
Design and Implementation of a
Generic Recommender and Its

Application to the Music Domain

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Informatik

eingereicht von

Roman Cerny
Matrikelnummer 9725401

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Wien, 15.10.2008
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Eidesstattliche Erklärung
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht
benützt und die den benutzten Quellen wörtlich oder inhaltlich entnomme-
nen Stellen als solche kenntlich gemacht habe.

i

Acknowledgements
I would like to dedicate this thesis to my great-aunt Anna Zanetos, who
always cared for me like a grandmother and wishes nothing more than
seeing me become the first member of our family to ever graduate.

My greatest appreciation belongs to both, my mother Anna Cerny and
my beloved wife Daniela Cerny, who have always supported me through-
out my studies and were always confident of me. During hard times in my
life their unconditional love always rejuvenated my mental powers.

I want to thank the Smart Agent Technologies Studio (SAT)1 (which
is part of the Research Studios Austria Forschungsgesellschaft mbH
(RSA)2) for creating a context that made this work possible. Many thanks
go to my colleagues Erich Gstrein and Brigitte Krenn who guided me
during this project in countless discussions with many useful technical
and research-based advices. Furthermore I want to thank my colleague
Stephan Zavrel for providing his in-depth knowledge of Web services. Spe-
cial thanks go to my colleague and dear friend Florian Kleedorfer for many
precious hints and suggestions concerning all issues one runs through
when writing a masters thesis, no matter if they were technical, research-
based, methodical or even psychological. Thanks also go to my long-time
friend Christian Zanoni for sharing his time and know-how on the conver-
sion of some picture files.

Deep gratitude is owned by Erich Gstrein for providing an adapted im-
plementation of one of the recommender methods he has been research-
ing on recently (the SAT Association Rule Miner) for the integration as
offline item association generator.

Moreover I want to thank Erich Gstrein, Florian Kleedorfer, Brigitte
Krenn, Gernot Sattler, Patrick Wertitsch, and Stephan Zavrel for proof-
reading and feedback on the work at hand.

Special thanks also go to my supervisor Prof. Dr. Andreas Rauber for
guidance and constructive criticism.

Furthermore I want to thank the developers of the client applications
Music Explorer 3 (Peter Hlavac), RASCALLI Environment4 (David Mann)
and Visual Browser 5 (Xiwen Cheng and Peter Adolphs) for the good co-
operation during the integration of the Recommender System (RS).

1http://sat.researchstudio.at, as of 2008/08/21
2http://www.researchstudio.at, as of 2008/08/21
3http://rascalli.researchstudio.at/searcher.form, as of 2008/09/30
4http://intralife.researchstudio.at/rascalli, as of 2008/09/30
5http://rascalli.dfki.de/live/, as of 2008/09/30

ii

Additionally I would like to thank Sean Owen (the author of the Taste6

framework) for assisting me during the integration of Maven2 builds into
the Taste framework and the evaluation of a SlopeOne algorithm.

Further thanks go to the Verisign Communications GmbH7 for their
good cooperation and especially for providing a large dataset of user rat-
ings on music items (in order to evaluate a rating-based recommender
algorithm).

The work is partially funded from the EC Cognitive Systems Project
FP6-IST-027596-2004 RASCALLI 8, which is funded under the 6th FWP
(Sixth Framework Programme). Parts of this thesis were incorporated in
RASCALLI deliverables.

Finally kindly regards go to all of my fellow students I shared time with
during my studies: Arash Amiri, Martin Beinhart, Markus Cozowicz, Wolf-
gang Deix, Peter Hlavac, Jörg Irran, Florian Kleedorfer, Christoph Leder,
Andreas Müller, Bernhard Pollak, Stefan Pomajbik, Stefan Rank, Robert
Stepanek and Stephan Zavrel. Due to all of you it was possible to survive
boring lectures and pass incredibly difficult courses without ever losing
sight of the funny sides of life.

6http://taste.sourceforge.net/, as of 2008/06/20
7http://www.3united.com, as of 2008/06/20
8http://www.ofai.at/rascalli, as of 2008/06/21

iii

Kurzfassung
Durch den stetigen Anstieg der Anzahl zur Verfügung stehender Daten-
quellen durch technologische Entwicklungen steigt der Bedarf an sinn-
vollen Techniken zur Filterung großer Datenmengen ebenso konstant. Für
diesen Zweck wurden bisher diverse existierende Recommender Sys-
teme eingesetzt. Oftmals liegt der Fokus solcher Systeme auf einem
eingeschränkten Datenbestand oder auf einer bestimmten Menge von
Vorschlagsmethoden.

Diese Arbeit präsentiert ein generisches Recommender Framework,
welches einfach an neue Domänen adaptiert werden kann und das
leicht mit unterschiedlichsten Recommender Algorithmen erweitert wer-
den kann. Algorithmen werden unterteilt in: offline Generatoren, die
aus Benutzeraktionen Regeln ableiten, und online Recommender Ser-
vices. Um Mandantenfähigkeit zu gewährleisten beinhaltet das Konzept
verschiedene Typen für Produkte, Aktionen und Verbindungen zwischen
Produkten. Weiters unterstützt das System die Einbindung von fremden
Daten und bietet eine Menge an Web Services für domänenunabhängige
und domänenabhängige Vorschläge.

Wir zeigen die technische Architektur sowie ein Real-Life Szenario,
in das unser System integriert wurde. Außerdem geben wir einen Aus-
blick über zukünftige Verbesserungen wie ein Administrations-Tool, wei-
tere Vorschlagsmethoden oder neue Ansätze die Benutzer-Tags verwen-
den.

iv

Abstract
Since the amount of available data sources increases steadily with techno-
logical developments, the need for useful filtering techniques for large data
sets rises constantly. Various existing recommender systems have been
used for this task. Often the focus lies on a specific content, or a defined
set of recommender techniques.

This work introduces a generic recommender framework that can be
easily adapted to new domains and extended with different recommender
algorithms. It divides algorithms into offline generators computing busi-
ness rules out of user actions, and online recommender services. In or-
der to service multiple tenants the concept consists of various types for
items, actions and item associations. Furthermore it allows for the inte-
gration of third-party data and provides a set of Web services for domain-
independent as well as domain-specific recommendations.

We demonstrate the technical architecture as well as a real-life sce-
nario where we integrated our system and give a prospect to future en-
hancements like an administration tool, additional recommender tech-
niques, or novel approaches that use custom user tags.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Structure of the Work . 2

2 Theory of Recommender Systems 3
2.1 Basic Functionality . 3
2.2 Historical Overview . 4
2.3 Methodical Overview . 5

2.3.1 The Formal Recommendation Problem 5
2.3.2 Collaborative Methods 6
2.3.3 Content-Based Methods 8
2.3.4 Hybrid Methods . 9

2.4 Evaluation Measures . 10
2.4.1 Predictive Accuracy Metrics 10
2.4.2 Classification Accuracy Metrics 11
2.4.3 Prediction-Rating Correlation 12
2.4.4 Common Datasets 12

2.5 Common Problems . 14
2.6 Further Topics of Research 15

3 Existing Recommender Frameworks 18
3.1 Research Projects . 18
3.2 Commercial Frameworks 20
3.3 Open-Source Frameworks 20

4 Concept 23
4.1 Identified Features . 23
4.2 Concept Overview . 24
4.3 Components . 25

4.3.1 Items and Item Types 25
4.3.2 Actions and Action Types 25
4.3.3 Generators . 26
4.3.4 Item Association Rules and Association Types . . . 27
4.3.5 Non-Personalised Recommendations 28
4.3.6 Management of Multiple Tenants 29

vi

CONTENTS

4.3.7 Minimising Complexity 29
4.3.8 Post-Filtering . 30
4.3.9 Direct and Aggregated Ratings 30

5 Technical Realisation 33
5.1 Architecture Overview . 33
5.2 Software Infrastructure . 35
5.3 Modules and Packages . 35
5.4 Software Design . 41

5.4.1 DAO Interfaces . 41
5.4.2 Core Services . 41
5.4.3 Domain Services . 42
5.4.4 Webapp Services 42
5.4.5 Generators . 42
5.4.6 Utility Classes . 43

5.5 Data Model . 45
5.6 Deployment Architecture . 48
5.7 Supported Recommender Features 50

5.7.1 An Offline Generator 50
5.7.2 An Online Generator 50
5.7.3 Statistics over Rankings and Ratings 52

5.8 Web Service Interfaces . 52
5.9 Preliminary Evaluation of a Rating-Based Algorithm 53

6 Applications 55
6.1 The RASCALLI Project . 55
6.2 Use Case for the Recommender System 56
6.3 Introduction of Involved Applications 58

6.3.1 The SAT Music Explorer 58
6.3.2 The DFKI Visual Browser 58
6.3.3 The SAT RASCALLI Environment 61

7 Conclusion 63

8 Future Work 64

A Evaluation of a Slope One Recommender Implementa-
tion on a Large Music Database 75
A.1 Goal . 75
A.2 The Slope One Recommender Algorithm 75

vii

CONTENTS

A.2.1 Basic Functionality 76
A.2.2 Open-Source Frameworks Providing a Slope One

Implementation . 76
A.3 The Open-Source Collaborative Filtering Framework Taste . 77
A.4 Evaluation . 78

A.4.1 Integration . 78
A.4.2 Database Connectivity 78
A.4.3 Evaluation Datasets 79
A.4.4 General Test Setup 79
A.4.5 Test Environment . 80
A.4.6 Test Results . 80

A.5 Conclusion . 85
A.6 Latest Taste Enhancements 86

B Software Infrastructure 87
B.1 Software Components . 87

B.1.1 Programming Language 87
B.1.2 Dependency Injection and Aspects 88
B.1.3 Database . 88
B.1.4 Logging . 88
B.1.5 Caching . 88
B.1.6 Web Services and Web Application Server 88
B.1.7 Profiling . 89

B.2 Development Tools . 89
B.2.1 IDE . 89
B.2.2 Version Control . 90
B.2.3 Build Process . 90
B.2.4 Continuous Integration 90
B.2.5 Testing . 90
B.2.6 Issue Management 91

B.3 Additional Output . 91

C Web Service Interfaces 92
C.1 ShopRecommenderWS . 92
C.2 MusicShopRecommenderWS 97
C.3 RascalliDFKIWS . 107
C.4 RascalloModellingWS . 109

viii

Chapter 1
Introduction

1.1 Motivation

During the past years we have worked together with business partners of
the Smart Agent Technologies Studio (SAT)1, researching the field of rec-
ommender systems and introducing new approaches for the customers’
recommenders. Our tasks focused mainly on the improvement of the qual-
ity of recommendations used in a large music download platform in order
to increase in sales. We ran evaluations on prototypical algorithm imple-
mentations over the customers’ content and provided our learnings and
findings on a conceptual level to our partners.

Before we launched this project and started working on this master’s
thesis more customers with applications in different domains showed in-
terest in our research. Since the type of data varies (and is strongly bound
to the customer’s domain), a single best suiting recommender technique
cannot be determined for different needs. Suitable methods can vary from
rating-based over content-based approaches to various hybrid combina-
tions.

To adapt to the customers’ requirements we decided to implement our
own RS that would be able to meet different types of requirements.

1.2 Goals

Since recommenders are mainly used in Web applications the require-
ments of such systems are mostly domain-specific and tend to change
quite often, as the market adapts to new domains rapidly when a profitable
outcome can be expected.

In order to adjust to the fast development of different recommender
approaches we focused our work on the following research questions:

• Which components and their implied features are nec-
essary for a generic recommender system to be easily
adaptable to new algorithms and methods, as well as to

1http://sat.researchstudio.at, as of 2008/08/21

1

CHAPTER 1. INTRODUCTION

allow for the operation as a managed system for many ap-
plications, tenants, and domains?

• What is necessary to provide a basic implementation of
such components and how do they work together in a real-
life application?

Thus we have derived the following goals for the work presented in this
diploma thesis:

• Identify the major features of a generic RS.

• Design and implement components providing such features, and fur-
thermore combine these components to a RS.

• Exemplarily integrate this RS into a real-life application for a specific
use case, and demonstrate the functional efficiency.

We would like to note that it is not our goal to implement and evaluate
different recommender algorithms but rather to show that our RS concept
works by implementing one prototypical algorithm and applying it to the
RS.

1.3 Structure of the Work

Starting with a brief introduction in the field of recommender systems,
Chapter 2 presents different types of recommender techniques as well as
various evaluation measures and discusses common issues. The subse-
quent chapter (Chapter 3) lists some existing recommender frameworks,
giving an overview of academic recommender projects and commer-
cial recommender products as well as some open-source recommender
frameworks. The Chapters 4 and 5 are the main chapters of this work,
presenting the concept, picturing the most important modules, and de-
scribing the implementation details of the RS. We demonstrate a real-life
showcase and applications that use the RS in Chapter 6. We summarise
our learnings and conclusions in Chapter 7 and give an outlook on pos-
sible enhancements and further research in Chapter 8. In Appendix A
we present the evaluation of a rating-based recommender algorithm im-
plementation using an open-source recommender framework while Ap-
pendix B presents the Software (SW) infrastructure. Finally Appendix C
lists the existing Web service interfaces.

2

Chapter 2
Theory of Recommender Systems

Abstract

This chapter introduces the field of recommender systems. After explain-
ing the basic mode of operation of a RS in Section 2.1 and giving a brief
overview of the history in Section 2.2, we present common methods as
well as their differences in Section 2.3 and evaluation measures for them
in Section 2.4. Section 2.5 points out typical problems that are often ob-
served in a RS. Finally Section 2.6 gives a survey of common issues re-
lated to recommender systems.

2.1 Basic Functionality

Recommender systems are used for the task of information filtering. Users
are confronted with a large amount of information in many applications. In
order to reduce the information presented to the user, recommender sys-
tems usually filter out a set of items that should fit the user’s preferences
best.

The most common use case for recommender systems is to suggest
items which are of interest to users. These compiled item lists can be
based on explicit and implicit user preferences, the preferences of other
users, and users’ as well as items’ attributes. For example a music related
recommender may compute the recommendations combining explicit user
ratings (e.g. User A rated track X a 4 out of 5), implicit data (e.g. User B
purchased track Y), user demographic information (e.g. User A is 32 years
old) and item content information (e.g. Track X belongs to genre pop, or
track Y runs at a speed of 90 BPM1).

Technically, recommender systems are assigned to tasks of Regres-
sion (the prediction of real values, e.g. ratings), Classification (the classifi-
cation to one class out of a finite set of classes, e.g. ”recommend” and ”do
not recommend”), and Correlation (computing the similarity between two
ordered lists of items, e.g. user preferences and item features).

1stands for Beats Per Minute

3

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

Recommender systems can provide a useful alternative to common
search algorithms since they help users to access items fitting to their pref-
erences effortlessly, and even discover items they might not have found by
themselves.

2.2 Historical Overview

The basic roots of recommender systems are derived from the fields of
Information Filtering and Information Retrieval (Belkin and Croft, 1992)
while alterations were introduced using methods from the field of Data
Mining.

The first system (that would nowadays be called a Recommender Sys-
tem) was introduced by Goldberg et al. (1992) and was called Tapestry.
(The authors used the phrase Collaborative Filtering (CF) and many oth-
ers followed doing so for some years.) We prefer the more general term
Recommender System as it was established later by Resnick and Varian
(1997).

Only two years later the GroupLens2 Group presented their first rec-
ommender system (Resnick et al., 1994) and the system Ringo (Upendra,
1994; Upendra and Maes, 1995) was launched. Both used findings and
learnings propagated by Goldberg et al. (1992).

Fab presented by Balabanović and Shoham (1997) is considered the
first hybrid RS combining a content-based filtering approach with tradi-
tional CF.

Although recommender systems were quite popular in the academic
sector in the mid nineties, only the introduction of item-based CF by Sar-
war et al. (2001) lead to a breakthrough in commercial systems as well.
This approach was extended by Linden et al. (2003) for the usage in Ama-
zon.com’s3 Web portal. The success of this approach led to a wide accep-
tance of recommender systems. Moreover academic research was driven
further as Lemire and Maclachlan (2005) introduced a set of Slope One
predictors for online rating-based CF and provided an implementation of
the algorithm (Lemire and McGrath, 2005).

Further topics of research were, among others, hybrid recommender
systems (Burke, 2002), attacks in CF systems (Burke et al., 2006), expla-
nations (Herlocker et al., 2000) and trust (Massa and Avesani, 2004).4

2http://www.grouplens.org, as of 2008/08/29
3http://www.amazon.com, as of 2008/10/07
4also see Section 2.6 on page 15 et seq.

4

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

2.3 Methodical Overview

In this section we give a brief introduction to the most common recom-
mender methods.5

Adomavicius and Tuzhilin (2005) classify recommender systems into
three different categories (collaborative recommendations, content-based
recommendations, and hybrid approaches), based on how recommenda-
tions are made.6 This section describes the formal recommendation prob-
lem and furthermore introduces methods for recommendations of the cat-
egories (just mentioned).

2.3.1 The Formal Recommendation Problem

The common formulation reduces the recommendation problem to the es-
timation of ratings for unseen items, based on the given user ratings to
seen items and some additional information depending on the type of rec-
ommender system. Being able to estimate such ratings, a recommender
system can then provide items with the highest estimated ratings to the
user.

”More formally, the recommendation problem can be formu-
lated as follows: Let C be the set of all users and let S be the set
of all possible items that can be recommended, such as books,
movies, or restaurants. (...) Let u be a utility function that mea-
sures the usefulness of item s to user c, i.e., u : C × S → R,
where R is a totally ordered set (e.g., nonnegative integers or
real numbers within a certain range). Then, for each user c ∈ C,
we want to choose such item s′ ∈ S that maximizes the user’s
utility.”7

∀c ∈ C, s′c = arg max
s∈S

u(c, s) (2.1)

5We want to note that we found more than 250 publications concerning either CF or
RS and therefore compiling a full list of all types of recommender methods ever introduced
to the community absolutely exceeds the capacity of this thesis. Actually we believe that
a RS for publications as well as improved visualisations, e.g. computing the correlation
between publications (using methods from the fields of Natural Language Processing and
Data Mining) could drastically reduce the amount of time required for the exploration of
any research field.

6We would like to note that there exist different classifications of recommender sys-
tems in the literature (Resnick and Varian, 1997; Schafer et al., 1999; Burke, 2002), but
we rather use the classification provided by Adomavicius and Tuzhilin (2005).

7cp. Adomavicius and Tuzhilin (2005, 734-735)

5

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

The spaces S (set of possible items) and C (set of all users) can be
very large ranging up to millions of items and users. The utility u is usually
presented by a rating in recommender systems. For each user (from the
user space C) additional characteristics (e.g. personal or demographic
information) can be added. Similarily all items are defined with a set of
characterisics as well. Since the utility u is usually not defined ion the
whole C × S space, it needs to be extrapolated, for e.g. estimating the
rating value for unseen items.

2.3.2 Collaborative Methods

Collaborative methods basically recommend items to the user that users
with similar tastes and preferences liked in the past, trying to predict the
utility of items for a particular user.

”More formally, the utility u(c, s) of item s for user c is estimated
based on the utilities u(cj, s) assigned to item s by those users
cj ∈ C who are ”similar” to user c. For example, in a movie
recommendation application, in order to recommend movies to
user c, the collaborative recommender system tries to find the
”peers” of user c, i.e., other users that have similar tastes in
movies (rate the same movies similarly). Then, only the movies
that are most liked by the ”peers” of user c would be recom-
mended.”8

According to (Breese et al., 1998), algorithms for collaborative recom-
mendations can be separated into memory-based and model-based ap-
proaches.

Memory-Based Algorithms Memory-based algorithms aim at predicting
ratings of the active user based on previous user ratings from other
users and the users preferences. It is assumed that the predicted
rating value pu,j of the active user u for the unseen item j is a weighted
sum of the ratings ru,j of other users v1, ..., vN . More formally:

pu,j = ru + f

n
∑

v=1

w(u, v)(rv,j − rv) (2.2)

where ru is the mean rating of user u, f is a normalisation factor
and w(u, v) is a weight decribing the similarity between users u and

8cp. Adomavicius and Tuzhilin (2005, 737-738)

6

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

v. The most common similarity measure based on user ratings is the
Pearson Correlation. It computes a weighting from items i both users
u and v have already rated and is defined as:

w(u, v) =

∑n

i=1
(ru,i − ru)(rv,i − rv)

√
∑n

i=1
(ru,i − ru)2(rv,i − rv)2

(2.3)

Other similarity measures for the computation of user weights are,
among others, the Vector Similarity, the Inverse User Frequency, and
the Case Amplification.

Model-Based Algorithms Contrary to memory-based algorithms only a
subset of the user ratings are used by model-based algorithms to
learn a model for the prediction of ratings. For the probabilistic ap-
proach an integer based rating scale from 0 to m is assumed. It is
defined as:

pu,j = E(ru,j) =
m

∑

k=0

Pr(ru,i = k|ru,a, a ∈ Iu) (2.4)

Some examples are cluster models and Bayesian networks.

Additionally Sarwar et al. (2001) introduced a classification into User-
Based and Item-Based collaborative recommendations, depending on the
data correlations and similarities are computed from. Both types of meth-
ods are memory-based approaches using all known user ratings.9

Item-Based Algorithms Unlike item-based methods this approach com-
putes item similarities based on the rating of users. The algorithms
uses all rated items of user u to calculate similarities to the target item
j. Hence the Pearson Correlation can be redefined (for item-based
algorithms) as:

w(i, j) =

∑n

u=1
(ru,i − ri)(ru,j − rj)

√
∑n

u=1
(ru,i − ri)2(ru,j − rj)2

(2.5)

where u is the set of users that have rated both items i and j. This
approach can also be applied to the cosine based Vector Similarity
and adresses some of the common problem described in Section 2.5
(page 14 et seq.).

9Since several definitions mentioned above refer to user-based CF, we only describe
Item-Based CF in the following paragraph.

7

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

2.3.3 Content-Based Methods

Content-Based methods basically recommend items to the user that are
similar to those items the user preferred in the past. For the computation of
item similarities the item’s characteristics are represented as item profiles
or item feature vectors. Such item profiles are often defined as vectors of
weights (wc1, ..., wck) where each weight wck denotes the importance of a
keyword ki to the user.

Since item information is often represented as textual information, the
methods used to compute these weights are derived from the fields of
Information Filtering and Information Retrieval (Belkin and Croft, 1992).
According to Adomavicius and Tuzhilin (2005) one of the best-know mea-
sures for specifying keyword weights is the term frequence/inverse docu-
ment frequency (TFxIDF) measure:

wt,d = TFt,d × IDFt =
ft,d

maxz(fz,d)
· log

N

nt

(2.6)

where the term frequency TFt,d describes the importance of the term t

in the document d, while the inverse document frequency IDFt computes
the discriminant strength of a term (over all documents). TFt,d is defined
as the frequeny of a single term in a document ft,d normalised by the
maximum frequency of all terms in d. IDFt is defined as the logarithmic
ratio of the number of all documents N to the number of all documents
containing term t, nt.

Based on such feature vectors the utility function for content-based sys-
tems is usually defined as:

uc,s = score(ContentBasedProfile(c), Content(s)) (2.7)

where both profiles can be represented as TFxIDF vectors
→

wc (de-
scribing the user’s profile containing tastes and preferences retrieved from
items previously rated) and

→

ws (consisting of the item profile weights).
A simple but effective scoring heuristic is provided by the cosine simi-

larity measure:

uc,s = cos (
→

wc,
→

ws) =

→

wc ·
→

ws
∣

∣

∣

∣

∣

∣

→

wc

∣

∣

∣

∣

∣

∣

2

×
∣

∣

∣

∣

∣

∣

→

wc

∣

∣

∣

∣

∣

∣

2

=

∑K

i=1 wi,cwi,s
√

∑K

i=1 w2

i,c

√

∑K

i=1 w2

i,s

(2.8)

where K is the total number of keywords over all documents.

8

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

Additional to traditional heuristics mainly based on information retrieval
methods, a huge number of other methods have been used. Among oth-
ers, there are systems using Bayes classifiers, clustering techniques, de-
cision trees and nearest neighbour methods.

With a growing interest in recommender systems for multi-media con-
tent additional methods from the field of Music Information Retrieval have
been incorporated into recommender systems. Such methods focusing on
the extraction of feature vectors directly out of binary data (e.g. audio files)
are classified as Audio Feature Extraction methods.

2.3.4 Hybrid Methods

According to Burke (2002) hybrid recommender systems combine various
recommendation techniques (like Collaborative Methods, Content-Based
Methods, etc.) to gain better performance with fewer of the drawbacks of
the individual one. The type of combination of different methods can be
classified into different approaches:

Hybridisation method Description
Weighted The scores (or votes) of several recommen-

dation techniques are combined together to
produce a single recommendation.

Switching The system switches between recommen-
dation techniques depending on the current
situation.

Mixed Recommendations from several different
recommenders are presented at the same
time.

Feature combination Features from different recommendation
data sources are thrown together into a sin-
gle recommendation algorithm.

Cascade One recommender refines the recommen-
dations given by another.

Feature augmentation Output from one technique is used as an in-
put feature to another.

Meta-level The model learned by one recommender is
used as input to another.

Table 2.1: Hybridisation Methods10

9cp. Burke (2002, 337)

9

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

2.4 Evaluation Measures

As summarised by Herlocker et al. (2004) a large set of statistical mea-
surements can be used for the evaluation of CF based recommender sys-
tems. This section summmarises the most popular measures and addi-
tionally introduces various public datasets.

2.4.1 Predictive Accuracy Metrics

The following measures are used to evaluate predicted numeric values
(e.g. the rating value a user would give for an unknown item):

MAE The Mean Absolute Error measures the average absolute deviation
between a predicted rating and the user’s true rating. The mech-
anisms of computation are very simple. In Equation 2.9 N is the
number of user ratings, {p1, ..., pN} are the predicted rating values
and {r1, ..., rN} are the real rating values.

∣

∣E
∣

∣ =

∑N

i=1
|pi − ri|

N
(2.9)

RMSE The Root Mean Squared Error emphasises larger errors since the
error is squared before being summed up.

∣

∣E
∣

∣ =

√

∑N

i=1
(pi − ri)2

N
(2.10)

NMAE As stated by Park et al. (2006) the Normalised Mean Absolute
Error can be computed in two ways: macro-averaged and micro-
averaged. While macro-averaged MAE calculates the mean abso-
lute error of each user separately and averages over all users’ av-
erages, the micro-averaged MAE averages errors over all ratings.
The MAE is normalised by the MAE of randomly selected predic-
tions (MAErandom). Hence a NMAE smaller than 1 means that the
algorithm works better than random.

10

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

2.4.2 Classification Accuracy Metrics

For the evaluation of classifiers (assigning instances of a dataset to distinct
and disjunct classes) these statistical measures are used:

Precision Precision is defined as the ratio of relevant items select to the
number of items selected. It is computed using a 2x2 table hold-
ing the number of relevant items selected (Nrs), the number of rele-
vant not selected items (Nrn), the number of irrelevant selected items
(Nis), and finally the number of irrelevant not selected items (Nin). In
Equation 2.11 Ns is the total number of selected items. Precision
represents the probability that a selected item is relevant.

P =
Nrs

Ns

(2.11)

Recall Recall is defined as the ratio of relevant items selected to the total
number of relevant items available, thus representing the probability
that a relevant item will be selected. In Equation 2.12 Nr denotes
the total number of relevant items. Since both measures (Precision
and Recall) only measure binary relevance, they cannot measure the
quality of ordering among selected relevant items.

R =
Nrs

Nr

(2.12)

F1 Measure For the combination of the measures Precision and Recall
the F measure (or F1 measure) is often used. It is defined as the ra-
tio of the doubled Precision-Recall product to the sum of both mea-
sures.

F1 =
2PR

P + R
(2.13)

11

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

2.4.3 Prediction-Rating Correlation

In order to measure the correlation between two rating vectors these mea-
sures are used:

Pearson Correlation The Pearson Correlation (also refered to as Pear-
son’s Product-Moment Correlation) measures the extent to which
there is linear relationship between two variables (x and y). Besides
using it to compute the similarity of two items or two users during
the prediction of recommendations, it is widely used to measure the
correlation between the estimated ratings and the true ratings (in a
test dataset).

c =

∑

(x − x)(y − y)

n · stdev(x) · stdev(y)
(2.14)

Spearman’s ρ This rank correlation measures the extent to which two dif-
ferent rankings agree independent of the actual values of the vari-
ables. It is computed similar to the Pearson Correlation except that
the variables x and y are transformed into the ranks u and v, thus the
correlations are computed on the ranks.

ρ =

∑

(u − u)(v − v)

n · stdev(u) · stdev(v)
(2.15)

2.4.4 Common Datasets

For the evaluation of CF algorithms a handful of public available datasets
are provided over the Web and used in various publications. (Sarwar et al.,
2000; Goldberg et al., 2001; Yu et al., 2001; Anderson et al., 2003; Ziegler
et al., 2005; Park et al., 2006; Brozovsky and Petricek, 2007)

Movie Related

EachMovie 11 HP/Compaq Research (formerly DEC Research) ran the
EachMovie movie recommender and provided this dataset, contain-
ing 2,811,983 ratings (from 1-5) entered by 72,916 users for 1,628
different movies. It has been used in numerous CF publications from
the day EachMovie was shutdown (and the dataset was available to
the public for use in research) until October, 2004 (when HP retired
the EachMovie dataset). It is no longer available for download.

11HP/Compaq Research officially retired the dataset in October, 2004

12

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

MovieLens 12 The GroupLens Group currently offers two datasets. The
first one consists of 100,000 ratings (from 1-5) for 1,682 movies by
943 users. The second one consists of approximately 1 million rat-
ings (from 1-5) for 3900 movies by 6040 users.

NetFlix 13 Netflix introduced this dataset in October, 2006, simultaneously
with the launch of the Netflix Price14. It contains over 100 million of
user ratings on 17,770 movies, hence being considered the largest
CF dataset available to the public.

Other Domains

Book-Crossing 15 The BookCrossing (BX) dataset was collected from the
Book-Crossing community, CTO of Humankind Systems and pub-
lished by Ziegler et al. (2005). It contains 278,858 users (anonymised
but with demographic information) providing 1,149,780 ratings (from
0-10) for about 271,379 books.

Dating Agency 16 This dataset includes 17,359,346 anonymous ratings of
168,791 user profiles made by 135,359 users of the LibimSeTi17 dat-
ing Web site. It was presented by Brozovsky and Petricek (2007).

Jester Joke 18 Goldberg et al. (2001) from the UC Berkeley, CA, intro-
duced this dataset. It contains 4.1 million continuous ratings (from
-10.00 to +10.00) of 100 jokes from 73,421 users.

Vote World 19 This dataset includes about 4 million ratings of 696 mem-
bers of the European Parliament on 5745 roll-call votes. It was intro-
duced by Simon Hix (2006).

12http://www.grouplens.org/node/73, as of 2008/08/30
13http://www.netflixprize.com/download, as of 2008/08/30
14Netflix rewards a $1,000,000 Grand Prize to the first team submitting an algorithm

with a 10% improvement of the prediction accuracy and a $50,000 Progress Prize to the
best team of the year, whose system shows the best improvement to the previous years
accuracy bar.

15http://www.informatik.uni-freiburg.de/~cziegler/BX, as of 2008/08/30
16http://www.occamslab.com/petricek/data, as of 2008/08/30
17http://libimseti.cz, as of 2008/08/30
18http://goldberg.berkeley.edu/jester-data, as of 2008/08/30
19http://ucdata.berkeley.edu:7101/new_web/VoteWorld/voteworld/datasets.

html, as of 2008/08/30

13

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

2.5 Common Problems

The drawbacks and limitations of recommender systems are described
by Adomavicius and Tuzhilin (2005). Additionally Park et al. (2006) men-
tion the Cold-Start Problem examined during the evaluation of a non-
personalised baseline, a user-based CF system and an item-based CF
approach compared to their own hybrid implementation.

The Cold-Start Problem This general problems occurs whenever a new
CF based recommender service is launched leading to an extremely
sparse user-item rating matrix. Since at that point the system has
not collected enough ratings yet to produce meaningful recommen-
dations. This problem can be adressed using content-based recom-
mendations and hybrid systems.

The New-Item Problem Also an issue in CF recommender systems is the
New-Item Problem. New items are not presented to the user by the
RS, so they are unlikely to be found and rated at all. Similar to the
Cold-Start Problem this problem only occurs in pure rating-based
approaches, while content-based approaches and hybrids are more
robust.

The New-User Problem The New-User Problem occurs in various types
of recommender systems. Because the RS has no ratings from the
new user and cannot learn the user’s preferences, it cannot provide
accurate recommendations for that user. Among others, some tech-
niques to overcome this problem are based on the item popularity or
the item entropy. Thus the most imformative items can be presented
to the user.

Sparsity of Data With a growing size of underlying datasets of a RS data
of user ratings becomes very sparse. Since there are often millions
of items, users can only manage to rate some of the items leading
to very sparse user- and item-vectors. Solutions to his problem are
the measuring of user similarity using demographic data (like gender,
age, area code, education etc.) or the reduction of dimensionality of
sparse ratings matrices.

Limited Content Analysis This problem only occurs in strictly content-
based recommender systems, since such systems are restricted to
the set of the features associated to the system’s items. In content-
based systems the set of features (which is extracted automatically

14

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

in the most cases) describes an item, thus two items with identi-
cal features are considered as equal and cannot be distinguished
any more. Solutions to this problem are the adjustment of the fea-
tureset (to contain more details about items) and once again hybrid
approaches.

Overspecialisation In pure content-based recommender systems this
problem targets the specialisation on items that are too similar to
the user’s preferences. Although this might not look like a problem,
since recommending the best fitting items according to user prefer-
ences is the main task of a RS, in some cases two items that are very
similar simply represent different interpretations of the same item.20

To overcome this problem items in the result set that are too similar
are often filtered out.

2.6 Further Topics of Research

In this section we point out some of the further topics of research in the
field of recommender systems.21

Attacks Since recommender systems are often attacked by external par-
ties aiming to promote certain items (e.g. a business competitor of
a Web shop owner) some publications focus on such attacks. Burke
et al. (2006) propose and study different attributes derived from user
profiles for their utility in attack detection. Furthermore Mobasher
et al. (2007) evaluate how stable several recommender techniques
are against different types of attacks. Testing different attacking
strategies on a user-based CF algorithm and running a cost-benefit
analysis on common recommender systems computing the return-
of-investment (ROI) was done by Hurley et al. (2007).

Explanations Herlocker et al. (2000) point out the need of explanations in
CF recommender systems, and describe the benefits of building an
explanation facility into a RS. Moreover the advantages of explaining
why a certain recommendation (e.g. list of items) was presented to

20An example: Consider a news recommendation service providing news feeds to the
user. A content-based recommender approach could easily match the user’s preferences
to the features of a news report, but it would also recommend different articles from
various authors containing the same redundant information.

21We want to note that, although there are quite many topics that are not mentioned in
this section, we aimed at focusing on the most relevant for our work.

15

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

the user are introduced. These benefits are justification increasing
the user confidence, user involvement, education and most impor-
tant of all acceptance. Furthermore the authors evaluated the ef-
fectivness of different explanation models and techniques as well as
the increase of acceptance and filtering performance due to expla-
nations.

Trust In order to overcome some of the common problems of pure CF
Massa and Avesani (2004) introduced a trust-aware recommender
system that uses a, so called, Web of Trust defined by user rat-
ings on other users. This hybrid system uses a trust function over
the set of users with the range of [0,1] where 0 means total distrust
and 1 total trust. A trust metric module exploits trust propagation
in order to predict how much a user can trust another user, and a
rating predictor combines CF user similarity with the value of trust.
This approach has been further investigated in publications from the
same author (Massa and Avesani, 2006, 2007) and by O’Donovan
and Smyth (2005) as well.

Music-Related Systems Quite a large amount of recommender systems
are used in the domain of music (e.g. in various Web portals).
These (mainly hybrid) recommenders provide collaborative filter-
ing and often incorporate content-based approaches (Hoashi et al.,
2003; Gstrein et al., 2005; Gstrein and Krenn, 2006).

Besides audio feature extraction methods for the gathering of item
profile information (Li et al., 2004; Cano et al., 2005; Gstrein et al.,
2006; Hlavac et al., 2007), further methods from the field of Music
Information Retrieval (MIR), like content-based music organisation
and indexing methods (Rauber et al., 2002; Pampalk et al., 2002)
and Web mining methods to compute artist similarity (Knees et al.,
2004) or text mining methods over collected lyrics for the computa-
tion of genre and track relations (Kleedorfer, 2008; Kleedorfer et al.,
2008), can be adapted for the usage in recommender systems.

Generally spoken, since many sources contain music related meta-
data various methods can be useful to access different information
in order to improve the quality of recommendations.

16

CHAPTER 2. THEORY OF RECOMMENDER SYSTEMS

Summary

After we presented a short description of the basic functionality and the
historical background of recommender systems, we formulated the recom-
mendation problem and introduced a classification of recommender tech-
niques. We furthermore separated collaborative filtering methods operat-
ing on a set of user ratings into the different categories: memory-based
algorithms taking all ratings into account, model-based algorithms aiming
to improve scalability and robustness predicting recommendations only on
a subset of user ratings, and furthermore item-based algorithms comput-
ing item list due to item similarity and user preferences. We moreover de-
scribed that pure content-based techniques rely on the matching of similar
aggregated user profiles and extracted or defined item feature vectors. Ad-
ditionally we introduced hybrid recommender systems explaining the differ-
ent type of hybridisation methods. Moreover we presented a short survey
of various evaluation measures for prediction, classification and correla-
tion as well as a list of public available datasets. Further we discussed
common problems of recommender systems like the cold-start problem,
sparsity or limited content analysis. Finally we gave a small insight in the
further research topics: attacks, explanations, and trust and mentioned
some music-related systems and useful methods from the field of MIR
that are capable of being adapted for the use in recommender systems.

17

Chapter 3
Existing Recommender
Frameworks

Abstract

In this chapter we describe some state-of-the-art recommender frame-
works as well as various recommender systems that are available for ap-
plication developers. Section 3.1 introduces some recommender archti-
tectures found in the literature, while Section 3.2 presents a commercial
recommender framework. Finally Section 3.3 gives a brief overview of
some open-source CF recommender frameworks.

3.1 Research Projects

Most publications about recommender systems either describe a novel
approach or some necessary adaptations on well-known recommenda-
tion algorithms in order to improve the quality of recommendations. Other
papers summarise over existing methods or just focus on a very specific
issue. Nevertheless we want to point out some publications that combine
different recommendation approaches aiming to design a generic RS.

The hybrid system RACOFI (Rule-Applying Collaborative Filtering) pre-
sented by Anderson et al. (2003) seperates metadata into two classes:
objective (i.e. content information) and subjective metadata (i.e. user
ratings). It collects ratings for different characteristica of an item, rather
than for the item itself. The subjective metadata is handled using a CF
algorithm, while the objective metadata is processed with a rule inference
system that produces recommendation rules in XML form, which are then
applied to the predictions to customize the recommendations according to
user profiles. The authors state that the system is domain-independent
and can easily be applied to any domain, although the reference imple-
mentation1 is restricted to Canadian artists. In a following publication
(Lemire et al., 2005) the authors further describe the usage of item-based
CF algorithms, as proposed by Sarwar et al. (2001); Linden et al. (2003);

1http://racofi.elg.ca, as of 2008/10/11

18

CHAPTER 3. EXISTING RECOMMENDER FRAMEWORKS

Lemire and Maclachlan (2005). The improved system is used for rec-
ommendations in a music Web portal.2 Finally the authors mention the
importance of learning knowledge about objects and that the rule-based
approach made it easy to adapt the system to user expectations.

Similar the hybrid system introduced by Hedfi and Trabelsi (2005) uses
data mining techniques for clustering the user space (according to the
users purchase behaviour) and association rule mining for the detection of
affinities between items. Hence recommendation lists for each user clus-
ter and for each user can be computed separately. For the prediction of
rating values only similarity values between users within the same cluster
are computed using a user-based correlation algorithm.

Rack et al. (2007) present a generic recommender system that pro-
vides contextual recommendations based on the combination of previously
gathered user feedback data (i.e. ratings and clickstream history), con-
text data, and ontology-based content categorisation schemes. For the
access of information, so called, data adapters are used that need to reg-
ister at the profile manager, while a profile broker matches profiles with
the given query. The recommender component is held generically provid-
ing two methods: one for the input of user feedback on content items and
another to answer whether an item is relveant in a given context or not.
All learning algorithms and prediction methods implement the same inter-
face providing these two methods. This generic approach seems to be
very flexible concerning new recommender algorithms and different data
sources, but its drawback is that all situations available to learners must
be defined as explicit profiles.

Li et al. (2007) propose a Service Oriented Architecture (SOA) with
multiple layers for: clients, presentation purposes, services, service man-
agement, resource management, and partners. The main services are:
a user analysis service processing access sequences and user feedback
with semantic mining algorithms into, so called, user interest arrays, and a
recommendation engine that matches such interests with available prod-
ucts and services registered at the service registry. The system uses the
TFxIDF measure (explained in Section 2.3.3 on page 8) to retrieve key-
words from textual descriptions of available products and services, and
provides both products and services as Web Service Definition Language
(WSDL) structures. Additionally the authors state that the architecture of-
fers assistant functions for: authentication, authorisation, security, etc..

2http://www.indiscover.net, as of 2008/10/11

19

CHAPTER 3. EXISTING RECOMMENDER FRAMEWORKS

3.2 Commercial Frameworks

Finding a generic commercial recommender framework proofed to be quite
a hard task, since almost every commercial recommender system is inte-
grated into an application scenario bound to a specific domain (e.g. music
or video).

Nevertheless the company Loomia3 provides a peronalized recommen-
dation system claiming that it can be easily integrated. According to the
Web site the system works for any kind of site and almost any type of
content provided via a Web feed. A simple javascript widget sends user
preference data to the Loomia Similarity Engine, which matches the pro-
vided content with the user’s preferences, and generates recommenda-
tions within the customer’s site.

Additionally a Web service API is offered that is designed to integrate
with mobile devices.

Although there is no information on the used recommender technique,
we consider this framework as quite interesting since it seems to be very
flexible according integration issues as well as content management, and
provides recommendations as managed services using Web services.

3.3 Open-Source Frameworks

The following list presents a number of open-source recommender sys-
tems and CF frameworks:

Taste: Collaborative Filtering for Java 4 A fully Java-based CF engine
that supports memory-based CF methods. Both user-based and
item-based implementations are provided. It does neither currently
support model-based nor content-based techniques. Anyway, Taste
offers data connectors for file and database access as well as a Web
service interface and enterprise Java beans support. The author,
Sean Owen, has announced plans to merge with the Apache Ma-
hout5 project and released the last version in April 2008.

3http://www.loomia.com, as of 2008/10/11
4http://taste.sourceforge.net/, as of 2008/08/15
5http://lucene.apache.org/mahout/, as of 2008/08/15

20

CHAPTER 3. EXISTING RECOMMENDER FRAMEWORKS

CoFE: Collaborative Filtering Engine 6 Another Java-based CF engine
that just supports a user-based memory-based implementation us-
ing Pearson Correlation (explained in Equation 2.3 on page 7) on a
set of user ratings. User data is stored in a database and recommen-
dations are provided via a client-server architecture. The interface for
algorithms is quite small, but allows both recommendations for a user
with and without specifying an item type. This engine was developed
at the School of Electrical Engineering and Computer Science7 by
a group of students supervised by Jonathan L. Herlocker associate
professor at the Oregan State University8 in 2004.

Cofi: A Java-Based Collaborative Filtering Library 9 This Java frame-
work introduced by a group around Daniel Lemire professor at the
University of Quebec at Montreal10 was originally developed for the
RACOFI recommender system, and was made public in 2004. It pro-
vides a set of different user-based and item-based methods, as well
as parsers for the three well-known datasets: EachMovie, Jester, and
MovieLens11.

Vogoo: Recommendation Engine and Collaborative Filtering 12 The
Vogoo PHP framework includes two item-based and one user-based
recommendation engines and allows for the computation of user
similarities. It supports multiple item categories and automatic
ratings based on purchases and page views. Stéphane Droux
developed this engine and released the first version in April 2005
and the current version in March 2008.

6http://eecs.oregonstate.edu/iis/CoFE/, as of 2008/08/15
7http://eecs.oregonstate.edu/index.html, as of 2008/10/11
8http://oregonstate.edu, as of 2008/10/11
9http://www.nongnu.org/cofi/, as of 2008/08/15

10http://www.uqam.ca/, as of 2008/10/11
11also see Section 2.4.4
12http://www.vogoo-api.com/, as of 2008/08/15

21

CHAPTER 3. EXISTING RECOMMENDER FRAMEWORKS

AURA: Advanced Universal Recommendation Architecture 13 This
Sun Microsystems14 project is currently under development by a
group around Paul Lamere. The novel approach introduces a so
called textual aura for an item, that can be gathered from different
sources like social tags. Item similarity is computed using the
textual similarity of the items’ textual auras. Due to this approach
explanations can be provided to the user increasing transparency.
Futhermore this project aims to combine the advantages of content-
based recommendations for sparse user data and collaborative
filtering for lots of user data. A set of Web services is planned to
enable clients to contribute data from their customers and receive
recommendations for their customers.

Summary

In this chapter we introduced some recommenders that seem to incorpo-
rate a generic approach or a hybrid system with promising features. Some
research projects used data mining methods for clustering and association
rule mining. While others define generic interfaces in order to integrate
different recommender techniques, or use a WSDL description for items
extended with extracted keywords using the TFxIDF measure. Futher-
more we presented a commercial recommender framework that claims to
be easily integrated using a simple javascript widget communicating with
a managed recommendation service via Web services. Finally we listed
some open-source CF frameworks offering various memory-based algo-
rithms as well as a novel approach using a textual aura for item similarity
computation that is currently under development.

13http://research.sun.com/projects/dashboard.php?id=196, as of 2008/10/11
14http://www.sun.com/, as of 2008/10/11

22

Chapter 4
Concept

Abstract

Based on the Chapters 2 and 3 we identify the features in Section 4.1
and design our concept in respect to these features. Section 4.2 briefly
describes the basics of the concept while Section 4.3 explains the compo-
nents of the RS in detail and points out their advantages.

4.1 Identified Features

During our research in the field of recommender systems we identified the
following challenges for a generic RS (listed in alphabetic order).

Applicability The RS shall be easily applicable for several scenarios, thus
the effort necessary to integrate the RS into existing applications
shall be minimised.

Domain-Independence Recommendations should not rely on specific
domain knowledge but shall allow the integration of domain-specific
metadata as well.

Extensibility The RS shall allow for the integration of different types
of recommender algorithms. As described in Section 2.3 (page
5 et seqq.) different recommender systems use various algorithms
that range from Collaborative to Content-Based techniques and
many more. A great number of different types of algorithms shall
be supported.

Multi-Tenant Capability Recommendations for different tenants shall be
provided using one single recommender instance. The effort to inte-
grate a new tenant shall be minised.

Performance and Scalability High quality recommendations shall be de-
livered to the user in just a few seconds.1 The system performance

1An example: Consider a Web portal as client application where users can browse
through the customer’s content. The recommendation of best-fitting items for the user

23

CHAPTER 4. CONCEPT

shall not decrease drastically for large data sets (decreasing slightly
is expected, since the response time for database queries is increas-
ing with the amount of entries).

Stability The RS shall resist requests from many client applications run-
ning as a 24/7 Service.2

Transparency It shall be possible to provide an explanation to the users
why items are recommended to them. Furthermore business rules
used for generating recommendations shall be transparent to system
operators and optionally managed explicitly during a regular mainte-
nance process.

4.2 Concept Overview

In detail the recommender concept developed in this thesis consists of the
following functionalities:

• Provide the capability to introduce different types of state-of-the-art
recommendation techniques (like Shopping Cart Analysis, Item-Item
recommendations or Item-Based CF methods) as well as importing
third-party metadata.

• The generation of item-to-item relations is done offline3 (as a back-
ground process) and stored explicitly (and persistently) as Item As-
sociation Rules to ensure stability and performance.

• The core recommendation strategies focus on these pre-calculated
item-to-item relations so that the online recommendation requests
will only query pre-computed information.

• Additionally online recommendation algorithms are supported as
well.

shall not delay the user’s behaviour. The user should not even notice the computational
amount of time used to generate recommendations.

224/7 is an abbreviation which stands for ”24 hours a day, 7 days a week”
3We use the terms online and offline as introduced by Linden et al. (2003) to state

whether the computations necessary for the generation of recommendations are run live
(just when the user requests information) or in advance in a background process (to be
retrieved fast and easily whenever a recommendation is presented to a user).

24

CHAPTER 4. CONCEPT

4.3 Components

In order to cover all identified features for the planned RS, the concept
was designed to be very flexible but aims to keep the whole system as
simple as possible. A description of the main components of this concept
is provided in the following.

4.3.1 Items and Item Types

Considering a single customer the main object of recommendations is a
set of Items from a specific domain (such a set is further called Content
Pool). Since we aim to service multiple tenants for the RS, the manage-
ment of such Content Pools is essential. In many client applications the
identifiers (IDs) for each Item are not overall unique but only unique over
the same type of items. Thus two different items (e.g. a ”track” and an
”artist”) may have the same item ID. As a consequence one can either
treat each item type separately from the other types, or disambiguate the
duplicate IDs by adding an additional type code (for example an extra field
itemType in the Action database table) which is what we prefer. Such item
types are also tenant-specific. Furthermore the RS does not explicitly store
Items of interest, but rather stores IDs of those items.

4.3.2 Actions and Action Types

Since many recommendation methods rely on different types of user ac-
tions one of the major components of this concept are such Actions and
their persistence to a storage. Such user Actions are generally of the form
”User U performs action A upon item I at a given date D” (e.g. ”User U
buys item I at 2008/12/23”). To allow a wide range of user Actions their
structure is designed in a generic way. The types for Items and Actions
are not predefined, which would restrict them to a specific set, rather such
types are individually managed for each tenant.

Each Action consists of the following attributes:

• tenant identifier : An identifier for the tenant (providing sets of items
and users). This ID allows the user actions to be separated for each
tenant.

• user identifier : An identifier for the user (of the given tenant) who
acted within the client (e.g. clicked on a specific link in a Web ap-

25

CHAPTER 4. CONCEPT

plication). This ID (together with the tenant ID) distinctly identifies a
user.

• item identifier : An identifier for the item (of the given tenant) the user
acted on.

• item type identifier : An identifier for the item type (e.g. ”track”). The
item type ID combined with the ID of the item itself and the ID for the
tenant uniquely describe an item. (An item ID without corresponding
item type ID cannot be assigned to a specific item.)

• action type identifier : An idenfier for the action type (e.g. ”view”).

• action time: A timestamp of the moment when the action was
recorded. Tracking the time when the action occured implies an or-
dering of user actions, thus allowing recommender methods to use
that timestamp for the weighting of user actions.4

Concerning recommendations all strategies relying on user Actions can
be applied - ranging from association rule mining (shopping cart analysis)
and various clustering techniques to item-item associations (e.g. ”Users
who bought X also bought Y”, ”If you like X you might like Y” etc.).

4.3.3 Generators

Since there is a set of recommender algorithms that take quite a long time
to compute a recommendation for the user, the concept provides so called
Item Association Generators which operate offline. The computation of
item associations is executed (in advance to user requests) in a period-
ical interval using background processes to generate and manage such
associations.

Additionally online recommender methods that are capable of deliver-
ing a recommendation in just a few seconds (e.g. rating-based CF meth-
ods) for ad-hoc recommendations can optionally persist their results too.

All Item Association Generators operate on a minimal data set of user
Actions and generate explicit Item Association Rules.

4An example: Recommendations for a user who used to listen to a specific music
genre earlier in the past but has switched his/her preferences to another genre can be
computed using that information, hence providing more items the user acted on in the
near past than items acted on earlier.

26

CHAPTER 4. CONCEPT

4.3.4 Item Association Rules and Association Types

Item Association Rules describe an association between two items and
are of the form ”Item I has association A with item J by the value of V”
where item I is called antecedent and item J is called consequent. For the
association A an Association Type is introduced, which describes differ-
ent forms of associations ranging from similarity (e.g. ”is similar to”) over
composition (e.g. ”is part of”) to usage relations (e.g. ”viewed together”,
”bought together”, etc.). Since item types are generic, a User can be con-
sidered as Item as well allowing associations between users and items
(e.g. ”likes”). Similar to item and action types the possible types of asso-
ciations are also tenant-specific. Since Item Assocation Rules (IAR) are
stored explicitely in a database they can be requested in a fast and easy
way without the need for further calculations, thus allowing recommenda-
tions to rely on precalculated item-item associations.

As these rules describe directed relations between items, the following
information must be provided:

• tenant identifier : Describing the owner of the rule.

• identifier and type of item I: The antecedent of the rule consisting of
item I and its type.

• identifier and type of item J: The consequent of the rule consisting of
item J and its type.

• association type and value: The kind and strength of the association
to express the quality of a specific item-item relation.

• view type: The view origin of this rule is stored, either an Adminisi-
trator (or system operator) has managed a rule by hand, or the rule
was computed from Community ratings or the origin was any other
(third-party) System (accessing item metadata to generate item as-
sociation rules).

• source information: For a more fine-grained distinction of the origin.
This data will be used in cases where different information sources
(for the same view) are used to generate rules. For example when
metadata of two different third-party providers is used to generate
rules. Furthermore this information can be used for explanation pur-
poses.

• timestamp: When the rule was generated (or updated).

27

CHAPTER 4. CONCEPT

The explicit storage of the rules is one major component of the recom-
mender concept mentioned in this thesis, because:

• performance, scalability, and stability are ensured since time con-
suming algorithms are operating as offline generators.

• third-party information can be imported.

• administrators can manage rules according to their policy, so quality
assurance is easier since improving online recommendations would
mean improving the quality of item metadata.

Based on the fact that the recommender does not store any metadata
for users and items (additional to persisting simple IDs), metadata filters
cannot be applied. Nevertheless it is possible to introduce content-based
item association generators (e.g. audio-based5 or web-based feature ex-
traction methods) that are in charge of gathering domain knowledge (meta-
data) from other sources.

4.3.5 Non-Personalised Recommendations

Experiences, we made during the past years of our cooperation with a
large music portal operator, show that many users do not want to sup-
port explicit profiling (e.g. a user registration combined with the input of
user preferences). Furthermore most users (of Web portals) are currently
”walk-in” customers visiting the personalised application two or three times
which reduces the value of profile-refinement dramatically. Sparse user
profiles as well as poor item metadata lead to recommendations of unsat-
isfying quality. This is why this approach does not support personalised
recommendations by means of explicit user profiles. Since there are no
explicit profiles available, users and items are only identified via tenant-
specific IDs. The focus of recommendations lies on the gathering of user
Actions and aggregating them to implicit user profiles and preferences
(user-item) as well as item relations (item-item).

5An example: An audio feature extraction technique could work as an item association
generator extracting ”sounding similar” associations for audio tracks from the raw audio
files and providing newly generated item association rules of the form ”Item A is sounding
similar to item B by the association value V”, describing how much two items (A,B) are
sounding similar.

28

CHAPTER 4. CONCEPT

4.3.6 Management of Multiple Tenants

To provide the services of the RS to many different applications of various
tenants, the management of such tenants is quite important. Each tenant
can have specific sets of users, items and actions (performed within the
tenants client applications). This ensures that user actions of different
recommender customers are not affecting each other. This affects the
handling of the data as well as the generation of rules.

The main impacts are that:

• all user Actions must be supplemented with a tenant identifier.

• the rule generation must rely on data related to a specific tenant.

• all Item Association Rules are extended with tenant information.

• each tenant uses its own set of types for Actions, Items and Item
Associations.

Although multi tenant capability is more a technical than a conceptual
problem, some side effects can be used to improve the recommendation
experience by using appropriate - tenant-specific - rules for other tenants
too (if applicable6).

4.3.7 Minimising Complexity

Our recommender approach reduces the complexity to a minimum by split-
ting the recommendation process in several loosely coupled and indepen-
dent operating components.

Most of the intelligence of the system is incorporated in offline perform-
ing generators each fulfilling a specific task.

This modularisation:

• minimises complexity at the algorithmic level.

• offers the possibility to combine different strategies easily.

• leads to low maintenance costs.
6Tenant comprehensive recommendations can only be applied if the item sets (content

pools) of those tenants are overlapping.

29

CHAPTER 4. CONCEPT

• introduces the capability to extend functionality by simply adding new
generators.

• introduces stability because generator crashes do not harm the on-
line system.

• supports scalability by distributing the generators to different physical
machines.

Recommendations are computed based on offline generated and ex-
plicitly stored rules. This approach addresses performance and scalability
topics.

4.3.8 Post-Filtering

In order to improve the basic quality of the recommender our recommenda-
tion services use a standard approach for filtering duplicates and filtering
based on the users Action history (e.g. do not recommend those items a
user has already seen or bought).

4.3.9 Direct and Aggregated Ratings

Since gathering as much user information as possible is a common ap-
proach in recommender systems, many client applications store user Ac-
tions rather than direct user Ratings. This allows multiple action entries for
a User-Item tuple7 while classical rating-based CF algorithms expect only
one single rating entry for each user-item pair8.

Consequently an action-based recommender using rating-based algo-
rithms must provide methods to map (or aggregate) a set of actions into a
single rating.

We therefore differentiate between so called Direct Ratings and Aggre-
gated Ratings. Direct Ratings are simply the average rating value over all
explicit rating Actions of a user for a specific item.9 For Aggregated Rat-
ings nominal user Actions on a specific item can be individually mapped to

7An example: Consider a user who visits a client application two consecutive days, to
listen to his favourite song.

8An example: Consider a user who rates an item twice, but only the last rating is
persisted or taken into computations.

9An example: A specific tenant (e.g. owner of a Web shop) provides actions with the
types ”buy”, ”view” and ”rate”. For a Direct Rating only actions with type ”rate” are taken
into computation, and an average value is computed.

30

CHAPTER 4. CONCEPT

specific rating values (with an underlying ordinal ranking) and then aggre-
gated into a single rating value using a defined aggregation strategy out of
a set of different aggregation methods.
The following aggregation strategies are proposed:

• Average: Compute an arithmetic mean (over actions of a user for an
item). This strategy’s advantage is that more actions mapped to a
low rating value (e.g. a set of search actions) lead to lower ratings,
while a single action mapped to a high rating value (e.g. a buy action)
increases the rating value. But note that this approach requires an
implicit ordering of the mapped actions.

• Maximum: Use the highest rating. This strategy also requires an
implicit ordering of the mapped actions.

• Most Frequent : Count the number of occurrences of each user Ac-
tion, and use the most frequent.

• Newest : Use the newest action found (according to the action time).

• Oldest : Use the oldest action found (according to the action time).

Though we provide a set of strategies for the aggregation of Actions
to Ratings we restrict the usage of the strategy to one for each tenant,
since mixing up aggregated rating values that have been computed with a
different strategy would result in false recommendations. The best-fitting
action to rating mapping and the optimal strategy for a tenant must be
evaluated individually over the tenant’s set of Action Types and the user
Actions of that tenant.

Since we deal with aggregation here it has to be clear that this mapping
is not bijective, in other words one can not compute the original actions (of
a user) when given only the final rating value.

Example for the Aggregation of Ratings

Let us consider a music download platform as client application which uses
a set of user Actions with the mapping (using a rating scale that ranges
from 1 to 10) described in Table 4.1 (page 32).

If a user would first search for a specific song, then view the track page,
and finally listen to the song (a preview action), the aggregated rating value
using for the Average strategy would be 4. While the purchase of the track
(a buy action) using for the Newest strategy would result in a rating value
of 10.

31

CHAPTER 4. CONCEPT

User Action Description Mapped Rating Value
search search for a track 2
view view the track page 4
preview preview a snippet of the track 6
add to playlist add the track to the user’s playlist 7
rate good rate the track with a good rating10 7
buy purchase the track online 10

Table 4.1: Example for the Mapping of Actions to Discrete Rating Values

Summary

In this chapter we pointed out the necessary features for the RS and the
concept that fulfils all identified needs. We explained that user Actions are
collected, and can be used directly for various online recommendations or
serve as computational basis for several different offline generators which
produce Item Association Rules. Additionally we mentioned the capability
of multiple tenants, and the necessary types of Actions, Associations, and
Items. Furthermore we demonstrated the advantages concerning the re-
duction of complexity and mentioned some basic post-filtering techniques.
Finally we stated the difference between Direct Ratings and Aggregated
Ratings.

10As described in Section 5.5 (page 45 et seqq.) the decision whether a rating action
can be considered as good or bad is depending on the tenant-specific rating scale.

32

Chapter 5
Technical Realisation

Abstract

This chapter describes the RS from a technical point of view. Section 5.9
and Section 5.2 point to a preliminary evaluation in Appendix A and the
detailed SW infrastructure in Appendix B. An overview of the RS architec-
ture is illustrated in Section 5.1, while Section 5.3 and Section 5.4 reveal
the detailed SW design. Furthermore Section 5.5 describes the underlying
data model. Finally Section 5.6 provides on overview of the deployment ar-
chitecture and Section 5.7 explains the supported recommender features
of the RS. Additionally Section 5.8 points to the detailed description of the
Web service interface in Appendix C.

5.1 Architecture Overview

As pictured in Figure 5.1 (page 34) the RS is a composition of a Recom-
mender Server, a Generator Server and various Client Applications.

The Recommender Server is designed as a multi-layered architecture
consisting of a Database Layer for the access of user Actions and item As-
sociation Rules, an Application Layer for Online and Offline Recommender
Services, and an API Layer for various Web Services. Moreover the Gen-
erator Server contains different (so called) Item Association Generators
which create business rules that define a relation between two items. Ad-
ditionally the architecture allows the import of Third-Party Metadata.

Technically, a Client Application tracks user Actions and sends them to
our Recommender Server via a Web Service call. Those Actions are then
stored in the database. The design of our RS allows both online and of-
fline recommendations. Online algorithms use Actions directly to compute
Recommendations for the user, while time-consuming methods run as of-
fline Generators that produce item associations which are then queried
and post-filtered (with filtering methods, e.g. history filtering, duplicate fil-
tering etc., using the present user Actions) to present meaningful Recom-
mendations. Additionally Offline Recommender Services can make use of
Third-Party Metadata provided as IAR. Recommendations are again pro-
vided to the Client Application via several Web Service methods.

33

C
H

A
P

T
E

R
5.

T
E

C
H

N
IC

A
L

R
E

A
LIS

AT
IO

N

Online

Recommender

Services

Recommender Server

Clients

Offline

Recommender

Services

Action

Service

Generator Server

Action-Based

Generators

Content-Based

Generators

DB

(Association

Rules)

DB

(Actions)

Application LayerAPI Layer Database Layer

W
e
b
 S

e
rv

ic
e
 A

P
I

Client

Application 1

Client

Application 2

Client

Application N

Datamining Layer

Client Layer

3
rd

 Party

Metadata

Figure 5.1: Overview of the Software Architecture

34

CHAPTER 5. TECHNICAL REALISATION

5.2 Software Infrastructure

This project is fully java-based and uses some open-source Application
Programming Interfaces (APIs). A full description of the SW infrastructure
can be found in Appendix B (page 87 et seqq.).

5.3 Modules and Packages

The complete software consists of 156 Java classes and interfaces, a num-
ber of test classes, and a set of resource files. In order to provide portions
of source code and resource files belonging together, the complete RS
is divided into six units which separate the application into organisational
modules. Additionally dependencies to third-party artefacts can be man-
aged separately for each module.

These modules are:

• Core: This module contains model objects, classes for database ac-
cess, and basic services like the ActionService, the ItemAssocService,
the RecommenderService, and the RecommendationHistoryService. All in-
terfaces and classes in this module provide generic methods, thus
domain information like action or item types can be parameterised
individually. Table 5.1 (page 36 et seq.) describes the subpackages
for the Core module.

• Domain: This package is introduced for the isolation of domain-
specific content providing services and database access classes for
a generic domain as well as for specific domains like the music do-
main. Additional interfaces for the access of third-party data and a
utility class for the aggregation of actions to ratings are included. The
list of subpackages for the Domain module is presented in Table 5.2
(page 37 et seq.).

• Content : The Content module holds online and offline item as-
sociation generators. An example for an online generator is the
RascalloModellingGenerator while the AssocRuleMiner serves as offline
generator. The subpackages for the Content module are specified in
Table 5.3 (page 38 et seq.).

• Thirdparty : This module consists of model objects and classes
for the migration of third-party data thus providing classes for the

35

CHAPTER 5. TECHNICAL REALISATION

import of third-party information to a SAT recommender database
and for the export of such a database to other formats like the
taste_preferences table. Table 5.4 (page 39) pictures the subpack-
ages for the Thirdparty module.

• Evaluation: This module is dedicated to the evaluation of recom-
mender algorithms. It contains classes used during the evaluation of
the Taste SlopeOneRecommender. The subpackages for the Evaluation
module are described in Table 5.5 (page 39).

• Webapp: Concerned with the propagation of various Web service
methods of the RS the Webapp module provides model objects, data
access classes, and services for various domains. Additionally an
IDMappingService allows for the mapping of external String IDs to in-
ternal Integer IDs. Furthermore the AuthenticationService manages
the access of Web service methods for several tenants. In Table 5.6
(page 40) the subpackages for the Webapp module are explained.

The main package for the RS is at.researchstudio.sat.recommender. This
section furthermore describes the subpackages for each module.1

Table 5.1: The Package Structure of the Core Module

Package Description

model.core Contains model objects of the core rec-
ommender. These objects have generic
type parameters that are used to repre-
sent IDs and types with different charac-
teristics (e.g. Integer on core level and
String on web service level)

model.core.transfer Contains model objects that are mainly
used to transfer constraints like the
TimeConstraintVO.

service Provides several generic interfaces of rec-
ommender core services.

service.core Contains specific core service interfaces
bound to the specific type Integer for IDs
and types.

1Generally spoken, for each Java interface exists at least one Java implementation
class. Since interfaces and classes are not located in the same subpackage, but rather
the implementation classes are stored in a .impl subpackage, we omit these subpack-
ages in the overview description of subpackages.

36

CHAPTER 5. TECHNICAL REALISATION

The package structure of the Core module (continued)

Package Description

store.dao Provides several generic interfaces to ac-
cess data objects (from the database)
that represent the recommender business
model.

store.dao.core Consists of several interfaces to access
data objects (from the database) that rep-
resent the recommender business model.
As type for IDs and types Integer is used.

store.dao.core.types Holds interfaces and classes to access
data objects (from the database) that con-
tain type information.

util.core Provides utility methods for the filtering of
duplicates or filtering based on the action
history.

Table 5.2: The Package Structure of the Domain Module

Package Description

io.domain Contains classes for the output of domain-
specific information about an item.

service.domain Provides domain-specific service inter-
faces and classes. Several types are us-
ing a String representation, while IDs (of
items, tenants and users) are still using
the Integer type.

service.domain.music Holds service interfaces and classes for
the music domain. Several methods are
no longer type independent but rather ac-
tion and item types are encoded in the
method name thus the services are not
parameterised. Hence such types can be
omitted.

service.domain.rascalli Similar to the music subpackage this pack-
age contains service interfaces for the
RASCALLI domain.

37

CHAPTER 5. TECHNICAL REALISATION

The package structure of the Domain module (continued)

Package Description

store.dao.domain Consists of several interfaces to access
data objects (from the database) that rep-
resent the recommender business model.
As type for IDs Integer is used, while a
String representation is assigned for each
type defining a tenant-specific mapping for
theses types.

store.thirdparty Contains an interface that is related with
the access of a third-party storage, for
the output of domain-specific information
about an item.

util.domain Provides domain-specific utility
classes for the recommender like the
ActionToRatingAggregator.

Table 5.3: The Package Structure of the Content Module

Package Description

generator Provides the interfaces necessary to cre-
ate item association rules for the various
domains. These item association rules
hold domain-specific knowledge for ten-
ants, users and sometimes sessions.

generator.arm Contains classes and interfaces to cre-
ate item association rules using the
AssocRuleMiningService. This generator op-
erates offline and generates item-item as-
sociations similar to a shopping cart anal-
ysis approach.

generator.arm.cli Offers a command line interface for the
AssocRuleMiningService which can be used
to run the service in a separated back-
ground process.

generator.arm.model Consists of model objects used for the
AssocRuleMiningService.

generator.arm.store.dao Holds an interface that provides generator
specific access methods for ActionVO ob-
jects (from the database).

38

CHAPTER 5. TECHNICAL REALISATION

The package structure of the Content module (continued)

Package Description

generator.rascalli Provides the classes necessary to create
item association rules for the RASCALLI
domain. The RascalloModellingGenerator

as well as two different strategies for it
(PeaCounter and WeakeningOverTime) are in-
troduced, which operate mainly as online
generators, but are able to persist gener-
ated rules as well.

Package Description

model.thirdparty Provides model classes to hold data dur-
ing import or export of third-party data.

service.thirdparty Contains interfaces and service classes
that are necessary for the import of
third-party data to a SAT recommender
database as well as vice versa for the ex-
port of SAT data to foreign databases.

store.dao.thirdparty Holds interfaces and data access classes
for the import and export of data.

Table 5.4: The Package Structure of the Thirdparty Module

Package Description

evaluation Concerned with the evaluation of rec-
ommender algorithms containing a
class used during the evaluation of the
SlopeOneRecommender.

Table 5.5: The Package Structure of the Evaluation Module

39

CHAPTER 5. TECHNICAL REALISATION

Package Description

model.webapp Contains model objects that are used
within the web service layer of the RS.
These objects are simpler than the inter-
nal objects (which contain type parame-
ters and more fields).

service.webapp Provides several service interfaces and
service classes of the Web service layer of
the RS such as the AuthenticationService

and the IDMappingService.
service.webapp.music Provides a convenience Web service in-

terface for the music domain.
service.webapp.music.

exception

Contains an Exception for the web service
interface for the music domain. 2

service.webapp.nodomain Provides a domain-independent Web ser-
vice interface.

service.webapp.nodomain.

exception

Holds an Exception for the domain-
independent Web service interface.

service.webapp.rascalli Provides a convenience Web service in-
terface for the RASCALLI domain.

service.webapp.rascalli.

exception

Contains an Exception for the web service
interface for the RASCALLI domain.

service.webapp.rascalli.

model

Provides model objects that are used
within the RASCALLI specific Web service
interface. These objects are mainly used
for caching purposes.

store.dao.webapp Offers interfaces and classes to access
data objects (from the database) that are
used for web service propagation (e.g. the
AuthenticationDAO).

util.webapp Contains web service specific utility
classes like the WebAppPathHolder for the
configuration of the profiling aspect
JamonProfilingAspectAdvice.

Table 5.6: The Package Structure of the Webapp Module

Additionally some utility classes were introduced and integrated into the

2Defining a separate Exception for each Web service is the best-practice, since server
exceptions should not be visible to a client.

40

CHAPTER 5. TECHNICAL REALISATION

SAT Util project’s package at.researchstudio.sat.util. These classes pro-
vide methods for the automatic import of data via CSV 3 files and various
aspects for caching, exception mapping, logging, and profiling issues.

5.4 Software Design

Figure 5.2 (page 44) gives a simplified overview of the software design of
the RS decribing the main interfaces and their associations.4 The following
sections provide a detailed description of these interfaces.

5.4.1 DAO Interfaces

For the access of several database tables (introduced in Section 5.5 on
page 45 et seqq.) we use the Data Access Objects (DAO) pattern5 en-
capsulating data access methods in separate interfaces for each table.
The DAOs of the Core module consist of the ActionDAO, the ItemAssocDAO,
and the TenantDAO used for tasks of recommendation, the RecommendationDAO

and RecommendedItemDAO for the logging of computed recommendations as
well as several DAOs for tenant-specific types (like the ActionTypeDAO or the
ItemTypeDAO). Additionaly the RuleMiningDAO supports specific methods used
by the AssocRuleMiningService. For the mapping of external String IDs to in-
ternal Integer IDs the IDMappingDAO from the SAT Util project is used. Finally
the AuthenticationDAO is dedicated to the management of tenant authenti-
cation. In Figure 5.2 (page 44) all boxes for DAO interfaces are kept in
yellow and orange.

5.4.2 Core Services

The services of the Core module mainly use the corresponding DAOs
and additionally SAT Util aspects for caching (mentioned above).
The ActionService, the ItemAssocService, the RecommenderService, and the
TenantService build the main services for recommendation, while the

3http://en.wikipedia.org/wiki/Comma-separated_values, as of 2008/09/29
4Note: Since the RS consists of too many interfaces and classes to be pictured in

one single diagramm, we have omitted several abstract base classes, generic interfaces,
model classes and implementation classes for each interface. We rather point out the
major interfaces and some important utility classes.

5http://java.sun.com/blueprints/corej2eepatterns/Patterns/

DataAccessObject.html, as of 2008/09/29

41

CHAPTER 5. TECHNICAL REALISATION

RecommenderHistoryService manages the persistence of several recommen-
dations provided to a user storing additional information about the context
of the query as well as the results. The assigned colour for the boxes of
these services pictured in Figure 5.2 (page 44) is blue.

5.4.3 Domain Services

The domain services DomainActionService, DomainItemAssocService, and
DomainRecommenderService. Several types (for actions, items, associations,
etc.) are using a tenant-specific String representation retrieved via the
TypeMappingService, while IDs (of items, tenants and users) are using the
Integer type. domain-specific interfaces like the MusicActionService, the
MusicRecommenderService, and the RascalliActionService provide convenience
methods using only those type specific methods available for that domain.
Domain Services are kept in green in Figure 5.2 (page 44).

5.4.4 Webapp Services

For the propagation of Web services the ShopRecommenderWS, the
MusicShopRecommenderWS, the RascalliDFKIWS, and the RascalloModellingWS are
available, a description of these services is presented in Section 5.8
(page 52 et seq.). All of these services use the IDMappingService and the
AuthenticationService6 to allow for String IDs and restrict access of these
services as well as SAT Util aspects for logging, profiling, and exception
mapping (mentioned above). In Figure 5.2 (page 44) boxes for Web ser-
vices are painted in purple.

5.4.5 Generators

The red boxes in Figure 5.2 (page 44) are assigned to item
association generators. An online generator is presented in
AbstractRascalloModellingGenerator, while the AssocRuleMiningService repre-
sents an offline generator. The functionality of both generators is explained
in Section 5.7 (page 50 et seqq.).

6The AuthenticationService uses API-Keying to restrict access on IP or domain
basis, hence a key (assigned to a tenant) is added to the signature of all Web service
methods.

42

CHAPTER 5. TECHNICAL REALISATION

5.4.6 Utility Classes

Finally all pink boxes in Figure 5.2 (page 44) picture several utility classes
that are used within the RS. The RecommenderUtils class provides methods
for the filtering of duplicates or filtering based on the action history of a
user, while the AutoImportService is used for the import of CSV files. The
AutoImportService uses the command7 pattern with the need of a specific
command class for each database table (for e.g. the ActionAICommand or the
ItemAssocAICommand).

7http://en.wikipedia.org/wiki/Command_pattern, as of 2008/09/29

43

C
H

A
P

T
E

R
5.

T
E

C
H

N
IC

A
L

R
E

A
LIS

AT
IO

N

<< interface >>

AutoImportService

ItemAssocAICommand

ActionAICommand

ActionToRatingAggragator

<< interface >>

AuthenticationDAO

<< interface >>

AuthenticationService

<< interface >>

IDMappingDAO

<< interface >>

IDMappingService

WeakeningOverTimeRascalloModellingGeneratorPeaCounterRascalloModellingGenerator

AbstractRascalloModellingGenerator

<< interface >>

RascalloModellingWS

<< interface >>

RascalliDFKIWS

<< interface >>

MusicShopRecommenderWS

<< interface >>

ShopRecommenderWS

<< interface >>

SourceTypeDAO

<< interface >>

ViewTypeDAO

<< interface >>

ItemTypeDAO
<< interface >>

AggregationTypeDAO

<< interface >>

AssocTypeDAO

<< interface >>

ActionTypeDAO << interface >>

TypeMappingService

<< interface >>

RacalliActionService

<< interface >>

MusicRecommenderService

<< interface >>

MusicActionService

<< interface >>

DomainRecommenderService

<< interface >>

DomainItemAssocService

<< interface >>

DomainActionService

<< interface >>

RecommendedItemDAO

<< interface >>

RecommendationDAO

<< interface >>

TenantDAO

<< interface >>

ItemAssocDAO

<< interface >>

ActionDAO

<< interface >>

RuleMiningActionDAO

<< interface >>

RecommendationHistoryService

<< interface >>

RecommenderService

<< interface >>

TenantService

<< interface >>

ItemAssocService

<< interface >>

ActionService

<< interface >>

AssocRuleMiningService

RecommenderUtils

Figure 5.2: Simplified Overview of the Software Design

44

CHAPTER 5. TECHNICAL REALISATION

5.5 Data Model

The comprehensive data model pictured in Figure 5.3 (page 47) shows
the database tables and their associations. A brief description for those
database tables is provided in the remainder of this section.

Tenant The Tenant table contains tenant-specific information like an id,
a stringId, and a description. Furthermore the range for the rating
scale can be defined using ratingRangeMin and ratingRangeMax, while
ratingRangeNeutral is used for the decision whether a rating is con-
sidered as good or bad. In Figure 5.3 (page 47) the Tenant table is
coloured pink.

Actions and Item Associations Concerning recommendations the
database tables Action and ItemAssociation hold the most important
information. A description of the conceptual fields can be found in
Section 4.3.2 (page 25 et seq.) and Section 4.3.4 (page 27 et seq.).
Additionally the Action table provides the following attributes: a
sessionId, an IP, and a textual description for all action entries as
well as a ratingValue for rating actions and a flag searchSucceeded plus
the numberOfFoundItems for search actions. The ItemAssociation table
is extended with an active flag for the management of rules. The
assigned colour for Actions and ItemAssociations in Figure 5.3 (page
47) is blue.

History of Recommendations In order to persist all recommendations
ever computed the tables Recommendation and RecommendedItem are
used. General user information and the list of results as
well as optional query parameters (like the queriedItemId or the
relatedActionTypeId) can be stored. Furthermore these tables con-
tain an attribute for the explanation provided to the user describing
why this recommendation was presented and why each of the rec-
ommended items is contained. Optionally the itemAssocId of the un-
derlying busines rules can be saved. In Figure 5.3 (page 47) the
tables are painted in green.

Types Caused by the generic concept of the RS several types are de-
fined separately for each tenant. Such types are: the ActionType, the
AssociationType, the AggregateType, the ItemType, the SourceType, and
the ViewType. In Figure 5.3 (page 47) the tables are kept in yellow.

Authentication The Authentication table stores tenant-specific IPs and
domain URLs. Its colour in Figure 5.3 (page 47) is orange.

45

CHAPTER 5. TECHNICAL REALISATION

Mapping of IDs In order to provide the possibility to propagate Web ser-
vice methods using String IDs but use Integer IDs for the faster ex-
ecution of item association generators the IDMapping table is used
which is coloured purple in Figure 5.3 (page 47).

46

C
H

A
P

T
E

R
5.

T
E

C
H

N
IC

A
L

R
E

A
LIS

AT
IO

N

RecommendedItem

-id:int

-itemId:int

-itemTypeId:int

-recommendationId:int

-predictionValue:double

-itemAssocId:int

-explanation:String

View Type

-tenantId:int

-name:String

-id:int

Tenant

-id:int

-stringId:String

-description:String

-ratingRangeMin:int

-ratingRangeMax:int

-ratingRangeNeutral:double

SourceType

-tenantId:int

-name:String

-id:int

Recommendation

-id:int

-tenantId:int

-userId:int

-queriedItemId:int

-queriedITemTypeId:int

-queriedAssocTypeId:int

-relatedActionTypeId:int

-recommendationStrategy:String

-explanation:String

-recommendationTime:Date

ItemType

-tenantId:int

-name:String

-id:int

ItemAssociation

-id:int

-tenantId:int

-itemFromId:int

-itemFromTypeId:int

-assocTypeId:int

-assocValue:double

-itemToId:int

-itemToTypeId:int

-sourceTypeId:int

-sourceInfo:String

-viewTypeId:int

-active:boolean

-changeDate:Date

IDMapping

-intId:int

-stringId:String

Authentication

-tenantId:int

-domainURL:String

AssociationType

-tenantId:int

-name:String

-id:int

AggregateType

-tenantId:int

-name:String

-id:int

ActionType

-tenantId:int

-name:String

-id:int

Action

-id:int

-tenantId:int

-userId:int

-sessionId:String

-IP:String

-itemId:int

-itemTypeId:int

-actionTypeId:int

-ratingValue:int

-searchSucceeded:boolean

-numberOfFoundItems:int

-description:String

-actionTime:Date

*

0..1

*

*
*

*

*

*

*

*

*

*

*

*

0..1

*

0..1
*

0..1

*

*
*

*

* *

*

*

Figure 5.3: Data Model describing database tables and their associations

47

CHAPTER 5. TECHNICAL REALISATION

5.6 Deployment Architecture

Figure 5.4 (page 49) demonstrates the deployment architecture of the RS.
The following servers are used for the running system:

Recommender Server On this server the Web application of the RS op-
erates providing action logging as well as recommendations using
various Web service interfaces. In Figure 5.4 (page 49) the Recom-
menderServer is coloured green.

Database Server The Database Server is located in the same internal
network as the Recommender Server and contains several versions
of recommender databases. The assigned colour in Figure 5.4 (page
49) is blue.

Metadata Server Also assigned to the same internal network each of-
fline generator can run on a separate machine distributing computa-
tion efforts on multiple machines. The generators directly access the
Database Server for the retrieval of user actions and the persistence
of IAR. The Metadata Server is painted pink in Figure 5.4 (page 49).

Furthermore we plan the implementation of an administrative tool for
the RS which then would be deployed to a different server.

Adminstration Server It is planned to launch a future administration tool
for the RS on a separate server. This tool will be able to manage
business rules as well as change settings of the RS and several run-
ning generators (separately for each tenant) and is kept in yellow in
Figure 5.4 (page 49).

In addition to the running live system we use the same deployment
architecture for another set of servers running in our test environment.
For the actual task of deploying the Web application of the RS we use
different Maven2 profiles for each environment (live and test), while for the
migration of databases we use simple SQL scripts.

48

C
H

A
P

T
E

R
5.

T
E

C
H

N
IC

A
L

R
E

A
LIS

AT
IO

NMetadata Generator Server

<< executionEnvironment >>

Offline Rule Generator N

<< executionEnvironment >>

Offline Rule Generator 1

Administration Server

<< executionEnvironment >>

Administration Tool

 (planned)

Database Server

Association RulesActions

Recommender Server

<< executionEnvironment >>

Offline Recommender

<< executionEnvironment >>

Online Recommender

Figure 5.4: Deployment Architecture

49

CHAPTER 5. TECHNICAL REALISATION

5.7 Supported Recommender Features

5.7.1 An Offline Generator

For the integration of an offline generator we have adapted the SAT As-
sociation Rule Miner (ARM) algorithm invented, adapted, and provided
by Erich Gstrein. The ARM functions similar to standard market basket
analysis approaches using the set of user actions as shopping cart and
generating IAR of the form e.g. ”Item I viewed together with item J”, or
”Item I bought together with item J”. These rules allow recommendations
like ”Users who viewed item I also viewed item J”.

The main parameters for this algorithm are:

Support defines the number of market baskets fulfilling a potentially in-
troduced item association rule. Defining a certain threshold for the
support allows to manage the generation of rules. Thus a rule is only
generated when both items of the rule (antecedent and consequent)
occur together in a high enough number of baskets. Most often the
confidence is defined in percent of the overall number of baskets, al-
lowing the usage of the algorithm (with the same settings) on content
pools of different sizes.

Confidence is the proportion of the number of baskets containing both
items (antecedent and consequent) to the number of baskets con-
taining only the antecedent. Hence a probability for the success of
the generated rule is defined.

Lift is defined as the proportion of Confidence to Expected Confidence
which describes the proportion of the number of baskets only con-
taining the consequent to the overall number of baskets. Hence
Lift describes the probability gain for the consequent for a given an-
tecedent.

Further improvements and implementation details of the algorithm un-
derly an non-disclosure agreement and will be revealed in the near future
in a publication of Erich Gstrein.

5.7.2 An Online Generator

As online generator we have designed and implemented the Rascalli Mod-
elling Generator (RMG) which aggregates user actions (for the RASCALLI

50

CHAPTER 5. TECHNICAL REALISATION

music domain) into user preferences requesting additional content meta-
data (e.g. the assigned genres of an artist). These preferences are stored
as IAR of the basic form ”User U likes item I” (for e.g. ”Peter likes the genre
pop”).

Technically, for the RASCALLI music domain we decide between three
different item types (artists, genres, and tracks) and five action types
(choose topic, preview, rate, search, and view).

The RMG can be configured using the following parameters:

Action Mapping A set of weights for the set of actions defining an order-
ing between the given action types.

Propagation Factors Two propagation factors for the track-artist and
artist-genre propagation. These parameters are used to propagate
user actions over artists to the assigned artist’s genres, as well as for
the propagation of track actions to the appropriate artist and genres
of that track.

Lowest Action Multiply Factor This factor is used to compute the overall
minimum preference value (for the given Action Mapping). It defines
the number of actions (with the lowest weight) necessary for a pref-
erence rule.

Max Artist Genre Count Defines the allowed maximum number of gen-
res assigned to an artist for the propagation of genre preferences.
This parameter was introduced to overcome the problem that some
artists (of the underlying content pool) are dedicated to too many
genres, such that propagating genre information for that artist would
only result in noise instead of valuable information.

We have implemented two different strategies of the RMG:

Pea Counting Strategy This implementation simply uses the parameters
mentioned above aggregating (weighted) user actions to preferences
for certain artists, genres, and tracks.

Weakening Over Time Strategy This strategy is an extension of the Pea
Counting Strategy using the same aggregation process, but for each
new action all previous actionweights are alleviated. We assume
that this strategy fits better to the needs of a recommender since
user actions of the past are weighted lower than recent user actions
which allows for the change of user preferences over time.

51

CHAPTER 5. TECHNICAL REALISATION

The complete showcase for this generator is provided in Chapter 6
(page 55 et seqq.) introducing several client applications.

5.7.3 Statistics over Rankings and Ratings

Additionally to online and offline generators we provide simple statistics
over the rankings of items and user ratings. The rankings of items are
classified over the action type, hence statistics like ”The list of the ten most
viewed items” are provided. Concerning ratings we have implemented a
set of methods compiling a list of items (ordered by their rating value over
all users).

5.8 Web Service Interfaces

As general interface for various clients from the SAT or partner institutes
and customers a set of different Web services is propagated.

The RS provides four different Web services8:

• ShopRecommenderWS9 A domain-independent Web service, where all
item types and association types are completely parameteris-
able, while action types for a classical Web shop10 are assumed.
It supports item-based recommendations (like alsoViewedItems or
itemsBasedOnBuyingHistory) as well as rating-based recommendations
(like alsoGoodRatedItems) and additionally offers simple statistics over
rankings (like mostViewedItems) and ratings (like goodItemRatings).

• MusicShopRecommenderWS11 A domain-specific Web service representing
a convenience interface of the ShopRecommenderWS using the same ser-
vice methods but restricting item types to the music domain.12 Nev-
ertheless not all combinations of suggested item and action types

8Note: The URLs of these Web services are currently existing, but may not be avail-
able for long, since the version of the RS changes with every release and thus Web
service URLs change as well.

9http://intralife.researchstudio.at/sat-recommender-1.2/nodomain?wsdl,
as of 2008/09/26

10Such actions of a Web shop are typically ”buy”, ”view”, ”search” and ”rate”.
11http://intralife.researchstudio.at/sat-recommender-1.2/music?wsdl, as of

2008/09/26
12For now we support the item types ”artist”, ”track” and ”genre”, but other item types

like ”album” or ”group” can be added easily.

52

CHAPTER 5. TECHNICAL REALISATION

are implemented as convenience methods, since their underlying se-
mantic would not be appropriate for a music web shop.13

• RascalliDFKIWS14 A domain-specific Web service for the Deutsches
Forschungszentrum für Künstliche Intelligenz (DFKI)15 providing Vi-
sual Browser (VB)16 specific methods for the transmission of user
actions.

• RascalloModellingWS17 A domain-specific Web service for the RAS-
CALLI Environment18 supplying methods to retrieve artist, genre,
and track preferences as well as viewed Visual Browser topics by
count. (Both RASCALLI client applications are introduced in Sec-
tion 6.3 on page 58 et seqq..) Additionally it allows the switching
between two modelling strategies.

A full listing of Web service methods for each of these four Web ser-
vices is given in Appendix C (page 92 et seqq.).

5.9 Preliminary Evaluation of a Rating-Based Al-
gorithm

In the very early stage of this project, when the decision whether to im-
plement several recommender algorithms by ourselves or to use existing
implementations within open-source frameworks integrated in our RS was
not made yet, we evaluated a rating-based item-to-item CF algorithm. The
full description of this task can be found in Appendix A (page 75 et seqq.).
The evaluation showed that the specific implementation we tested did not
scale very well with a growing size of user ratings. Thus we decided not to

13An example: The combination of item type ”artist” with the action type ”buy” would be
quite absurd.

14http://intralife.researchstudio.at/sat-recommender-1.2/rascalli/dfki?

wsdl, as of 2008/09/26
15http://www.dfki.de, as of 2008/10/03
16Since the VB does not provide a Web site for the main entry but rather only offers spe-

cific artist pages, the following URL, pointing to the artist page of ”Madonna”, is provided
as an example.
http://rascalli.dfki.de/live/ontology.page?ctag=dfki&id=Artist.14913, as

of 2008/10/03
17http://intralife.researchstudio.at/sat-recommender-1.2/rascalli/

website?wsdl, as of 2008/09/26
18http://intralife.researchstudio.at/rascalli, as of 2008/09/30

53

CHAPTER 5. TECHNICAL REALISATION

use this implementation but rather to implement several algorithms and to
integrate them into our RS.19

Summary

We demonstrated an overview of the RS architecture and provided a de-
scription of the module and package structure in this chapter. Furthermore
we explained the detailed SW design (consisting of the major interfaces
and classes). Moreover the data model and the deployment architecture
were presented. Finally we introduced supported recommender features
and Web services for their propagation. Additionally we pointed to ap-
pendix chapters describing the general SW infrastructure, the Java inter-
faces of the Web services, and the evaluation of a rating-based algorithm.

19At this point of the project the goals were slightly adapted, but to demonstrate the full
entireness of the work at hand we kept this chapter and moved it to the appendix.

54

Chapter 6
Applications

Abstract

In order to describe an application scenario for the RS this chapter intro-
duces the RASCALLI project in Section 6.1 and describes the use case
for the RS in Section 6.2. Furthermore the client applications that have
integrated Web services of the RS are introduced in Section 6.3.

6.1 The RASCALLI Project

Since the RS is used in the Responsive Artificial Situated Cognitive Agents
Living and Learning on the Internet (RASCALLI) project this section gives
an overview of the project.

”The project RASCALLI aims at the development of responsive
artificial situated cognitive agents that live and learn on the In-
ternet (Rascalli). Rascalli represent a growing class of coop-
erative agents that do not have a physical presence, but nev-
ertheless are equipped with major ingredients of cognition in-
cluding situated correlates of physical embodiment to become
adaptive, cooperative, and self improving in a certain environ-
ment (Internet) given certain tasks. Their task-based process-
ing of Web content requires an action-based model of interpre-
tative perception. Because of the size and importance of their
memory, special attention is paid to the associative structuring
of the acquired information based on interests and experience,
and to models of an active, permanently structure-creating and
restructuring memory. With Rascalli we aim at artificial agents
that are able to combine human and computer skills in such a
way that both kinds of abilities can be optimally employed for
the benefit of the human user.

We develop and implement a system that integrates a cognitive
model and architecture with modules such as digital memory,
knowledge representation and special purpose components as

55

CHAPTER 6. APPLICATIONS

realized in question-answering systems and music search en-
gines. The system allows a user to create a digital presence
functioning like an avatar or agent that lives in the Internet and
can be instructed by the user to collect information on certain
user defined topics, to engage on behalf of the user in Web
communities, to establish contact with other digital presences,
avatars and users, etc. In the human-computer interface, Ras-
calli appear as embodied conversational characters. The feasi-
bility of the approach is demonstrated via two application sce-
narios: a scenario where users train their Rascalli to success-
fully compete in a quiz game, and a scenario where Rascalli
assist the human user in gathering and organizing information
related to music.”1

6.2 Use Case for the Recommender System

The use case described in Figure 6.1 (page 57) is used for the application
scenario (mentioned above) where a user agent (rascallo) is trained to
provide it’s user with music related information. While the user navigates
through client applications user actions are collected at the RS. These
actions are then processed by item assocation generators producing as-
sociation rules for that user forming an implicit user profile of liking and
disliking. Furthermore these rules (e.g. ”User I likes item J”) are used
to provide user preferences to the rascallo, hence allowing the rascallo to
improve recommendations of items presented to the user.

1cp. http://www.ofai.at/rascalli/project/project.html, as of 2008/09/29

56

C
H

A
P

T
E

R
6.

A
P

P
LIC

AT
IO

N
S

Offline generators compute

business rules from user actions

to provide more information

about the user.

Association Generators

The user (implicitly) views an item or (explicitly)

gives feedback (rates the item).

An example from the music domain:

"User Peter VIEWS Artist Madonna",

"User Peter RATES Artist Madonna by the value 10"

Provides the Rascallo with an

implicit user profile.

e.g. "Peter LIKES Madonna"

recommend

train

Rascallo

Recommender

Client Applications

act on item

User

Figure 6.1: RASCALLI Use Case: Training a Rascallo with the Recommender

57

CHAPTER 6. APPLICATIONS

6.3 Introduction of Involved Applications

The RASCALLI Platform supports multi-agent architectures as well as mul-
tiple versions of the same component and combines several applications
developed at different research institutes (Krenn and Schollum, 2008; Eis
et al., 2008). Nevertheless this chapter describes only those applications
involved in the use case described in Section 6.2 (page 56 et seq.).

6.3.1 The SAT Music Explorer

The SAT Music Explorer (MEX)2 enables fast and target-oriented naviga-
tion in huge music archives.

Besides providing artist and genre information (as pictured in Fig-
ure 6.2 on page 59) one of the MEX core features is a playlist genera-
tor (Figure 6.3 on page 59) based on sound similarity computed from the
sound signal.

The Music Explorer uses the MusicShopRecommenderWS for the actual task
of tracking user actions and additionally has incorporated recommender
methods and statistics. So each time an artist page is displayed to the
user, an action ”User U has viewed artist A” is stored to the recommender
database. Since the MEX is strictly dedicated to the music domain it uses
four different item types (artists, genres, playlists, and tracks) and four
action types (preview, rate, search, and view).

6.3.2 The DFKI Visual Browser

The Visual Browser developed at the DFKI provides extensive artist meta-
data to the user.

Besides background information like full name, gender, and related
genres the VB demonstrates various artist connections (parents, children,
and partners) as well as records and prizes (concerning the artist’s profes-
sional career).

The Visual Browser uses the RascalliDFKIWS for the logging of user ac-
tions of the type ”choose topic” (plus additional topic information) to the
RS. A screenshot for the VB is presented in Figure 6.4 (page 60).

Furthermore all user actions from the MEX and the VB are processed
by the online item association generator RMG (as described in Sec-
tion 5.7.2 on page 50 et seqq.), hence an implicit user model consisting of
preferences for artists, genres, and tracks is computed and stored as IAR.

2http://rascalli.researchstudio.at, as of 2008/10/03

58

CHAPTER 6. APPLICATIONS

Figure 6.2: Music Explorer: Artist Page

Figure 6.3: Music Explorer: Explorer Page

59

CHAPTER 6. APPLICATIONS

Figure 6.4: Visual Browser: Artist Page

60

CHAPTER 6. APPLICATIONS

Figure 6.5: RASCALLI Environment: Pea Counting Strategy

6.3.3 The SAT RASCALLI Environment

The main entry point for the RASCALLI Platform is provided by the SAT
RASCALLI Environment3 allowing for the registration of a user and the
configuration of the user’s rascallos.

Additionally users are guided to the Music Explorer and the Visual
Browser . Furthermore the RASCALLI Environment displays the user’s
profile using both strategies of the RMG (mentioned in Section 5.7.2 on
page 50 et seqq.). The user profile for the Pea Counting strategy is de-
picted in Figure 6.5, while the profile using the Weakening Over Time strat-
egy is presented in Figure 6.6 (page 62).

3http://intralife.researchstudio.at/rascalli, as of 2008/10/03

61

CHAPTER 6. APPLICATIONS

Figure 6.6: RASCALLI Environment: TimeWeakening Strategy

One of the RASCALLI project partners, the New Bulgarian University
(NBU)4, is concerned with the evaluation of the RASCALLI system and
it’s use cases. Results will be released in a publication of the NBU at the
end of the RASCALLI project.

Summary

In this chapter we demonstrated an application scenario for the RS and
briefly described the RASCALLI project. Additionally we introduced the
client applications involved: the SAT Music Explorer , the SAT RASCALLI
Environment and the DFKI Visual Browser . Finally we mentioned the ex-
ternal evaluation of the scenario through the RASCALLI partner institute
NBU.

4http://www.nbu.bg/cogs/center/index.html, as of 2008/09/30

62

Chapter 7
Conclusion

In the work at hand we presented a generic recommender that can be
applied to various domains and different recommender techniques.

After an overview of existing recommender approaches and evalua-
tion measures, we pointed out some common problems. Furthermore we
explained some interesting recommender approaches including some of
their features. We then identified the challenges for our RS which are,
among others: domain-independence, extensibility, multi-tenant capability,
and scalability. We designed and presented a concept that mainly relies on
the gathering of user actions, and the processing of these actions either
in offline operating item association generators, or online as direct rec-
ommendation services. In order to serve as managed service for multiple
tenants and additionally reduce complexity of computations, we introduced
types for items, actions, and associations that allow for the generation of
item-to-item business rules limited to a bounded set of actions. We pro-
posed that the usage of such rules additionally: supports different recom-
mender approaches since third-party metadata can be imported as rules
(e.g. a content-based approach that defines item-similarity), enables com-
plex algorithms to work offline (e.g. collaborative filtering methods on large
data sets), and allows for the individual management of the recommenda-
tion process as well as providing explanations to the user, why an item was
recommended. On a technical level we furthermore described the SW ar-
chitecture, the SW infrastructure, the existing modules and packages, the
SW design, the data model, the deployment architecture, and the used
recommender methods. We mentioned various Web service interfaces for
domain-independent recommendations, as well as convenience services
for the music domain and the RASCALLI domain, where we applied the
system. These Web services proofed to be easily integrated into multi-
ple client applications within the RASCALLI project, as we finally demon-
strated a use case in a real-life scenario as well as the functional efficiency
of the concept.

Concluding we believe that the proposed approach adresses the ma-
jor problems of recommender systems: the cold-start problem, sparsity of
data, and scalability. Nevertheless evidence can be found once content-
based item association generators are introduced and the number of col-
lected user actions exceeds the usual capacity.

63

Chapter 8
Future Work

We plan the implementation of the rating-based item-to-item Slope One
recommender algorithm as well as the incorporation of content-based gen-
erators. Additionally the appropriation of baseline evaluation measures as
the Pearson Correlation (Section 2.4.3 on page 12) is under discussion.

In addition we target to implement an administrative tool for the RS to
manage stored user Actions and Item Association Rules for each tenant
separately. Thus a system operator could manually override or disable
certain rules and add new ones as well.

Furthermore we aim to enhance the RS to incorporate methods of the
field of User Modelling allowing for the aggregation of user actions into
(implicit and explicit) user profiles as well as incremental refinement of
such profiles. Current forms of representing a user model like RDF/OWL
or XML/XML-Schema, and new standards like OpenTaste1 shall be inves-
tigated.

Another interesting field of research are Self Adapting Systems that in-
corporate methods for the self-management of the systems configuration.
For the RS such an approach offers the possibility to refine the configura-
tion of generators and the system itself automatically.2

Moreover we consider to broaden our research in the field of Custom
User Tags providing methods to compute a similarity distance between
items based on the categories assigned by the users.

Also a Representational State Transfer (REST)3 architecture will be in-
troduced for all Web services soon, allowing well-defined operations over
HTTP and representing queried data (respectively resources) in a uniform
format (typically HTML, XML or JSON).

Finally we plan to add a simplified Web service interface (we call it
EasyRec) that uses just a single item type. Additionally a Web application
for the registration of new tenants, the transmission of actions, and the
retrieval of recommendations via the EasyRec interface will be launched
and used to demonstrate the basic functionality of the RS.

1http://www.opentaste.net, as of 2008/30/08
2An example: An item association generator would then decide whether to operate

online or offline depending on the tenants content and the time needed for the generation
of business rules.

3http://en.wikipedia.org/wiki/REST, as of 2008/09/19

64

List of Acronyms

API Application Programming Interface
ARM Association Rule Miner
CF Collaborative Filtering
DAO Data Access Object
DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
IAR Item Assocation Rules
ID Identifier
IDE Integrated Development Environment
MEX Music Explorer
MIR Music Information Retrieval
NBU New Bulgarian University
RASCALLI Responsive Artificial Situated Cognitive Agents

Living and Learning on the Internet
RMG Rascalli Modelling Generator
ROI return-of-investment
RS Recommender System
RSA Research Studios Austria Forschungsgesellschaft mbH
SAT Smart Agent Technologies Studio
SO Slope One
SOA Service Oriented Architecture
SW Software
TFxIDF term frequency/inverse document frequency
VB Visual Browser
WSDL Web Service Definition Language

65

List of Figures

5.1 Overview of the Software Architecture 34
5.2 Software Design . 44
5.3 Data Model . 47
5.4 Deployment Architecture . 49

6.1 RASCALLI Use Case: Training a Rascallo with the Recom-
mender . 57

6.2 Music Explorer : Artist Page 59
6.3 Music Explorer : Explorer Page 59
6.4 Visual Browser : Artist Page 60
6.5 RASCALLI Environment : Pea Counting Strategy 61
6.6 RASCALLI Environment : TimeWeakening Strategy 62

A.1 Slope One Recommender Tests for Known Ratings 83
A.2 Slope One Recommender Tests for Unknown Ratings . . . 84

66

List of Listings
A.1 MySQL CREATE TABLE Statement for a taste_preferences

Table . 78
A.2 MySQL CREATE INDEX Statements for a taste_preferences

Table . 78
C.1 Domain-Independent Web Service Interface for a Shop

Recommender . 92
C.2 Music Domain Web Service Interface for a Shop Recom-

mender . 97
C.3 RASCALLI Domain Web Service Interface for the DFKI Vi-

sual Browser . 107
C.4 RASCALLI Domain Web Service Interface for the SAT RAS-

CALLI Environment . 109

67

List of Tables

2.1 Hybridisation Methods . 9

4.1 Example for the Mapping of Actions to Discrete Rating Values 32

5.1 Core Module Package Structure 36
5.2 Domain Module Package Structure 37
5.3 Content Module Package Structure 38
5.4 Thirdparty Module Package Structure 39
5.5 Evaluation Module Package Structure 39
5.6 Webapp Module Package Structure 40

A.1 Hardware Specifications of Test Machine 80
A.2 Software Components and its Versions used for Testing . . 80
A.3 Response Time for Ratings on Different Sizes of Datasets

(Test 1) . 81
A.4 Response Time for Ratings on Different Sizes of Datasets

providing about 2 GB Free Disk Space (Test 2) 81
A.5 Response Time for Ratings on Different Sizes of Datasets

providing about 2 GB Free Disk Space using Indices (Test 3) 82
A.6 Response Time for Ratings on Different Sizes of Datasets

providing about 2 GB Free Disk Space using Indices and a
Cap for Number of Entries (Test 4) 82

B.1 Versions of Infrastructure Software Components 89
B.2 Versions of Infrastructure Development Tools 91

68

Bibliography
Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation

of recommender systems: A survey of the state-of-the-art and possi-
ble extensions. IEEE Transactions on Knowledge and Data Engineer-
ing, 17(6):734–749. Member-Gediminas Adomavicius and Member-
Alexander Tuzhilin.

Anderson, M., Ball, M., Boley, H., Greene, S., Howse, N., Lemire, D.,
and McGrath, S. (2003). Racofi: A rule-applying collaborative filtering
system. In COLA ’03: Proceedings of the Workshop on Collaboration
Agents: Autonomous Agents for Collaborative Environments. IEEE/WIC.

Balabanović, M. and Shoham, Y. (1997). Fab: Content-based, collabora-
tive recommendation. Communications of the ACM, 40(3):66–72.

Belkin, N. J. and Croft, W. B. (1992). Information filtering and information
retrieval: Two sides of the same coin? Communications of the ACM,
35(12):29–38.

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analysis of
predictive algorithms for collaborative filtering. In UAI ’98: Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelligence,
pages 43–52. Morgan Kaufmann.

Brozovsky, L. and Petricek, V. (2007). Recommender system for online
dating service. In ZNALOSTI ’07: Proceedings of the 6th annual confer-
ence Znalosti, pages 17–18, Ostrava, Czech Republic. VSB.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments.
User Modeling and User-Adapted Interaction, 12(4):331–370.

Burke, R., Mobasher, B., Williams, C., and Bhaumik, R. (2006). Classifica-
tion features for attack detection in collaborative recommender systems.
In KDD ’06: Proceedings of the 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 542–547, New
York, NY, USA. ACM.

Cano, P., Koppenberger, M., and Wack, N. (2005). Content-based music
audio recommendation. In MULTIMEDIA ’05: Proceedings of the 13th
annual ACM international conference on Multimedia, pages 211–212,
New York, NY, USA. ACM.

69

BIBLIOGRAPHY

Eis, C., Skowron, M., and Krenn, B. (2008). Virtual agent modeling in the
rascalli platform. In PerMIS’08: Proceedings of the Performance Metrics
for Intelligent Systems Workshop, NIST, Gaithersburg, MD, USA. ACM.

Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collabo-
rative filtering to weave an information tapestry. Communications of the
ACM, 35(12):61–70.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001). Eigentaste:
A constant time collaborative filtering algorithm. Information Retrieval,
4(2):133–151.

Gstrein, E., Kleedorfer, F., and Krenn, B. (2006). Automated meta data
generation for personalized music portals. Technical Report TR-2006-
01, Austrian Research Centers GmbH, Studio Smart Agent Technolo-
gies, Hasnerstrasse 123, A-1160 Vienna, Austria.

Gstrein, E., Kleedorfer, F., Mayer, R., Schmotzer, C., Widmer, G., Holle, O.,
and Miksch, S. (2005). Adaptive personalization: A multi-dimensional
approach to boosting a large scale mobile music portal. In Fifth Open
Workshop on MUSICNETWORK: Integration of Music in Multimedia Ap-
plications, pages 1–8, Vienna, Austria.

Gstrein, E. and Krenn, B. (2006). Mobile music personalization at work. In
Proceedings of the ECAI 2006 Workshop on Recommender Systems,
pages 122–124, Riva del Garda, Italy.

Hedfi, S. and Trabelsi, A. (2005). Design of an hybrid recommender sys-
tem personalization, evaluation and prediction. In IEBC ’05: Proceed-
ings of the First International E-Business Conference. BESTMOD, ISG
de Tunis.

Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining collabora-
tive filtering recommendations. In CSCW ’00: Proceedings of the 2000
ACM conference on Computer supported cooperative work, pages 241–
250, New York, NY, USA. ACM.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004).
Evaluating collaborative filtering recommender systems. ACM Transac-
tions on Information Systems, 22(1):5–53.

Hlavac, P., Krenn, B., and Gstrein, E. (2007). Soundscout: A song recom-
mender based on sound similarity for huge commercial music archives.

70

BIBLIOGRAPHY

Technical Report TR-2007-01, Austrian Research Centers GmbH, Stu-
dio Smart Agent Technologies, Hasnerstrasse 123, A-1160 Vienna, Aus-
tria.

Hoashi, K., Matsumoto, K., and Inoue, N. (2003). Personalization of user
profiles for content-based music retrieval based on relevance feedback.
In MULTIMEDIA ’03: Proceedings of the eleventh ACM international
conference on Multimedia, pages 110–119, New York, NY, USA. ACM.

Hurley, N. J., O’Mahony, M. P., and Silvestre, G. C. M. (2007). Attacking
recommender systems: A cost-benefit analysis. IEEE Intelligent Sys-
tems, 22(3):64–68.

Kleedorfer, F. (2008). Automatic topic detection in song lyrics. Master’s
thesis, Vienna University of Technology.

Kleedorfer, F., Knees, P., and Pohle, T. (2008). Oh oh oh whoah! towards
automatic topic detection in song lyrics. In ISMIR ’08: Proceedings of
the 9th International Conference on Music Information Retrieval, pages
287–292, Philadelphia, PA, USA.

Knees, P., Pampalk, E., and Widmer, G. (2004). Artist classification with
web-based data. In ISMIR ’04: Proceedings of the 5th International
Conference on Music Information Retrieval, pages 517–524, Barcelona,
Spain.

Krenn, B. and Schollum, C. (2008). The rascalli platform - for a flexible and
distributed development of virtual systems augmented with cognition. In
CogSys ’08: Proceedings of the International Conference on Cognitive
Systems, University of Karlsruhe, Karlsruhe, Germany. IEEE.

Lemire, D., Boley, H., McGrath, S., and Ball, M. (2005). Collaborative
filtering and inference rules for context-aware learning object recom-
mendation. International Journal of Interactive Technology and Smart
Education, 2(3).

Lemire, D. and Maclachlan, A. (2005). Slope one predictors for online
rating-based collaborative filtering. In SDM’05: Proceedings of SIAM
Data Mining, pages 471–475, Newport Beach, California, USA.

Lemire, D. and McGrath, S. (2005). Implementing a rating-based item-
to-item recommender system in php/sql. Technical Report D-01, On-
delette.com.

71

BIBLIOGRAPHY

Li, C., Qi, J., Wei, W., and Shu, H. (2007). A service-oriented architec-
ture for semantic recommendation and integration of products/applica-
tion services (soa-ripas) in globalization. In APSCC ’07: Proceedings of
the 2nd IEEE Asia-Pacific Service Computing Conference, pages 382–
389, Washington, DC, USA. IEEE Computer Society.

Li, Q., Kim, B. M., Guan, D. H., and whan Oh, D. (2004). A music rec-
ommender based on audio features. In SIGIR ’04: Proceedings of the
27th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 532–533, New York, NY, USA.
ACM.

Linden, G., Smith, B., and York, J. (2003). Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet Computing,
7(1):76–80.

Massa, P. and Avesani, P. (2004). Trust-aware collaborative filtering for
recommender systems. In Proceedings of Federated International Con-
ference On The Move to Meaningful Internet: CoopIS, DOA, ODBASE,
volume 3290, pages 492–508.

Massa, P. and Avesani, P. (2006). Trust-aware bootstrapping of recom-
mender systems. In Proceedings of the ECAI 2006 Workshop on Rec-
ommender Systems, pages 29–33, Riva del Garda, Italy.

Massa, P. and Avesani, P. (2007). Trust-aware recommender systems.
In RecSys ’07: Proceedings of the 2007 ACM conference on Recom-
mender systems, pages 17–24, New York, NY, USA. ACM.

Mobasher, B., Burke, R., Bhaumik, R., and Sandvig, J. J. (2007). Attacks
and remedies in collaborative recommendation. IEEE Intelligent Sys-
tems, 22(3):56–63.

O’Donovan, J. and Smyth, B. (2005). Trust in recommender systems. In
IUI ’05: Proceedings of the 10th international conference on Intelligent
user interfaces, pages 167–174, New York, NY, USA. ACM.

Pampalk, E., Rauber, A., and Merkl, D. (2002). Content-based organiza-
tion and visualization of music archives. In MULTIMEDIA ’02: Proceed-
ings of the tenth ACM international conference on Multimedia, pages
570–579, New York, NY, USA. ACM.

72

BIBLIOGRAPHY

Park, S.-T., Pennock, D., Madani, O., Good, N., and DeCoste, D. (2006).
Naı̈ve filterbots for robust cold-start recommendations. In KDD ’06: Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 699–705, New York, NY, USA.
ACM.

Rack, C., Arbanowski, S., and Steglich, S. (2007). A generic multipur-
pose recommender system for contextual recommendations. In ISADS
’07: Proceedings of the Eighth International Symposium on Autonomous
Decentralized Systems, pages 445–450, Washington, DC, USA. IEEE
Computer Society.

Rauber, A., Pampalk, E., and Merkl, D. (2002). Content-based music in-
dexing and organization. In SIGIR ’02: Proceedings of the 25th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 409–410, New York, NY, USA. ACM.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994).
Grouplens: An open architecture for collaborative filtering of netnews.
In CSCW ’94: Proceedings of the 1994 ACM conference on Computer
supported cooperative work, pages 175–186, New York, NY, USA. ACM.

Resnick, P. and Varian, H. R. (1997). Recommender systems. Communi-
cations of the ACM, 40(3):56–58.

Sarwar, B., Karypis, G., Konstan, J., and Reidl, J. (2001). Item-based col-
laborative filtering recommendation algorithms. In WWW ’01: Proceed-
ings of the 10th international conference on World Wide Web, pages
285–295, New York, NY, USA. ACM.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000). Analysis of
recommendation algorithms for e-commerce. In EC ’00: Proceedings
of the 2nd ACM conference on Electronic commerce, pages 158–167,
New York, NY, USA. ACM.

Schafer, J. B., Konstan, J., and Riedi, J. (1999). Recommender systems
in e-commerce. In EC ’99: Proceedings of the 1st ACM conference on
Electronic commerce, pages 158–166, New York, NY, USA. ACM.

Simon Hix, Abdul Noury, G. R. (2006). Dimensions of politics in the euro-
pean parliament. American Journal of Political Science, 50(2):494–520.

73

BIBLIOGRAPHY

Upendra, S. (1994). Social information filtering for music recommendation.
Technical Report TR-94-04, MIT EECS, Learning and Common Sense
Group, MIT Media Laboratory. also Masters Thesis.

Upendra, S. and Maes, P. (1995). Social information filtering: Algorithms
for automating “word of mouth”. In CHI ’95: Proceedings of the SIGCHI
Conference on Human factors in Computing Systems, pages 210–217,
New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Yu, K., Xu, X., Ester, M., and Kriegel, H.-P. (2001). Selecting relevant
instances for efficient and accurate collaborative filtering. In CIKM ’01:
Proceedings of the tenth international conference on Information and
knowledge management, pages 239–246, New York, NY, USA. ACM.

Ziegler, C.-N., McNee, S. M., Konstan, J. A., and Lausen, G. (2005). Im-
proving recommendation lists through topic diversification. In WWW ’05:
Proceedings of the 14th international conference on World Wide Web,
pages 22–32, New York, NY, USA. ACM.

74

Appendix A
Evaluation of a Slope One
Recommender Implementation on
a Large Music Database

Abstract

This chapter gives a detailed report of some performance tests with a large
music recommender database and the Slope One (SO) algorithm imple-
mented in the common open-source CF framework Taste1. It also shows
that the algorithms within the Taste framework can be integrated into our
RS (with a small amount of effort), but also that the tested Slope One
implementations do not scale very well for large datasets.

A.1 Goal

Since our RS is designed to manage business rules generated from dif-
ferent sources using various algorithms, but only item-based recommen-
dations are implemented currently, we aim to broaden the range of sup-
ported recommender algorithms and invest some effort in the evaluation
of a rating-based CF algorithm.

The goal is to measure the performance of the SO algorithm on a large
music database (that was provided for research in the field of Collaborative
Filtering by the Verisign Communications GmbH2) and the applicability of
the Taste framework to our RS.

A.2 The Slope One Recommender Algorithm

The Slope One recommender algorithm (which was introduced by Lemire
and Maclachlan (2005) and implemented by Lemire and McGrath (2005))
is a rating-based collaborative filtering algorithm predicting a user-rating

1http://taste.sourceforge.net/, as of 2008/06/20
2http://www.3united.com, as of 2008/06/20

75

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

for a given item by computing the average difference between ratings of
other users who have already rated for that specific item (and for some of
the other items the given user has already rated before).3

A.2.1 Basic Functionality

Slope One is a memory-based item-to-item CF algorithm trying to predict
how a user would rate a given item from other user ratings.

SO works on the intuitive principle of a popularity differential between
items for users. In a pair-wise fashion it is determined how much better one
item is liked than another. One way to measure this differential is simply to
subtract the average rating of the two items. In turn, this difference can be
used to predict another user’s rating of one of those items, given the rating
of the other.

The authors have introduced three different prediction schemes: the
SO scheme, the weighted SO scheme and the bi-polar SO scheme. In
contrary to the simple SO scheme, the weighted scheme takes the num-
ber of observed ratings into consideration, while the bi-polar scheme sep-
arates the user ratings into two classes of good and bad ratings, hence
reducing the number of predicted ratings.

Example for the Slope One Algorithm

Consider two users A and B and two items I and J . User A gave item I a
rating of 1, whereas user B gave it a rating of 2, while user A gave item J
a rating of 1.5. We observe that item J is rated better than item I by 1.5-1
= 0.5 points, thus we could predict that user B will give item J a rating of
2+0.5 = 2.5.

A.2.2 Open-Source Frameworks Providing a Slope One Im-
plementation

To avoid re-implementation of commonly known algorithms we broadened
our research field and examined some open-source tools as well. The
focus of the search was to find open-source frameworks for collaborative
filtering that provide an implementation of the SO algorithm. (Frameworks

3also see: http://en.wikipedia.org/wiki/Slope_One, as of 2007/03/18

76

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

for other recommendation methods like clustering or search-based ap-
proaches were omitted during this task.) The list of surveyed open-source
CF frameworks can be found in Section 3.3 (page 20 et seqq.).

After taking a short look at all three Java frameworks it turned out that
the Taste framework is the most active and most current framework, since
it is updated about once a month, while the other Java projects (Cofi and
CoFE) turned out to be outdated student projects that have not been up-
dated for a while (and therefore do not support that many of the currently
well known algorithms). The Vogoo framework was left out for now, since
our RS is fully implemented in Java, and therefore a PHP framework would
always lead to a performance loss when integrated into a Java framework.
(But maybe the implementation of some of the algorithms could vary in
(timing and quality) performance, hence a future look into these imple-
mentations could result in a possible improvement of the quality of our
RS.)

A.3 The Open-Source Collaborative Filtering
Framework Taste

”Taste is a flexible, fast collaborative filtering engine for Java.
The engine takes users’ preferences for items (”tastes”) and
returns estimated preferences for other items. (...)

Taste provides a rich set of components from which you can
construct a customized recommender system from a selection
of algorithms. Taste is designed to be enterprise-ready; it’s de-
signed for performance, scalability and flexibility. It supports a
standard EJB interface for J2EE-based applications, but Taste
is not just for Java; it can be run as an external server which
exposes recommendation logic to your application via Web ser-
vices and HTTP. (...)

Taste supports both memory-based and item-based recom-
mender systems, slope one recommenders, and a couple other
[sic!] experimental implementations. It does not currently sup-
port model-based recommenders.”4

4cp. Taste documentation for version 1.5.2 (from 2007/04/12), index.html

77

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

A.4 Evaluation

A.4.1 Integration

Before we could start our evaluation process, we had to integrate the Taste
framework into our technical infrastructure adding support for Maven2
builds. We also contributed the Maven2 build file to the Taste framework
to help enabling Maven2 builds additional to existing Ant builds.5

After the integration we tested the Slope One recommender on a Taste
test database to obtain a feeling for the framework and create a vertical
slice (providing a simple showcase).

The basic structure of a database table used for the Slope One algo-
rithm is described best with the MySQL database DDL script in Listing A.1.

1 CREATE TABLE taste_preferences (

2 userId VARCHAR (10) NOT NULL ,

3 itemId VARCHAR (10) NOT NULL ,

4 preference FLOAT NOT NULL

5)

Listing A.1: MySQL CREATE TABLE Statement for a taste_preferences Table

A.4.2 Database Connectivity

The first task was to implement a database connection between our SAT
recommender database and the Taste framework. Basically there are two
main DataModel implementations provided by the framework. One for a
file access (FileDataModel) and various JDBC6 implementations for a DB
access (e.g. MySQLJDBCDataModel). Since the MySQLJDBCDataModel provides
an additional constructor that allows the parameterised definition of the
database table containing the user ratings and the necessary columns for
user, item, and rating, implementing another DataModel was omitted.

After the first tests it turned out that the database table containing the
ratings needed additional database indices listed in Listing A.2 (for a faster
read access).

1 CREATE INDEX user_item_ids

2 ON taste_preferences (userId , itemId);

3

5At this point we’d like to thank Sean Owen (the author of the Taste framework) for
his support during the integration of Maven2 builds and for publishing our work within the
Taste framework.

6The Java Database Connectivity (JDBC) is a Java API for the access of relational
databases.

78

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

4 CREATE INDEX user_id

5 ON taste_preferences (userId);

6

7 CREATE INDEX item_id

8 ON taste_preferences (itemId);

Listing A.2: MySQL CREATE INDEX Statements for a taste_preferences Table

A.4.3 Evaluation Datasets

After the database connection (to the recommender database) was estab-
lished, an initial test was run. But since the used snapshot contains more
than 500,000 ratings this first test took too long to be feasible for repeated
tests and we decided to test the algorithms on several different sample
sizes of the database.

We randomly re-sampled the ratings table, to obtain different number
of ratings:

• about 10,000 ratings (further called 10k sample)

• about 50,000 ratings (50k sample)

• about 100,000 ratings (100k sample)

• about 519,000 ratings (the full database snapshot; further called
FULL sample)

A.4.4 General Test Setup

The Taste framework provides two slightly different implementations of the
Slope One algorithm.

Both were tested with all four dataset samples (mentioned above). For
all tests the weighted7 parameter was set to true, and a CachingRecommender

was used around the SlopeOneRecommender and SlopeOneRecommender2 imple-
mentations in order to improve the performance. Additionally the maximum
heap size of the Java virtual machine was enlarged to 265 MB.

Since we were basically interested in the applicability to large datasets
and the performance of the algorithm, we decided to measure the average
response times for the recommendations given for an item the user has
already rated and a new item not rated by the user yet. (Which is the basic

7The weighted parameter indicates that the implementation acts as a weighted Slope
One Recommender, also see Section A.2.1 (page 76)

79

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

CPU Pentium 4
CPU Speed 3.00 GHz
Memory Size 1 GB RAM
Harddrive 160 GB, IDE (Western Digital)

Table A.1: Hardware Specifications of Test Machine

Software Version
Windows XP Service Pack 1
Sun Java J2SE 1.5.0 07
MySQL 5.0.18 CE
Taste 1.5.2

Table A.2: Software Components and its Versions used for Testing

use case as mentioned above in Section A.2.1 on page 76.) For a growing
size of the dataset we expect almost linear response times for known items
and slightly increasing response times for unknown items.

A.4.5 Test Environment

Hardware Setup

All tests were performed on a Dell Optiplex GX 280 SMT computer. Ta-
ble A.1 specifies the most important hardware.

Software Setup

All important software components were running on the same machine
described in the preceding section. The specific software versions listed
in Table A.2 were used for several tests.

A.4.6 Test Results

This section describes the setup and the results for all tests that have been
executed.

Note: The response times within the tables belong to both implemen-
tations of the SlopeOneRecommender. In the rare case that the response times
vary, different times are separated by a slash ’/’.

80

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

Test 1

For the first test we used the basic settings without database indices. Ta-
ble A.3 (page 81) shows the results. In both figures picturing the response
time for known (Figure A.1 on page 83) and unknown (Figure A.2 on page
84) ratings the plot number 1 is assigned to this test.

Test 2

The second test was set up almost identically to the first test, except that
more free disk space (about 2 GB) was provided. The average response
times for this test are shown in Table A.4. For the figure Figure A.1 (page
83) the corresponding plot number for this test is 2 and in Figure A.2 (page
84) plot numbers 2a and 2b are correlated to the curves of this test’s re-
sults.

Test 3

For the third test the database indices mentioned in Section A.4.2 (page
78) were created additionally to the prior setting from Test 2 in Sec-
tion A.4.6. The results can be found in Table A.5 (page 82). Adding in-
dices to the ratings table slightly improved the response times. Similar to
the previous test the assigned plot number for Figure A.1 (page 83) is 3
while the plot numbers allotted to the results of this test in Figure A.2 (page
84) are 3a and 3b.

8The test of the second implementation on the FULL dataset broke when the free disk
space was below 1 GB on the hard drive. So we had to re-execute the first test as well,
after obtaining more disk space (about 2GB free space).

10k 50k 100k FULL
known ratings 78 ms 125 ms 172 ms 859 ms
unknown ratings 656 ms 14 s 117 s 1443 s 8

Table A.3: Response Time for Ratings on Different Sizes of Datasets (Test 1)

10k 50k 100k FULL
known ratings 1 ms 15 ms 62 ms 429 ms
unknown ratings 625 ms 10 s 15 / 41 s 1089 / 1158 s

Table A.4: Response Time for Ratings on Different Sizes of Datasets providing about 2
GB Free Disk Space (Test 2)

81

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

Test 4

The final test on this dataset is based on the settings from Test 3 in Sec-
tion A.4.6 (page 81) but uses an additional argument to cap the number
of entries to a maximum of one million (which adjusts memory usage at
a possible cost of accuracy). Average response times of this test can be
found in Table A.6. Capping the maximum number of entries kept in the
memory to a million only improved the performance of one of the two al-
gorithm implementations. Plot numbers 4 in Figure A.1 (page 83) as well
as 4a and 4b in Figure A.2 (page 84) belong to the results of this test.

Test 5

Finally we tested the SlopeOneRecommender algorithm on a much larger
dataset that was also provided by the Verisign Communications GmbH.
The database snapshot (from the Verisign Communications GmbH asian
server from Oct. 15th 2006) contains 7,485,292 user ratings (on items).

It showed that the first test (as well as all succeeding tests) with the
large dataset immediately failed due to a lack of memory (and raised an
OutOfMemoryError) during the initialization phase of both implementa-
tions of the SlopeOneRecommender algorithm.

10k 50k 100k FULL
known ratings 1 ms 15 ms 15 ms 328 ms
unknown ratings 531 ms 8 s 14 / 40 s 929 / 913 s

Table A.5: Response Time for Ratings on Different Sizes of Datasets providing about 2
GB Free Disk Space using Indices (Test 3)

10k 50k 100k FULL
known ratings 31 ms 16 ms 16 ms 46 ms
unknown ratings 593 ms 5 / 9 s 13 / 14 s 990 / 1616 s

Table A.6: Response Time for Ratings on Different Sizes of Datasets providing about 2
GB Free Disk Space using Indices and a Cap for Number of Entries (Test 4)

82

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

SlopeOne Recommender Tests for Known Ratings

Dataset Size (in kilobytes)

R
es

po
ns

e
T

im
e

(in
 m

ill
is

ec
on

ds
)

0 100 200 300 400 500

0
20

0
40

0
60

0
80

0
10

00 1: SORec1 + 2
2: SORec1 + 2, free ds > 2GB
3: SORec1 + 2, free ds > 2GB, db indices
4: SORec1 + 2, free ds > 2GB, db indices, cap entries

Figure A.1: Slope One Recommender Tests for Known Ratings

83

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

SlopeOne Recommender Tests for Unknown Ratings

Dataset Size (in kilobytes)

R
es

po
ns

e
T

im
e

(in
 m

ill
is

ec
on

ds
)

0 100 200 300 400 500

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

1: SORec1 + 2
2a: SORec1, free ds > 2GB
2b: SORec2, free ds > 2GB
3a: SORec1, free ds > 2GB, db indices
3b: SORec2, free ds > 2GB, db indices
4a: SORec1, free ds > 2GB, db indices, cap entries
4b: SORec2, free ds > 2GB, db indices, cap entries

Figure A.2: Slope One Recommender Tests for Unknown Ratings

84

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

A.5 Conclusion

Our tests indicate that both SlopeOneRecommender implementations within the
Taste framework do not scale well with an increasing number of ratings.
Plot number 4 in Figure A.1 (page 83) shows that the curve of the best
test-run representing the average response time for known ratings is al-
most linear with the number of ratings after tweaking the settings, while
the plots 4a and 4b in Figure A.2 (page 84) point out that modifying the
configuration improved the computation time slightly, but the performance
is still decreasing drastically with a higher number of ratings.

The tested algorithms do not persist already computed data nor do they
pre-compute unknown ratings in advance, thus incremental refinement of
rating values is not supported. Also the DataModel is kept completely in the
main memory, which leads to a coherence between the response time and
the free disk space on the hard drive caused by page swapping mecha-
nisms of the operating system due to the usage of virtual memory.9

Additionally the Taste DataModel lacks the capability to decide between
different item types, and it does not support tenant-specific preferences
either. These functionalities must be provided by the application (using
the framework) which leads to the need of implementing some additional
glue code.

We established that the Taste framework seems to be well planned,
has simple database and file accessors, and provides some state-of-the-
art recommendation algorithms that can be easily integrated into our RS,
but finally we had to determine that the tested SlopeOneRecommender imple-
mentation does not perform well on large datasets. We also considered
to develop a new scalable database-based SlopeOneRecommender implemen-
tation that pre-computes some of the necessary data (i.e. item tuples) in
order to avoid long response times for the recommendation.

Finally we made the decision to stop investigating the Taste framework
further, since it would require more effort than implementing the algorithms
of our interest (supporting item types as well as different tenants, and most
important of all, performing well on large datasets) by ourselves.

9Using a significantly larger memory may lead to a better performance (i.e. improved
response times for unknown ratings).

85

APPENDIX A. EVALUATION OF A SLOPE ONE RECOMMENDER . . .

A.6 Latest Taste Enhancements

The present evaluation was made in the early stage of this project (from
March 2007 to April 2007). We reported our findings about the problems
with the SO implementations to Sean Owen (the author of the Taste frame-
work).10 Our feedback seemed to inspire Sean Owen to implement an ad-
ditional database-based SlopeOneRecommender promising a better scalability
for larger datasets. Since the Taste framework release version 1.6 RC1
(from 2007/08/09) this new implementation is contained.

It might be an option to evaluate the improved version of the algorithm,
but since the author of the Taste framework has announced plans to merge
with the Apache Mahout11 project, we decided to wait for the fusion of the
two projects.

10We’d like to thank Sean Owen once again for his patience and help (via a long e-mail
correspondence) concerning several tweaks and improvements.

11http://lucene.apache.org/mahout/, as of 2008/07/22

86

Appendix B
Software Infrastructure

Abstract

After an extensive evaluation of available alternatives the technical infras-
tructure for this project has been designed and implemented as detailed
in this chapter. Section B.1 describes the SW components (and APIs) that
are used during the runtime, while Section B.2 points out some develop-
ment tools. The last section (Section B.3) describes additional output.

B.1 Software Components

This section describes the used software runtime components. Table B.1
(page 89) specifies detailed version information.

B.1.1 Programming Language

Since Java1 is one of the most widely used programming languages, it
offers integration with almost any available software technology. Since all
our other software projects are implemented in Java, an easy integration
of legacy code is also given.

To make the newest Java features available for this project the Java ver-
sion used project wide is J2SE5.02. The most-favoured features are gener-
ics that provide compile-time type information for collections and thus lead
to fewer runtime bugs and better readability of the source code. Additional
features of J2SE5.0 are among others: faster String operations, anno-
tations, language supported enums instead of constants, and enhanced
language features, like the new improved for loop.

1http://java.sun.com, as of 2008/08/30
2http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html, as of

2008/08/30

87

APPENDIX B. SOFTWARE INFRASTRUCTURE

B.1.2 Dependency Injection and Aspects

The Spring Framework3 is a well-known standard framework for Java
projects. It supports modern development concepts such as Dependency
Injection (also known as Inversion of Control) and aspect-oriented pro-
gramming (AOP). Additionally it provides various database connectors.

B.1.3 Database

As it is the commonly most preferred open-source database software, we
use MySQL4 as database. It was originally founded and developed by a
Swedish company and acquired in 2007 (and since then developed and
supported) by the Sun Microsystems5 company. Among other features it
supports stored procedures, triggers, sub-queries, and updatable views.

B.1.4 Logging

For a standardised and unified logging process the logging framework
apache.commons.logging6 has been chosen which uses Log4J7 per de-
fault but is very flexible allowing to plug in other logging frameworks as the
Java util.logging8 framework introduced with the J2SE1.4 or any propri-
etary logging framework.

B.1.5 Caching

For various caching purposes (e.g. for the access of static database con-
tent) we use the open-source API Ehcache9.

B.1.6 Web Services and Web Application Server

In order to provide our services to project partners (and customers) we
integrated several Web service interfaces. The used Web service stack is

3http://www.springframework.org, as of 2008/08/30
4http://www.mysql.com, as of 2008/09/02
5http://www.sun.com, as of 2008/09/24
6http://jakarta.apache.org/commons/logging, as of 2008/08/30
7http://logging.apache.org, as of 2008/08/30
8http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html,

as of 2008/08/30
9http://ehcache.sourceforge.net, as of 2008/08/30

88

APPENDIX B. SOFTWARE INFRASTRUCTURE

Category Software Version
Programming Language Sun Java J2SE 1.5.0 07
Framework Spring Framework 2.5
Database MySQL 5.0.18 CE
Logging Commons Logging 1.2
Logging Log4j 1.2.12
Caching Ehcache 1.4.1
Web Services Metro 1.0
Servlet Container Apache Tomcat 5.5.17
Profiling JAMon 2.4

Table B.1: Versions of Infrastructure Software Components

Metro10 which is part if the Sun Glassfish11 project. As servlet container
we use the Apache Tomcat12 which is the designated reference implemen-
tation for Java Servlets13.

B.1.7 Profiling

For the profiling on method level we applied the JAMon API14 to the most
importent interface methods.

B.2 Development Tools

This section describes some of the used development tools. Table B.2
(page 91) specifies detailed version information.

B.2.1 IDE

For the actual process of programming the software we use is the Eclipse15

Integrated Development Environment (IDE). It offers a lot of extensions
for various tasks, e.g. automated tests, Maven216 builds, issue tracking
systems, version control, and many more.

10https://metro.dev.java.net, as of 2008/08/30
11https://glassfish.dev.java.net/, as of 2008/08/30
12http://tomcat.apache.org, as of 2008/09/02
13http://java.sun.com/products/servlet, as of 2008/09/02
14http://jamonapi.sourceforge.net, as of 2008/09/02
15http://www.eclipse.org, as of 2008/09/02
16http://maven.apache.org, as of 2008/09/02

89

APPENDIX B. SOFTWARE INFRASTRUCTURE

B.2.2 Version Control

For the maintenance of source code, configuration files, scripts, and doc-
umentation we use the version control system Subversion17. It provides
many advantages over other version control systems such as versioned
directories and operations (copy, delete, and rename), efficient binary diff-
ing, quick branching as well as tagging operations, and many more.

B.2.3 Build Process

The build process of Java software is managed using Maven2, thus in-
troducing a standardised project layout, build lifecycle and produced soft-
ware artefacts. These features help to make Java projects comprehensible
across development team bounds and to develop modular software quite
easily. Dependency management is another important point in favour of
Maven2 as it provides a solution for all project teams to integrate each
other’s software artifacts into their build environments. A generic Maven2
project descriptor has been developed, which contains many useful plug-
ins for generating the Maven2 project Web site, including test code cover-
age, heuristic bug detection, changelogs, code style checking, developer
activity, dependency analysis and many more.

B.2.4 Continuous Integration

Continuous integration software provides a central point of control. The
tool Continuum18 has been selected and evaluated for this purpose as
it integrates very well with maven2-managed software projects and the
SVN version control system. It allows nightly builds that compile and test
specified SW projects at a fixed time, reporting build warnings and errors,
as well as test failures via e-mail and through a Web interface.

B.2.5 Testing

In order to provide a stable set of SW components the major components
of our RS are supported by a comprehensive set of unit tests. The im-
plementation of these tests is based on the JUnit19 test framework and

17http://subversion.tigris.org, as of 2008/09/02
18http://maven.apache.org/continuum, as of 2008/09/02
19http://www.junit.org, as of 2008/09/02

90

APPENDIX B. SOFTWARE INFRASTRUCTURE

Category Software Version
IDE Eclipse SDK 3.2.1., later JEE Europa
Version Control Subversion Server 1.2.3 (r15833)
Version Control Subversion Client 1.4.3
Build Process Maven2 2.0.7, later 2.0.8 and 2.0.9
Continuous Integration Continuum 1.0.3
Testing JUnit 4.4
Testing DBUnit 2.2.2
Issue Management Mantis 1.1.1

Table B.2: Versions of Infrastructure Development Tools

integrated with the Maven2 build environment as well as the continuous
integration framework. For unit testing of DAO we use the DBUnit20 API.

B.2.6 Issue Management

For the management of issues (bugs, feature requests and open tasks)
we use Mantis21. It supports complex filtering, multiple projects (with sub-
projects), e-mail notifications and is fully Web based.

B.3 Additional Output

• A common file structure and a standardised package structure (de-
rived from Maven2 conventions)

• JavaDoc for several classes

• A Maven2 project site

Summary

In this appendix we pointed out the software components used during run-
time and the software tools used in the development process describing
their main features and stating their versions.

20http://www.dbunit.org, as of 2008/09/02
21http://www.mantisbt.org, as of 2008/09/02

91

Appendix C
Web Service Interfaces

Abstract

In this Appendix the Java interfaces of several existing Web services of
the RS are listed. Section C.1 and Section C.2 describe the domain-
independent and the music domain recommender interfaces for a Web
shop, while Section C.3 and Section C.4 disclose the Web service inter-
faces for the RASCALLI domain.

C.1 ShopRecommenderWS

Listing C.1 lists the Java interface of the domain-independent shop recom-
mender.

package at.researchstudio .sat.recommender.service.webapp.

nodomain;

import at.researchstudio .sat.recommender.model.core.transfer.

TimeConstraintVO ;

import at.researchstudio .sat.recommender.model.webapp.

RankedItem;

5 import at.researchstudio .sat.recommender.model.webapp.Rating;

import at.researchstudio .sat.recommender.model.webapp.

RecommendedItem;

import at.researchstudio .sat.recommender.service.webapp.

nodomain.exception.ShopRecommenderException;

/**

10 * Recommender Webservice wrapper interface

*

* @author Roman Cerny

*/

public interface ShopRecommenderWS

15 {

// Actions

/**

* storing a ’purchase item’ action in the recommender

storage

*/

92

APPENDIX C. WEB SERVICE INTERFACES

20 public void purchaseItem(Integer tenant , String userId ,

String sessionId , String ip , String itemId , String

itemType , String description) throws

ShopRecommenderException;

/**

* storing a ’view item’ action in the recommender

storage

*/

25 public void viewItem(Integer tenant , String userId ,

String sessionId , String ip , String itemId , String

itemType , String description) throws

ShopRecommenderException;

/**

* storing a ’rate item’ action in the recommender

storage

*/

30 public void rateItem(Integer tenant , String userId ,

String sessionId , String ip , String itemId , String

itemType , Integer ratingValue , String description)

throws ShopRecommenderException;

/**

* storing a ’search item’ action in the recommender

storage

*/

35 public void searchItem(Integer tenant , String userId ,

String sessionId , String ip , String itemId , String

itemType , Boolean searchSucceeded , Integer

numberOfFoundItems , String description) throws

ShopRecommenderException;

// Rankings

/**

40 * returns ’bought items’ (of a given item type for a

given tenant) ranked by the frequency of ’buy’

actions

*/

public RankedItem [] mostBoughtItems(Integer tenant ,

String itemType , Integer numberOfResults ,

TimeConstraintVO timeRange , Boolean sortDescending)

throws ShopRecommenderException;

/**

45 * returns ’viewed items’ (of a given item type for a

given tenant) ranked by the frequency of ’view’

actions

93

APPENDIX C. WEB SERVICE INTERFACES

*/

public RankedItem [] mostViewedItems(Integer tenant ,

String itemType , Integer numberOfResults ,

TimeConstraintVO timeRange , Boolean sortDescending)

throws ShopRecommenderException;

/**

50 * returns ’rated items’ (of a given item type for a

given tenant) ranked by the frequency of ’rate’

actions

* rating values are NOT taken into consideration , thus

simply showing how often an item was rated at all

*/

public RankedItem [] mostRatedItems (Integer tenant , String

itemType , Integer numberOfResults , TimeConstraintVO

timeRange , Boolean sortDescending) throws

ShopRecommenderException;

55 /**

* returns ’searched items’ (of a given item type for a

given tenant) ranked by the frequency of ’search ’

actions

*/

public RankedItem [] mostSearchedItems(Integer tenant ,

String itemType , Integer numberOfResults ,

TimeConstraintVO timeRange , Boolean sortDescending)

throws ShopRecommenderException;

60

// Ratings

/**

* returns ’ratings ’ (of a given item type for a given

tenant , optionally user and session) ordered by the

’ratingValue ’

*/

65 public Rating [] itemRatings(Integer tenant , String userId

, String sessionId , String itemType , Integer

numberOfResults , TimeConstraintVO timeRange) throws

ShopRecommenderException;

/**

* returns ’bad ratings ’ (of a given item type for a

given tenant , optionally user and session) ordered

by the ’ratingValue ’

* only returns ratings with a value LOWER or EQUAL than

the tenant specific threshold ’ratingRangeNeutral ’

70 */

public Rating [] badItemRatings (Integer tenant , String

userId , String sessionId , String itemType , Integer

94

APPENDIX C. WEB SERVICE INTERFACES

numberOfResults , TimeConstraintVO timeRange) throws

ShopRecommenderException;

/**

* returns ’good ratings ’ (of a given item type for a

given tenant , optionally user and session) ordered

by the ’ratingValue ’

75 * only returns ratings with a value HIGHER than the

tenant specific threshold ’ratingRangeNeutral ’

*/

public Rating [] goodItemRatings(Integer tenant , String

userId , String sessionId , String itemType , Integer

numberOfResults , TimeConstraintVO timeRange) throws

ShopRecommenderException;

/**

80 * returns the ’last good ratings ’ (of a given item type

for a given tenant , optionally user and session)

ordered by the ’actionTime ’

* only returns ratings with a value HIGHER than the

tenant specific threshold ’ratingRangeNeutral ’

*/

public Rating [] lastGoodItemRatings (Integer tenant ,

String userId , String sessionId , String itemType ,

Integer numberOfResults) throws

ShopRecommenderException;

85

// Recommendations

/**

* returns {@link RecommendedItem}s, based on the ’

purchase ’ history of items with the given ’

consideredItemType ’,

* taking ’numberOfLastActionsConsidered ’ actions into

consideration ,

90 * looking for business rules (item assocs) with the

given ’assocType ’ and ’requestedItemType ’ for items

in the result

*/

public RecommendedItem [] itemsBasedOnPurchaseHistory (

Integer tenant , String userId , String sessionId ,

String consideredItemType , Integer

numberOfLastActionsConsidered , String assocType ,

String requestedItemType) throws

ShopRecommenderException;

/**

95 * returns {@link RecommendedItem}s, based on the ’

viewing ’ history of items with the given ’

95

APPENDIX C. WEB SERVICE INTERFACES

consideredItemType ’,

* taking ’numberOfLastActionsConsidered ’ actions into

consideration ,

* looking for business rules (item assocs) with the

given ’assocType ’ and ’requestedItemType ’ for items

in the result

*/

public RecommendedItem [] itemsBasedOnViewingHistory(

Integer tenant , String userId , String sessionId ,

String consideredItemType , Integer

numberOfLastActionsConsidered , String assocType ,

String requestedItemType) throws

ShopRecommenderException;

100

/**

* returns {@link RecommendedItem}s, based on the ’

searching ’ history of items with the given ’

consideredItemType ’,

* taking ’numberOfLastActionsConsidered ’ actions into

consideration ,

* looking for business rules (item assocs) with the

given ’assocType ’ and ’requestedItemType ’ for items

in the result

105 */

public RecommendedItem [] itemsBasedOnSearchingHistory (

Integer tenant , String userId , String sessionId ,

String consideredItemType , Integer

numberOfLastActionsConsidered , String assocType ,

String requestedItemType) throws

ShopRecommenderException;

/**

* returns {@link RecommendedItem}s, based on business

rules that identify items as ’bought together ’

110 */

public RecommendedItem [] alsoBoughtItems(Integer tenant ,

String userId , String sessionId , String itemId ,

String itemType , String requestedItemType) throws

ShopRecommenderException;

/**

* returns {@link RecommendedItem}s, based on business

rules that identify items as ’viewed together ’

115 */

public RecommendedItem [] alsoViewedItems(Integer tenant ,

String userId , String sessionId , String itemId ,

String itemType , String requestedItemType) throws

ShopRecommenderException;

96

APPENDIX C. WEB SERVICE INTERFACES

/**

* returns {@link RecommendedItem}s, based on business

rules that identify items as ’searched together ’

120 */

public RecommendedItem [] alsoSearchedItems(Integer tenant

, String userId , String sessionId , String itemId ,

String itemType , String requestedItemType) throws

ShopRecommenderException;

// Utility methods

125 /**

* returns the possible item types of the given tenant

*/

public String [] getItemTypes(Integer tenantId) throws

ShopRecommenderException;

130 /**

* returns the possible association types of the given

tenant

*/

public String [] getAssocTypes(Integer tenantId) throws

ShopRecommenderException;

}

Listing C.1: Domain-Independent Web Service Interface for a Shop Recommender

C.2 MusicShopRecommenderWS

In Listing C.2 the Java interface for the music domain-specific shop rec-
ommender is printed.

1 package at.researchstudio .sat.recommender.service.webapp.

music;

import at.researchstudio .sat.recommender.model.core.transfer.

TimeConstraintVO ;

import at.researchstudio .sat.recommender.model.webapp.

RankedItem;

import at.researchstudio .sat.recommender.model.webapp.Rating;

6 import at.researchstudio .sat.recommender.model.webapp.

RecommendedItem;

import at.researchstudio .sat.recommender.service.webapp.music

.exception.MusicShopRecommenderException ;

/**

* Music Recommender Webservice wrapper interface (for the

music domain)

97

APPENDIX C. WEB SERVICE INTERFACES

11 *

* @author Roman Cerny

*/

public interface MusicShopRecommenderWS

{

16 // Actions

/**

* storing a ’purchase track’ action in the recommender

storage

*/

public void purchaseTrack(Integer tenantId , String userId

, String sessionId , String ip , String trackId , String

description) throws MusicShopRecommenderException ;

21

/**

* storing a ’view artist ’ action in the recommender

storage

*/

public void viewArtist(Integer tenantId , String userId ,

String sessionId , String ip , String artistId , String

description) throws MusicShopRecommenderException ;

26

/**

* storing a ’view genre’ action in the recommender

storage

*/

public void viewGenre(Integer tenantId , String userId ,

String sessionId , String ip , String genreId , String

description) throws MusicShopRecommenderException ;

31

/**

* storing a ’view track’ action in the recommender

storage

*/

public void viewTrack(Integer tenantId , String userId ,

String sessionId , String ip , String trackId , String

description) throws MusicShopRecommenderException ;

36

/**

* storing a ’rate artist ’ action in the recommender

storage

*/

public void rateArtist(Integer tenantId , String userId ,

String sessionId , String ip , String artistId , Integer

ratingValue , String description) throws

MusicShopRecommenderException ;

41

/**

98

APPENDIX C. WEB SERVICE INTERFACES

* storing a ’rate track’ action in the recommender

storage

*/

public void rateTrack(Integer tenantId , String userId ,

String sessionId , String ip , String trackId , Integer

ratingValue , String description) throws

MusicShopRecommenderException ;

46

/**

* storing a ’search artist ’ action in the recommender

storage

*/

public void searchArtist(Integer tenantId , String userId ,

String sessionId , String ip, String artistId ,

Boolean searchSucceeded , Integer numberOfFoundArtists

, String description) throws

MusicShopRecommenderException ;

51

/**

* storing a ’search track’ action in the recommender

storage

*/

public void searchTrack(Integer tenantId , String userId ,

String sessionId , String ip , String trackId , Boolean

searchSucceeded , Integer numberOfFoundTracks , String

description) throws MusicShopRecommenderException ;

56

/**

* storing a ’preview track’ action in the recommender

storage

*/

public void previewTrack(Integer tenantId , String userId ,

String sessionId , String ip, String trackId , String

description) throws MusicShopRecommenderException ;

61

/**

* storing a ’add track to playlist ’ action in the

recommender storage

*/

public void addTrackToPlaylist(Integer tenantId , String

userId , String sessionId , String ip , String trackId ,

String description) throws

MusicShopRecommenderException ;

66

// Rankings

/**

* returns ’bought tracks ’ (for a given tenant) ranked by

the frequency of ’buy’ actions

*/

99

APPENDIX C. WEB SERVICE INTERFACES

71 public RankedItem [] mostBoughtTracks (Integer tenantId ,

Integer numberOfResults , TimeConstraintVO timeRange ,

Boolean sortDescending) throws

MusicShopRecommenderException ;

/**

* returns ’viewed artists ’ (for a given tenant) ranked

by the frequency of ’view’ actions

*/

76 public RankedItem [] mostViewedArtists(Integer tenantId ,

Integer numberOfResults , TimeConstraintVO timeRange ,

Boolean sortDescending) throws

MusicShopRecommenderException ;

/**

* returns ’viewed genres ’ (for a given tenant) ranked by

the frequency of ’view’ actions

*/

81 public RankedItem [] mostViewedGenres (Integer tenantId ,

Integer numberOfResults , TimeConstraintVO timeRange ,

Boolean sortDescending) throws

MusicShopRecommenderException ;

/**

* returns ’viewed tracks ’ (for a given tenant) ranked by

the frequency of ’view’ actions

*/

86 public RankedItem [] mostViewedTracks (Integer tenantId ,

Integer numberOfResults , TimeConstraintVO timeRange ,

Boolean sortDescending) throws

MusicShopRecommenderException ;

/**

* returns ’rated artists ’ (for a given tenant) ranked by

the frequency of ’rate’ actions

*/

91 public RankedItem [] mostRatedArtists (Integer tenantId ,

Integer numberOfResults , TimeConstraintVO timeRange ,

Boolean sortDescending) throws

MusicShopRecommenderException ;

/**

* returns ’rated tracks ’ (for a given tenant) ranked by

the frequency of ’rate’ actions

*/

96 public RankedItem [] mostRatedTracks(Integer tenantId ,

Integer numberOfResults , TimeConstraintVO timeRange ,

Boolean sortDescending) throws

MusicShopRecommenderException ;

100

APPENDIX C. WEB SERVICE INTERFACES

/**

* returns ’searched artists ’ (for a given tenant) ranked

by the frequency of ’search ’ actions

*/

101 public RankedItem [] mostSearchedArtists (Integer tenantId ,

Integer numberOfResults , TimeConstraintVO timeRange ,

Boolean sortDescending) throws

MusicShopRecommenderException ;

/**

* returns ’searched tracks ’ (for a given tenant) ranked

by the frequency of ’search ’ actions

*/

106 public RankedItem [] mostSearchedTracks(Integer tenantId ,

Integer numberOfResults , TimeConstraintVO timeRange ,

Boolean sortDescending) throws

MusicShopRecommenderException ;

/**

* returns ’previewed Tracks ’ (for a given tenant) ranked

by the frequency of ’preview ’ actions

*/

111 public RankedItem [] mostPreviewedTracks (Integer tenantId ,

Integer numberOfResults , TimeConstraintVO timeRange ,

Boolean sortDescending) throws

MusicShopRecommenderException ;

/**

* returns ’tracks that have been added to a playlist ’ (

for a given tenant) ranked by the frequency of ’add

to playlist ’ actions

*/

116 public RankedItem [] mostAddedToPlaylistTracks(Integer

tenantId , Integer numberOfResults , TimeConstraintVO

timeRange , Boolean sortDescending) throws

MusicShopRecommenderException ;

// Ratings

/**

* returns ’ratings ’ over artists (for a given tenant ,

optionally user and session) ordered by the ’

ratingValue ’

121 */

public Rating [] artistRatings(Integer tenantId , String

userId , String sessionId , Integer numberOfResults ,

TimeConstraintVO timeRange) throws

MusicShopRecommenderException ;

101

APPENDIX C. WEB SERVICE INTERFACES

/**

* returns ’bad ratings ’ over artists (for a given tenant

, optionally user and session) ordered by the ’

ratingValue ’

126 * only returns ratings with a value LOWER or EQUAL than

the tenant specific threshold ’ratingRangeNeutral ’

*/

public Rating [] badArtistRatings (Integer tenantId , String

userId , String sessionId , Integer numberOfResults ,

TimeConstraintVO timeRange) throws

MusicShopRecommenderException ;

/**

131 * returns ’good ratings ’ over artists (for a given

tenant , optionally user and session) ordered by the

’ratingValue ’

* only returns ratings with a value HIGHER than the

tenant specific threshold ’ratingRangeNeutral ’

*/

public Rating [] goodArtistRatings(Integer tenantId ,

String userId , String sessionId , Integer

numberOfResults , TimeConstraintVO timeRange) throws

MusicShopRecommenderException ;

136 /**

* returns the ’last good ratings ’ over artists (for a

given tenant , optionally user and session) ordered

by the ’actionTime ’

* only returns ratings with a value HIGHER than the

tenant specific threshold ’ratingRangeNeutral ’

*/

public Rating [] lastGoodArtistRatings(Integer tenantId ,

String userId , String sessionId , Integer

numberOfResults) throws MusicShopRecommenderException

;

141

/**

* returns ’ratings ’ over tracks (for a given tenant ,

optionally user and session) ordered by the ’

ratingValue ’

*/

public Rating [] trackRatings(Integer tenantId , String

userId , String sessionId , Integer numberOfResults ,

TimeConstraintVO timeRange) throws

MusicShopRecommenderException ;

146

/**

* returns ’bad ratings ’ over tracks (for a given tenant ,

optionally user and session) ordered by the ’

102

APPENDIX C. WEB SERVICE INTERFACES

ratingValue ’

* only returns ratings with a value LOWER or EQUAL than

the tenant specific threshold ’ratingRangeNeutral ’

*/

151 public Rating [] badTrackRatings(Integer tenantId , String

userId , String sessionId , Integer numberOfResults ,

TimeConstraintVO timeRange) throws

MusicShopRecommenderException ;

/**

* returns ’good ratings ’ over tracks (for a given tenant

, optionally user and session) ordered by the ’

ratingValue ’

* only returns ratings with a value HIGHER than the

tenant specific threshold ’ratingRangeNeutral ’

156 */

public Rating [] goodTrackRatings (Integer tenantId , String

userId , String sessionId , Integer numberOfResults ,

TimeConstraintVO timeRange) throws

MusicShopRecommenderException ;

/**

* returns the ’last good ratings ’ over tracks (for a

given tenant , optionally user and session) ordered

by the ’actionTime ’

161 * only returns ratings with a value HIGHER than the

tenant specific threshold ’ratingRangeNeutral ’

*/

public Rating [] lastGoodTrackRatings(Integer tenantId ,

String userId , String sessionId , Integer

numberOfResults) throws MusicShopRecommenderException

;

// Recommendations

166 /**

* returns {@link RecommendedItem}s, based on the ’

purchase ’ history of track items ,

* taking ’numberOfLastActionsConsidered ’ actions into

consideration ,

* looking for business rules (item assocs) with the

given ’assocType ’ and track items in the result

*/

171 public RecommendedItem [] tracksBasedOnPurchaseHistory (

Integer tenantId , String userId , String sessionId ,

Integer numberOfLastActionsConsidered , String

assocType) throws MusicShopRecommenderException ;

/**

103

APPENDIX C. WEB SERVICE INTERFACES

* returns {@link RecommendedItem}s, based on the ’view’

history of items with the given ’consideredItemType

’,

* taking ’numberOfLastActionsConsidered ’ actions into

consideration ,

176 * looking for business rules (item assocs) with the

given ’assocType ’ and artist items in the result

*/

public RecommendedItem [] artistsBasedOnViewingHistory (

Integer tenantId , String userId , String sessionId ,

String consideredItemType , Integer

numberOfLastActionsConsidered , String assocType)

throws MusicShopRecommenderException ;

/**

181 * returns {@link RecommendedItem}s, based on the ’view’

history of items with the given ’consideredItemType

’,

* taking ’numberOfLastActionsConsidered ’ actions into

consideration ,

* looking for business rules (item assocs) with the

given ’assocType ’ and genre items in the result

*/

public RecommendedItem [] genresBasedOnViewingHistory (

Integer tenantId , String userId , String sessionId ,

String consideredItemType , Integer

numberOfLastActionsConsidered , String assocType)

throws MusicShopRecommenderException ;

186

/**

* returns {@link RecommendedItem}s, based on the ’view’

history of items with the given ’consideredItemType

’,

* taking ’numberOfLastActionsConsidered ’ actions into

consideration ,

* looking for business rules (item assocs) with the

given ’assocType ’ and track items in the result

191 */

public RecommendedItem [] tracksBasedOnViewingHistory (

Integer tenantId , String userId , String sessionId ,

String consideredItemType , Integer

numberOfLastActionsConsidered , String assocType)

throws MusicShopRecommenderException ;

/**

* returns {@link RecommendedItem}s, based on the ’search

’ history of items with the given ’

consideredItemType ’,

104

APPENDIX C. WEB SERVICE INTERFACES

196 * taking ’numberOfLastActionsConsidered ’ actions into

consideration ,

* looking for business rules (item assocs) with the

given ’assocType ’ and artist items in the result

*/

public RecommendedItem [] artistsBasedOnSearchingHistory (

Integer tenantId , String userId , String sessionId ,

String consideredItemType , Integer

numberOfLastActionsConsidered , String assocType)

throws MusicShopRecommenderException ;

201 /**

* returns {@link RecommendedItem}s, based on the ’search

’ history of items with the given ’

consideredItemType ’,

* taking ’numberOfLastActionsConsidered ’ actions into

consideration ,

* looking for business rules (item assocs) with the

given ’assocType ’ and tracks items in the result

*/

206 public RecommendedItem [] tracksBasedOnSearchingHistory (

Integer tenantId , String userId , String sessionId ,

String consideredItemType , Integer

numberOfLastActionsConsidered , String assocType)

throws MusicShopRecommenderException ;

/**

* returns {@link RecommendedItem}s, based on business

rules that identify tracks as ’bought together ’

*/

211 public RecommendedItem [] alsoBoughtTracks (Integer

tenantId , String userId , String sessionId , String

trackId) throws MusicShopRecommenderException ;

/**

* returns {@link RecommendedItem}s, based on business

rules that identify artists as ’viewed together ’

with items of the given item type

*/

216 public RecommendedItem [] alsoViewedArtists(Integer

tenantId , String userId , String sessionId , String

itemId , String itemType) throws

MusicShopRecommenderException ;

/**

* returns {@link RecommendedItem}s, based on business

rules that identify genres as ’viewed together ’ with

items of the given item type

*/

105

APPENDIX C. WEB SERVICE INTERFACES

221 public RecommendedItem [] alsoViewedGenres (Integer

tenantId , String userId , String sessionId , String

itemId , String itemType) throws

MusicShopRecommenderException ;

/**

* returns {@link RecommendedItem}s, based on business

rules that identify tracks as ’viewed together ’ with

items of the given item type

*/

226 public RecommendedItem [] alsoViewedTracks (Integer

tenantId , String userId , String sessionId , String

itemId , String itemType) throws

MusicShopRecommenderException ;

/**

* returns {@link RecommendedItem}s, based on business

rules that identify artists as ’searched together ’

with items of the given item type

*/

231 public RecommendedItem [] alsoSearchedArtists (Integer

tenantId , String userId , String sessionId , String

itemId , String itemType) throws

MusicShopRecommenderException ;

/**

* returns {@link RecommendedItem}s, based on business

rules that identify tracks as ’searched together ’

with items of the given item type

*/

236 public RecommendedItem [] alsoSearchedTracks(Integer

tenantId , String userId , String sessionId , String

itemId , String itemType) throws

MusicShopRecommenderException ;

// Utility methods

/**

* returns the possible item types of the given tenant

241 */

public String [] getItemTypes(Integer tenant) throws

MusicShopRecommenderException ;

/**

* returns the possible association types of the given

tenant

246 */

public String [] getAssocTypes(Integer tenant) throws

MusicShopRecommenderException ;

106

APPENDIX C. WEB SERVICE INTERFACES

}

Listing C.2: Music Domain Web Service Interface for a Shop Recommender

C.3 RascalliDFKIWS

The Listing C.3 reveals the Java interface for the RASCALLI domain-
specific web service, used within the DFKI Visual Browser for the gath-
ering of user actions.

package at.researchstudio .sat.recommender.service.webapp.

rascalli;

2

import at.researchstudio .sat.recommender.service.webapp.

rascalli.exception.RascalliDFKIProfilerException ;

/**

* Rascalli DFKI Webservice wrapper interface

7 *

* @author Roman Cerny

*/

public interface RascalliDFKIWS

{

12 // main topics

/**

* storing a ’choose_topic ’ action (with the topic "

BACKGROUND_INFORMATION ") for the given user of a

tenant for the given artist in the recommender

storage

*/

public void chooseArtistTopicBackgroundInformation (

Integer tenantId , String userId , String sessionId ,

String ip , String artistId) throws

RascalliDFKIProfilerException ;

17

/**

* storing a ’choose_topic ’ action (with the topic "

CONNECTION ") for the given user of a tenant for the

given artist in the recommender storage

*/

public void chooseArtistTopicConnection (Integer tenantId ,

String userId , String sessionId , String ip , String

artistId) throws RascalliDFKIProfilerException ;

22

/**

* storing a ’choose_topic ’ action (with the topic "

PROFESSIONAL_CAREER ") for the given user of a tenant

107

APPENDIX C. WEB SERVICE INTERFACES

for the given artist in the recommender storage

*/

public void chooseArtistTopicProfessionalCareer (Integer

tenantId , String userId , String sessionId , String ip,

String artistId) throws

RascalliDFKIProfilerException ;

27

// sub topics of ’connections ’

/**

* storing a ’choose_topic ’ action (with the topic "

CONNECTION_PARENT ") for the given user of a tenant

for the given artist in the recommender storage

*/

32 public void chooseArtistTopicConnectionParent(Integer

tenantId , String userId , String sessionId , String ip,

String artistId) throws

RascalliDFKIProfilerException ;

/**

* storing a ’choose_topic ’ action (with the topic "

CONNECTION_SIBLING ") for the given user of a tenant

for the given artist in the recommender storage

*/

37 public void chooseArtistTopicConnectionSibling(Integer

tenantId , String userId , String sessionId , String ip,

String artistId) throws

RascalliDFKIProfilerException ;

/**

* storing a ’choose_topic ’ action (with the topic "

CONNECTION_CHILD ") for the given user of a tenant

for the given artist in the recommender storage

*/

42 public void chooseArtistTopicConnectionChild(Integer

tenantId , String userId , String sessionId , String ip,

String artistId) throws

RascalliDFKIProfilerException ;

/**

* storing a ’choose_topic ’ action (with the topic "

CONNECTION_PARTNER ") for the given user of a tenant

for the given artist in the recommender storage

*/

47 public void chooseArtistTopicConnectionPartner(Integer

tenantId , String userId , String sessionId , String ip,

String artistId) throws

RascalliDFKIProfilerException ;

// sub -topics of ’professional career ’

108

APPENDIX C. WEB SERVICE INTERFACES

/**

* storing a ’choose_topic ’ action (with the topic "

PROFESSIONAL_CAREER_PRICES ") for the given user of a

tenant for the given artist in the recommender

storage

52 */

public void chooseArtistTopicProfessionalCareerPrices (

Integer tenantId , String userId , String sessionId ,

String ip , String artistId) throws

RascalliDFKIProfilerException ;

/**

* storing a ’choose_topic ’ action (with the topic "

PROFESSIONAL_CAREER_RECORDS ") for the given user of

a tenant for the given artist in the recommender

storage

57 */

public void chooseArtistTopicProfessionalCareerRecords(

Integer tenantId , String userId , String sessionId ,

String ip , String artistId) throws

RascalliDFKIProfilerException ;

// general method for other artist topics

/**

62 * storing a ’choose_topic ’ action (with the passed topic

) for the given user of a tenant for the given

artist in the recommender storage

*/

public void chooseArtistTopicByString(Integer tenantId ,

String userId , String sessionId , String ip , String

artistId , String topic) throws

RascalliDFKIProfilerException ;

}

Listing C.3: RASCALLI Domain Web Service Interface for the DFKI Visual Browser

C.4 RascalloModellingWS

Finally Listing C.4 describes the Java interface for the RASCALLI domain-
specific web service, used within the SAT RASCALLI Environment for the
presentation of user preferences.

package at.researchstudio .sat.recommender.service.webapp.

rascalli;

import at.researchstudio .sat.recommender.service.webapp.

rascalli.exception.RascalloModellingProfilerException;

109

APPENDIX C. WEB SERVICE INTERFACES

import at.researchstudio .sat.recommender.service.webapp.

rascalli.model.Preference;

5 import at.researchstudio .sat.recommender.service.webapp.

rascalli.model.TopicCounter;

/**

* Rascalli Webservice wrapper interface

*

10 * @author Roman Cerny

*/

public interface RascalloModellingWS

{

/**

15 * returns the artist preferences of a given user of a

tenant using only actions with a specific sessionId

*/

public Preference [] artistPreferencesForSession (Integer

tenantId , String userId , String sessionId) throws

RascalloModellingProfilerException;

/**

20 * returns the genre preferences of a given user of a

tenant using only actions with a specific sessionId

*/

public Preference [] genrePreferencesForSession(Integer

tenantId , String userId , String sessionId) throws

RascalloModellingProfilerException;

/**

25 * returns the track preferences of a given user of a

tenant using only actions with a specific sessionId

*/

public Preference [] trackPreferencesForSession(Integer

tenantId , String userId , String sessionId) throws

RascalloModellingProfilerException;

/**

30 * returns the topic counters of a given user of a tenant

using only actions with a specific sessionId

*/

public TopicCounter [] topicCountersForSession (Integer

tenantId , String userId , String sessionId) throws

RascalloModellingProfilerException;

/**

35 * returns the artist preferences of a given user of a

tenant

*/

110

APPENDIX C. WEB SERVICE INTERFACES

public Preference [] artistPreferencesForUser(Integer

tenantId , String userId) throws

RascalloModellingProfilerException;

/**

40 * returns the genre preferences of a given user of a

tenant

*/

public Preference [] genrePreferencesForUser (Integer

tenantId , String userId) throws

RascalloModellingProfilerException;

/**

45 * returns the track preferences of a given user of a

tenant

*/

public Preference [] trackPreferencesForUser (Integer

tenantId , String userId) throws

RascalloModellingProfilerException;

/**

50 * returns the topic Counters of a given user of a tenant

*/

public TopicCounter [] topicCountersForUser(Integer

tenantId , String userId) throws

RascalloModellingProfilerException;

/**

55 * returns the artist preferences of a given a tenant (

using all actions from all users within all sessions

)

*/

public Preference [] artistPreferences(Integer tenantId)

throws RascalloModellingProfilerException;

/**

60 * returns the genre preferences of a given a tenant (

using all actions from all users within all sessions

)

*/

public Preference [] genrePreferences (Integer tenantId)

throws RascalloModellingProfilerException;

/**

65 * returns the track preferences of a given a tenant (

using all actions from all users within all sessions

)

*/

111

APPENDIX C. WEB SERVICE INTERFACES

public Preference [] trackPreferences (Integer tenantId)

throws RascalloModellingProfilerException;

/**

70 * returns the topic counters of a given user of a tenant

*/

public TopicCounter [] topicCounters(Integer tenantId)

throws RascalloModellingProfilerException;

/**

75 * activates the ’pea counter ’ strategy , using frequency

counts of actions (for all action types)

*/

public void activatePeaCounterStrategy () throws

RascalloModellingProfilerException;

/**

80 * activates the ’weakening over time’ strategy , using

preference weakening over time

*/

public void activateWeakeningOverTimeStrategy () throws

RascalloModellingProfilerException;

/**

85 * checks if the ’pea counter ’ strategy is currently the

active strategy

*/

public boolean isPeaCounterStrategyActivated () throws

RascalloModellingProfilerException;

/**

90 * checks if the ’weakening over time’ strategy is

currently the active strategy

*/

public boolean isWeakeningOverTimeStrategyActivated ()

throws RascalloModellingProfilerException;

}

Listing C.4: RASCALLI Domain Web Service Interface for the SAT RASCALLI
Environment

Summary

In this appendix we listed several methods of Java interfaces for various
existing Web services of the RS.

112

