University of Toronto Department of Mathematics

Spectral Methods of Automorphic Forms

Problem Set 3 (due Nov 9)

3.1. a) Let T_{n} be the n-th Hecke operator. Show $T_{n} T_{m}=\sum_{d \mid(n, m)} T_{n m / d^{2}}$ and deduce by Möbius inversion $T_{n m}=\sum_{d \mid(n, m)} \mu(d) T_{m / d} T_{n / d}$.
b) As formal series, show

$$
\sum_{k=0}^{\infty} \frac{T_{p^{k}}}{p^{k s}}=\left(1-\frac{T_{p}}{p^{s}}+\frac{1}{p^{2 s}}\right)^{-1}
$$

and conclude

$$
\sum_{n=1}^{\infty} \frac{T_{n}}{n^{s}}=\prod_{p}\left(1-\frac{T_{p}}{p^{s}}+\frac{1}{p^{2 s}}\right)^{-1}
$$

3.2. For $n \in \mathbb{N}, k \geq 4, z, w \in \mathbb{H}$ define
$h_{n}(z, w):=\sum_{a d-b c=n} \frac{(\Im z \Im w)^{k / 2}}{(c z w+d w+a z+b)^{k}}=\sum_{a d-b c=n}(\Im z \Im w)^{k}(c z+d)^{-k}\left(w+\frac{a z+b}{c z+d}\right)^{-k}$.
a) Show that $(\Im z \Im w)^{-k / 2} h_{n}(z, w)$ is holomorphic in both z and w, vanishes at $(i \infty, w)$ and $(z, i \infty)$, and that $h_{n}(z, w)$ is in both variables invariant with respect to all $R_{\gamma}^{(k)}, \gamma \in S L_{2}(\mathbb{Z})$. Conclude that h_{n} is in both variables a cusp form for $S L_{2}(\mathbb{Z})$ of weight k and eigenvalue $k / 2(1-k / 2)$, in other words, h_{n} is in both variables a holomorphic cusp form of weight k for the full modular group.
b) Let F be any a holomorphic cusp form of weight k for the full modular group, equivalently $f=y^{k / 2} F$ is a Maaß cusp form of weight k. Show that $\left\langle f, h_{1}(., \overline{-w})\right\rangle=$ $c_{k} f(w)$ for some constant c_{k}. Hint: Unfold the fundamental domain getting

$$
\left\langle f, h_{1}(., \overline{-w})\right\rangle=2(\Im w)^{k / 2} \int_{\mathbb{H}}(\bar{z}-w)^{-k} F(z)(\Im z)^{k-2} d z
$$

Calculate this integral by Cauchy's integral formula.
c) Conclude $T_{n} f=c_{k, n}\left\langle f, h_{n}(., \overline{-w})\right\rangle$ for some constant $c_{k, n}$. In other words, in this special case, we found a kernel for T_{n}.
3.3. Let X be the reflection conjugation operator: $(X f)(z):=f(-\bar{z})$. X is \mathbb{R} linear, but not \mathbb{C}-linear.
a) Show that X maps forms of weight $-k$ to forms of weight k forms, $X^{2}=1, X$ is self-adjoint, $\Delta_{k} X=X \Delta_{-k}$, and X commutes with the Hecke operators. So for a
weight 0 newform one can assume that it is an eigenform of X. Thus we call a (weight 0) newform f even if $X f=f$, and odd if $X f=-f$. What can you say about the positive and negative Fourier coefficients of odd and even newforms?
b) Have a look at Invent. Math. 149 (2002), p.509-511 to see what one does for general weight k.
3.4. Denote by $[a, b, c]$ the binary quadratic form $a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}=\mathbf{x}^{t} A \mathbf{x}$ with $A=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$. Two forms with matrices A, A^{\prime} are equivalent if $A^{\prime}=\gamma^{t} A \gamma$ for some $\gamma \in S L_{2}(\mathbb{Z})$. The discriminant of $[a, b, c]$ is $D=b^{2}-4 a c$. We call $\gamma \in S L_{2}(\mathbb{Z})$ and automorph of $[a, b, c]$ if $A=\gamma^{t} A \gamma$.
a) Show that for given $D \in \mathbb{Z}$ there are only finitely many classes of integral quadratic forms. (Show that each form is equivalent to a form with $|b| \leq|a| \leq|c|$)
b) Assume that D (if it is positive) is not a perfect square, and assume that $(a, b, c)=1$ (i.e. the quadratic form is primitive). Let (t, u) be a solution of $t^{2}-D u^{2}=4$. Show that $\left(\begin{array}{cc}(t-b u) / 2 & -c u \\ a u & (t+b u) / 2\end{array}\right)$ is an automorph of $[a, b, c]$; conversely, every automorph is of this form.
c) Let $\theta_{1,2}=(-b \pm \sqrt{D}) /(2 a)$. Show that the group of automorphs of the primitive form $[a, b, c]$ is the stabilizer of $\theta_{1,2}$.
(to be continued...)
3.5. Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{R})$ be the Lie algebra of $S L(2, \mathbb{R})$ generated as a vector space by

$$
R=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad L=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad H=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)
$$

These matrices generate the (associative) envelopping algebra $U(\mathfrak{g}$) (with mutliplication denoted by $\cdot)$ as an \mathbb{R}-algebra. Let $-4 \Delta=H^{2}+2 R \cdot L+2 L \cdot R \in U(\mathfrak{g})$ be the Casimir element. Verify that Δ is in the centre of $U(\mathfrak{g})$. Hint: It is enough to show that Δ commutes with R, L, and H. Use the commutator relations $H \cdot R-R \cdot H=$ $2 R, H \cdot L-L \cdot H=-2 L, R \cdot L-L \cdot R=H$.

