The Archival Acid Test: Evaluating Archive Performance
on Advanced HTML and JavaScript

Mat Kelly, Michael L. Nelson, and Michele C. Weigle
Old Dominion University
Department of Computer Science
Norfolk, Virginia 23529 USA

{mkelly,mIin,mweigle}@cs.odu.edu

ABSTRACT

When preserving web pages, archival crawlers sometimes
produce a result that varies from what an end-user expects.
To quantitatively evaluate the degree to which an archival
crawler is capable of comprehensively reproducing a web
page from the live web into the archives, the crawlers’ ca-
pabilities must be evaluated. In this paper, we propose a
set of metrics to evaluate the capability of archival crawlers
and other preservation tools using the Acid Test concept.
For a variety of web preservation tools, we examine previ-
ous captures within web archives and note the features that
produce incomplete or unexpected results. From there, we
design the test to produce a quantitative measure of how
well each tool performs its task.

Categories and Subject Descriptors

H.3.7 [Online Information Services]: Digital Libraries
and Archives

General Terms

Experimentation, Standardization, Verification

Keywords
Web Crawler, Web Archiving, Digital Preservation

1. INTRODUCTION

Since much of our cultural discourse occurs on the web,
web archiving is necessary for posterity. The goal of web
archiving is to capture web pages so they can be “replayed”
at a later date. Web archiving tools access these pages on
the live web in a manner similar to tools used by search en-
gines (crawlers) and preserve the pages in a format that al-
lows the data and contextual information about the crawl to
be re-experienced. These “archival crawlers” take different
approaches in digital preservation and thus their capability
and scope vary.

978-1-4799-5569-5/14/$31.00 (©)2014 IEEE.

Because archival crawlers attempt to duplicate what a
user would see if he accessed the page on the live web, vari-
ance from what is preserved and what would have been seen
compromises the integrity of the archive. The functional dif-
ference between archival crawlers and web browsers causes
this sort of unavoidable discrepancy in the archives, but it is
difficult to evaluate how good of a job the crawler did if the
information no longer exists on the live web. By examin-
ing what sort of web content is inaccurately represented or
missing from the web archives, it would be useful to evaluate
the capability of archival crawlers (in respect to that of web
browsers that implement the latest technologies) to deter-
mine what might be missing from their functional repertoire.

Web browsers exhibited this deviation between each other
in the early days of Web Standards. A series of “Acid Tests”
that implemented the Web Standards allowed each browser
to visually and functionally render a web page and produce
an evaluation of how well the browser conformed to the stan-
dards. In much the same way, we have created an “Archival
Acid Test” to implement features of web browsers in a web
page. While all standards-compliant browsers will correctly
render the live page, this is not always the case when the
archived version of the page is rendered. This difference can
be used to highlight the features that archival crawlers are
lacking compared to web browsers and thus emphasize the
deviations that will occur in web archives compared to what
a user would expect from a digitally preserved web page.

2. RELATED WORK

Web archives are generated by a variety of tools in a vari-
ety of formats. An ISO standard format utilized by institu-
tional and personal web archivists alike is the Web ARChive
(WARC) format [1]. WARC files allow HTTP communica-
tion that occurred during a crawl as well as payload, meta-
data and other archival features to be encoded in a single or
an extensibly defined set of WARC files.

Heritrix paved the way for Internet Archive (IA) to utilize
their open source Heritrix to create ARC and WARC files
from web crawls while capturing all resources necessary to
replay a web page [2]. Other tools have since added WARC
creation functionality [3, 4, 5]. Multiple software platforms
exist that can replay WARCs but [A’s Wayback Machine
(and its open source counterpart!) is the de facto standard.

Multiple services exist that allow users to submit URIs for
preservation. IA recently began offering a “Save Page Now”
feature co-located with their web archive browsing inter-

"https://github. com/iipc/openwayback

Tool/Service

Table 1: The archiving services and software that we tested.

URI

Description

Archive.org’s
“Save Page Now”
Archive.is
Mummify.it

archive.org/web/

archive.is/
mummify.it/

Perma.cc perma.cc/
WebCite webcitation.org/

Heritrix github.com/internetarchive/heritrix3

WARCreate warcreate.com/

Wget gnu.org/software/wget/

face. Archive.is, Mummify, Perma.cc and WebCitation (see
Table 1), all provide URI submission and archive browsing
services with obfuscated URIs, though none make accessible
a resultant WARC file.

Brunelle et al. [6] highlighted the difficulties that current
archival crawlers have with capturing content on the live
web that relies on JavaScript, and Kelly et al. [7] showed
the ramifications this has had on preserving web pages over
time. Brunelle pointed out that sometimes what archives
show as preserved actually “reaches out” into the live web
on replay, causing false positives [8].

The Acid3 Test? is the third in a series of functional eval-
uations for web browsers’ compliance with Web Standards.
Evaluation using the Archival Acid Test is done in much
of the same way at the Acid3 Test, with correct rendering
being the primary, but not sole, basis for correctness.

3. THE ARCHIVAL ACID TEST

Inspired by the Acid Tests administered by the Web Stan-
dard Project (WaSP)?, we built the Archival Acid Test* to
evaluate how well archival tools perform at preserving web
pages. Unlike WaSP’s initiatives, evaluation of web archival
software is not standardized, so a comprehensive test of what
these tools should be able to capture needs to be established.
The Archival Acid Test evaluates the archives’ ability to re-
render pages employing a variety of standardized and emerg-
ing conventions with HTML and JavaScript.

The crux of the tests is to determine how well an archival
tool preserves a web page in terms of similarity to what
would be expected by a user viewing the page from the live
web, i.e., a respectively modern web browser. Web Stan-
dards are continuously evolving with the feature set for web
browsers temporally lagging the standards in being imple-
mented though frequently containing experimental imple-
mentations. Archival crawlers, given a greater need for relia-
bility, lag in implementing newly standardized features than
browsers, though they will frequently rely on a common en-
gine utilized by browsers to stay-up-to-date.’> The deviation
from the web page processing engines used by archival tools
(whether built-to-purpose or older versions of browser en-

*http://acid3.acidtests.org/
3http://www.acidtests.org/

4The source of the test is available at
https://github.com/machawkl/archivalAcidTest .

5For example, the open source V8 and SpiderMonkey ren-
dering engines allow resources that require JavaScript to be
present on a web page and be captured by archival tools.

Web-based service, archives replayed via

Wayback Machine at Internet Archive
Web-based service, Archives replayed within web interface.
Web-based service, Archives replayed within web interface.
Web-based service, Archives replayed within web interface.
Web-based service, Archives replayed within web interface.
Locally hosted TA-created archival web crawler.

Generates WARC files, replayed in local Wayback.
Google Chrome Extension, generates WARC files.

WARGC:S replayed in local Wayback.
Command-line executed, generates WARC files.

WARCS replayed in local Wayback.

gines) is a source of discrepancy between the content on a
live web page and that which is captured by these tools.

We have established a set of tests into three categories
to better group web page features that might be problem-
atic for archival tools to capture. Each test is represented
by a 10-by-10 pixel blue square. Any deviation from the
blue square (e.g., no image present, red square instead of
blue) signifies an error in what a user would expect from
a preserved web page, and thus the particular test is con-
sidered to have been failed by the tool. A reference image
(Figure 2(a)) is used as a comparative basis for correctness,
much in the same way Web Standards Acid Tests provided a
static image to evaluate what was experienced versus what
is right.

3.1 Basic Tests (Group 1)

The set of Basic Tests is meant to ensure that simple rep-
resentations of resources on web pages are captured. Each
tests’ name represents what is presented to be captured by
the archival crawler. A sample URI follows each test’s name.

la. Local (same server as test) image, relative URI to test
./la.png

1b. Local image, absolute URI
http://archiveacidtest/1b.png

1lc. Remote image, absolute URI
http://anotherserver/1c.png

1d. Inline content, encoded image
. ..

le. Remote image, scheme-less URI
//anotherserver/le.png

1f. Recursively included CSS
In style.css: @import url("1f.css");

3.2 JavaScript Tests (Group 2)

The second group of tests is meant to evaluate the archival
crawler’s JavaScript support in terms of how the script would
execute were the test accessed on the live web with a browser.

2a. Local script, relative URI, loads local resource
<script src="local.js" />

2b. Remote script, absolute URI, loads local resource
<script src="http://anotherserver/local.js" />

2c. Inline script, manipulates DOM® at runtime
<script>...(JS code)...</script>

5Document Object Model, the structure of the web page
that, when manipulated, affects the content

2d. Inline script, Ajax image replacement, loads local re-
source
img.src = "incorrect.png";

...code to replace incorrect image with local...

2e. Inline script, Ajax image replacement, Same-origin Pol-

icy (SOP)” enforcement, replacement (bad) == false
positive
img.src = "correct.png";

...code to replace correct image with image
from SOP violationm...
2f. Inline script, manipulates DOM after delay
setTimeout (function(D{ ...load image...2},2000);
2g. Inline script, content loaded upon interaction, introduc-
ing resources
window.onscroll = function()
2h. Inline script, add local CSS at runtime

3.3 Advanced Features Tests (Group 3)

The third group of tests evaluates script-related features
of HTML beyond simple DOM manipulation.

3a. HTML5 Canvas drawing with runtime-fetched content

3b. Remote image stored then retrieved from HTML5 lo-
calStorage

3c. Embedded content using iframe

3d. Runtime binary object

4. EVALUATION

To establish a baseline, we first ran each tool through the
Acid3 test. From this we observed preliminary results that
were indicative of the archival tools’ lack of full support of
the features of standards compliant web browsers (Figure 1).
Given that we are testing features that have come about
since Acid3 was released, the Archival Acid Test further ex-
ercises the tested sites’ and tools’ standards compliance and
specifically highlights their failures.

rendering in Chrome (Figure 1(a)), the five service-based
tools from Archive.org, Archive.is, Mummify.it, Perma.cc,
and WebCite (Figures 1(b), 1(c), 1(d), 1(e), and 1(f), resp.)
have more variance in their performance than the three tools
of Heritrix, WARCreate, and Wget (Figures 1(g), 1(h), and
1(i), resp.). While Archive.is appears to get the closest with
its rendering, subtle stylistic differences are easily observable
with error text appearing. This indicates that contrary to
the 100/100 rating, neither Archive.is nor any other service
or tool tested here fully passes the Acid3 test.

The Basics (6 tests)
Javascript (8 tests)
Advanced Features Tests (4 tests)
L]
(a) Chrome
. The Basics (6 tests)
The Basics (6 tests) _
Javascript (8 tests) Javascript (8 tests)
Advanced Features Tests (4 tests) ~ Advanced Features Tests (4 tests)
TN]]

(b) Archive.org

The Basics (6 tests)
Javascript (8 tests)
Advanced Features Tests (4 tests)
=
(d) Mummify.it
The Basics (6 tests)
Javascript (8 tests)
[T

Advanced Features Tests (4 tests)
] -

(f) WebCite

The Basics (6 tests)

i

Javascript (8 tests)

Advanced Features Tests (4 tests)
(=

(c) Archive.is
The Basics (6 tests)
Javascript (8 tests)

Advanced Features Tests (4 tests)
=

"

(e) Perma.cc

The Basics (6 tests)
Javascript (8 tests)

Advanced Features Tests (4 tests)
L[|
(g) Heritrix

The Basics (6 tests)

E

Javascript (8 tests)

E

Advanced Features Tests (4 tests)

!

Acid3 Acid3
IIE\I:D-- = \ = i -CI --
W1AOO/1 00 871100 100/1 00
(a) Chrome (b) Archive.org (c) Archive.is
Acid3 Acid3 Acid3
-jl-[l--
JS ? 64/100 JS?

(d) Mummify.it (f) WebCite

- - Q——
87/100 82/100 - 85/100

(e) Perma.cc

(g) Heritrix (h) WARCreate (i) Wget

Figure 1: Preliminary tests show that archival tools
exhibit an incomplete feature set compared to mod-
ern web browsers.

In Figure 1, we show the results of each tool’s attempt at
capturing the Acid3 Test web page. Compared to the correct

"https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Same_origin_policy_for_JavaScript

(h) WARCreate (i) Weget

Figure 2: Archiving service and tools’ performance
on the Archival Acid Test. The reference image
(Figure 2(a)) shows what should be displayed if all
tests are passed. This image represents what a user
sees when viewing the test in a modern web browser.

4.1 Tools’ Performance

We evaluated five web archiving services (Archive.org,
Archive.is, Mummify.it, Perma.cc, and WebCite) and three
WARC-generating archiving tools (Heritrix, WARCreate,
and Wget). Each service provided a simple interface where
a user can submit a URI, and the web page at that URI
is preserved on-command. Heritrix was configured with the
test as the lone URI in a crawl. Wget was given a command®
with the URI as a parameter and WARC as the desired out-
put format. For WARCreate, we navigated to the test’s web
page and generated a WARC. For each WARC-generating

8wget --mirror --page-requisites
--warc-file="wget.warc" http://{acid test URI}

Table 2: By aligning the services’ and tools’ tests and failures, a theme in capability (and lack thereof) is
easily observable between the two classes. Where archiving services exhibit a perfect record in the Group 1
set, the Group 2 set proved troublesome for all but Heritrix. Further, the nearly across-the-board failures
of 2g and 3c when modern browsers pass all of the tests emphasizes the functional discrepancy between

archiving tools and browsers.

Tool \Test

Archive.org
Archive.is
Mummify.it
Perma.cc
WebCite e X
Heritrix R §
WARCreate - - - - - X
Weet - X

- = Test Passed

archiving tool, we replayed the generated WARC files in a
local instance of Wayback®.

While almost all archiving services and tools tested had
difficulty with test 2g, the five service-based archiving web-
sites (Archive.org, Archive.is, Mummify.it, Perma.cc, and
WebCite Figures 2(b), 2(c), 2(d), 2(e), and 2(f), resp.) show
an interesting common set of features compared to the three
archiving tools (Heritrix, WARCreate, and Wget, Figure 2(g),
2(h), and 2(i), resp.). This is better illustrated in Table 2.

4.2 [Evaluating the Acid Test’s Methods

The features of the Archival Acid Test are not necessar-
ily bleeding edge, yet no service or tool completely passed.
More advanced features were considered but as a prelimi-
nary test of evaluating the targets, the 18 tests presented
here were more than sufficient at pointing out their short-
comings. Of particular interest are tests 2g and 3c, which
tested whether the targets were able to capture content
loaded after a short delay and content embedded in an iframe.
In one of our previous experiments [7], we evaluated content
already in the archives that existed in frames, so this dis-
crepancy was unexpected.

There exists a caveat in evaluating archiving tools in that
the appearance of how well a page is preserved might vary
depending on how well the archive is replayed. Our initial
tests of replaying WARCs in the latest non-beta release of
Wayback showed that all resources contained in the WARC
were not represented in the replayed page, support for un-
compressed WARCs (e.g., those generated by WARCreate)
was incomplete and a host of other issues that made us ques-
tion the validity of comparing Wayback-replayed archives to
those replayed by archiving web sites. To account for this,
we utilized the latest beta release of Wayback (per Section 2)
and manually verified that the WARCs did not contain any
un-replayed resources to ensure that the tools’ performance
was accurately represented by the Archival Acid Test.

S. CONCLUSIONS

In this work we created a means of evaluating archival
crawlers to pinpoint areas of functionality that result in
archives being incomplete or misrepresentative of the live
web. By first running a preliminary test of each service and

90penWayback version 2.0.0BETA2, the latest SNAP-
SHOT, built from source

la 1b 1c 1d le 1f 2a 2b 2c 2d 2e 2f 2g 2h 3a 3b 3c 3d

> X X X X
> X X X -

X . .
X - X
X .

>
©3% X X X -
>
>
*x X -
X X X X X X X X
R I

X - - X

X = Test Failed

tool on the Web Standards Acid3 test, we were able to show
that there is a functional discrepancy in how archiving tools
perform versus modern web browsers. By subsequently run-
ning our Archival Acid Test with a more modern feature-
driven evaluation of each archiving tool, we were able to
observe which parts of web pages are problematic for these
tools to capture and how good of a job they are currently
performing.

Though not comprehensive of every possible shortcoming
compared to web browsers, the Archival Acid Test is a first
step in establishing a means of evaluating archiving tools. In
much of the same way that the Acid Tests for Web Standards
provoked browser manufacturers to standardize their imple-
mentation, enumerating some of the various shortcomings of
archival crawlers’ functionality shows that there is room for
improvement. A more comprehensive test of browsers’ other
features on archiving tools and services would likely surface
other areas where what a user expects to be captured into
the archives is not.

6. REFERENCES

[1] Information and documentation - WARC file format,
Std. ISO 28 500, 2009.

[2] G. Mohr et al., “Introduction to Heritrix, an Archival

Quality Web Crawler,” in Proc. International Web

Archiving Workshops, September 2004.

Archive Team. (2013) Wget. [Online]. Available:

http://www.archiveteam.org/index.php?title=Wget

[4] M. Kelly and M. C. Weigle, “WARCreate - Create

Wayback-Consumable WARC Files from Any

Webpage,” in Proc. ACM/IEEE Joint Conference on

Digital Libraries, June 2012, pp. 437-438.

Internet Archive. (2013) warcprox - WARC writing

MITM HTTP/S proxy. [Online]. Available:

https://github.com/internetarchive /warcprox

[6] J. F. Brunelle et al., “The Impact of JavaScript on
Archivability,” Submitted for Publication.

[7] M. Kelly et al., “On the Change in Archivability of
Websites Over Time,” in Proc. Int. Conf. on Theory
and Practice of Digital Libraries, September 2013, pp.
35-47.

[8] J. F. Brunelle. (2013) Zombies in the Archives. [Online].
Available: http://ws-dl.blogspot.com/2012/10/2012-
10-10-zombies-in-archives.html

3

[5

