University of Toronto Department of Mathematics

Spectral Methods of Automorphic Forms

Problem Set 3 (due Nov 9)

- **3.1.** a) Let T_n be the n-th Hecke operator. Show $T_n T_m = \sum_{d|(n,m)} T_{nm/d^2}$ and deduce by Möbius inversion $T_{nm} = \sum_{d|(n,m)} \mu(d) T_{m/d} T_{n/d}$.
 - b) As formal series, show

$$\sum_{k=0}^{\infty} \frac{T_{p^k}}{p^{ks}} = \left(1 - \frac{T_p}{p^s} + \frac{1}{p^{2s}}\right)^{-1}$$

and conclude

$$\sum_{n=1}^{\infty} \frac{T_n}{n^s} = \prod_{p} \left(1 - \frac{T_p}{p^s} + \frac{1}{p^{2s}} \right)^{-1}.$$

3.2. For $n \in \mathbb{N}$, $k \geq 4$, $z, w \in \mathbb{H}$ define

$$h_n(z,w) := \sum_{ad-bc=n} \frac{(\Im z \Im w)^{k/2}}{(czw + dw + az + b)^k} = \sum_{ad-bc=n} (\Im z \Im w)^k (cz+d)^{-k} \left(w + \frac{az+b}{cz+d}\right)^{-k}.$$

- a) Show that $(\Im z \Im w)^{-k/2} h_n(z, w)$ is holomorphic in both z and w, vanishes at $(i\infty, w)$ and $(z, i\infty)$, and that $h_n(z, w)$ is in both variables invariant with respect to all $R_{\gamma}^{(k)}$, $\gamma \in SL_2(\mathbb{Z})$. Conclude that h_n is in both variables a cusp form for $SL_2(\mathbb{Z})$ of weight k and eigenvalue k/2(1-k/2), in other words, h_n is in both variables a holomorphic cusp form of weight k for the full modular group.
- b) Let F be any a holomorphic cusp form of weight k for the full modular group, equivalently $f = y^{k/2}F$ is a Maaß cusp form of weight k. Show that $\langle f, h_1(., \overline{-w}) \rangle = c_k f(w)$ for some constant c_k . Hint: Unfold the fundamental domain getting

$$\langle f, h_1(., \overline{-w}) \rangle = 2(\Im w)^{k/2} \int_{\mathbb{H}} (\overline{z} - w)^{-k} F(z) (\Im z)^{k-2} dz.$$

Calculate this integral by Cauchy's integral formula.

- c) Conclude $T_n f = c_{k,n} \langle f, h_n(., \overline{-w}) \rangle$ for some constant $c_{k,n}$. In other words, in this special case, we found a kernel for T_n .
- **3.3.** Let X be the reflection conjugation operator: $(Xf)(z) := f(-\bar{z})$. X is \mathbb{R} -linear, but not \mathbb{C} -linear.
- a) Show that X maps forms of weight -k to forms of weight k forms, $X^2 = 1$, X is self-adjoint, $\Delta_k X = X \Delta_{-k}$, and X commutes with the Hecke operators. So for a

weight 0 newform one can assume that it is an eigenform of X. Thus we call a (weight 0) newform f even if Xf = f, and odd if Xf = -f. What can you say about the positive and negative Fourier coefficients of odd and even newforms?

- b) Have a look at Invent. Math. 149 (2002), p.509-511 to see what one does for general weight k.
- **3.4.** Denote by [a,b,c] the binary quadratic form $ax_1^2 + bx_1x_2 + cx_2^2 = \mathbf{x}^t A\mathbf{x}$ with $A = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$. Two forms with matrices A, A' are equivalent if $A' = \gamma^t A \gamma$ for some $\gamma \in SL_2(\mathbb{Z})$. The discriminant of [a,b,c] is $D = b^2 4ac$. We call $\gamma \in SL_2(\mathbb{Z})$ and automorph of [a,b,c] if $A = \gamma^t A \gamma$.
- a) Show that for given $D \in \mathbb{Z}$ there are only finitely many classes of integral quadratic forms. (Show that each form is equivalent to a form with $|b| \leq |a| \leq |c|$)
- b) Assume that D (if it is positive) is not a perfect square, and assume that (a,b,c)=1 (i.e. the quadratic form is primitive). Let (t,u) be a solution of $t^2-Du^2=4$. Show that $\binom{(t-bu)/2}{au} \binom{-cu}{(t+bu)/2}$ is an automorph of [a,b,c]; conversely, every automorph is of this form.
- c) Let $\theta_{1,2} = (-b \pm \sqrt{D})/(2a)$. Show that the group of automorphs of the primitive form [a,b,c] is the stabilizer of $\theta_{1,2}$. (to be continued...)
 - **3.5.** Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R})$ be the Lie algebra of $SL(2,\mathbb{R})$ generated as a vector space by

$$R = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \quad L = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \quad H = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$$

These matrices generate the (associative) envelopping algebra $U(\mathfrak{g})$ (with mutliplication denoted by ·) as an \mathbb{R} -algebra. Let $-4\Delta = H^2 + 2R \cdot L + 2L \cdot R \in U(\mathfrak{g})$ be the Casimir element. Verify that Δ is in the centre of $U(\mathfrak{g})$. Hint: It is enough to show that Δ commutes with R, L, and H. Use the commutator relations $H \cdot R - R \cdot H = 2R, H \cdot L - L \cdot H = -2L, R \cdot L - L \cdot R = H$.