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I. Introduction

It is known that the operator (left) inverse to the Riesz potential operator

Iαϕ =
1

γn(α)

∫

Rn

ϕ(y) dy

|x− y|n−α
, x ∈ Rn , (1.1)

where γn(α) =
2απ

n
2 Γ

(
α
2

)

Γ

(
n−α

2

) is the well known normalizing constant, has the form of a

hypersingular integral, see Samko [1], [4] or Samko, Kilbas and Marichev [1], Section 26.
Namely,

(Iα)−1f = Dαf : =
1

dn,`(α)

∫

Rn

(
∆`

yf
)
(x)

|y|n+α
dy , α > 0 , (1.2)

where
(
∆`

yf
)
(x) is a centered or non-centered finite difference and dn,`(α) is some normal-

izing constantes, see details in Samko [4] or Samko, Kilbas and Marichev [1], Section 26.
This integral, known also as the Riesz fractional derivative, is treated as the limit

Dαf : = lim
ε→0

Dαf . (1.3)

where

Dα
ε f =

1

dn,`(α)

∫

|y|>ε

(
∆`

yf
)
(x)

|y|n+α
dy , α > 0 . (1.4)

More generally, a potential type operator of the form

Kα
ωϕ =

∫

Rn

ω

(
y

|y|
)

ϕ(x− y)

|y|n−α
dy , α > 0, (1.5)

with a sufficiently smooth homogeneous characteristic ω
(

y
|y|

)
is known to be inverted in

the so called elliptic case by means of the hypersingular construction

(Iα
ω )−1f = Dα

Ωf : =

∫

Rn

Ω

(
y

|y|
)

(∆yf) (x)

|y|n+α
dy , α > 0 , (1.6)

where the characteristic Ω of the hypersingular integral (1.6) can be effectively computed
via the characteristic ω of the initial potential operator Kα

ω , see Samko [3]. See also the
book Samko, Kilbas and Marichev [1], Sections 27-28, and the surveying paper Samko
[5] for more other types of potential operators, when hypersingular constructions may be
applied for inverting these operators.

Recently some other approach was also developed for inverting potential type, based
on the idea of approximative inverse operators (called sometimes the method of AIO), see,
for example, the papers Zavolzhenskii and Nogin [1]-[4], Nogin and Sukhinin [1], Sukhinin
[1] and the surveying papers Samko [5] and Nogin and Samko [3]. This method gives an
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inverse operator as a limit of ”nice” operators, one of advantages of this approach being in
the fact that it allows to avoid usage of finite differences of the right-hand side f(x) in the
construction of the inverse operator.

The main idea of the method of AIO is the following. The problem to invert this or
that convolution operator Aϕ = a ∗ ϕ reduces to multiplication of the Fourier transform
of a function ϕ by the reciprocal 1

â(ξ)
of the Fourier transform of the kernel a(x). This

reciprocal, in case of potential operators, increases at infinity. We may introduce some
”nice” factor mε(ξ) depending on ε, so that mε(ξ)

â(ξ)
vanishes at infinity (and at some other

set, if necessary) and then return to Fourier pre-images and calculate the corresponding

convolution (A−1)ε = F−1 mε(ξ)
â(ξ)

Fϕ as an operator depending on ε. This is the initial idea
of the method of AIO, which should be accomplished by the justification that this will
really generate the inverse operator as ε → 0 in the space under consideration. The usual
approach was based on a ”nice” choice of such a factor mε(ξ) in Fourier transforms, which
provides an inverting ε-dependent kernel in Fourier pre-images as a result of calculation. In
concrete cases this kernel is usually expressed in terms of these or those special functions.

In this paper we give a further development of some ideas of this approach and present
a new glance at its application. The main difference in comparison with what was done
before, is the opposite approach in the sense that we wish to choose a ”nice” kernel directly
on functions f(x) themselves, not in Fourier transforms, therefore, not worrying about
simplicity of the Fourier transform of this kernel. It goes without saying, that the simplicity
of the kernel itself should be a final goal.

We demonstrate such a possibility of a construction of a ”nice” kernel by our will in
the case of the Riesz potential operator (1.1).

II. Preliminaries

We remind some formulas for the Riesz transforms. Let

(Ff)(ξ) = f̂(ξ) =

∫

Rn

eixξf(x)dx

be the Fourier transform of a function f(x). It is known that

F−1(|ξ|−α) =
|x|α−n

γn(α)
(2.1)

for all α ∈ C except for α = n + 2k and α = −2k, k ∈ N, where the Fourier transform is
understood in the sense if distributions. Hence

F (Iαϕ) =
1

|ξ|α ϕ̂(ξ) and F (Dαϕ) = |ξ|αϕ̂(ξ) . (2.2)

For a radial function f = ϕ(|x|) the following Bochner formula is valid

∫

Rn

eixξϕ(|x|)dx =
(2π)

n
2

|ξ|n2−1

∫ ∞

0

ϕ(ρ)ρ
n
2 Jn

2
−1(ρ|ξ|)dρ , (2.3)
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under the assumption that the integral in the right-hand side converges, Jn
2
−1(z) being the

Bessel function.
For the Wiener ring

W0 = W0(R
n) = {f : f(ξ) = ϕ̂(ξ), ϕ(x) ∈ L1(R

n)} (2.4)

of Fourier transforms of L1-functions the following statement is valid (see, e.g. Samko [4]).
Lemma 2.1. Let f(x) ∈ L1(R

n). If f(x) has the mixed derivatives Djf ∈ Lp(R
n) for

all j ∈ {0, 1}n, j 6= 0, , where 1 < p ≤ 2, then f(x) ∈ W0(R
n) and

‖f‖W0 ≤ c


‖f‖1 +

∑

j ∈{0,1}n

‖Djf‖p




with c > 0 not depending on f .
We also note the following obvious boundedness of the operator Iα:

Iα : L1(R
n) → Lq

(
Rn; (1 + |x|)−λ

)
, 0 < <α < n, (2.5)

where 1 ≤ q < n
n−<α

, λ > n− (n− α)q .
For the hypersingular integral operator (1.3) the following fractional ”integration by

parts” formula holds, in which Wm
p (Rn), 1 ≤ p ≤ ∞,m ∈ N, is the Sobolev space of func-

tions f(x) ∈ Lp(R
n), which have all the distributional derivatives Djf(x) ∈ Lp(R

n), 0 <
|j| ≤ m. In the case p = ∞, by Wm

∞(Rn) = BCm(Rn) we understand the space of functions
on Rn which are differentiable in the usual sense up to order m and have all the bounded
derivatives Djf(x), 0 ≤ |j| ≤ m.

Lemma 2.2. Let f(x) ∈ Wm
p (Rn), 1 ≤ p ≤ ∞, m > α, and let k(x) ∈ Lp′(R

n) and
admit (Dαk)(x) = lim

ε→0
(Lp′ )

(Dα
ε k)(x). Then the formula of ”integration by parts” is valid:

(Dαk, f) = (k,Dαf) .

Proof. Indeed, the equality (Dα
ε k, f) = (k,Dα

ε f) is obvious. It remains to pass to the
limit as ε → 0 which is possible, by the well-known propertes of finite differences, see for
example, Samko, Kilbas and Marichev [1], formula (26.20), and by the assumption on k(x).
¥

Lemma 2.3. Let f(x) ∈ L1(R
n) and xjf(x) ∈ L1(R

n), 0 ≤ |j| < α. Then for any
ε > 0

M j
ε (f) : =

∫

Rn

xj(Dα
ε f)(x)dx ≡ 0 .

Proof. Evidently,

M j
ε (f) =

1

dn,`(α)

∫

|y|>ε

dy

|y|n+α

∑̀

k=0

(−1)k

(
`

k

) ∫

Rn

f(x− ky)xjdx ,
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the interchange of the order of integration being valid by the Fubini theorem. Hence, the
change of variable x − ky = ξ and the formula (ξ + ky)j =

∑
0≤ν≤j

(
j
ν

)
ξj−ν(ky)ν with(

j
ν

)
=

(
j1
ν1

) · · · (jn

νn

)
yield the equation

M j
ε (f) =

1

dn,`(α)

∫

|y|>ε

P|j|(y)dy

|y|n+α
,

where P|j|(y) =
∑

0≤ν≤j

(
j
ν

)
fj−νA`(|ν|)yν with fj =

∫
Rn f(ξ)ξjdξ. But A`(|ν|) = 0 for all

|ν| < `, as is known, see Samko, Kilbas and Marichev [1], Lemma 26.1, which proves our
lemma. ¥

Corollary. Let f(x) satisfy the assumptions of Lemma 2.3 and let limε→0(Dα
ε f)(x) ∈

L1(R
n; |x||j|). Then ∫

Rn

xj(Dα
ε f)(x)dx = 0 , 0 ≤ |j| < α .

The space of Riesz potentials

Iα(Lp) = {f : f = Iαϕ, ϕ ∈ Lp(R
n)} (2.6)

is well studied, see Samko [1]-[2], [4] or Samko, Kilbas and Marichev [1], Theorem 26.8,
and characterized in terms of convergence of hypersingular integrals in the case p > 1. The
following is some counterpart of Theorem 26.8 from Samko, Kilbas and Marichev [1] for
p = 1.

Lemma 2.4. 1) Let 0 < α < n or 0 < <α < 2 . Then

Iα(L1) = {f(x) : f(x) ∈ L1 + Ls,Dαf ∈ L1} , s >
n

n−<α
.

2) Let <α > 0. The conditions

f(x) ∈ L1(R
n) and |x|αf̂(x) ∈ W0(R

n)

are sufficient for f(x) to be in Iα(L1). If 0 < α < ∞ or 0 < <α < 2, then these conditions
guarantee the convergence of Dα

ε f in the norm of the space L1(R
n).

Proof. 1) The imbedding

Iα(L1) ⊆ {f(x) : f(x) ∈ L1 + Ls,Dαf ∈ L1} , s >
n

n−<α
,

is a consequence of the ”only if” part of Theorem 26.8 from Samko, Kilbas and Marichev
[1] for p = 1 (we observe that the ”only if” part is valid for p = 1 in that theorem) and of
the simple property Iα : L1 → L1 +Ls, s > n

n−<α
. The latter is easily obtained by splitting

the Riesz kernel kα(x) to its restrictions to |x| < 1 and |x| > 1.
To show the inverse imbedding, we notice that

(IαDαf, ϕ) = (f, ϕ) , ϕ ∈ Φ ,

if f ∈ Lp and Dα
ε converges in Lp, p ≥ 1, Φ being the Lizorkin test function space, see [

Samko, Kilbas and Marichev [1], which can be verified directly. Then f and IαDα may
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differ only by a polynomial, as is known, see for example, Samko, Kilbas and Marichev [1],
Subsection 25.1. But both f and IαDαf are in L1 + Ls, so that they cannot ”contain” a
polynomial. Therefore, f ∈ Iα(L1).

2) Let ϕ = F−1|x|αf̂(x), which is in L1(R
n), by the assumption. For any ω(x) ∈ Φ we

have

(Iαϕ, ω) = (ϕ, Iαω) =

(
F−1ϕ,

1

|x|α ω̂(x)

)
=

(
F−2|x|αFf,

1

|x|α ω̂(x)

)

=
1

(2π)n

(
|x|αf̂(−x),

1

|x|α ω̂(x)

)
=

(
F−1f, Fω

)
= (f, ω).

Hence Iαϕ coincides with f as an element of the space Φ′ . When α ≥ n, this already
means that f ∈ Iα(L1) in accordance with the definition of the space Iα(Lp) when α ≥ n

p
.

If 0 < α < n, to show that f and Iαϕ coincide as functions, it remains to see that they
both ”do not contain” a polynomial. For f this is clear, since f ∈ L1(R

n), while for Iαϕ
with ϕ ∈ L1 we should refer to the weak-type estimate

|x : |(Iαϕ)(x)| > t| ≤ c
(c

t
‖ϕ‖1

) n
n−<α

,

known for the Riesz potentials, see Zygmund [1].
The inclusion f ∈ Iα(L1) having been obtained, the convergence of Dα

ε f in L1 is then
a consequence of the ”only if” part of Theorem 26.8 from Samko, Kilbas and Marichev [1].
¥

Corollary. The intersection

{f(x) : f(x) ∈ L1 + Ls, }
⋂
{f(x) : Dαf converges in L1}

does not depend on s > n
n−<α

(0 < α < n or 0 < <α < 2).

III. Ideas leading from hypersingular constructions to

the method of AIO

Keeping in mind that the hypersingular integral of the form (1.6) is interpreted as the limit
of the truncated integrals as in (1.3)-(1.4), we rewrite (1.6) in the form

Dα
Ωf = lim

ε→0

∫

Rn

χε(y)Ω(y)
(∆`

yf)(x)

|y|n+α
dy , (3.1)

where χε(y) = χRn\B(0,ε)(y) is the characteristic function of the exterior of the ball B(0, ε) =
{y ∈ Rn : |y| < ε}. The first question arising is whether it is possible to use any other
truncation different from the spherical one. That is, may one take

χε(y) = χRn\Gε(y) ,
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where Gε is an arbitrary small neighbourhood of the origin, which tends to it when ε → 0?
The question of equivalence of this approach to the case of the spherical truncation is not
trivial since we deal with a non-absolute convergence of the integrals. In Emgusheva and
Nogin [1]-[2],[5] it was shown that in the case Ω(y) ≡ 1 the convergence in (3.1) does not
depend on the choice of the sets Gε 3 0 under the only assumption that

lim
ε→0

|Gε

⋂
K| = 0

for any compact set K ⊂ Rn (within the framework of the spaces Lα
p,r(R

n), see Samko
[2],[4] or Samko, Kilbas and Marichev [1] for these spaces).

We may go further and, instead of the truncation by means of the characteristic function

χε(y), take, for example, a smooth truncation” µ
(
|y|
ε

)
, where µ(r) ∈ C∞(R1

+), µ(r) ≡ 0

near the origin and µ(r) ≡ 1 for r ≥ 2 - see Alisultanova and Nogin [1]-[3], where not only
smooth such variable truncations were dealt with in the framework of the spaces Lα

p,r(R
n)

.
On the other hand, the hypersingular integral (1.6), in case of homogeneous character-

istics Ω(y) = Ω
(

y
|y|

)
may be represented in terms not involving finite differences:

Dα
Ωf = lim

ε→0

∫

Rn

χε(y)
Ω(y)f(x− y)

|y|n+α
dy = lim

ε→0

1

εn+α

∫

Rn

mα

(y

ε

)
f(x− y)dy , (3.2)

where mα(y) = Ω(y)|y|−n−α when |y| > 1 and mα(y) = 0 when |y| < 1, if Ω(y) satisfies the
conditions ∫

Sn−1

σjΩ(σ)dσ = 0 , |j| ≤ [α]

(compare this with the equalities (3.4) and (4.4) below). See a study of hypersingular
integrals in the form (3.2) under the latter condition on Ω(σ) in Nogin and Samko [1] and
[2].

The next natural step is to consider modifications of the hypersingular integral in the
form

lim
ε→0

∫

Rn

qα(y, ε)f(x− y)dy , (3.3)

where the kernel qα(y, ε) has a singularity of the type c
|y|n+α typical for hypersingular in-

tegrals when ε = 0, but is ”nice” when ε > 0. Thus, we avoid usage of finite differences,
but already do not try to represent the limit (3.3) as an integral which converges even if
non-absolutely. Naturally, there may be a large choice for the kernels qα(y, ε) and under
different choices of these kernels we may get these or those hypersingular integrals. We shall
consider the constructions (3.3) in this Section, the main strategy being the realization of
the operators inverse to potential type operators, in the form (3.3).

Since the Riesz potential operator is a convolution with a homogeneous kernel, it is
natural to look for an approximative inverse operator not in the general form (3.3), but in
the form

(Iα)−1f = lim
ε→0

1

εn+α

∫

Rn

qα

(y

ε

)
f(x− y)dy = lim

ε→0

1

εα

∫

Rn

qα(y)f(x− εy)dy . (3.4)

7



as in (3.2).

IV. General requirements to the kernel qα(y)

While choosing the kernel qα(y), we wish to have it sufficiently nice, at least integrable
over Rn:

qα(x) ∈ L1(R
n) (4.1)

and, at the same time, such that the limit in (3.4) gives the real inverse of Iα. We can
rewrite formally the relation (3.4) in Fourier transforms as

F
[
(Iα)−1f

]
= lim

ε→0

1

εα
q̂α(εξ)f̂(ξ) .

Therefore we may try to look for qα(x) via the relation

1

εα
q̂α(εξ) → |ξ|α

as ε → 0, by (2.2). This is equivalent, in a sense, to writing

q̂α(ξ) = |ξ|αK(ξ) , (4.2)

where limξ→0K(ξ) = 1. In other words, we can take an arbitrary ”nice” function K(ξ) which
vanishes at infinity rapidly enough and has K(0) = 1, and get the kernel qα(x) ∈ L1(R

n).
But we should keep in mind that we are interested in obtaining qα(x) in an explicit and
constructive form, preferably as an elementary or well-known special function.

Lemma 4.1. Let
yjqα(y) ∈ L1(R

n), 0 ≤ |j| < <α . (4.3)

Then the condition ∫

Rn

yjqα(y)dy = 0 , 0 ≤ |j| < <α , (4.4)

is necessary and sufficient for existence of the limit (3.4) on nice functions f ( ∈ S, say).
Proof. It suffices just to use the Cauchy-L’Hôspital rule in the second equation in (3.4).

¥
As we know, F (Dαf) = |x|αf̂(x) ,
Passing to Fourier pre-images in (4.2), again formally, in view of (2.2) we can write

qα(x) = Dαk(x) , (4.5)

where k(x) = (F−1K)(x), and ∫

Rn

k(x)dx = 1 . (4.6)

Hence we arrive at the following conclusion.
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Conclusion 4.2. The limit (3.4) coincides with Dαf , which is the real inverse to Iαϕ,
only if the kernel qα(x) has the form (4.5) with k(x) satisfying the condition (4.6). In
other words, the kernel qα(x) which we may take in (3.4), should be the Riesz fractional
derivative of an identity approximation kernel.

We expect also that under a concrete choice of qα(x) we shall encounter the property

qα(x) ∼ c

|x|n+α
, c =

1

γn(−α)
= −sin απ

2

βn(α)
(4.7)

as |x| → ∞. Indeed, by (4.2),

qα(x) =
1

(2π)n|x|n+α

∫

Rn

e−i x
|x|y|y|αK

(
y

|x|
)

dy (4.8)

and, since K(0) = 1, this formally yields (4.7) by (2.1).
Let us note that the conditions (4.3) used above, are in evident agreement with (4.7).
The following lemma shows that the kernels of the form (4.5), in general, automatically

posess the property (4.4).
Lemma 4.3. Let k(x) ∈ L1(R

n) and xjk(x) ∈ L1(R
n) and let k(x) have the Riesz

derivative Dαk(x) = lim ε→0
(L1)

Dα
ε k(x). If, besides this, qα(x) = Dαk(x) itself satisfies the

condition (4.3), then the equation (4.4) is satisfied.
Proof. It suffices to refer to Corollary of Lemma 2.3 ¥.
For further goals we find it convenient to introduce the following
Definition 4.4. The identity approximation kernel k(x) is called admissible for the

inversion of the Riesz potential operator Iα, if

k(x) ∈ L1(R
n)

⋂
Iα(L1) . (4.9)

V. The construction (3.4) as the inverse operator to

Iα on Iα(Lp)

First of all we show that the construction (3.4) converges on nice functions.
Theorem 5.1. Let k(x) ∈ L1(R

n) be an arbitrary identity approximation kernel ad-
missible in the sense of Definition 4.4. Then

lim
ε→0

(BC(Rn))

1

εn+α

∫

Rn

qα

(y

ε

)
f(x− y)dy = Dαf (5.1)

for any f ∈ Wm
∞(Rn),m > α.

Proof. Firstly, we observe that Dαf exists for f ∈ Wm
∞(Rn),m > α, and is in BC(Rn),

by the properties of hypersingular integrals, see Samko [4] or Samko, Kilbas and Marichev,
Subsection 26.2. We have

1

εn+α

∫

Rn

qα

(y

ε

)
f(x− y)dy =

∫

Rn

k(y)(Dαf)(x− εy)dy −→
(BC(Rn))

(Dαf)(x) , (5.2)
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where we have used Lemma 2.2 and the fact that k(x) is the identity approximation kernel.
¥

Theorem 5.2. Let k(x) be any admissible identity approximation kernel and let f(x) =
Iαϕ, ϕ ∈ Lp(R

n), 1 < p < n
<α

. Then

lim
ε→0
(Lp)

1

εn+α

∫

Rn

qα

(y

ε

)
f(x− y)dy = ϕ(x), (5.3)

where qα(x) is the function (4.5). If, also qα(x)(1 + |x|)δ ∈ L1(R
n), for some δ > 0, then

(5.3) holds in the case p = 1 as well. If k(x) has a radial decreasing majorant in L1(R
n),

then the almost everywhere limit may be also taken in (5.3).
Proof. Let ϕ ∈ S first. Then we have the equality written in (5.2), that is ,

1

εn+α

∫

Rn

qα

(y

ε

)
f(x− y)dy =

∫

Rn

k(y)ϕ(x− εy)dy , (5.4)

which can be also easily verified via Fourier transforms since ϕ ∈ S. We wish to extend
this relation to the case of functions ϕ ∈ Lp , seeing that S is dense in Lp(R

n). We may
take ε = 1 and observe that (5.4) is nothing else but

qα ∗ Iαϕ = Iαqα ∗ ϕ . (5.5)

It remains to show that both the left- and right-hand side of (5.5) are operators bounded,
with respect to ϕ, from Lp into Lq,

1
q

= 1
p
− <α

n
, p > 1. The case p = 1 is to be considered

separately. The left-hand side of (5.5) is obviously (Lp → Lq)-bounded since qα ∈ L1. For
the right-hand side of (5.5) we have

Iαqα ∗ ϕ = Iα(qα ∗ ϕ) , (5.6)

which is obvious on nice functions and is extended to ϕ ∈ Lp since both qα and Iαqα are
in L1. Therefore, by (5.6), the right-hand side of (5.5) is (Lp → Lq)-bounded as well.

Let p = 1. By (5.6) and (2.5), the right-hand side of (5.5) is bounded from L1(R
n) →

Lq,λ := Lq(R
n; (1+ |x|)−λ), 1 ≤ q < n

n−<α
, λ > n− (n−<α)q. As for the left-hand side, it is

not hard to check, using the Minkowsky inequality, that the assumption qα(x)(1 + |x|)δ ∈
L1(R

n) guarantees existence of q ∈ [
1, n

n−<α

)
and λ > n− (n−<α)q such that qα ∗ Iαϕ is

(L1 → Lqλ)-bounded
(
taking δ ≤ <α, one may choose q = n

n−α+δ

)
.

The above boundednesses enable us to have the equality (5.4) for all ϕ ∈ Lp(R
n), 1 ≤

p < n
<α

. Having (5.4) for ϕ ∈ Lp, it suffices to use the fact that k(x) is an identity
approximation kernel with the reference to the known properties of such kernels, see Stein
[1], Chapter III, Subsection 2.2, Theorem 2. ¥

10



VI. Approximative inverse operator under the choice

k(x) = P (x, 1)

We begin with the choice qα(x) = Dαk with k(x) = P (x, 1), where P (x, t) is the Poisson
kernel

P (x, t) =
cnt

(|x|2 + t2)
n+1

2

, cn =
Γ

(
n+1

2

)

π
n+1

2

, (6.1)

so that K(ξ) = e−|ξ| in (4.2). The main reason for this choice is just the fact that P (x, 1) is
a famous identity approximation kernel. This choice for the application of the method of
AIO was made in Zavolzhenskii and Nogin [2], but for reader’s convenience we present here
the main result from that paper with proofs, which are somewhat simplified. Under this
choice the kernel qα(x) proves to be a special function, the Gauss hypergeometric function
(which can be expressed in terms of elementary functions in case of odd n). But below
in Section 7 we show that it is possible to make a choice which is opposite in a sense: we
may choose K(x) not an elementary function, but such that qα(x) proves to be a very nice
elementary function. In other words, as was already noted in Introduction, we may achieve
simplicity of the inversion not in the Fourier transforms, but directly, not caring about the
picture we can have in Fourier transforms.

We start from the consideration of properties of the function qα(x) = DαP (x, 1).
Lemma 6.1. The formula is valid

Dα
(
P (·, 1)

)
= F−1

(|ξ|αe−|ξ|
)

=
Γ(n + α)

2n−1π
n
2 Γ

(
n
2

)F

(
n + α

2
,
n + α + 1

2
;
n

2
;−|x|2

)
, (6.2)

where <α ≥ 0 and F (a, b; c; z) is the Gauss hypergeometric function.

Proof. The first equality in (6.2) is a consequence of (2.2) and the fact that P̂ (·, t) =
e−t|ξ|2 . To get the second one, we use the Bochner formula (2.3) and obtain

F−1
(|ξ|αe−|ξ|

)
=

1

(2π)
n
2 Γ

(
n
2

)
∫ ∞

0

ρ
n
2
+αe−ρJn

2
−1(ρ|x|)dρ .

It remains to apply the formula N 6.621 in Gradshtein and Ryzhik [1] to the integral in
the right-hand side. ¥

Lemma 6.2. The function

qα(x) =
Γ(n + α)

2n−1π
n
2 Γ

(
n
2

)F

(
n + α

2
,
n + α + 1

2
;
n

2
;−|x|2

)
, <α > 0 , (6.3)

is in L1(R
n)

⋂
C0(R

n) and

|qα(x)| ≤ A(1 + |x|)−n−<α . (6.4)

Proof. We have
|ξ|αe−|ξ| ∈ W0(R

n) (6.5)

11



by Lemma 2.1, if <α > 0. Hence qα(x) ∈ L1(R
n) as the inverse Fourier transform of this

function. Since also |ξ|αe−|ξ| ∈ L1(R
n), we have qα(x) ∈ W0(R

n) ⊂ C0(R
n).

From the transformation formula

F (a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−1)az−aF

(
a, a + 1− c; a + 1− b;

1

z

)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−1)bz−bF

(
b, b + 1− c; b + 1− a;

1

z

)

for the Gauss function (Gradshtein and Ryzhik [1], N 9.132), the estimate (6.4) is easily
derived. ¥

Below in this Section we write qα(|x|) instead of qα(x) without danger of confusion.
Remark 6.3. In case of the space of odd dimension, n = 2k + 1, k ∈ N0, the function

qα(r) is an elementary function:

qα(r) =
Γ(1 + α)

2π
n+1

2

dk

dzk

[
(1 +

√
z)−α−1 + (1−√z)−α−1

]∣∣∣∣√
z=ir

(6.6)

In particular, in the cases n = 1 and n = 3, we have

qα(r) =
Γ(1 + α)

2π

[
(1 + ir)−α−1 + (1− ir)−α−1

]
=

Γ(1 + α) cos [(1 + α)arctg r]

π(1 + r2)
1+α

2

and

qα(r) = −i
Γ(2 + α)

8π2r

[
(1 + ir)−α−2 − (1− ir)−α−2

]
= −Γ(2 + α) sin [(2 + α)arctg r]

4π2r(1 + r2)
2+α

2

,

respectively.
Indeed, (6.6) follows immediately from the formula (7), page 71 (Russian edition) in

Erdelyi et al [1] and the equality 15.19 in Abramowitz and Stegun [1].
Theorem 6.4. Let 1 ≤ p < n

<α
. The inversion (5.3) of the Riesz potential operator

holds under the choice (6.3) of qα(x).
Proof. We have qα(x) = Dαk, k(x) = P (x, 1) and by Theorem 5.2, it suffices to show

that the kernel k(x) is admissible, that is, satisfies the condition (4.9). Evidently, P (x, 1) ∈
L1(R

n). Also, P (x, 1) ∈ Iα(L1), by Theorem 2.4, the condition |x|αk̂(x) ∈ W0 of Theorem
2.4 being fullfilled by (6.5). It remains to note that the condition P (x, 1)(1+|x|)δ ∈ L1(R

n)
of Theorem 5.2 is also satisfied

Corollary. The Laplace operator may be approximated by integral operators in the
form

−∆f =
(n + 1)!

2nπ
n
2 Γ

(
n
2

) lim
ε→0

1

ε2

∫

Rn

v(y)f(x− εy)dy , (6.7)

where v(y) = 1

(1+|x|2)
n+3

2

(
3− n+3

1+|x|2
)

.

Indeed, for α = 2 from (6.3) we get q2(x) = (n+1)!

2nπ
n
2 Γ(n

2 )
v(x) by means of the Gauss

recursion formula 9.137.17 from Gradshtein and Ryzhik [1] for hypergeometric functions
and the relation F (a, b; b; z) = (1− z)−a.

12



Remark 6.5. Taking k(x) = W (x, 1) , where W (x, t) is the Gauss-Weierstrass kernel,
instead of the Poisson kernel, we obtain the corresponding kernel qα(x) in the form

qα(x) =
Γ

(
n+α

2

)

2nπ
n
2 Γ

(
n
2

) 1F1

(
n + α

2
;
n

2
;−|x|

2

4

)
, (6.8)

where 1F1(a; b; z) =
∑

k=0
(a)k

(b)k

zk

k!
is the confluent hypergeometric function.

Indeed, (6.8) may be obtained by means of the formula N 6.631.1 in Gradshtein and
Ryzhik [1].

VII. Approximative inverse operator under the direct

choice of qα(x)

Now we pass to the idea mentioned in Introduction and at the beginning of Section 6. We
look for the answer to the question: can we choose by ourselves some simple elementary
function qα(x) which fits the inversion (5.3), not caring about how complicated might
be its Fourier transform. (Before, on the contrary, we wrote a prescribed simple Fourier
transform of qα(x) and then calculated qα(x) itself). The direct search of qα(x) is restricted
by the conditions (4.4) and (4.7), which are necessary in a sense. An immediate idea to
satisfy both these conditions in a very simple manner, at least, in the case 0 < <α < 2, is
to take

qα(x) =
1

γn(−α)

[
1

(1 + |x|2)n+α
2

− λ

(1 + |x|2)n+α
2

+1

]
, (7.1)

which surely satisfies the requirement (4.7) and we certainly can determine λ in such a
fashion that (4.4) is satisfied for j = 0, the latter being sufficient in the case 0 < <α < 2,
since qα(x) is radial. Direct easy calculations provide

λ =
n + α

α
. (7.2)

And we shall show that this choice (7.1)-(7.2) does work !
In the case <α ≥ 2 we may proceed in a similar way and consider the linear combination

qα(x) =
1

γn(−α)

m∑

k=0

λk

(1 + |x|2)n+α
2

+k
(7.3)

instead of (7.1). The choice of the λk will be dictated by the conditions (4.4) and (4.7).
Naturally, just to find coefficients is not enough. In accordance with Theorem 5.2, we

should prove that under our choice of qα(x) the condition k(x) = Iαqα ∈ L1(R
n) is satisfied,

which will be the main point.

13



It is known that

F

(
1

(1 + |x|2)β
2

)
= (2π)nGα(ξ) , (7.4)

where Gα(x) is the Bessel kernel,

Gα(x) =
21−α+n

2

π
n
2 Γ(α

2
)

Kn−α
2

(|x|)
|x|n−α

2

. (7.5)

So, the study of the function (7.3) will be closely connected with properties of this
kernel.

The following lemma is crucial for our goals. It gives some remarkable recursion relation
for the Bessel kernels Gα(x).

Lemma 7.1. Let −n < <α < n + 2m. Then

m∑

k=0

(−1)kam,k(α)Gn+α+2k(ξ) = (−1)mam(α)|ξ|αGn+2m−α(ξ) , (7.6)

where

am,k(α) = α(α− 2) · · · (α− 2m + 2k + 2)(n + α(n + α + 2) · · · (n + α + 2k − 2)

(
m

k

)
=

= 2m

(
m

k

)
Γ

(
α
2

+ 1
)
Γ

(
n+α

2
+ k

)

Γ
(

n+α
2

)
Γ

(
α
2
−m + k + 1

) (7.7)

and

am(α) = 2m−α Γ
(

n−α
2

+ m
)

Γ
(

n+α
2

) .

Its particular cases for m = 1 and m = 2 are, respectively,

αGn+α(ξ)− (n + α)Gn+α+2(ξ) = −21−αΓ
(

n−α
2

+ 1
)

Γ
(

n+α
2

) |ξ|αGn+2−α(ξ) (7.8)

and
α(α− 2)Gn+α(ξ)− 2α(n + α)Gn+α+2(ξ) + (n + α)(n + α + 2)Gn+α+4(ξ)

=
22−αΓ

(
n−α

2
+ 2

)

Γ
(

n+α
2

) |ξ|αGn+4−α(ξ) (7.9)

Proof. Let us agree to write Gn+α(|ξ|) = Gn+α(r) instead of Gn+α(ξ) By (7.5) we have

Gn+α(r) =
21−n−α

2

π
n
2 Γ

(
n+α

2

)r
α
2 Kα

2
(r) . (7.10)

For the McDonald function Kν(r) the recurrence relation

r
[
Kν+1(r)−Kν−1(r)

]
= 2νKν(r) (7.11)
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is well known, see Gradshtein and Ryzhik [1], N 8.486.10. We wish to extend this to

rm
[
Kν+m(r)−Kν−m(r)

]
=

m−1∑
j=0

(−1)m−j−1bm(j)rjKν+j(r) (7.12)

with explicitely calculated coefficients bm(j). It proves to be that

bm(j) = 2m−j

(
m

j

)
ν(ν − 1)...(ν + j −m + 1) = Γ(ν + 1)

2m−j
(

m
j

)

Γ(ν + j −m + 1)
. (7.13)

The relation (7.12)-(7.13), valid in the case m = 1 by (7.11), will be proved by induction.
We suppose that (7.12)-(7.13) is valid for some number m and all values of ν. Taking the
left-hand side of (7.12) of order m + 1, we represent it as

rm+1
[
Kν+m+1(r)−Kν−m−1(r)

]
= rm·r

[
Kν+m+1(r)−Kν+m−1(r)

]
+r·rm

[
Kν−1+m(r)−Kν−1−m(r)

]

(7.14)
Since (7.12)-(7.13) is assumed to be valid for all ν, we may use it in the second term in the
right-hand side of (7.14) with ν replaced by ν − 1, while the first term may be treated by
the formula (7.11), with ν replaced by ν + m. As a result we obtain

rm+1
[
Kν+m+1(r)−Kν−m−1(r)

]
= 2rm(ν + m)Kν+m(r) + r

m−1∑
j=0

(−1)m−j−1cjr
jKν−1+j(r) ,

where we have denoted

cj = 2m−j

(
m

j

)
(ν − 1)(ν − 2) · · · (ν + j −m) =

ν + j −m

ν
bm(j)

for brevity. Lifting the order of the McDonald functions in every term in the sum
∑m−1

j=0 ,
after easy calculations we arrive at the right-hand side of (7.12) exactly for the order m+1.

The formula (7.12) being proved, to get (7.6), it remains to choose ν = α
2

in (7.12) and
calculate rjKν+j(r) = r−

α
2 r

α
2
+jKα

2
+j(r) in terms of Gn+α+2j according to (7.10); in the

right-hand side of (7.12), we replace similarly rmKν−m(r) = r
α
2 rm−α

2 Km−α
2
(r). After easy

calculation of constants we arrive at (7.6). ¥
Corollary. Let 0 < <α < 2m,m = 1, 2, ... Then

D2m−α

(
1

(1 + |x|2)n+α
2

)
=

m∑

k=0

(−1)m−k νm,k(α)

(1 + |x|2)n−α
2

+m+k
, (7.15)

where νm,k(α) = 22m−α
(

m
k

)Γ(m−1−α
2 )Γ(n−α

2
+m+k)

Γ(k−α
2
−1)Γ(n+α

2 )
; in particular,

D2−α

(
1

(1 + |x|2)n+α
2

)
= −21−αΓ

(
n−α

2
+ 1

)

Γ
(

n+α
2

)
[

2− α

(1 + |x|2)n−α
2

+1
− n + 2− α

(1 + |x|2)n−α
2

+2

]
,

0 < <α < 2 .
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Indeed, when <α > 0, obviously, Gn+α(ξ) ∈ W0(R
n). Passing to Fourier transforms in

(7.6) according to (7.4) and changing α to 2m− α, we arrive at (7.15).
It is clear that Lemma 7.1 paves the way to construction of the kernel qα(x) in the

simple form (7.3).
Lemma 7.2. Let 0 < <α < 2m,m = 1, 2, 3, ... , α 6= 2, 4, 6, ... Then the kernel

qα(x) =
1

γn(−α)

[
1

(1 + |x|2)n+α
2

−
m∑

k=1

(−1)k−1cm,k

(1 + |x|2)n+α
2

+k

]
(7.16)

with

cm,k =

(
m

k

) (
n+1

2

)
k(

α
2
−m + 1

)
k

(7.17)

is equal to Dαk , where k(x) is an identity approximation kernel satisfying the admissibility
condition (4.9).

Proof. The relation (7.6) prompts us to look for qα(x) via Fourier transforms, since the
right-hand side of (7.6) includes |ξ|α = F−1DαF . So we choose q̂α(ξ) as

q̂α(ξ) = λ

m∑

k=0

(−1)kam,k(α)Gn+α+2k(ξ) , (7.18)

where λ is to be determined from the condition |ξ|−αq̂α(ξ)
∣∣∣
ξ=0

= 1, that is, λ(−1)mam(α)

Gn+2m−α(0) = 1. It is known that

Gα(0) =
Γ

(
α−n

2

)

2nπ
n
2 Γ

(
α
2

) , <α > n .

Taking the value of am(α) from Lemma 7.1, we get

λ = (−1)mπ
n
2 2n+α−m Γ

(
n+α

2

)

Γ
(
m− α

2

) .

Then, passing to Fourier pre-images in (7.18), we arrive at

qα(x) =
2αΓ

(
1 + α

2

)

π
n
2 Γ

(
m− α

2

)
m∑

k=0

(−1)m−k

(
m

k

)
Γ

(
n+α

2
+ k

)

Γ
(

α
2
−m + k + 1

) 1

(1 + |x|2)n+α
2

+k
. (7.19)

Easy calculations with the properties of the Gamma function taken into account transform
this to (7.16). It remains to show that that the function k(x) = Iαqα satisfies the condition
(4.9). Due to the way in which we constructed the function qα(x) via (7.18), we have from
(7.6):

k̂(ξ) = λ(−1)mam(α)Gn+2m−α(ξ)

so that

k(x) =
const

(1 + |x|2)n+2m−α
∈ L1(R

n)
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since <α < 2m. To check that k(x) ∈ Iα(L1), we have to verify that |ξ|αk̂(ξ) ∈ W0(R
n) ac-

cording to Lemma 2.4. This is satisfied since |ξ|αk̂(ξ) =
∑m

k=0 ckGn+α+2k(ξ) ∈ W0(R
n). ¥

Theorem 7.3. Let 0 < <α < 2m, m = 1, 2, ... , α 6= 2, 4, 6, ... Then the inversion of
the Riesz potential operator f = Iαϕ, ϕ ∈ Lp(R

n), 1 ≤ p < n
<α

, can be written in the form

ϕ(x) =
1

γn(−α)
lim
ε→0

∫

Rn

[
1

(|y|2 + ε2)
n+α

2

− εA(y, ε)

]
f(x− y)dy , (7.20)

where

A(y, ε) =
m∑

k=1

(−1)k−1 cm,kε
k−1

(|y|2 + ε2)
n+α

2
+k

with cm,k given in (7.17). The limit in (7.20) exists in the usual sense, if f(x) ∈ WN
∞(Rn), N >

<α, and in the sense of Lp-convergence or almost everywhere, if f ∈ Iα(Lp).
Proof. In view of Lemma 7.2, Theorem 7.3 follows immediately from Theorems 5.1 and

5.2.
Corollary. Let 0 < <α < 2. The inversion of the Riesz potential operator Iαϕ may be

taken in the form

ϕ(x) =
1

γn(−α)
lim
ε→0

∫

Rn

[
1

(|y|2 + ε2)
n+α

2

− n + 1

α

ε

(|y|2 + ε2)
n+α

2
+1

]
f(x− y)dy , (7.21)
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