v.g
~ dunif(0,10), a.g ~ dunif(0,10)) or from 0 to 1 (i.e,, Ter.g ~ dunif(0,1)).
The standard deviations are drawn from a Uniform distribution ranging from 0
to 5 (ie, sd.v.g ~ dunif(0,5), sd.a.g ~ dunif(0,5)) or from 0 to 1 (ie,
sd.Ter.g ~ dunif(0,5)). Next, the standard deviations have to be transformed
to precisions (i.e., lambda.v.g <- pow(sd.v.g,-2), lambda.a.g <- pow(sd.a.g,-2),
lambda.Ter.g <- pow(sd.Ter.g,-2)). Then, the individual parameters v.i, a.i and
Ter.i are drawn from Normal distributions with corresponding group means and
group precisions (i.e., v.i[il~dnorm(v.g,lambda.v.g)I(0,), a.i[i] ~ dnorm(a.g,
lambda.a.g)I(0,), Ter.i[i] ~ dnorm(Ter.g, lambda.Ter.g)I(0,)). For each in-
dividual, the data are distributed according to a shifted Wald distribution with
their own individual parameters. Save the model file as a text file and name it:
“model_shiftedwaldhier.txt”.

When we run this model using the R—script for the hierarchical analysis, we first focus
on the group mean parameters v.g, a.g and T,.g. Figure 12 shows the MCMC chains from
the three shifted Wald parameters. To check for convergence, we ran three chains, with all
three having a different starting position, and then calculate Rhat. The chains appear to
have converged, an impression that is supported by Rhat values close to 1 (Rhat for Ter.g,
a.g and v.g is approximately 1.).
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Figure 12. Three chains, consisting of 9000 MCMC draws each, from the posterior distributions of
the three “group-level” shifted Wald parameters, v.g, a.g and Te,.g.

Figure 13 shows the posterior distributions of the shifted Wald group—mean parame-
ters. The distributions indicate that there is relatively little uncertainty about the parameter
values. The posterior distributions of the group—mean parameters are concentrated around
their modes v.g = 4.27, a.g = 0.97 and T,,.g = 0.36. The 95% confidence intervals for v.g,
a.g and Tp,.g extend from 3.80 to 4.70, from 0.85 to 1.10 and from .34 to .38, respectively.

It is informative to consider the influence of the hierarchical extension on the indi-
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Figure 13. The posterior distribution of the three “group-level” shifted Wald parameters v.g, a.g
and Tg,..g. The dashed gray lines indicate the modes of the posterior distributions at v.g = 4.27,
a.g = .97 and T,..g = .36. The 95% confidence intervals for v.g, a.g and T,,.g extend from 3.80 to
4.70, from 0.85 to 1.10 and from .34 to .38, respectively.

vidual estimates for the shifted Wald parameters. Specifically, we can examine the MCMC
chains for the same subject that we analyzed in the individual shifted Wald analysis, but

now in the hierarchical setting.
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Figure 14. The MCMC chains of of the marginal posteriors of all three individual Wald parameters,
v, a and Ter, analyzed using a hierarchical model.

After you run the R—script for the hierarchical analysis of the shifted Wald example,
WinBUGS should show three MCMC chains similar to the ones shown in Figure 14. The
chains are better behaved than the chains from the individual analysis (Figure 10). The
hierarchical extension leads to a practical improvement, through faster convergence for the
computational MCMC estimation process. However, the hierarchical extension also leads to
a theoretical improvement because compared to the individual analysis, the chains appear
much less diffuse. This shows that the hierarchical model leads to a better understanding

of the model parameters.
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Figure 15. The posterior distribution of the three individual shifted Wald parameters v.i, a.i and
Ter.i from the hierarchical analysis (solid lines) and the individual analysis (dotted lines). The
dashed gray lines indicate the modes of the posterior distributions from the hierarchical analysis
at v.i[1] = 4.57, a.i[1] = 0.96 and T,,.i[1] = .34. The 95% confidence intervals in the hierarchical
model for v.i[1], a.i[l] and Te,.i[1] extend from 3.86 to 5.49, from 0.75 to 1.24 and from .31 to
.37 respectively.

To underscore this point, Figure 15 shows the posterior distributions of the individual
shifted Wald parameters, for both the hierarchical analysis and the individual analysis. It
is clear that the posterior distributions of the shifted Wald parameters are less spread out
in the hierarchical analysis than in the individual analysis. Also, the parameter estimates
from the hierarchical analysis are slightly different than those from the individual analysis.
More precisely, they seem to have moved towards their common group mean. This effect is
called shrinkage, and is a standard and important property of hierarchical models (Gelman
et al., 2004).

In sum, the WBDev implementation of the shifted Wald distribution enables re-
searchers to infer shifted Wald parameters from reaction time data. Not only does Win-
BUGS allow straightforward analyses on individual data, it also makes it easy to add hi-
erarchical structure to the model. This can greatly improve the quality of the posterior
estimates, and is often a very sensible and informative way of analyzing data.

Discussion

In this paper we have shown how the WinBUGS Development Interface (WBDev)
can be used to help psychological scientists model their sparse, noisy, but richly structured
data. We have shown how a relatively complex function such as the Expectancy—Valence
model can be incorporated in a fully Bayesian analysis of data. Furthermore, we have
shown how to implement statistical distributions, such as the shifted Wald distribution,
that have specific application in psychological modeling, but are not part of a standard set
of statistical distributions.

The WBDev program is set up for Bayesian modeling, and is equipped with mod-
ern sampling techniques such as Markov chain Monte Carlo. These sampling techniques
allow researchers to construct quantitative Bayesian models that are non-linear, highly
structured, and potentially very complicated. The advantages of using WBDev together
with WinBUGS are substantial. WinBUGS code can sometimes lead to slow computation
and complex models might not work at all. In addition, scripting some components of the
model in WBDev can speed up the computation time considerably. Furthermore, compart-
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mentalizing the scripts can make the model easier to understand and debug. Moreover,
WinBUGS facilitates statistical communication between researchers who are interested in
the same model. The most basic advantage, however, is that WBDev allows the user to
program functions and distributions that are simply unavailable in WinBUGS.

Once a core psychological model is implemented in WBDev, it is straightforward
to take into account variability across participants or items, using a hierarchical, multi—
level extension (i.e., models with random effect for subjects or items). This approach
allows a researcher to model individual differences as smooth variations in parameters of
a certain cognitive model, and allows for different groups of subjects to use fundamentally
different cognitive models as well. That way, we can capture a broad range of between—
group differences and also the within—group difference at the same time, all within one
statistical procedure. This eliminates the problem of different groups within one subjects
pool, it is a way to handle contaminants in the data and it gives more insight in the data.
For these reasons, we think the fully Bayesian analysis of highly structured models is likely
to be a driving force behind future theoretical and empirical progress in the psychological
sciences.
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Appendix A
RateProblem

RateProblem, the R script

I
#iH#

### R script for the analysis of a rate problem using
### the WinBUGS predefined distribution. The data are
### assumed to be Binomially distributed.

H#t#

#it# This code is run by (1) Opening this script in R
#Hit# (2) selecting all lines (Ctrl-A)
#it (3) pressing (Ctrl-R)

#it#

B T

### Load the R2WinBUGS library
library (R2WinBUGS)

### Direct R to the appropriate directory, where all
### the rateproblem files are located.
setwd("C:/WBDevTutorial/examplel")

### Define the observed successes k and the total trials n
k=9
n=10

### Make a list containing the data to be used by WinBUGS
data=list("k","n"

### Initialize the parameters (in this case, we draw a
### random number from O to 1).
inits=function()
{
list(theta=runif(1,0,1))
}

### Make a vector with the parameters that are supposed
### to be returned to R by WinBUGS.
parameters=c("theta")

### Some parameters of the analysis itself

nburnin = 1000 # how many burnin iterations
niter = 10000 how many total iteratiomns
nchains = 1 how many chains
what is the location of blackbox
note that this directory is different

# from the working directory!
"C:/Program Files/BlackBox Component Builder 1.5"

# what is the name of the modelfile
modelfile="model_rateproblemfunction.txt"

#
#
#
#

bugsdir

### Call WinBUGS from R with the bugs command.
rateproblem = bugs(data,

30
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inits,

parameters,
model.file=modelfile,
n.chains=nchains,
n.iter=niter,
n.burnin=nburnin,
n.thin=1,

DIC=T,
bugs.directory=bugsdir,
codaPkg=F,

debug=T,

clearWD=T)

# Now when you close WinBUGS you have an object called "rateproblem" in R.
# This object contains all the information you require.

Appendix B
ObservedPlus

ObservedPlus, the R—script

I
Hi#H#

### R script for the analysis of a rate problem using
### the WinBUGS predefined distribution. The data are
### assumed to be Binomially distributed.

#H##

#it# This code is run by (1) Opening this script in R
#it (2) selecting all lines (Ctrl-A)
#it (3) pressing (Ctrl-R)

#i#t#

HHHHHHBRHHHHBRHHHH BB R B R SHH RS H R R R R H RS

### Load the R2WinBUGS library
library (R2WinBUGS)

### Direct R to the appropriate directory, where all
### the observedplus files are located.
setwd("C:/WBDevTutorial/example2")

### Define the observed successes k and the total trials n
k=9
n=10

### Make a list containing the data to be used by WinBUGS
data=list("k","n"

### Initialize the parameters (in this case, we draw a
### random number from U(0,1)).
inits=function()
{
list(theta=runif(1,0,1))
}

### Make a vector with the parameters that are supposed
### to be returned to R by WinBUGS.
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parameters=c("theta")

### Some parameters of the analysis itself
nburnin = 1000 # how many burnin iterations
niter = 10000
nchains = 1

how many total iterations
how many chains
what is the location of blackbox
note that this directory is different
# from the working directory!
bugsdir = "C:/Program Files/BlackBox Component Builder 1.5"
# what is the name of the modelfile
modelfile="model_observedplus.txt"

H H H H

### Call WinBUGS from R with the bugs command.

observedplus = bugs(data,
inits,
parameters,
model.file=modelfile,
n.chains=nchains,
n.iter=niter,
n.burnin=nburnin,
n.thin=1,
DIC=T,
bugs.directory=bugsdir,
codaPkg=F,
debug=T,
clearWD=T)

# Now when you close WinBUGS you have an object called "observedplus" in R.

# This object contains all the information you require.

ObservedPlus, the WBDev script

(*1%) MODULE WBDevObservedPlus;

IMPORT
WBDevVector,
Math;
TYPE
Function = POINTER TO RECORD (WBDevVector.Node) END;
Factory = POINTER TO RECORD (WBDevVector.Factory)END;
VAR

fact-: WBDevVector.Factory;

PROCEDURE (func: Function) DeclareArgTypes
(OUT args: ARRAY OF CHAR);
BEGIN
(x2%) args := "ss";
END DeclareArgTypes;

PROCEDURE (func: Function) Evaluate
(OUT values: ARRAY OF REAL);
CONST
(*3%) in = 0; ik = 1;
VAR
(*x4x*) n,
k: INTEGER;

32
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BEGIN
(*5%) n := SHORT(ENTIER(func.arguments[in] [0].Value()));
k := SHORT(ENTIER(func.arguments[ik] [0].Value()));
(*6%) n:=n+10;
k:=k+1;
values[0] := n;
values[1] := k;

END Evaluate;

PROCEDURE (f: Factory) New (option: INTEGER): Function;

VAR

func: Function;
BEGIN

NEW(func); func.Initialize; RETURN func;
END New;

PROCEDURE Installx;

BEGIN
WBDevVector.Install(fact);

END Install;

PROCEDURE Init;

VAR
f: Factory;
BEGIN
NEW(f); fact := f;
END Init;
BEGIN
Init;

(*7%) END WBDevObservedPlus.

Appendix C
Expectancy—Valence Model

Ezxpectancy—Valence model, the R—script

HHHHHHBRHHHHBR A H BB FHH BB GH BB HF R R R RS

H#it#
##t#
H#it#
#it#
##t#
H#t#
H#it#
##t#

R script for the analysis of a Expectancy Valence data
using WinBUGS (making use of the WBDev function EV).

This code is run by (1) Opening this script in R
(2) selecting all lines (Ctrl-A)
(3) pressing (Ctrl-R)

HHHHHH SRR

### Load the R2WinBUGS library

library (R2WinBUGS)

### Direct R to the appropriate directory, where all
### the expectancy valence files are located.

33
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setwd("C:/WBDevTutorial/example3")

H#t#
#it#
#it#
H#t#
#it#
#it#
H#t#
#it#
#it#

Load the data

of a participant that has completed a

250-trial Iowa Gambling Task containing:
the choice (ind) at each trial: deck 1, 2, 3 or 4

the wins (wi)
4 vectors for

and losses (lo) at each trial
indexing in the model file:

(deckA,deckB,deckC,deckD) .

The data file

(evdata.RData) can be downloaded from

www.ruudwetzels.com. This file should also be

in the working directory.
load("evdata.RData")

### Make a list containing the data to be used by WinBUGS
data=list("wi","lo","ind","deckA","deckB","deckC","deckD")

### Initialize the parameters
inits=function()

{

list (w=runif(1,0.2,0.8) ,a=runif(1,0.2,0.8),c=runif(1,-1,1))

}

### Make a vector with the parameters that are supposed
### to be returned to R by WinBUGS.
para.meters=c ( llwll s ] all s ] c ] )

### Some parameters of the analysis itself
nburnin = 1000 #

niter = 10000

nchains = 3

H H B H

#

how many burnin iterations

how many total iteratiomns

how many chains

what is the location of blackbox

note that this directory is written down different
from the working directory!

bugsdir = "C:/Program Files/BlackBox Component Builder 1.5"
modelfile="model_ev.txt"

### Call WinBUGS from R with the bugs command.
ev = bugs(data,
inits,
parameters,
model.file=modelfile,
n.chains=nchains,
n.iter=niter,
n.burnin=nburnin,
n.thin=1,

DIC=

T,

bugs.directory=bugsdir,
codaPkg=F,
debug=T,

clearWD=T)

# Now when you close WinBUGS you have an object called "ev" in R.
# This object contains all the information you require.
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Ezxpectancy—Valence model, the WBDev script

(*1%*)  MODULE WBDevEV;

IMPORT
WBDevVector,
Math;
TYPE
Function = POINTER TO RECORD (WBDevVector.Node) END;
Factory = POINTER TO RECORD (WBDevVector.Factory) END;
VAR

fact-: WBDevVector.Factory;

PROCEDURE (func: Function) DeclareArgTypes
(OUT args: ARRAY OF CHAR);
BEGIN
(*2%)  args := "vvvsss";
END DeclareArgTypes;

PROCEDURE (func: Function) Evaluate
(OUT values: ARRAY OF REAL);
CONST
(*3%) iwins=0; ilosses=1; iindex=2; iw=3; ia=4; ic=5;

VAR
(*4x)  Ev,

S

: ARRAY 4 OF REAL;

wi,
lo
: ARRAY 250 OF REAL;

ind
: ARRAY 250 OF INTEGER;

pEV: ARRAY 250,4 OF REAL;
theta,

w,

a,

c,

v

: REAL;

trial,
i

INTEGER;

BEGIN

(*5%) Ww:

func.arguments [iw] [0] .Value();
func.arguments[ia] [0] .Value();
func.arguments[ic] [0] .Value();

o p
non

FOR i:= O TO 249 DO;
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wil[i]:= func.arguments[iwins] [i].Value();
lo[i]:= func.arguments[ilosses] [i].Value();
ind[i] := SHORT(ENTIER(func.arguments[iindex] [i].Value()));

FOR i:=0 TO 3 DO;

pEV[0,i]:=0.25;
Ev[i] :=0;

FOR trial := 0 TO 248 DO;

theta:=0;
theta:= Math.Power( ( (trial+1)/10 ),(c) );
v:= (1-w) * wi[triall+w*lo[triall;

IF trial = O THEN;
Ev[ ind[triall-1 ]

ax v;
ELSE;

Ev[ ind[triall-1 ] (1-a) * Ev[ ind[triall-1 ] + ax*v;

END;

FOR i:=0 TO 3 DO;
s[i]:= Math.Exp(Ev[i]*theta) + 0.000000000000000000000000001;
IF s[i] = INF THEN;
s[i] := 1000000000000000000;
END;
END;

FOR i:=0 TO 3 DO;
pEV[trial+1,i]:= (s[i]l/ (s[0]+s[1]+s[2]+s[3]1));
END;

END;
FOR trial:= 0 TO 249 DO;
FOR i:= 0 TO 3 DO;
values[trial*4+i] := pEV[trial,il;
END;
END;

END Evaluate;

PROCEDURE (f: Factory) New (option: INTEGER): Function;

func: Function;

NEW(func); func.Initialize; RETURN func;

PROCEDURE Installx;

WBDevVector.Install(fact);

END Install;

PROCEDURE Init;

f: Factory;

36
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BEGIN
NEW(f); fact := f;
END Init;

BEGIN
Init;
(*7%) END WBDevEV.

Appendix D
BinomialTest

BinomialTest, the R—script

I
Hi#H#

### R script for the analysis of a rate problem using
### WinBUGS. The data are assumed to be Binomially

### distributed (using the BinomialTest distribution).
#HiH#

#it# This code is run by (1) Opening this script in R
#it# (2) selecting all lines (Ctrl-A)
#Hit# (3) pressing (Ctrl-R)

H#t#

HHHHHH SRR

### Load the R2WinBUGS library
library (R2WinBUGS)

### Direct R to the appropriate directory, where all
### the observedplus files are located.
setwd("C:/WBDevTutorial/exampled")

### Define the observed successes k and the total trials n
n=10

### Make a list containing the data to be used by WinBUGS
data=1list ("k","n")

### Initialize the parameters (in this case, we draw a
### random number from O to 1).
inits=function()
{
list(theta=runif(1,0,1))
}

### Make a vector with the parameters that are supposed
### to be returned to R by WinBUGS.

parameters=c("theta")

### Some parameters of the analysis itself

nburnin = 1000 # how many burnin iterations
niter = 10000 # how many total iterations
nchains = 1 # how many chains

# what is the location of blackbox
# note that this directory is different
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# from the working directory!
bugsdir = "C:/Program Files/BlackBox Component Builder 1.5"
modelfile="model_rateproblemdistribution.txt"

### Call WinBUGS from R with the bugs command.

binomialtest = bugs(data,

inits,

parameters,

model.file=modelfile,

n.chains=nchains,

n.iter=niter,

n.burnin=nburnin,

n.thin=1,

DIC=T,

bugs.directory=bugsdir,

codaPkg=F,

debug=T,

clearWD=T)

# Now when you close WinBUGS you have an object called "binomialtest" in R.
# This object contains all the information you require.

BinomialTest, the WBDev script

(*1%) MODULE WBDevBinomialTest;
IMPORT
WBDevUnivariate,
WBDevRandnum, WBDevSpecfunc,
Math;

(*2x) CONST

itheta = 0; in = 1;
TYPE
StdNode = POINTER TO RECORD (WBDevUnivariate.StdNode) END;
Left = POINTER TO RECORD (WBDevUnivariate.Left) END;
Right = POINTER TO RECORD (WBDeVUnivariate.Right) END;
Interval = POINTER TO RECORD (WBDevUnivariate.Interval) END;
Factory = POINTER TO RECORD (WBDevUnivariate.Factory) END;
VAR

(¥3%x)  log2Pi: REAL;
fact-: WBDevUnivariate.Factory;

(*4x)  PROCEDURE DeclareArgTypes (OUT args: ARRAY OF CHAR);
BEGIN
args := "ss";
END DeclareArgTypes;

(*6%)  PROCEDURE DeclareProperties (OUT isDiscrete, canIntegrate: BOOLEAN);
BEGIN
isDiscrete := TRUE;
canIntegrate := FALSE;
END DeclareProperties;

(*6%) PROCEDURE NaturalBounds
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(node: WBDevUnivariate.Node; OUT lower, upper:REAL);

VAR

n:INTEGER;

BEGIN
n:= SHORT(ENTIER(node.arguments[in] [0].Value()));
lower := 0;
upper := n;

END NaturalBounds;

(x7x) PROCEDURE LogFullLikelihood
(node: WBDevUnivariate.Node; OUT value: REAL);
VAR
n,
k,
i: INTEGER;

logterml,
logterm?2,
logterm3,
logtermtotal,
theta: REAL;
BEGIN
k :=SHORT (ENTIER (node.value));
n:= SHORT(ENTIER(node.arguments[in] [0].Value()));
theta:=node.arguments[itheta] [0].Value();
logterml:=0;
logterm2:=0;
logterm3:=0;
FOR i:= 1 TO n DO;
logterml:= Math.Ln(i)+logtermi;

END;
FOR i:= 1 TO (n-k) DO;

logterm2:= Math.Ln(i)+logterm2;
END;
FOR i:= 1 TO (k) DO;

logterm3:= Math.Ln(i)+logterm3;
END;

logtermtotal:=logterml-logterm2-logterm3;
value:= k*Math.Ln(theta)+(n-k)*Math.Ln(1-theta)+logtermtotal;
END LogFullLikelihood;
(*8%)  PROCEDURE LogPropLikelihood (node: WBDevUnivariate.Node; OUT value: REAL);
VAR
BEGIN
LogFullLikelihood(node, value);

END LogPropLikelihood;

(*%9%) PROCEDURE LogPrior (node: WBDevUnivariate.Node; OUT value: REAL);
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(x11%)
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VAR
BEGIN

LogFullLikelihood(node, value);
END LogPrior;

PROCEDURE Cumulative

(node: WBDevUnivariate.Node; x: REAL; OUT value:

VAR
BEGIN
END Cumulative;

PROCEDURE DrawSample

(node: WBDevUnivariate.Node; censoring: INTEGER;

VAR
BEGIN
END DrawSample;

40

REAL) ;

OUT sample: REAL);

PROCEDURE (f: Factory) New (option: INTEGER): WBDevUnivariate.Node;

VAR
node: WBDevUnivariate.Node;

stdNode: StdNode; left: Left; right: Right; interval: Interval;

BEGIN
CASE option OF
|WBDevUnivariate.noCensoring:
NEW (stdNode) ;
node := stdNode;
|WBDevUnivariate.leftCensored:
NEW(left);
= left;
|WBDevUnivariate.rightCensored:
NEW(right) ;
node := right;
|WBDevUnivariate.intervalCensored:
NEW(interval);
node :=

node

interval;
END;
node.SetCumulative (Cumulative) ;

node.

END New;

SetDeclareArgTypes (DeclareArgTypes) ;
SetDeclareProperties(DeclareProperties) ;
.SetDrawSample (DrawSample) ;
node.SetLogFullLikelihood (LogFullLikelihood) ;
node.SetLogPropLikelihood (LogPropLikelihood) ;
node.SetLogPrior(LogPrior) ;
node.SetNaturalBounds (NaturalBounds) ;
node.Initialize;

RETURN node;

node.
node

PROCEDURE Installx;

BEGIN

WBDevUnivariate.Install(fact);

END Install;

PROCEDURE Init;

VAR
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f: Factory;

BEGIN
log2Pi := Math.Ln(2 * Math.Pi());
NEW(f); fact := f;

END Init;

BEGIN

Init;

*) END WBDevBinomialTest.

Appendix E
Shifted Wald Distribution

Shifted Wald Distribution, the R—script for individual analysis

HEHHHHHHH R R

#it#

### R script for the analysis of individual reaction
### time data. The data are assumed to be shifted Wald

#it#
H#t#
#it#
H#t#
H#t#
#it#

distributed.
This code is run by (1) Opening this script in R
(2) selecting all lines (Ctrl-A)
(3) pressing (Ctrl-R)

HHHHHH AR

libr

setw

load

### Load the R2WinBUGS library

ary (R2WinBUGS)
### Direct R to the appropriate directory, where all
### the shifted wald files are located.
d("C:/WBDevTutorial/example51")

### The data file containing the response time
### data (rtdata.RData) can be downloaded from
### www.ruudwetzels.com. This file should also be
### in the working directory.

("rtdata.Rdata")

### the data from the first participant (rt)
### total data points (urt)

rt=rtdatal1,]
nrt=nrt[1]
### Make a list containing the data to be used by WinBUGS
data = list("rt", "nrt")
### Initialize the parameters
inits =function()
{
list(v=runif(1,3,6),a=runif(1,3,6),Ter=runif(1,0.3,0.6))
}

### Make a vector with the parameters that are supposed
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### to be returned to R by WinBUGS.
parameters = c("v", "a", "Ter")

### Some parameters of the analysis itself
nburnin = 1000 # how many burnin iterations
niter = 10000 how many total iterations
nchains = 3 how many chains
what is the location of blackbox
note that this directory is different
# from the working directory!
bugsdir = "C:/Program Files/BlackBox Component Builder 1.5"
modelfile="model_shiftedwaldind.txt"

H OB OH ®

### Call WinBUGS from R with the bugs command.

swald.ind = bugs(data,
inits,
parameters,
model.file=modelfile,
n.chains=nchains,
n.iter=niter,
n.burnin=nburnin,
n.thin=1,
DIC=T,
bugs.directory=bugsdir,
codaPkg=F,
debug=T,
clearWD=T)

# Now when you close WinBUGS you have an object called "swald.ind" in R.
# This object contains all the information you require.

Shifted Wald Distribution, the R—script for hierarchical analysis

I
Hi#H#

### R script for the hierarchical analysis of reaction
### time data, using WinBUGS. The data are assumed to
### be shifted Wald distributed.

#H##

#it# This code is run by (1) Opening this script in R
#it# (2) selecting all lines (Ctrl-A)
#it# (3) pressing (Ctrl-R)

##t#

HHHHHHBRHHHHBR A H BB R R B RH BB HH R R R R H RS

### Load the R2WinBUGS library
library (R2WinBUGS)

### Direct R to the appropriate directory, where all
### the shifted wald files are located.
setwd("C:/WBDevTutorial/example52")

### Load the reaction time data
### this data can be downloaded from www.ruudwetzels.com
### This file should also be in the working directory.
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load("rtdata.Rdata")

### Load the data from all participants (rt)
### the total data points for each individual (nrt)
### the total amount of participants (us)
rt=rtdata
ns=length(nrt)

### Make a list containing the data to be used by WinBUGS
data = list("rt", "nrt", "ns")

### Initialize the parameters

inits =function()
{
list(v.g=runif(1,3,6),a.g=runif(1,3,6),Ter.g=runif(1,0.3,0.6))
}

### Make a vector with the parameters that are supposed
### to be returned to R by WinBUGS.
parameters = c("v.g", "a.g", "Ter.g","v.i","a.i","Ter.i")

### Some parameters of the analysis itself
nburnin = 1000 # how many burnin iterations
niter = 10000 how many total iterations
nchains = 3 how many chains
what is the location of blackbox
note that this directory is different
# from the working directory!
bugsdir = "C:/Program Files/BlackBox Component Builder 1.5"
modelfile="model_shiftedwaldhier.txt"

H OB OH H

### Call WinBUGS from R with the bugs command.

swald.hier = bugs(data,
inits,
parameters,
model.file=modelfile,
n.chains=nchains,
n.iter=niter,
n.burnin=nburnin,
n.thin=1,
DIC=T,
bugs.directory=bugsdir,
codaPkg=F,
debug=T,
clearWD=T)

# Now when you close WinBUGS you have an object called "swald.hier" in R.
# This object contains all the information you require.

Shifted Wald Distribution, the WBDev script

(*1%) MODULE WBDevShiftedWald;
IMPORT
WBDevUnivariate,
WBDevRandnum, WBDevSpecfunc,
Math;
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CONST
drift = 0; bound = 1; shift = 2;

TYPE
StdNode = POINTER TO RECORD (WBDevUnivariate.StdNode) END;
Left = POINTER TO RECORD (WBDevUnivariate.Left) END;
Right = POINTER TO RECORD (WBDevUnivariate.Right) END;
Interval = POINTER TO RECORD (WBDevUnivariate.Interval) END;
Factory = POINTER TO RECORD (WBDevUnivariate.Factory) END;
VAR

log2Pi: REAL;
fact-: WBDevUnivariate.Factory;

PROCEDURE DeclareArgTypes (OUT args: ARRAY OF CHAR);
BEGIN

args := "sss";
END DeclareArgTypes;

PROCEDURE DeclareProperties (OUT isDiscrete, canIntegrate: BOOLEAN) ;
BEGIN

isDiscrete := FALSE;

canIntegrate := FALSE;
END DeclareProperties;

PROCEDURE NaturalBounds (node: WBDevUnivariate.Node; OUT lower, upper:REAL);
VAR
Ter: REAL;
BEGIN
Ter:= node.arguments [shift] [0].Value();
lower := Ter;
upper := INF;
END NaturalBounds;

PROCEDURE LogFullLikelihood (node: WBDevUnivariate.Node; OUT value: REAL);
VAR
v, a, Ter, t, x: REAL;
BEGIN
t:=node.value;
v:=node.arguments [drift] [0] .Value();
a:=node.arguments [bound] [0] .Value();
Ter:=node.arguments [shift] [0] .Value();

x := t-Ter;
value:= -0.5%log2Pi + Math.Ln(a) - 1.5#Math.Ln(x) - ((a-v*x)*(a-v*x))/(2%x);

END LogFullLikelihood;

PROCEDURE LogPropLikelihood (node: WBDevUnivariate.Node; OUT value: REAL);
VAR

BEGIN

LogFullLikelihood(node, value);
END LogPropLikelihood;
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PROCEDURE LogPrior (node: WBDevUnivariate.Node; OUT value: REAL);
VAR
BEGIN
LogFullLikelihood(node, value);
END LogPrior;

PROCEDURE Cumulative

(node: WBDevUnivariate.Node; x: REAL; OUT value: REAL);
VAR

BEGIN

END Cumulative;

PROCEDURE DrawSample

(node: WBDevUnivariate.Node; censoring: INTEGER; OUT sample: REAL);
VAR
BEGIN
END DrawSample;

PROCEDURE (f: Factory) New (option: INTEGER): WBDevUnivariate.Node;
VAR
node: WBDevUnivariate.Node;
stdNode: StdNode; left: Left; right: Right; interval: Interval;
BEGIN
CASE option OF
|WBDevUnivariate.noCensoring:
NEW (stdNode) ;
node := stdNode;
|WBDevUnivariate.leftCensored:
NEW (left) ;
node := left;
|WBDevUnivariate.rightCensored:
NEW(right) ;
node := right;
|WBDevUnivariate.intervalCensored:
NEW(interval);
node := interval;
END;
node.SetCumulative (Cumulative) ;
node.SetDeclareArgTypes (DeclareArgTypes) ;
node.SetDeclareProperties(DeclareProperties);
node.SetDrawSample (DrawSample) ;
node.SetLogFullLikelihood (LogFullLikelihood) ;
node.SetLogPropLikelihood(LogPropLikelihood) ;
node.SetLogPrior (LogPrior) ;
node.SetNaturalBounds (NaturalBounds) ;
node.Initialize;
RETURN node;
END New;

PROCEDURE Installx;
BEGIN
WBDevUnivariate.Install (fact);
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END Install;

PROCEDURE Init;

VAR
f: Factory;

BEGIN
log2Pi := Math.Ln(2 * Math.Pi());
NEW(f); fact := f;

END Init;

BEGIN

Init;

END WBDevShiftedWald.
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