
The Challenge of Irrationality:
Fractal Protein Recipes for PI

Jean Krohn
Department of Computer Science

University College London
Malet Place, London

 J.Krohn@cs.ucl.ac.uk

Peter J Bentley
Department of Computer Science

University College London
Malet Place, London

 P.Bentley@cs.ucl.ac.uk

Hooman Shayani
Department of Computer Science

University College London
Malet Place, London

 H.Shayani@cs.ucl.ac.uk

ABSTRACT
Computational development traditionally focuses on the use of an
iterative, generative mapping process from genotype to phenotype
in order to obtain complex phenotypes which comprise regularity,
repetition and module reuse. This work examines whether an
evolutionary computational developmental algorithm is capable of
producing a phenotype with no known pattern at all: the irrational
number PI. The paper summarizes the fractal protein algorithm,
provides a new analysis of how fractals are exploited by the
developmental process, then presents experiments, results and
analysis showing that evolution is capable of producing an
approximate algorithm for PI that goes beyond the limits of
precision of the data types used.

Categories and Subject Descriptors
F.4.2 [Grammars and Other Rewriting Systems]: Parallel
rewriting systems (e.g., developmental systems).

General Terms
Algorithms, Design, Experimentation, Theory.

Keywords
Fractal Proteins, Computational Development, evolutionary
computation, PI, irrational numbers, pattern.

1. INTRODUCTION
In nature there is no direct mapping from genotype to phenotype.
Organisms grow and develop. Their genetic instructions operate
like highly parallel programs that define how that growth should
occur. The result is the complexity of life.

Researchers in the growing field of Computational
Development argue that by adding a similar extra mapping from
genotype to phenotype in an evolutionary algorithm, we can
achieve similar advantages to those observed in nature. For
example, because the genotype now corresponds to a generative
program, our solutions become capable of fault-tolerance, self-

repair and may develop into complex solutions that can become
greater in scale by simply running the developmental program for
longer [9-12,14,15].

But development is typically an iterative process involving
the execution of genetic instructions repeatedly and the creation
and reuse of building blocks or modules [16]. This is ideal if your
solution is complex, containing regularities and repetitions. But
what if your solution appears to be both complex and highly
irregular? What if the solution is non-random, but contains no
known pattern of any kind? Can evolution create a developmental
algorithm that is capable of producing a phenotype with no
patterns? Can a developmental approach generate the irrational
number PI?

If the answer is yes, then we will have demonstrated yet
another feature of development – the ability for evolution to
exploit an iterative, pattern-rich process to create non-pattern, in
the form of a very precise irrational sequence of digits. While
number theory in mathematics may suggest this is possible, this
work aims to investigate how such a challenge can be met.

The work described here continues an earlier investigation
into the use of fractals as a computer representation of proteins.
Earlier work has shown that fractal proteins are highly evolvable
by a genetic algorithm [2][5], that specific patterns of activation in
a fractal gene regulatory network (GRN) can be evolved [2][4],
that evolved fractal GRNs naturally show fault-tolerance [5], and
that they can perform computational tasks such as function
regression and robot control [3]. This work exploits a complete
reimplementation of the fractal-protein-based evolutionary
developmental system by the first author and initially focuses on
the challenge of irrationality: evolving and developing the
irrational number PI as accurately as possible.

2. BACKGROUND
Early work in the area of computational development examined
the evolution of embryogenies for specific target shapes, e.g.
letters of the alphabet [17] or tessellating tiles [9]. Since then,
researchers such as Hornby [12], Bongard [8], Gordon and
Bentley [10] and Kumar and Bentley [16] demonstrated that
various types of development can enable smaller genotypes to
represent more complex phenotypes through the ability of
development to discover modularities and repetition. Miller
described experiments evolving developmental programs to create
“French Flag” patterns [20]. They showed that development is
able to regenerate these patterns, and that different patterns can be
evolved in different environments. The research was the first of
many similar attempts to evolve 2D target flag shapes.

But evidence suggests that when using implicit
embryogenies (where repeated rules result in the emergence of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GECCO’09, July 8–12, 2009, Montreal, Quebec, Canada.

Copyright 2009 ACM 978-1-60558-325-9/09/07...$5.00.

715

phenotype), at least some degree of phenotypic regularity is
necessary for an advantage to be gained by the use of
development [9,10]. As this work shows, this notion is not always
valid. The irrational number PI is an excellent example. When
regarded as a phenotype, it is a very difficult target for evolution,
for it comprises an infinitely long sequence of precise digits
containing no known (infinitely repeating) patterns. Should a
direct mapping from genotype to phenotype be used with a simple
genetic algorithm, clearly evolution to a certain limited precision
would be possible, given sufficient time. But development
provides the potential for creating not just the sequence, but an
algorithm for generating that sequence. Thus, if evolution could
find the right developmental algorithm, there would be no
theoretical limit to the number of digits of PI that could be
generated.

However, algorithms for generating PI are not simple.
Bentley [1] discusses some of the history, summarized here. For
example, Archimedes created one approach by creating polygons
that fitted inside and outside a circle to calculate the value. Using
polygons of 96 sides he calculated that PI lay between 22/7 and
233/71 – so he calculated PI to 1 decimal place. It took many
more centuries before mathematicians could improve on this
calculation. A German mathematician named Van Ceulen spent
most of his life using Archimedes’ approach, creating polygons
with an almost unbelievable 4,611,686,018,427,387,904 sides in
order to calculate PI to 35 decimal places. In the 17th Century,
Wallis discovered a series that converged to PI:

2 / PI = (1×3×3×5×5×7×…) / (2×2×4×4×6×6×…)
And at around the same time Gregory discovered another
sequence:

PI / 4 = 1 – 1/3 + 1/5 – 1/7 + …
These sequences clearly prove that a regular pattern can produce
the irregular number PI. However, both require tens of thousands
of terms in the sequence before any real precision is reached,
making this still a potentially very difficult challenge for
evolution to duplicate. Gregory also discovered a sequence that
requires fewer terms:

PI / 6 = (1/√3)(1 – 1/(3×3) + 1/(5×3×3) – 1/(7×5×3×3) + …
This only needs nine terms to achieve PI to a precision of 4
decimal places. Nevertheless, the complexity of this sequence
implies that even an approximate developmental algorithm for
generating PI may be a significant challenge for evolution.

This work uses the fractal protein model of computational
development to tackle the problem, exploiting its known
evolvability [5] and complex protein and gene interactions [2-4]
to provide a rich set of computational tools for the task.

3. FRACTAL PROTEINS
Development is the set of processes that lead from egg to embryo
to adult. Instead of using a gene for a parameter value as we do in
standard EC (i.e., a gene for long legs), natural development uses
genes to define proteins. If expressed, every gene generates a
specific protein. This protein might activate or suppress other
genes, might be used for signalling amongst other cells, or might
modify the function of the cell it lies within. The result is an
emergent “computer program” made from dynamically forming
gene regulatory networks (GRNs) that control all cell growth,
position and behaviour in a developing creature [23].

Table 1. Types of objects in the representation
fractal proteins defined as subsets of the Mandelbrot set.

Environment contains one or more fractal proteins (expressed from
the environment gene(s)), and one or more cells.

Cell contains a genome and cytoplasm, and has some
behaviours.

Cytoplasm contains one or more fractal proteins.

Genome comprising structural genes and regulatory genes. In
this work, the structural genes are divided into different
types: cell receptor genes, environment genes and
behavioural genes.

regulatory gene comprising operator (or promoter) region and coding
(or output) region.

cell receptor
gene

a structural gene with a coding region which acts like a
mask, permitting variable portions of the
environmental proteins to enter the corresponding cell
cytoplasm.

environment
gene

a structural gene which determines which proteins
(maternal factors) will be present in the environment of
the cell(s).

behavioural
gene

structural gene comprising operator and cellular
behaviour region.

Figure 1. Representation using fractal proteins.

Figure 2. The fractal development algorithm.

716

In this work, a biologically plausible model of gene regulatory
networks is constructed through the use of genes that are
expressed into fractal proteins – subsets of the Mandelbrot set that
can interact and react according to their own fractal chemistry.
Further motivations and discussions on fractal proteins are
provided in [2-5]. Table 1 describes the object types in the
representation; Figure 1 illustrates the representation. Figure 2
provides an overview of the algorithm used to develop a
phenotype from a genotype. Note how most of the dynamics rely
on the interaction of fractal proteins. Evolution is used to design
genes that are expressed into fractal proteins with specific shapes,
which result in developmental processes with specific dynamics.

3.1 Defining a Fractal Protein
In more detail, a fractal protein is a finite square subset of the
Mandelbrot set, defined by three codons (x,y,z) that form the
coding region of a gene in the genome of a cell. Each (x, y, z)
triplet is expressed as a protein by calculating the square fractal
subset with centre coordinates (x,y) and sides of length z, see fig.
3 for an example. In addition to shape, each fractal protein
represents a certain concentration of protein (from 0 meaning
“does not exist” to 200 meaning “saturated”), determined by
protein production and diffusion rates.

Figure 3. Example of a fractal protein defined by
(x=0.132541887, y=0.698126164, z=0.468306528)

Left: high resolution view. Right: actual sampling resolution.

Fig. 4. Top: two fractal proteins; Bottom left: the resulting
merged fractal protein combination; Bottom right: the two

protein domains making up the merged protein combination,
illustrating that the top-left protein forms the bottom two-
thirds of the shape and the top-right protein forms the top

third of the shape.

3.2 Fractal Chemistry
Cell cytoplasms and the environment usually contain more than
one fractal protein. In an attempt to harness the complexity
available from these fractals, multiple proteins are merged. The
result is a product of their own “fractal chemistry” which naturally
emerges through the fractal interactions.

Fractal proteins are merged (for each point sampled) by
iterating through the fractal equation of all proteins in “parallel”,
and stopping as soon as the length of any is unbounded (i.e.
greater than 2). Intuitively, this results in black regions being
treated as though they are transparent, and paler regions
“winning” over darker regions. See fig 4 for an example. Only the
concentration values corresponding to the winning protein
domains contribute to the overall concentration. Thus, the total
concentration of two or more merged fractal proteins is the mean
of the different protein concentrations in their merged product
(e.g., in figure 4 the total concentration will be approximately one
third of the concentration of the top-right protein plus two-thirds
of the concentration of the top-left protein). If the value of more
than one merged protein is identical at a sampled point, arbitration
uses gene order. Concentrations slowly decrease over time to
model diffusion. See table 1 and [2-5] for further details.

3.3 Genes
All genes contain 9 real-coded values:

xp yp zp Affinity
threshold

Concentration
threshold x y z type

where (xp, yp, zp, Affinity threshold, Concentration
threshold) defines the promoter (operator or precondition) for the
gene and (x,y,z) defines the coding region of the gene. (Affinity
threshold and type are stored as integers.) The type value defines
which type of gene is being represented, and can be any
combination of the following: environment, receptor,
behavioural, or regulatory. This enables the type of genes to be
set independently of their position in the genome, enabling
variable-length genomes. It also enables genes to be multi-
functional, i.e. a gene might be expressed both as an
environmental protein and a behaviour.

When Affinity threshold is a positive value, one or more
proteins must match the promoter shape defined by (xp,yp,zp)
with a difference equal to or lower than Affinity threshold for the
gene to be activated. When Affinity threshold is a negative value,
one or more proteins must match the promoter shape defined by
(xp,yp,zp) with a difference equal to or lower than |Affinity
threshold| for the gene to be repressed (not activated).

To calculate whether a gene should be activated, all fractal
proteins in the cell cytoplasm are merged (including the masked
environmental proteins) and the combined fractal mixture is
compared to the promoter region of the gene. Given the similarity
matching score between cell cytoplasm fractals and gene
promoter, the activation probability Pa of a gene is given by:

Pa = (1 + tanh((m – At – Ct) / Cs)) / 2 Equation 1
where:
m is the matching score,
At is Affinity threshold (matching threshold from gene promoter)
Ct is a threshold constant (set to 0 in the experiments)
Cs is a sharpness constant (set to 20 in the experiments)

Every time step the new concentration of each protein is
calculated. This is formed by summing two separate terms: the
previous concentration level after diffusion (Dc) and the new
concentration output by a gene (Gc). These two terms model the

Domain 1

Domain 2

717

reduction in concentration of proteins over time, and the
production of new proteins over time, respectively, where:

Dc = Pc – Pc / Cp + 0.2 Equation 2
Pc is protein concentration in previous time step,
Cp is a constant normally set to 5; the final addition of 0.2 ensures
a minimum level of diffusion
and:

Gc = Tc × Cm, Equation 3
Tc is the mean concentration seen at the promoter,
Cm is a concentration multiplier, where:

Cm = tanh((Tc – ct) / Cw) / Ci Equation 4
where: ct is the concentration threshold from the gene promoter

Cw is a constant (set to 30 for these experiments)
Ci is a constant (set to 2 for these experiments)

The full details of this process are beyond the scope of this
paper, interested readers should consult [2-5].

Behavioural Gene. A behavioural gene is activated when
other protein(s) in the cytoplasm match its promoter region (using
the affinity threshold). For this application, a gradual activation
between not activated and activated was required, using the x
value of the coding region (x,y,z) triplet as a fate value to define a
function, calculated as follows:
If the gene is being activated with a negative Affinity threshold,
out = out - (totalconcentration - concentrationthreshold) * fate
If the gene is being activated with a positive Affinity threshold,
out = out + (totalconcentration - concentrationthreshold) * fate

Note how the total concentration of proteins seen on the
promoter is offset against the Concentration Threshold gene and
scaled by the fate gene (x value of the coding region), allowing
evolution to adjust the range of values seen on the output, and
used to specify behaviours.

3.4 Development and Evolution
As was illustrated in figures 1 and 2, an individual begins life as a
single cell in a given environment. To develop the individual from
this zygote into the final phenotype, fractal proteins are iteratively
calculated and matched against all genes of the genome. Should
any genes be activated, the result of their activation (be it a new
protein, receptor or cellular behaviour) is generated at the end of
the current cycle. Development continues for d cycles, where d is
dependent on the problem. Note that if one of the cellular
behaviours includes the creation of new cells, then development
will iterate through all genes of the genome in all cells.

All genes are evolved. The genetic algorithm used in this
work has been used extensively elsewhere for other applications
(including GADES [6]). A dual population structure is employed,
where child solutions are maintained and evaluated, and then
inserted into a larger adult population, replacing the least fit. The
fittest n are randomly picked as parents from the adult population.
Typically the child population size is set to 80% of the adult size
and n = 40%. (For further details of this GA, refer to [6].) Because
real coding was used, duplication and creep mutation is used, see
[2] for complete details. Crossover is always applied; all
mutations occur with probability 0.01 per gene.

3.5 How Fractal Development Works
In the merged protein shape, each sampled pixel value is the
maximum corresponding pixel value from all proteins with non-
zero concentrations. This makes the merged protein shape a
patchwork of complex regions each belonging to one of the

proteins present in the cytoplasm. We term the set of pixels in the
merged protein originating from one protein as the domain of that
protein. Figure 4 (bottom right) shows an example of two protein
domains in the merged protein. If concentration of a protein drops
to zero during development, that protein does not exist and so
cannot have a domain in the merged result; instead other proteins
may fill the region with their domains. This results in changes in
the shape of those protein domains. This is analogous to the
protein-protein interactions in biology resulting in proteins
shifting their shapes.

The value of different pixels in the merged protein at each
development time step can together represent a single point
coordinate in a multidimensional state space, each dimension
being the value of one pixel. We shall refer to this state space as
the MPS space (merged protein state space). The pixel values of
the promoter and the absolute value of the Affinity threshold
collectively describe a convex subspace in the MPS space (gene
expression subspace), specifying when this gene can be expressed.
This creates a slightly different GRN (gene regulatory network)
for each combination of present proteins. The expression of each
gene is affected only by the pixel values of those protein domains
that lie under the domain of the gene promoter. The sign of the
Affinity threshold determines if this gene is expressed or repressed
when the current MPS dwells inside this subspace. The absolute
value of the Affinity threshold specifies the size of this subspace.
The hyperbolic tangent function (in Equation 1 for Pa described
in section 3.3) creates a smooth transition for probability of gene
expression at the surface of this subspace. This can improve the
evolvability of the GRNs by smoothing the fitness landscape. The
concentrations of individual unmerged proteins at each
developmental time step can together represent a single point
coordinate in a multidimensional state space, each dimension
being the non-zero concentration value of one protein. We shall
refer to this state space as the PCS space (protein concentration
state space). When a gene is expressed, the concentration of the
protein encoded in the gene is increased (or decreased) by a
multiplicative sigmoid function (Equations 3 and 4 for Gc and Cm
in section 3.3) of a linear combination of the concentration of
those proteins with their domains covered by the gene promoter
domain.

The fractal development algorithm can also be viewed from
the perspective of pattern recognition, where the cell receptor
gene performs input feature selection by masking some of the
environment proteins. The rest of the GRN can be seen as a
reservoir (Reservoir Computing [22]) or a Liquid State Machine
[18]. From this viewpoint, genes work as leaky integrating nodes
with a multiplicative sigmoid transfer function (as described in
section 3.3), interacting through protein concentrations in a
recurrent network. The areas of those protein domains that lie
under a gene promoter domain define the input weights for that
node (gene), and the Concentration threshold works as a bias. The
behavioural genes work as the readout map (in LSM and RC
[18,22]) translating the current multidimensional PCS into
outputs. Even randomly generated reservoirs can be effectively
used for pattern recognition and chaotic time-series prediction
[13]. However, recent research [22] shows that bio-plausible
features such as hierarchy and modularity in the reservoir network
architecture can increase the performance and robustness of the
reservoirs. Statistical studies also reveal such properties in
biological GRNs [7]. Therefore it is quite likely that, using fractal
protein domains, this system is able to evolve the suitable network
structures for a given problem. Existence of inactive genes and

718

complete (or partial) dominance of one protein domain on other
protein domains result in neutral networks in the fitness landscape
- another of the reasons for the evolvability of this system
observed in [5]. Neutral mutations can drift the expression
subspace of inactive genes. The randomness at the edge of these
gene expression subspaces can give evolution some clues about
the promising inactive genes that should be turned on to smoothly
evolve a GRN into a fitter GRN.

4. EXPERIMENTS
Using the fractal developmental system, we aim to obtain a
system that produces PI with an increasing precision. We examine
two different ways to approximate PI using fractal proteins. First
we aim to produce the binary representation of PI; second we aim
to approximate its real value.

4.1 Experiment 1 – Binary Approximation
In the first experiment, the output of the system is the activation
state of the first behavioural gene in the genome, i.e. we require
one gene to switch on and off according to the pattern of PI
written in base 2. The other outputs of the behavioural genes are
ignored. If a genome does not contain a behavioural gene, which
is possible as evolution is free to add/remove genes or change
their types, the output of the system will be 0. It is worth noting
that the binary representation of PI also contains no pattern:

 1100 1001 0000 1111 1101 1010 1010 0010 …
An incremental fitness function is used. Initially, the system

is only exposed to the first bit of PI. The system is then only
exposed to a new bit of PI if it matches all of the previous bits
correctly. The overall fitness value is a weighted sum of correct
bits. A decreasing weight is given to each bit of the pattern, so
that a pattern which only has the first bit correct is fitter than a
pattern with the first bit incorrect and every other correct, and so
on recursively. Unlike [2] and [4], the number of edges in the
pattern obtained is not used in the fitness function. This is done so
that the system would evolve the most accurate approximation of
PI possible, and not just try to match a pattern.

Note that this is a more difficult task compared to evolving a
fixed size pattern, as it has to evolve to fit a moving goal (as
provided by the incremental fitness function), and may have to
drastically change its developmental processes as it progresses
through the bits of PI. Each individual develops for 32 iterations,
so the fittest possible individual would achieve 32 correct bits of
PI.

The size of the genetic algorithm total population is 100
individuals. The individuals have a lifespan of 10 generations. 40
of the best in the population are used to generate 80 children
which replace the worst, each generation. The GA evolved for
1000 generations. The experiment was run 100 times.

4.2 Experiment 2 – Value Approximation
In the second experiment we evolve a fractal gene regulatory
network in an attempt to obtain an algorithm for the generation of
PI. Ideally the developmental PI algorithm should provide an
improving approximation to the value of PI, the more
developmental iterations it is run. Unless specified otherwise, the
settings are the same as specified for experiment 1.

For each developmental iteration, the output of the first
behavioural gene is used as a scaling factor; the mean of the
output of the other behavioural genes is divided by the product of
this and the previous scaling factors, and summed to the total
output. If a scaling factor is equal to zero, it will be ignored. If an

individual's genome contains zero or one behavioural gene, the
total output will be zero. The total value output is thus:

The system is evaluated for 32 developmental iterations. The

fitness function used is simply the absolute difference between the
total output and PI. Note that the system currently uses double
types (which uses 52 bits for fractional part) in C++ to perform
mathematical operations and store the values of PI, so precision is
limited to 15 decimal places.

5. RESULTS
5.1 Results 1 – Binary Approximation
As can be seen in figure 5 (top) and table 2, the system was able
to evolve a pattern of binary PI of up to 26 bits, with a decimal
equivalent of 3.1415926.

This approach demonstrates the ability of fractal proteins to
evolve a solution to fit a moving target. Despite the target
containing no pattern, this approach achieves a respectable
accuracy of 7 decimal places.

5.2 Results 2 – Value Approximation
Figure 5 (bottom) and table 2 provide the results for the second
experiment. Out of a hundred runs, the system managed to obtain
the exact double value of PI four times, i.e. the value of PI was
correctly evolved to 15 decimal places. It seems likely that if a
higher precision had been used, an even better approximation
would have been reached. After converging to as good an
approximation of PI as possible, these developmental solutions
kept producing that same value with the same internal
developmental patterns even after being run for up to 500
developmental iterations, so it is possible that these systems
would keep converging towards PI if they were able to run with a
higher precision. (The current implementation uses C++ double
types for its processing.)

Remarkably, these solutions achieved this result through
varied means. In two of the runs, the system converged towards
PI using a repeating pattern at increasingly smaller scales (see
Figure 6), each time over-correcting its difference with PI, but
always getting closer. In another run, it started lower, but slowly
increased its output until it reached PI, never going above it.

Table 2 provides a summary of the median and best results
obtained in both experiments. Figure 5 shows the percentage of
runs that obtained each degree of precision for both experiments.

Table 2. The median and best results for both experiments.

 Median Best
Experiment 1 3.1411 3.1415926
Experiment 2 3.141592658 3.141592653589793

719

Figure 5 For each degree of precision, the percentage of runs that have reached it. Top: Results for Experiment 1. Bottom:

Results for Experiment 2. The binary scale above corresponds to the decimal scale below in terms of accuracy.

Figure 6 (a) The mathematical expression of the system's output (see section 4.2). (b) The output of a system producing PI to the
maximum precision allowed by the double type; The same pattern is repeated at increasingly smaller scales, as development

occurs. (c) The output of the first behavioural gene, the inverse of which is used as a scaling factor in (a). (d) The mean of the
output of the other behavioural genes, which is the main component in (a). (e) An example of the cell's cytoplasm, with its

associated concentration.

720

ANALYSIS
Figure 7 shows the internal workings of the fractal

developmental system for another of the best solutions evolved. It
should be clear by examining the proteins and concentrations in
the cytoplasm and the activations of individual genes over time
that the system produces an internally repeating pattern (albeit
sometimes very complex). This is typical of all the solutions
evolved, and is typical of most implicit developmental systems
simply because they involve repeated execution of generative or
developmental rules [9]. It is not possible for the GA to evolve a
constant that directly corresponds to PI (e.g. it cannot evolve an
initial concentration value matching PI, for environmental
proteins by default begin at the saturation value of 200). Instead,
the GA has evolved a series of protein fractal shapes and
threshold values that interact to form a relatively good
approximation of the value, which is then iteratively improved by

the gene-regulatory network as it continues to run. Again, this
appears to be the typical solution chosen by evolution – whatever
the initial starting value is, this value is incrementally improved,
sometimes by a pattern that oscillates above and below the true
value of PI, and sometimes by a pattern that creeps ever-closer to
the value. These approaches to the generation of PI are
surprisingly similar to the summed sequences described in section
2, which also incrementally improve their approximation to PI
through the summing of successive terms of patterns. It is unlikely
that any of the fractal developmental programs found here would
produce a perfect value of PI (given that evaluation was limited to
a fixed 32 developmental iterations and a fitness evaluation with a
limited precision of 15 decimal places). Further work was
subsequently performed using an extended precision for the
output (but not for the internal fractal proteins). The best results
were found to approximate PI correctly to 23 decimal places.

Figure 7 The fractal protein developmental system running, illustrating another solution that achieved PI to 15 decimal places
in only 9 iterations. The top-left panel shows the state of the cytoplasm for each developmental iteration. The merged proteins
present in the cytoplasm is shown above, with the corresponding concentration at each point shown below; white indicates the

absence of any protein and black indicates saturation. Iteration 0 corresponds to the state of the cytoplasm before any
development, at which point it is a function of only the environmental and receptor genes. Several overlapping patterns can be
observed in both the merging and the concentration. The bottom-left panel shows the individual genes and the fractal shapes of

their promotor and coding regions, with concentrations of their output proteins over time (B = behavioural, middle R =
receptor, bottom R = regulatory, E= environmental). To the right is shown the approximation produced by the system after

each developmental iteration (or cycle). Dark grey for “Prg.” indicates the current approximation is better. Dark grey for
“Pos.” indicates the approximation is above; light grey indicates the approximation is below the true value of PI (the precision

of the code is exceeded by iteration 9 so the indication is inaccurate after that point).

721

6. CONCLUSIONS
PI is one of our best examples of an infinite, non-random
sequence of digits that contain no infinitely repeating pattern.
Implicit developmental algorithms inherently and naturally
produce patterns. Thus, the poor results obtained in experiment 1
were anticipated, when trying to evolve a fractal GRN with the
non-pattern of PI. In experiment 2, we used a more appropriate
mapping stage, permitting development to produce its patterns
internally and then use those patterns to generate the value of PI
incrementally as a summed series. The aim here was to encourage
the evolution of an algorithm to keep giving better approximations
of PI even when run beyond the number of iterations used during
evolution.

It took mathematicians centuries to formulate algorithms to
calculate PI. Today we know of several regular sequences that
converge to PI, which illustrate that it is theoretically possible for
a regular pattern to produce this famous example of non-pattern.
These sequences are long and often complex. It was therefore
unexpected and gratifying that in experiment 2, evolution was
able to create approximate developmental algorithms that
produced PI to the limits of the precision of the double data type.
Further work showed that fractal development was able to go
beyond the precision of the data type and produce PI to 23
decimal places.

However, it is clear that evolutionary development does not
naturally produce phenotypic non-pattern. The relative success of
this work was achieved by altering the task from the creation of an
algorithm to generate individual digits into the production of an
approximation algorithm for a specific numerical value. In our
mathematics that value is written as a series of digits with no
infinitely repeating pattern. In biology (and fractal development),
which does not form solutions with basic mathematical operators
or constants and does not “care” how numbers are written, the
task of approximating PI is no different from the task of
approximating any other value. When using protein
concentrations in biology, only convergence to concentration
levels and patterns of concentrations are possible. Thus very good
approximations to values are feasible, but the creation of perfect
values are unlikely. Biology is oblivious to PI, for it only exists in
our mathematics; perfect circles are impossible. It is thus unlikely
that a process that cannot directly exploit mathematical operators
will be able to find a perfect algorithm for creating the digits of PI
directly. The challenge of irrationality may be too great for
biologically plausible evolutionary development.

7. REFERENCES
[1] Bentley, P. J. (2008) The Book of Numbers: The Secrets of

Numbers and How They Created Our World. Cassell
Illustrated. ISBN 1 84403 396 1. (Hardback, February 2008)

[2] Bentley, P. J. Fractal Proteins. In Genetic Programming and
Evolvable Machines Journal. 2004.

[3] Bentley, P. J. Controlling Robots with Fractal Gene
Regulatory Networks. Chapter in de Castro, L. and von
Zuben, F. (editors) Recent Developments in Biologically
Inspired Computing. Idea Group Inc, 2004.

[4] Bentley, P. J. Evolving Fractal Proteins. In Proc. of ICES
’03, the 5th International Conference on Evolvable Systems:
From Biology to Hardware. 2003.

[5] Bentley, P. J. Evolving Beyond Perfection: An Investigation
of the Effects of Long-Term Evolution on Fractal Gene
Regulatory Networks. In Proc of Information Processing in
Cells and Tissues (IPCAT). 2003.

[6] Bentley, P. J. From Coffee Tables to Hospitals: Generic
Evolutionary Design. Chapter 18 in Bentley, P. J. (Ed)
Evolutionary Design by Computers. Morgan Kaufmann Pub.
San Francisco, 1999. pp. 405-423.

[7] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang,
D.: Complex networks: Structure and dynamics. Physics
Reports 424(4–5) (2006) 175–308

[8] Bongard, J. C. Evolving Modular Genetic Regulatory
Networks. In Proc. of 2002 Congress on Evolutionary
Computation, IEEE Press, 2002. pp. 1872-1877.

[9] Bentley, P. J. and Kumar, S. Three Ways to Grow Designs:
A Comparison of Embryogenies for an Evolutionary Design
Problem. Genetic and Evolutionary Computation Conference
(GECCO '99), July 14-17, 1999, Orlando, Florida USA,
1999. pp.35-43. RN/99/2.

[10] Gordon, T. and Bentley, P. J. (2005) Development Brings
Scalability to Hardware Evolution. In Proc. of 005
NASA/DoD Conference on Evolvable Hardware.

[11] P. C. Haddow, G. Tufte, and P. van Remortel. Shrinking the
Genotype: L-Systems for EHW. Proc. 4th Int. Conf. on
Evolvable Systems: From Biology to Hardware. 2001.

[12] Hornby, G. S. Generative Representations for Evolutionary
Design Automation. Brandeis University, Dept. of Computer
Science, Ph.D. Dissertation. 2003.

[13] Jaeger, H. & Haas, H. Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy in Wireless
Communication Science, 2004, 304, 78-80

[14] A.H. Jackson, A.M. Tyrrell Implementing Asynchronous
Embryonic Circuits using AARDVArc. In Proc of
NASA/DoD Conference on Evolvable Hardware (EH-2002),
IEEE Computing Society, Virginia, 2002. pp. 231-240.

[15] N. Jakobi. Harnessing Morphogenesis. Int Conf Information
Processing in Cells and Tissues, Liverpool. 1995.

[16] S. Kumar and P. J. Bentley. Computational Embryology:
Past, Present and Future. Invited chapter in Ghosh and
Tsutsui (Eds) Theory and Application of Evolutionary
Computation: Recent Trends. Springer Verlag (UK). 2003.

[17] Kumar, S. and Bentley, P. J. The ABCs of Evolutionary
Design: Investigating the Evolvability of Embryogenies for
Morphogenesis. A late-breaking paper in Genetic and
Evolutionary Computation Conference (GECCO '99), July
14-17, 1999, Orlando, Florida USA, 1999. pp. 164-170

[18] Maass; Natschlager & Markram Real-Time Computing
Without Stable States: A New Framework for Neural
Computation Based on Perturbations NEURCOMP: Neural
Computation, 2002, 14, 2531-2560

[19] Mandelbrot, B. The Fractal Geometry of Nature. W.H.
Freeman & Company. 1982.

[20] Miller, J. and Banzhaf, W. Evolving the Program for a Cell:
From French Flags to Boolean Circuits. Invited chapter in
Kumar, S. and Bentley, P. J. (Eds) On Growth, Form and
Computers. Academic Press, 2003.

[21] Quick, T. Evolving Embodied Genetic Regulatory Network-
Driven Control Systems. Proc. of ECAL 2003.pp. 266-277.

[22] Schrauwen, B.; Verstraeten, D. & Van Campenhout, J.An
overview of reservoir computing: theory, applications and
implementations. Proceedings of the 15th European
Symposium on Artificial Neural Networks, 2007, 471–482

[23] Lewis Wolpert, Rosa Beddington, Thomas Jessell, Peter
Lawrence, Elliot Meyerowitz, Jim Smith. Principles of
Development, 2nd Ed. 2001. Oxford University Press.

722

