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Abstract—In 2010, after many years of stagnation, the
MNIST handwriting recognition benchmark record dropped
from 0.40% error rate to 0.35%. Here we report 0.27% for
a committee of seven deep CNNs trained on graphics cards,
narrowing the gap to human performance. We also apply
the same architecture to NIST SD 19, a more challenging
dataset including lower and upper case letters. A committee of
seven CNNs obtains the best results published so far for both
NIST digits and NIST letters. The robustness of our method
is verified by analyzing 78125 different 7-net committees.
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I. INTRODUCTION

Current automatic handwriting recognition algorithms are

not bad at learning to recognize handwritten characters. Con-

volutional Neural Networks (CNNs) [1], [2] are among the

most suitable architectures for this task. Recent CNN work

focused on computer vision problems such as recognition of

3D objects, natural images and traffic signs [3]–[5], image

denoising [6] and image segmentation [7]. Convolutional

architectures also seem to benefit unsupervised learning

algorithms applied to image data [8], [9]. Reference [10]

reported an error rate of 0.4% on the MNIST handwritten

character recognition dataset [2], using a fairly simple CNN,

plus elastic training image deformations to increase the

training data size. In 2010, using graphics cards (GPUs)

to greatly speed up training of plain but deep Multilayer

Perceptrons (MLPs), an error rate of 0.35% was obtained

[11]. Such an MLP has many more free parameters than a

CNN. Here we report experiments using CNNs trained on

MNIST as well as on the more challenging NIST SD 19

database [12], which contains 482,925 training and 82,587

test characters (i.e. upper- and lower-case letters as well as

digits). On GPUs, CNNs can be successfully trained on such

extensive databases within reasonable time (≈ 1 to 6 hours

of training, depending on the task).

At some stage in the classifier design process one usually

has collected a set of reasonable classifiers. Typically one

of them yields best performance. Intriguingly, however, the

sets of patterns misclassified by different classifiers do not

necessarily greatly overlap. Here we focus on improving

recognition rates using committees of neural networks. Our

goal is to produce a group of classifiers whose errors on

various parts of the training set differ as much as possible.

We show that for handwritten digit recognition this can

be achieved by training identical classifiers on data pre-

processed/normalized in different ways [13]: 0.31% error

rate for a committee of simple, big and deep MLPs on

MNIST. Other approaches aiming at optimally combining

neural networks [14], [15] do not do this, thus facing the

problem of strongly correlated individual predictors. Fur-

thermore, we simply average individual committee member

outputs, instead of optimizing their combinations [15], [16],

which would cost additional valuable training data.

II. TRAINING THE INDIVIDUAL NETS

CNNs are used as base classifiers [4]. The same architec-

ture is used for experiments on NIST SD 19 and MNIST.

The nets have an input layer of 29 × 29 neurons followed

by a convolution layer with 20 maps of 26 × 26 neurons

and filters of size 4 × 4. The next hidden layer is a max-

pooling layer [17], [18] with a 2 × 2 kernel which has its

outputs connected to another convolution layer containing

40 maps of 9× 9 neurons each. The last max-pooling layer

is reducing the map size to 3 × 3 by using filters of size

3× 3. A fully connected layer of 150 neurons is connected

to the max-pooling layer. The output layer has one neuron

per class, e.g. 62 for NIST SD 19 and 10 for MNIST.

All CNNs are trained in full online mode with an annealed

learning rate and continually deformed data—the images

from the training set are distorted at the beginning of every

epoch. The following elastic deformation parameters σ = 6
and α = 36 are used together with independent horizontal

and vertical scaling of at most 15% and at most ±15◦ of

rotation for all experiments [11]. Deformations are essential

to prevent overfitting, and greatly improve generalization.

GPUs accelerate the deformation routine by a factor of

10 (only elastic deformations are GPU-optimized), and the

network training procedure by a factor of 60 [4]. We pick the
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trained CNN with the lowest validation error, and evaluate

it on the corresponding test set.

III. FORMING A COMMITTEE

We perform experiments on the original and six prepro-

cessed datasets. Preprocessing is motivated by writing style

variations resulting in different aspect ratios of the handwrit-

ten characters. Prior to training, we therefore normalize the

width of all characters to 10, 12, 14, 16, 18 and 20 pixels,

except for characters in {1,i,l,I} and in the original data [13].

The training procedure of a network is summarized in

Figure 1a. Each network is trained separately on normalized

or original data. The normalization is done for all digits in

the training set prior to training (normalization stage). Dur-

ing each training epoch every single character is distorted

in a different way. The committees are formed by simply

averaging the corresponding outputs as shown in Figure 1b.

For each of the preprocessed or original datasets, five

differently initialized CNNs are trained for the same number

of epochs. This allows for performing an error analysis

of the outputs of the 57 = 78125 possible committees of

seven nets, each trained on one of the seven datasets. We

report mean and standard deviation as well as minimum and

maximum recognition rate.

Figure 1. a) Training a committee member: Original training data (left
digit) is normalized (W10) prior to training (middle digit). The normalized
data is distorted (D) for each training epoch (right digit) and fed to the
neural network (NN). Each depicted digit represents the whole training
set. b) Testing with a committee: If required, the input digits are width-
normalized (W blocks) and then processed by the corresponding NNs. A
committee averages the outputs of its CNNs.

IV. EXPERIMENTS

We use a system with a Core i7-920 (2.66GHz), 12 GB

DDR3 and four graphics cards: 2 x GTX 480 and 2 x GTX

580. Details of our GPU implementation are explained in

[4], [11].

Our method is applied to two handwritten character

datasets: subsets from NIST SD 19 and digits from MNIST

(Table I).

We use the proven learning rate schedule of our previous

work [4], [5], [11], [13]: in every epoch (up to a prede-

termined number of epochs) we multiply the learning rate

(initially 0.001) by a factor of 0.993 until it reaches 0.00003.

Table I
DATASETS.

Name Type Training set Test set #Classes
MNIST digits 60000 10000 10
NIST SD 19 digits&letters 482925 82587 62
NIST SD 19 digits 344307 58646 10
NIST SD 19 letters 138618 23941 52
NIST SD 19 merged 138618 23941 37
NIST SD 19 lowercase 69096 12000 26
NIST SD 19 uppercase 69522 11941 26

A. Experiments with NIST Special Database 19

NIST SD 19 contains over 800,000 handwritten charac-

ters. We follow the recommendations of the authors and

build standard training and test sets. The 128×128 character

images are uncompressed; their bounding-boxes are resized

to 20 × 20. The resulting characters are centered within a

29×29 image. This normalizes all the characters in the same

way MNIST digits are already normalized.

1) Digits & letters: We train five differently initialized

nets on each preprocessed dataset as well as on the original

data, for a total of 35 CNNs (Table II). Each CNN is trained

for 30 epochs by on-line gradient descent. The number of

epochs is limited due to the size of NIST SD 19: training a

single net for the 62 class problem takes almost six hours.

Table II
TEST ERROR RATE [%] OF THE 35 CNNS TRAINED ON NIST SD 19, 62

CLASS TASK. WXX - WIDTH OF THE CHARACTER IS NORMALIZED TO

XX PIXELS.

Trial W10 W12 W14 W16 W18 W20 ORIG
1 14.72 14.12 13.72 13.55 13.77 13.82 14.32
2 14.73 14.21 13.80 14.20 13.93 13.04 14.73
3 13.92 14.12 13.50 13.57 13.81 14.15 14.57
4 14.07 14.42 13.46 13.47 13.76 13.63 14.05
5 14.14 13.69 13.91 13.92 13.50 13.60 13.72

Committees
Average 11.88±0.09 Min 11.68 Max 12.12

The average committee is significantly better than any of

the individual CNNs. Even the worst committee is better

than the best net. Recognition errors of around 12% may still

seem large, but one should consider that most errors stem

from confusions of classes that look very similar: {0,o,O},

{1,l,i,I}, {6,G}, {9,g}, and all confusions between similar

uppercase and lowercase letters (see below). Without any

additional contextual information, it is literally impossible

to distinguish those.
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We therefore also train various nets on digits, all letters,

a merged letter set, and also on lowercase and uppercase

letters separately. This drastically decreases the number of

confused classes and also makes it possible to compare our

results to other published results. We are not aware of any

previous study publishing results on the challenging full 62

class problem.
2) Digits: Table III summarizes the results of 35 identical

CNNs trained for 30 epochs on digits.

Table III
TEST ERROR RATE [%] OF THE 35 CNNS TRAINED ON NIST SD 19
DIGITS. WXX - WIDTH OF THE CHARACTER IS NORMALIZED TO XX

PIXELS.

Trial W10 W12 W14 W16 W18 W20 ORIG
1 1.37 1.42 1.22 1.14 1.22 1.12 1.34
2 1.40 1.35 1.35 1.21 1.12 1.13 1.40
3 1.52 1.28 1.24 1.19 1.16 1.15 1.36
4 1.47 1.35 1.43 1.29 1.24 1.21 1.49
5 1.63 1.39 1.39 1.25 1.16 1.27 1.42

Committees
Average 0.81±0.02 Min 0.73 Max 0.91

Our average error rate of 0.81% on digits compares

favorably to other published results, 1.88% [19], 2.4% [20]

and 3.71% [21]. Again, as for the 62 class problem, the

committees significantly outperform the individual nets.
3) Letters: Table (IV) summarizes the results of 35

identical CNNs trained for 30 epochs on letters. Again the

same architecture is used.

Table IV
TEST ERROR RATE [%] OF THE 35 CNNS TRAINED ON NIST SD 19

LETTERS. WXX - WIDTH OF THE CHARACTER IS NORMALIZED TO XX

PIXELS.

Trial W10 W12 W14 W16 W18 W20 ORIG
1 24.69 24.76 24.12 24.50 23.98 23.01 24.49
2 25.53 24.97 24.08 24.06 23.52 23.35 24.93
3 25.09 25.14 24.06 24.28 24.20 23.58 24.62
4 25.27 24.74 24.53 24.59 24.51 23.87 24.45
5 25.65 25.91 24.74 25.12 24.39 23.69 25.38

Committees
Average 21.41±0.16 Min 20.80 Max 22.13

Class boundaries of letters in general and uppercase and

lowercase letters in particular are separated less clearly

than those of digits. However, many obvious error types

are avoidable by different experimental set-ups, i.e., by

ignoring case, merging classes, and considering uppercase

and lowercase classes independently. Ignoring case, average

error is three times smaller (7.58%).
4) Merged letters: Table V summarizes results

of 35 identical CNNs trained for 30 epochs on

merged letters. Uppercase and lowercase letters in

{C,I,J,K,L,M,O,P,S,U,V,W,X,Y,Z} are merged as suggested

in the NIST SD 19 documentation [12], resulting in 37

distinct classes for this task.
Ignoring case for only 15 out of 26 letters suffices to avoid

most case confusions. Ignoring case completely reduces

Table V
TEST ERROR RATE [%] OF 35 CNNS TRAINED ON NIST SD 19

MERGED LETTERS. WXX - WIDTH OF THE CHARACTER IS NORMALIZED

TO XX PIXELS.

Trial W10 W12 W14 W16 W18 W20 ORIG
1 10.40 10.11 9.54 9.67 9.30 9.38 10.01
2 10.38 10.20 9.99 9.47 9.68 9.34 10.25
3 10.69 10.23 9.50 9.52 9.55 9.87 10.08
4 11.10 10.21 10.20 9.95 9.86 9.76 10.21
5 10.87 10.80 10.35 9.46 9.71 10.03 10.64

Committees
Average 8.21±0.11 Min 7.83 Max 8.56

error only slightly, under loss of ability to distinguish the

case of the 11 remaining letters.

5) Upper- or lowercase letters: Further simplifying the

task by considering uppercase and lowercase letters inde-

pendently yields even lower error rates (Tables VI, VII).

Table VI
TEST ERROR RATE [%] OF 35 CNNS TRAINED ON NIST SD 19

UPPERCASE LETTERS. WXX - WIDTH OF THE CHARACTER IS

NORMALIZED TO XX PIXELS.

Trial W10 W12 W14 W16 W18 W20 ORIG
1 3.08 2.90 2.80 2.51 2.60 2.55 2.79
2 3.03 2.73 2.84 2.70 2.78 2.53 2.70
3 3.33 2.96 2.83 2.65 2.84 2.65 2.68
4 3.29 3.22 2.96 2.65 2.65 2.60 2.87
5 3.23 2.97 2.70 2.78 2.86 2.64 2.70

Committees
Average 1.91±0.06 Min 1.71 Max 2.15

Uppercase letters are much easier to classify than lower-

case letters—error rates are four times smaller. Shapes of

uppercase letters are better defined, and in-class variability

due to different writing styles is generally smaller.

Table VII
TEST ERROR RATE [%] OF 35 CNNS TRAINED ON NIST SD 19

LOWERCASE LETTERS. WXX - WIDTH OF THE CHARACTER IS

NORMALIZED TO XX PIXELS.

Trial W10 W12 W14 W16 W18 W20 ORIG
1 10.22 9.30 9.42 9.25 9.08 8.87 9.44
2 10.30 9.75 9.91 9.63 9.19 9.32 8.84
3 10.51 9.88 9.95 9.18 8.88 9.82 9.29
4 10.12 9.73 10.39 9.63 9.05 10.05 10.04
5 10.82 9.56 10.08 9.53 9.58 9.59 10.24

Committees
Average 7.71±0.14 Min 7.16 Max 8.28

B. Experiments on MNIST

The MNIST data is already preprocessed such that the

width or height of each digit is 20 pixels. Our CNNs are

trained for around 800 epochs, with small improvement after

500 epochs. Training one net takes almost 14 hours.

The average error rate of 0.27± 0.02% is by far the best

result published on this benchmark. In Figure 2 all 69 errors

of all committees are shown, together with the true labels

and the majority votes of the committees. Digits are sorted
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Table VIII
TEST ERROR RATE [%] OF THE 35 CNNS TRAINED ON MNIST. WXX -

WIDTH OF THE CHARACTER IS NORMALIZED TO XX PIXELS.

Trial W10 W12 W14 W16 W18 W20 ORIG
1 0.49 0.39 0.40 0.40 0.39 0.36 0.52
2 0.48 0.45 0.45 0.39 0.50 0.41 0.44
3 0.59 0.51 0.41 0.41 0.38 0.43 0.40
4 0.55 0.44 0.42 0.43 0.39 0.50 0.53
5 0.51 0.39 0.48 0.40 0.36 0.29 0.46

Committees
Average 0.27±0.02 Min 0.17 Max 0.37

in descending order of how many committees committed

the same error, indicated as percentages at the bottom

of each digit. The first six errors were committed by all

committees—obviously the corresponding digits are either

wrongly labeled or very ambiguous, and the majority vote

seems correct. Each committee fails to recognize between

17 to 37 digits out of the 69 presented errors.

Figure 2. The 69 errors of all committees, the label (up left), the committee
majority vote (up right), and the percentage of committees committing a
particular error (down left).

C. Summary of experiments

Table IX summarizes our results and compares to previ-

ously published results where available. For letters it was

difficult to find any publications reporting results for similar

experimental set-ups. To the best of our knowledge, our

results are far better (30-350%) than any published result.

Error rates for digits are significantly lower than those

for letters. Training nets with case-insensitive letter labels

makes error rates drop considerably, indicating that most

errors of nets trained on 52 lowercase and uppercase letters

are due to confusions between similar classes. A generic

letter recognizer should therefore be trained on a merged

letter dataset. If required, case conflicts have to be resolved

a posteriori, using additional (e.g, contextual) information.

All experiments use the same net architecture and de-

formation parameters, which are not fine-tuned to increase

classification accuracy. We rely on committees to improve

recognition rates. Additional tests, however, show that our

deformation parameters are too big for small letters—using

20% lower values decreases error rates by another 1.5%.

Table IX
AVERAGE ERROR RATES OF COMMITTEES FOR ALL THE EXPERIMENTS,

± ONE STANDARD DEVIATION [%], PLUS RESULTS FROM THE

LITERATURE.*CASE INSENSITIVE

Data Committee Published results
MNIST 0.27±0.02 0.40 [10] 0.35 [11] 0.31 [13]
NIST:
all (62) 11.88±0.09
digits (10) 0.81±0.02 5.06 [22] 3.71 [21] 1.88 [19]
letters (52) 21.41±0.16 30.91 [23]
letters* (26) 7.58±0.09 13.00 [24] 13.66 [23]
merged (37) 8.21±0.11
uppercase (26) 1.91±0.06 10.00 [24] 6.44 [25] 11.51 [23]
lowercase (26) 7.71±0.14 16.00 [24] 13.27 [23]

For commercial OCR, recognition speed is of great inter-

est. Our nets check almost 10000 characters per second. At

first glance, a committee of seven such nets is seven times

slower than a single net, but we can run the nets in par-

allel on seven different GPUs, thus keeping the committee

throughput at the single net level.

We won the ICDAR 2011 Offline Chinese Character

Recognition Competition [26] with a CNN architecture

virtually identical to the one of this paper, all differences

being dictated by the input size of the nets. The good results

on this huge problem with 3755 classes further confirm the

flexibility, robustness and scalability of our algorithm.

V. CONCLUSION

Simple training data pre-processing gave us experts with

errors less correlated than those of different nets trained

on the same or bootstrapped data. Hence committees that

simply average the expert outputs considerably improve

recognition rates. Our committee-based classifiers of isolated

handwritten characters are the first on par with human

performance [27], [28], and can be used as basic building

blocks of any OCR system (all our results were achieved by

software running on powerful yet cheap gaming cards).
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