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ABSTRACT 
Computational development traditionally focuses on the use of an 
iterative, generative mapping process from genotype to phenotype 
in order to obtain complex phenotypes which comprise regularity, 
repetition and module reuse. This work examines whether an 
evolutionary computational developmental algorithm is capable of 
producing a phenotype with no known pattern at all: the irrational 
number PI. The paper summarizes the fractal protein algorithm, 
provides a new analysis of how fractals are exploited by the 
developmental process, then presents experiments, results and 
analysis showing that evolution is capable of producing an 
approximate algorithm for PI that goes beyond the limits of 
precision of the data types used. 

Categories and Subject Descriptors 
F.4.2 [Grammars and Other Rewriting Systems]: Parallel 
rewriting systems (e.g., developmental systems). 

General Terms 
Algorithms, Design, Experimentation, Theory. 

Keywords 
Fractal Proteins, Computational Development, evolutionary 
computation, PI, irrational numbers, pattern. 

1. INTRODUCTION 
In nature there is no direct mapping from genotype to phenotype. 
Organisms grow and develop. Their genetic instructions operate 
like highly parallel programs that define how that growth should 
occur. The result is the complexity of life. 

Researchers in the growing field of Computational 
Development argue that by adding a similar extra mapping from 
genotype to phenotype in an evolutionary algorithm, we can 
achieve similar advantages to those observed in nature. For 
example, because the genotype now corresponds to a generative 
program, our solutions become capable of fault-tolerance, self-

repair and may develop into complex solutions that can become 
greater in scale by simply running the developmental program for 
longer [9-12,14,15]. 

But development is typically an iterative process involving 
the execution of genetic instructions repeatedly and the creation 
and reuse of building blocks or modules [16]. This is ideal if your 
solution is complex, containing regularities and repetitions. But 
what if your solution appears to be both complex and highly 
irregular? What if the solution is non-random, but contains no 
known pattern of any kind? Can evolution create a developmental 
algorithm that is capable of producing a phenotype with no 
patterns? Can a developmental approach generate the irrational 
number PI? 

If the answer is yes, then we will have demonstrated yet 
another feature of development – the ability for evolution to 
exploit an iterative, pattern-rich process to create non-pattern, in 
the form of a very precise irrational sequence of digits. While 
number theory in mathematics may suggest this is possible, this 
work aims to investigate how such a challenge can be met. 

The work described here continues an earlier investigation 
into the use of fractals as a computer representation of proteins. 
Earlier work has shown that fractal proteins are highly evolvable 
by a genetic algorithm [2][5], that specific patterns of activation in 
a fractal gene regulatory network (GRN) can be evolved [2][4], 
that evolved fractal GRNs naturally show fault-tolerance [5], and 
that they can perform computational tasks such as function 
regression and robot control [3]. This work exploits a complete 
reimplementation of the fractal-protein-based evolutionary 
developmental system by the first author and initially focuses on 
the challenge of irrationality: evolving and developing the 
irrational number PI as accurately as possible. 

2. BACKGROUND 
Early work in the area of computational development examined 
the evolution of embryogenies for specific target shapes, e.g. 
letters of the alphabet [17] or tessellating tiles [9]. Since then, 
researchers such as Hornby [12], Bongard [8], Gordon and 
Bentley [10] and Kumar and Bentley [16] demonstrated that 
various types of development can enable smaller genotypes to 
represent more complex phenotypes through the ability of 
development to discover modularities and repetition. Miller 
described experiments evolving developmental programs to create 
“French Flag” patterns [20]. They showed that development is 
able to regenerate these patterns, and that different patterns can be 
evolved in different environments. The research was the first of 
many similar attempts to evolve 2D target flag shapes. 

But evidence suggests that when using implicit 
embryogenies (where repeated rules result in the emergence of the 
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phenotype), at least some degree of phenotypic regularity is 
necessary for an advantage to be gained by the use of 
development [9,10]. As this work shows, this notion is not always 
valid. The irrational number PI is an excellent example. When 
regarded as a phenotype, it is a very difficult target for evolution, 
for it comprises an infinitely long sequence of precise digits 
containing no known (infinitely repeating) patterns. Should a 
direct mapping from genotype to phenotype be used with a simple 
genetic algorithm, clearly evolution to a certain limited precision 
would be possible, given sufficient time. But development 
provides the potential for creating not just the sequence, but an 
algorithm for generating that sequence. Thus, if evolution could 
find the right developmental algorithm, there would be no 
theoretical limit to the number of digits of PI that could be 
generated. 

However, algorithms for generating PI are not simple. 
Bentley [1] discusses some of the history, summarized here. For 
example, Archimedes created one approach by creating polygons 
that fitted inside and outside a circle to calculate the value. Using 
polygons of 96 sides he calculated that PI lay between 22/7 and 
233/71  – so he calculated PI to 1 decimal place. It took many 
more centuries before mathematicians could improve on this 
calculation. A German mathematician named Van Ceulen spent 
most of his life using Archimedes’ approach, creating polygons 
with an almost unbelievable 4,611,686,018,427,387,904 sides in 
order to calculate PI to 35 decimal places. In the 17th Century, 
Wallis discovered a series that converged to PI: 

2 / PI = (1×3×3×5×5×7×…) / (2×2×4×4×6×6×…) 
And at around the same time Gregory discovered another 
sequence: 

PI / 4 = 1 – 1/3 + 1/5 – 1/7 + … 
These sequences clearly prove that a regular pattern can produce 
the irregular number PI. However, both require tens of thousands 
of terms in the sequence before any real precision is reached, 
making this still a potentially very difficult challenge for 
evolution to duplicate. Gregory also discovered a sequence that 
requires fewer terms: 

PI / 6 = (1/√3)(1 – 1/(3×3) + 1/(5×3×3) – 1/(7×5×3×3) + … 
This only needs nine terms to achieve PI to a precision of 4 
decimal places. Nevertheless, the complexity of this sequence 
implies that even an approximate developmental algorithm for 
generating PI may be a significant challenge for evolution. 

This work uses the fractal protein model of computational 
development to tackle the problem, exploiting its known 
evolvability [5] and complex protein and gene interactions [2-4] 
to provide a rich set of computational tools for the task. 

3. FRACTAL PROTEINS 
Development is the set of processes that lead from egg to embryo 
to adult. Instead of using a gene for a parameter value as we do in 
standard EC (i.e., a gene for long legs), natural development uses 
genes to define proteins. If expressed, every gene generates a 
specific protein. This protein might activate or suppress other 
genes, might be used for signalling amongst other cells, or might 
modify the function of the cell it lies within. The result is an 
emergent “computer program” made from dynamically forming 
gene regulatory networks (GRNs) that control all cell growth, 
position and behaviour in a developing creature [23]. 

 
 
 

Table 1. Types of objects in the representation 
fractal proteins defined as subsets of the Mandelbrot set. 

Environment contains one or more fractal proteins (expressed from 
the environment gene(s)), and one or more cells. 

Cell contains a genome and cytoplasm, and has some 
behaviours. 

Cytoplasm contains one or more fractal proteins. 

Genome comprising structural genes and regulatory genes. In 
this work, the structural genes are divided into different 
types: cell receptor genes, environment genes and 
behavioural genes. 

regulatory gene comprising operator (or promoter) region and coding 
(or output) region. 

cell receptor 
gene 

a structural gene with a coding region which acts like a 
mask, permitting variable portions of the 
environmental proteins to enter the corresponding cell 
cytoplasm. 

environment 
gene 

a structural gene which determines which proteins 
(maternal factors) will be present in the environment of 
the cell(s). 

behavioural 
gene 

structural gene comprising operator and cellular 
behaviour region. 

 

 
Figure 1. Representation using fractal proteins. 

 

 
Figure 2. The fractal development algorithm. 
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In this work, a biologically plausible model of gene regulatory 
networks is constructed through the use of genes that are 
expressed into fractal proteins – subsets of the Mandelbrot set that 
can interact and react according to their own fractal chemistry. 
Further motivations and discussions on fractal proteins are 
provided in [2-5]. Table 1 describes the object types in the 
representation; Figure 1 illustrates the representation. Figure 2 
provides an overview of the algorithm used to develop a 
phenotype from a genotype. Note how most of the dynamics rely 
on the interaction of fractal proteins. Evolution is used to design 
genes that are expressed into fractal proteins with specific shapes, 
which result in developmental processes with specific dynamics. 

3.1 Defining a Fractal Protein 
In more detail, a fractal protein is a finite square subset of the 
Mandelbrot set, defined by three codons (x,y,z) that form the 
coding region of a gene in the genome of a cell. Each (x, y, z) 
triplet is expressed as a protein by calculating the square fractal 
subset with centre coordinates (x,y) and sides of length z, see fig. 
3 for an example. In addition to shape, each fractal protein 
represents a certain concentration of protein (from 0 meaning 
“does not exist” to 200 meaning “saturated”), determined by 
protein production and diffusion rates. 
 

     
Figure 3. Example of a fractal protein defined by 
(x=0.132541887, y=0.698126164, z=0.468306528) 

Left: high resolution view. Right: actual sampling resolution. 
 
 

    

    
Fig. 4.  Top: two fractal proteins; Bottom left: the resulting 
merged fractal protein combination; Bottom right: the two 

protein domains making up the merged protein combination, 
illustrating that the top-left protein forms the bottom two-
thirds of the shape and the top-right protein forms the top 

third of the shape. 
 
 

3.2 Fractal Chemistry 
Cell cytoplasms and the environment usually contain more than 
one fractal protein. In an attempt to harness the complexity 
available from these fractals, multiple proteins are merged. The 
result is a product of their own “fractal chemistry” which naturally 
emerges through the fractal interactions. 

Fractal proteins are merged (for each point sampled) by 
iterating through the fractal equation of all proteins in “parallel”, 
and stopping as soon as the length of any is unbounded (i.e. 
greater than 2). Intuitively, this results in black regions being 
treated as though they are transparent, and paler regions 
“winning” over darker regions. See fig 4 for an example. Only the 
concentration values corresponding to the winning protein 
domains contribute to the overall concentration. Thus, the total 
concentration of two or more merged fractal proteins is the mean 
of the different protein concentrations in their merged product 
(e.g., in figure 4 the total concentration will be approximately one 
third of the concentration of the top-right protein plus two-thirds 
of the concentration of the top-left protein). If the value of more 
than one merged protein is identical at a sampled point, arbitration 
uses gene order. Concentrations slowly decrease over time to 
model diffusion. See table 1 and [2-5] for further details. 

3.3 Genes 
All genes contain 9 real-coded values: 

xp yp zp Affinity 
threshold 

Concentration 
threshold x y z type 

where (xp, yp, zp, Affinity threshold, Concentration 
threshold) defines the promoter (operator or precondition) for the 
gene and (x,y,z) defines the coding region of the gene. (Affinity 
threshold and type are stored as integers.) The type value defines 
which type of gene is being represented, and can be any 
combination of the following: environment, receptor, 
behavioural, or regulatory. This enables the type of genes to be 
set independently of their position in the genome, enabling 
variable-length genomes. It also enables genes to be multi-
functional, i.e. a gene might be expressed both as an 
environmental protein and a behaviour. 

When Affinity threshold is a positive value, one or more 
proteins must match the promoter shape defined by (xp,yp,zp) 
with a difference equal to or lower than Affinity threshold for the 
gene to be activated. When Affinity threshold is a negative value, 
one or more proteins must match the promoter shape defined by 
(xp,yp,zp) with a difference equal to or lower than |Affinity 
threshold| for the gene to be repressed (not activated). 

To calculate whether a gene should be activated, all fractal 
proteins in the cell cytoplasm are merged (including the masked 
environmental proteins) and the combined fractal mixture is 
compared to the promoter region of the gene. Given the similarity 
matching score between cell cytoplasm fractals and gene 
promoter, the activation probability Pa of a gene is given by: 

Pa = (1 + tanh((m – At – Ct) / Cs)) / 2 Equation 1 
where: 
m is the matching score, 
At is Affinity threshold (matching threshold from gene promoter) 
Ct is a threshold constant (set to 0 in the experiments) 
Cs is a sharpness constant (set to 20 in the experiments) 

Every time step the new concentration of each protein is 
calculated. This is formed by summing two separate terms: the 
previous concentration level after diffusion (Dc) and the new 
concentration output by a gene (Gc). These two terms model the 

Domain 1 

 
Domain 2 
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reduction in concentration of proteins over time, and the 
production of new proteins over time, respectively, where: 

Dc = Pc – Pc / Cp + 0.2   Equation 2 
Pc is protein concentration in previous time step, 
Cp is a constant normally set to 5; the final addition of 0.2 ensures 
a minimum level of diffusion 
and: 

Gc = Tc × Cm,   Equation 3 
Tc is the mean concentration seen at the promoter, 
Cm is a concentration multiplier, where: 

Cm = tanh((Tc – ct) / Cw) / Ci  Equation 4 
where: ct is the concentration threshold from the gene promoter 

Cw is a constant (set to 30 for these experiments) 
Ci is a constant (set to 2 for these experiments) 

The full details of this process are beyond the scope of this 
paper, interested readers should consult [2-5]. 

Behavioural Gene. A behavioural gene is activated when 
other protein(s) in the cytoplasm match its promoter region (using 
the affinity threshold). For this application, a gradual activation 
between not activated and activated was required, using the x 
value of the coding region (x,y,z) triplet as a fate value to define a 
function, calculated as follows: 
If the gene is being activated with a negative Affinity threshold, 
out = out - (totalconcentration - concentrationthreshold) * fate 
If the gene is being activated with a positive Affinity threshold, 
out = out + (totalconcentration - concentrationthreshold) * fate 

Note how the total concentration of proteins seen on the 
promoter is offset against the Concentration Threshold gene and 
scaled by the fate gene (x value of the coding region), allowing 
evolution to adjust the range of values seen on the output, and 
used to specify behaviours.  

3.4 Development and Evolution 
As was illustrated in figures 1 and 2, an individual begins life as a 
single cell in a given environment. To develop the individual from 
this zygote into the final phenotype, fractal proteins are iteratively 
calculated and matched against all genes of the genome. Should 
any genes be activated, the result of their activation (be it a new 
protein, receptor or cellular behaviour) is generated at the end of 
the current cycle. Development continues for d cycles, where d is 
dependent on the problem. Note that if one of the cellular 
behaviours includes the creation of new cells, then development 
will iterate through all genes of the genome in all cells. 

All genes are evolved. The genetic algorithm used in this 
work has been used extensively elsewhere for other applications 
(including GADES [6]). A dual population structure is employed, 
where child solutions are maintained and evaluated, and then 
inserted into a larger adult population, replacing the least fit. The 
fittest n are randomly picked as parents from the adult population. 
Typically the child population size is set to 80% of the adult size 
and n = 40%. (For further details of this GA, refer to [6].) Because 
real coding was used, duplication and creep mutation is used, see 
[2] for complete details. Crossover is always applied; all 
mutations occur with probability 0.01 per gene. 

3.5  How Fractal Development Works 
In the merged protein shape, each sampled pixel value is the 
maximum corresponding pixel value from all proteins with non-
zero concentrations. This makes the merged protein shape a 
patchwork of complex regions each belonging to one of the 

proteins present in the cytoplasm. We term the set of pixels in the 
merged protein originating from one protein as the domain of that 
protein. Figure 4 (bottom right) shows an example of two protein 
domains in the merged protein. If concentration of a protein drops 
to zero during development, that protein does not exist and so 
cannot have a domain in the merged result; instead other proteins 
may fill the region with their domains. This results in changes in 
the shape of those protein domains. This is analogous to the 
protein-protein interactions in biology resulting in proteins 
shifting their shapes.  

The value of different pixels in the merged protein at each 
development time step can together represent a single point 
coordinate in a multidimensional state space, each dimension 
being the value of one pixel. We shall refer to this state space as 
the MPS space (merged protein state space). The pixel values of 
the promoter and the absolute value of the Affinity threshold 
collectively describe a convex subspace in the MPS space (gene 
expression subspace), specifying when this gene can be expressed. 
This creates a slightly different GRN (gene regulatory network) 
for each combination of present proteins. The expression of each 
gene is affected only by the pixel values of those protein domains 
that lie under the domain of the gene promoter. The sign of the 
Affinity threshold determines if this gene is expressed or repressed 
when the current MPS dwells inside this subspace. The absolute 
value of the Affinity threshold specifies the size of this subspace. 
The hyperbolic tangent function (in Equation 1 for Pa described 
in section 3.3) creates a smooth transition for probability of gene 
expression at the surface of this subspace. This can improve the 
evolvability of the GRNs by smoothing the fitness landscape. The 
concentrations of individual unmerged proteins at each 
developmental time step can together represent a single point 
coordinate in a multidimensional state space, each dimension 
being the non-zero concentration value of one protein. We shall 
refer to this state space as the PCS space (protein concentration 
state space). When a gene is expressed, the concentration of the 
protein encoded in the gene is increased (or decreased) by a 
multiplicative sigmoid function (Equations 3 and 4 for Gc and Cm 
in section 3.3) of a linear combination of the concentration of 
those proteins with their domains covered by the gene promoter 
domain. 

The fractal development algorithm can also be viewed from 
the perspective of pattern recognition, where the cell receptor 
gene performs input feature selection by masking some of the 
environment proteins. The rest of the GRN can be seen as a 
reservoir (Reservoir Computing [22]) or a Liquid State Machine 
[18]. From this viewpoint, genes work as leaky integrating nodes 
with a multiplicative sigmoid transfer function (as described in 
section 3.3), interacting through protein concentrations in a 
recurrent network. The areas of those protein domains that lie 
under a gene promoter domain define the input weights for that 
node (gene), and the Concentration threshold works as a bias. The 
behavioural genes work as the readout map (in LSM and RC 
[18,22]) translating the current multidimensional PCS into 
outputs. Even randomly generated reservoirs can be effectively 
used for pattern recognition and chaotic time-series prediction 
[13]. However, recent research [22] shows that bio-plausible 
features such as hierarchy and modularity in the reservoir network 
architecture can increase the performance and robustness of the 
reservoirs. Statistical studies also reveal such properties in 
biological GRNs [7]. Therefore it is quite likely that, using fractal 
protein domains, this system is able to evolve the suitable network 
structures for a given problem. Existence of inactive genes and 
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complete (or partial) dominance of one protein domain on other 
protein domains result in neutral networks in the fitness landscape 
- another of the reasons for the evolvability of this system 
observed in [5]. Neutral mutations can drift the expression 
subspace of inactive genes. The randomness at the edge of these 
gene expression subspaces can give evolution some clues about 
the promising inactive genes that should be turned on to smoothly 
evolve a GRN into a fitter GRN. 

 

4. EXPERIMENTS 
Using the fractal developmental system, we aim to obtain a 
system that produces PI with an increasing precision. We examine 
two different ways to approximate PI using fractal proteins. First 
we aim to produce the binary representation of PI; second we aim 
to approximate its real value. 

4.1 Experiment 1 – Binary Approximation 
In the first experiment, the output of the system is the activation 
state of the first behavioural gene in the genome, i.e. we require 
one gene to switch on and off according to the pattern of PI 
written in base 2.  The other outputs of the behavioural genes are 
ignored.  If a genome does not contain a behavioural gene, which 
is possible as evolution is free to add/remove genes or change 
their types, the output of the system will be 0. It is worth noting 
that the binary representation of PI also contains no pattern: 

 1100 1001 0000 1111 1101 1010 1010 0010 … 
An incremental fitness function is used. Initially, the system 

is only exposed to the first bit of PI.  The system is then only 
exposed to a new bit of PI if it matches all of the previous bits 
correctly. The overall fitness value is a weighted sum of correct 
bits.  A decreasing weight is given to each bit of the pattern, so 
that a pattern which only has the first bit correct is fitter than a 
pattern with the first bit incorrect and every other correct, and so 
on recursively.  Unlike [2] and [4], the number of edges in the 
pattern obtained is not used in the fitness function. This is done so 
that the system would evolve the most accurate approximation of 
PI possible, and not just try to match a pattern. 

Note that this is a more difficult task compared to evolving a 
fixed size pattern, as it has to evolve to fit a moving goal (as 
provided by the incremental fitness function), and may have to 
drastically change its developmental processes as it progresses 
through the bits of PI. Each individual develops for 32 iterations, 
so the fittest possible individual would achieve 32 correct bits of 
PI. 

The size of the genetic algorithm total population is 100 
individuals.  The individuals have a lifespan of 10 generations. 40 
of the best in the population are used to generate 80 children 
which replace the worst, each generation. The GA evolved for 
1000 generations. The experiment was run 100 times. 

4.2 Experiment 2 – Value Approximation 
In the second experiment we evolve a fractal gene regulatory 
network in an attempt to obtain an algorithm for the generation of 
PI. Ideally the developmental PI algorithm should provide an 
improving approximation to the value of PI, the more 
developmental iterations it is run. Unless specified otherwise, the 
settings are the same as specified for experiment 1. 

For each developmental iteration, the output of the first 
behavioural gene is used as a scaling factor; the mean of the 
output of the other behavioural genes is divided by the product of 
this and the previous scaling factors, and summed to the total 
output.  If a scaling factor is equal to zero, it will be ignored.  If an 

individual's genome contains zero or one behavioural gene, the 
total output will be zero.  The total value output is thus: 

 

 
 
The system is evaluated for 32 developmental iterations. The 

fitness function used is simply the absolute difference between the 
total output and PI. Note that the system currently uses double 
types (which uses 52 bits for fractional part) in C++ to perform 
mathematical operations and store the values of PI, so precision is 
limited to 15 decimal places. 

 

5. RESULTS 
5.1 Results 1 – Binary Approximation 
As can be seen in figure 5 (top) and table 2, the system was able 
to evolve a pattern of binary PI of up to 26 bits, with a decimal 
equivalent of 3.1415926. 

This approach demonstrates the ability of fractal proteins to 
evolve a solution to fit a moving target. Despite the target 
containing no pattern, this approach achieves a respectable 
accuracy of 7 decimal places. 

5.2 Results 2 – Value Approximation 
Figure 5 (bottom) and table 2 provide the results for the second 
experiment. Out of a hundred runs, the system managed to obtain 
the exact double value of PI four times, i.e. the value of PI was 
correctly evolved to 15 decimal places. It seems likely that if a 
higher precision had been used, an even better approximation 
would have been reached. After converging to as good an 
approximation of PI as possible, these developmental solutions 
kept producing that same value with the same internal 
developmental patterns even after being run for up to 500 
developmental iterations, so it is possible that these systems 
would keep converging towards PI if they were able to run with a 
higher precision. (The current implementation uses C++ double 
types for its processing.) 

Remarkably, these solutions achieved this result through 
varied means.  In two of the runs, the system converged towards 
PI using a repeating pattern at increasingly smaller scales (see 
Figure 6), each time over-correcting its difference with PI, but 
always getting closer.  In another run, it started lower, but slowly 
increased its output until it reached PI, never going above it. 

Table 2 provides a summary of the median and best results 
obtained in both experiments. Figure 5 shows the percentage of 
runs that obtained each degree of precision for both experiments. 

 
Table 2. The median and best results for both experiments.  

 Median Best 
Experiment 1 3.1411 3.1415926 
Experiment 2 3.141592658 3.141592653589793 
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Figure 5 For each degree of precision, the percentage of runs that have reached it. Top: Results for Experiment 1. Bottom: 

Results for Experiment 2. The binary scale above corresponds to the decimal scale below in terms of accuracy. 

   
 

Figure 6  (a) The mathematical expression of the system's output (see section 4.2).  (b) The output of a system producing PI to the 
maximum precision allowed by the double type; The same pattern is repeated at increasingly smaller scales, as development 

occurs. (c) The output of the first behavioural gene, the inverse of which is used as a scaling factor in (a).  (d) The mean of the 
output of the other behavioural genes, which is the main component in (a).  (e) An example of the cell's cytoplasm, with its 

associated concentration. 
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ANALYSIS 
Figure 7 shows the internal workings of the fractal 

developmental system for another of the best solutions evolved. It 
should be clear by examining the proteins and concentrations in 
the cytoplasm and the activations of individual genes over time 
that the system produces an internally repeating pattern (albeit 
sometimes very complex). This is typical of all the solutions 
evolved, and is typical of most implicit developmental systems 
simply because they involve repeated execution of generative or 
developmental rules [9]. It is not possible for the GA to evolve a 
constant that directly corresponds to PI (e.g. it cannot evolve an 
initial concentration value matching PI, for environmental 
proteins by default begin at the saturation value of 200). Instead, 
the GA has evolved a series of protein fractal shapes and 
threshold values that interact to form a relatively good 
approximation of the value, which is then iteratively improved by 

the gene-regulatory network as it continues to run. Again, this 
appears to be the typical solution chosen by evolution – whatever 
the initial starting value is, this value is incrementally improved, 
sometimes by a pattern that oscillates above and below the true 
value of PI, and sometimes by a pattern that creeps ever-closer to 
the value. These approaches to the generation of PI are 
surprisingly similar to the summed sequences described in section 
2, which also incrementally improve their approximation to PI 
through the summing of successive terms of patterns. It is unlikely 
that any of the fractal developmental programs found here would 
produce a perfect value of PI (given that evaluation was limited to 
a fixed 32 developmental iterations and a fitness evaluation with a 
limited precision of 15 decimal places). Further work was 
subsequently performed using an extended precision for the 
output (but not for the internal fractal proteins). The best results 
were found to approximate PI correctly to 23 decimal places. 

 
 

  
Figure 7  The fractal protein developmental system running, illustrating another solution that achieved PI to 15 decimal places 
in only 9 iterations. The top-left panel shows the state of the cytoplasm for each developmental iteration.  The merged proteins 
present in the cytoplasm is shown above, with the corresponding concentration at each point shown below; white indicates the 

absence of any protein and black indicates saturation.  Iteration 0 corresponds to the state of the cytoplasm before any 
development, at which point it is a function of only the environmental and receptor genes.  Several overlapping patterns can be 
observed in both the merging and the concentration. The bottom-left panel shows the individual genes and the fractal shapes of 

their promotor and coding regions, with concentrations of their output proteins over time (B = behavioural, middle R = 
receptor,  bottom R = regulatory, E= environmental). To the right is shown the approximation produced by the system after 

each developmental iteration (or cycle). Dark grey for “Prg.” indicates the current approximation is better. Dark grey for 
“Pos.” indicates the approximation is above; light grey indicates the approximation is below the true value of PI (the precision 

of the code is exceeded by iteration 9 so the indication is inaccurate after that point).  
 

721



6. CONCLUSIONS 
PI is one of our best examples of an infinite, non-random 
sequence of digits that contain no infinitely repeating pattern. 
Implicit developmental algorithms inherently and naturally 
produce patterns. Thus, the poor results obtained in experiment 1 
were anticipated, when trying to evolve a fractal GRN with the 
non-pattern of PI. In experiment 2, we used a more appropriate 
mapping stage, permitting development to produce its patterns 
internally and then use those patterns to generate the value of PI 
incrementally as a summed series. The aim here was to encourage 
the evolution of an algorithm to keep giving better approximations 
of PI even when run beyond the number of iterations used during 
evolution. 

It took mathematicians centuries to formulate algorithms to 
calculate PI. Today we know of several regular sequences that 
converge to PI, which illustrate that it is theoretically possible for 
a regular pattern to produce this famous example of non-pattern. 
These sequences are long and often complex. It was therefore 
unexpected and gratifying that in experiment 2, evolution was 
able to create approximate developmental algorithms that 
produced PI to the limits of the precision of the double data type. 
Further work showed that fractal development was able to go 
beyond the precision of the data type and produce PI to 23 
decimal places. 

However, it is clear that evolutionary development does not 
naturally produce phenotypic non-pattern. The relative success of 
this work was achieved by altering the task from the creation of an 
algorithm to generate individual digits into the production of an 
approximation algorithm for a specific numerical value. In our 
mathematics that value is written as a series of digits with no 
infinitely repeating pattern. In biology (and fractal development), 
which does not form solutions with basic mathematical operators 
or constants and does not “care” how numbers are written, the 
task of approximating PI is no different from the task of 
approximating any other value. When using protein 
concentrations in biology, only convergence to concentration 
levels and patterns of concentrations are possible. Thus very good 
approximations to values are feasible, but the creation of perfect 
values are unlikely. Biology is oblivious to PI, for it only exists in 
our mathematics; perfect circles are impossible. It is thus unlikely 
that a process that cannot directly exploit mathematical operators 
will be able to find a perfect algorithm for creating the digits of PI 
directly. The challenge of irrationality may be too great for 
biologically plausible evolutionary development. 
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