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A Method for the Analysis of Hierarchical Dependencies 

between Items of a Questionnaire 

Martin Schrepp1 

This paper describes a method of explorative data analysis which allows to detect 

logical implications between items of a dichotomous questionnaire or test. These logi-

cal dependencies are organized to form a hierarchical structure (quasi-order) on the 

items. Our analysis method, which is called Inductive Item Tree Analysis, can be seen 

as a method of Boolean analysis. We discuss the relation of our method to other 

methods of Boolean analysis and to related methods of data analysis, like for example 

Guttman scaling and latent class analysis. The adequacy of our analysis method is 

tested in a simulation study. The results of this study show that the method is able to 

detect existing dependencies with high accuracy if enough data are available. We ap-

ply our method to some real data sets to demonstrate the advantages of an analysis of 

logical implications. 
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We describe a method which allows us to derive a hierarchical structure on the items 

of a questionnaire from observed response patterns. Assume that we have a question-

naire I with m items {i1, …, im} and that a subject can agree (1) or disagree (0) with 

each of these items, i.e., the items are dichotomous. If n subjects respond to the ques-

tions in I this will result in a binary data matrix D with m columns and n rows2. 

Depending on the content of the items it is possible that the response of a subject to 

an item j determines her or his responses to other items. It is, for example, possible that 

each subject who agrees to item j will also agree to item i. In this case we say that item 

j implies item i and write shortly j → i. The goal of our analysis method is to uncover 

such deterministic implications from the data set D. 

                                     

1 Address: e-mail: MartinSchrepp@aol.com 
2 We describe our method in the context of the analysis of dichotomous questionnaires. But it is clear 

that the same method can be used to analyze the logical dependencies between items from a test, where 

each item (problem) can be solved (1) or failed (0) by a subject. 
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Our method can be classified as a method of Boolean analysis of questionnaires. Boo-

lean analysis was introduced by Flament (1976). The goal of a Boolean analysis is to 

detect deterministic dependencies between the items of a questionnaire in observed re-

sponse patterns. These deterministic dependencies have the form of logical formulas 

connecting the items. Assume, for example, that a questionnaire contains items i, j, and 

k. Examples of such deterministic dependencies are then i → j, i ∧ j → k, and i ∨ j → k. 

Since the basic work of Flament (1976) a number of different methods for Boolean 

analysis have been developed. See, for example, Buggenhaut and Degreef (1987), Du-

quenne (1987), Leeuwe (1974), Schrepp (1997, 1999), or Theuns (1994, 1998). These 

methods share the goal to derive deterministic dependencies between the items of a 

questionnaire from data, but differ in the algorithms to reach this goal. 

Our method shares some features with Item Tree Analysis (Leeuwe, 1974). We call 

our method in the following Inductive Item Tree Analysis (short IITA). A comparison 

to Item Tree Analysis and an explanation for the chosen name will be given in the de-

tailed description of our analysis method. 

The investigation of deterministic dependencies has some tradition in educational 

psychology. The items represent in this area usually skills or cognitive abilities of sub-

jects. Bart and Airasian (1974) use Boolean analysis to establish logical implications on 

a set of Piagetian tasks. Other examples in this tradition are the learning hierarchies of 

Gagné (1968) or the theory of structural learning of Scandura (1971).  

Another example for the use of deterministic dependencies in psychology are ap-

proaches to formalize the diagnostic process of psychologists. The goal of this approach 

is to uncover the rules on which the decisions of diagnosticians are based. See Härtner, 

Mattes and Wottawa (1980) or Wottawa and Echterhoff (1982) for details. 

A recent application of Boolean analysis can be found in Held and Korossy (1998) 

who analyze implications on a set of algebra problems. In this paper item tree analysis 

(Leeuwe, 1974) is used to extract logical implications from observed response patterns. 

The extracted implications are then compared to implications obtained by querying an 

expert. 

Methods of Boolean analysis are used in a number of social science studies to get in-

sight into the structure of dichotomous data. Bart and Krus (1973) use, for example, 

Boolean analysis to establish a hierarchical order on items that describe socially unac-



Schrepp: Hierarchical dependencies between questionnaire items 45 

cepted behavior. Janssens (1999) used a method of Boolean analysis to investigate the 

integration process of minorities into the value system of the dominant culture. 

Boolean analysis is an explorative method to detect deterministic dependencies be-

tween items. The detected dependencies must be confirmed in subsequent research. 

Methods to test such deterministic dependencies statistically are described, for example, 

in von Eye (1991). 

Methods of Boolean analysis do not assume that the detected dependencies describe 

the data completely. There may be other probabilistic dependencies as well. Thus, a 

Boolean analysis tries to detect interesting deterministic structures in the data, but has 

not the goal to uncover all structural aspects in the data set. Therefore, it makes sense 

to use other methods, like for example latent class analysis, together with a Boolean 

analysis. 

We explain this point with an example. Assume that we have 3 items i1, i2, and i3. 

Assume further that we have detected the implication i1 → i2, i.e., this implication is 

with the exception of a small number of counterexamples (which are attributed to ran-

dom errors) true for all rows in the data set. Thus, we have an implication between i1 

and i2, but the dependencies between i1 and i3 respectively i2 and i3 are not specified at 

all. Thus, it is for example possible that we have the probabilistic dependency A subject 

who gives an answer in category 1 in item i1 will answer with a probability of .7 to cate-

gory 0 in item i3. Such dependencies are not in focus of a Boolean analysis, i.e., they are 

ignored by these analysis methods. 

Deterministic dependencies, like for example j → i, impose very strict conditions on 

the data. Thus, we can usually not assume to find too many of them in empirical data. 

It is also a reasonable outcome of a Boolean analysis that no deterministic dependencies 

at all are detected in a data set. This does not mean that the data set has no structure. 

Other methods, like for example latent class analysis or configural frequency analysis, 

may uncover in such cases structural aspects of a probabilistic nature. 

Boolean analysis has some relations to other research areas. There is a close connec-

tion between Boolean analysis and knowledge space theory. The theory of knowledge 

spaces (see Doignon & Falmagne, 1998 or Albert & Lukas, 1999) provides a theoretical 

framework for the formal description of human knowledge. A knowledge domain is in 

this approach represented by a set Q of problems. The knowledge of a subject in the 

domain is then described by the subset of problems from Q he or she is able to solve. 

This set is called the knowledge state of the subject. Because of dependencies between 
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the items (for example, if solving item j implies solving item i) not all elements of the 

power set of Q will, in general, be possible knowledge states.  

The set of all possible knowledge states is called the knowledge structure. It can be 

used for the efficient diagnosis of knowledge (Doignon & Falmagne, 1985) or for the 

empirical evaluation of psychological models of problem solving behavior in the domain 

(see for example Albert, Schrepp & Held, 1994 or Schrepp, 1995).  

Methods of Boolean analysis can be used to construct a knowledge structure from 

data (see Theuns, 1998 or Schrepp, 1999). The main difference between both research 

areas is that Boolean analysis concentrates on the extraction of structures from data 

while knowledge space theory focus on the structural properties of the relation between 

a knowledge structure and the logical formulas which describe it. 

Closely related to knowledge space theory is formal concept analysis. See Ganter and 

Wille (1996) for an overview of this research area. Similar to knowledge space theory 

this approach concentrates on the formal description and visualization of existing de-

pendencies. In contrast Boolean analysis offers a way to construct such dependencies 

from data. 

Another related field is data mining (for an overview see Nakhaeizadeh, 1998). Data 

mining deals with the extraction of knowledge from large databases. Several algorithms 

(see for example Klementinnen, Mannila, Ronkainen, Toivonen & Verkamo, 1994 or 

Toivonen, 1996) are developed in this area which extract dependencies of the form j → i 

(called association rules) from the database. 

The main difference between Boolean analysis and the extraction of association rules 

in data mining is the interpretation of the extracted implications. The goal of a Boolean 

analysis is to extract implications from the data which are (with the exception of ran-

dom errors in the response behavior) true for all rows in the data set. For data mining 

applications it is sufficient to detect implications which fulfill a predefined level of accu-

racy. It is, for example in a marketing scenario, of interest to find implications which 

are true for more than x% of the rows in the data set. An online bookshop may be in-

terested, for example, to search for implications of the form If a customer orders book A 

he also orders book B if they are fulfilled by more than 10% of the available customer 

data. 

A method closely related to data mining techniques is the GUHA method (Hájek, 

Havel & Chytil, 1966 or Hájek & Havránek, 1977, 1978). The basic idea of this method 
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is to use formal logic to generate all hypotheses which are of interest in a given research 

task and supported by the data. Statistical methods are used to evaluate these gener-

ated hypotheses. 

We will discuss the connection of IITA to scaling techniques, latent class analysis, 

and configural frequency analysis in detail on the example of some data sets. The con-

nections of IITA to the rule space approach (Tatsuoka, 1983), the unified model 

(DiBello, Stout & Roussos, 1995), and the competency-performance theory (Korossy, 

1996) will be discussed in the detailed description of our analysis method. 

IITA tries to detect implications, i.e., dependencies of the form j → i, from the data 

set. What benefits can we gain from the study of such implications between items of a 

questionnaire?  

An important possibility to apply the knowledge of existing implications between 

items is adaptive testing. Suppose we present the items on a computer screen and not in 

a paper-pencil form. Assume that item j implies item i. If the program presents item j 

to a subject and the subject agrees to the item, then we can conclude from j → i that 

the subject will also agree to item i. This item needs therefore not to be presented to 

the subject. Assume conversely that the program presents item i first and that the sub-

ject disagrees with that item. Then it follows from j → i that the subject will also dis-

agree to item j. Thus, item j needs not to be presented to the subject. If we detect many 

implications between the items of a questionnaire this can lead to a severe reduction of 

the time a subject needs to complete the questionnaire. 

Another benefit from the study of implications is that they allow us to get informa-

tion about the beliefs and cognitive processes which cause the answer behavior of sub-

jects.  

Assume again that we detect that item j implies item i. In some cases this will be a 

trivial fact because item j is just a stricter wording of the statement described in item i. 

Thus, the implication follows from the wording of the items. But if the implication does 

not result from the wording of the items we have to find out what are the common 

opinions (remember that j → i means that each subject who agrees to item j will also 

agree to item i) that cause this implication. Why do subjects connect the statements?  

Thus, the study of implications between the items may lead to some insights about 

the reasons for the answer behavior and about the common opinions shared by all inves-
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tigated subjects. We will discuss these points in more detail on the example of some 

data sets. 

Description of Inductive Item Tree Analysis 

Let I = { i1, ..., im} be a set of m dichotomous items. Assume that D = { d1 , ..., dn} 

is a set of observed response patterns of n subjects who answered to the items in I. 

Every response pattern d can be considered as a mapping d : I → {0,1} which assigns 

the response d(i) of a subject to each of the items in I. 

IITA constructs a number of implications j → i from D. Since we interpret j → i as a 

logical implication the constructed implications should be reflexive ( i → i for each item 

i ) and transitive ( i → j and j → k implies i → k for all items i,j,k ). In other words the 

implications must form a quasi-order3 on the item set I.  

A response pattern d of a subject is called a counterexample for an implication j → i 

if the subject agrees to j and disagrees with i. A simple approach to detect all valid im-

plications is to accept only those implications j → i for which no counterexample is ob-

served in the data set D. Such an approach is clearly insufficient, since we have to con-

sider random errors in the data. Such random errors can result from various sources.  

A subject may, for example, be demotivated to work on the questionnaire and there-

fore answering some of the items inconsistent to her or his true opinion. Another possi-

bility is that the subject misunderstands some items due to a lack of concentration. It is 

also possible that the subject marks by error the wrong answer category on the answer 

form, for example due to time pressure or lack in concentration.  

We describe now our basic assumptions on the data. Therefore, we introduce the dis-

tinction between the cognitive state of a subject and her or his answers given in the 

questionnaire. The response pattern of the subject is a mapping d: I → {0,1} which as-

signs the observed response of the subject to each item. Some of these observed re-

sponses are caused by random influences, for example lack in concentration or decreas-

ing motivation to answer the questions. Thus, the true opinion of the subject can differ 

from her or his response pattern. This true opinion can also be considered as a mapping 

s: I → {0, 1} and is called in the following the latent pattern of the subject.  

                                     

3 A quasi-order ≤ on I can be interpreted as a set { (i,j) | i ≤ j } of item pairs. To denote that two items 

are connected by this quasi-order ≤ we use the notations i ≤ j and (i,j) ∈ ≤ simultaneously. 
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We assume that there is a quasi-order ≤ which describes all true implications between 

items and write i ≤ j for j → i. This quasi-order determines the set S of all possible la-

tent patterns by S = {s: I → {0,1} | i ≤ j ∧ s(j) = 1 → s(i) = 1 }. This definition of S is 

equivalent with the definition of the quasi-ordinal knowledge space corresponding to ≤ 

in knowledge space theory (see Doignon & Falmagne, 1985). Interindividual differences 

are thus described in our approach by different latent patterns in S. 

We introduced the distinction between latent pattern and response pattern to clarify 

our assumptions concerning random influences on the data. Please note that we do not 

make any assumptions on the structure of the underlying cognitive states, like for ex-

ample the rule space approach (Tatsuoka, 1983 or Tatsuoka & Tatsuoka, 1987) or the 

unified model (DiBello et al., 1995). These theories establish a link between determinis-

tic aspects of cognition and item response theory. They assume for a given set I of prob-

lems a list of k cognitive attributes or skills which are connected to the items by a k x n 

attribute-by-item matrix Q. Thus, the cognitive state of a subject can be represented by 

a k-tuple a = (a1,…, ak), where ai = 1 if the subject has the cognitive attribute i and ai 

= 0 otherwise. The response pattern of the subject is represented by a n-tuple r = (r1, 

…, rn), where ri = 1 if the subject solved problem i and ri = 0 otherwise. For a given 

cognitive state a it is possible to predict a response pattern r by the assumption that ri 

= 1 if the cognitive state of the subject contains all the skills necessary to solve problem 

i, i.e., by the information contained in Q. With some additional assumptions such ap-

proaches allow to draw inferences from the observed response patterns of subjects to 

their cognitive states. 

Another similar approach which we have to mention here is the competency-

performance theory (Korossy, 1996). This theory describes the connection between the 

set of skills of a subject (the cognitive state of the subject) and the observed response 

pattern of the subject in the context of knowledge space theory.  

It is necessary to make some assumptions on the nature of the cognitive states to ap-

ply these techniques to data analysis. In contrast our analysis method is purely explor-

ative. It does not require any assumptions concerning underlying cognitive attributes. 

We assume that the data set D is generated from S under the influence of random er-

rors. We assume further that the probability of a random error does not depend on the 

item4, i.e., is the same for all items. The goal of our analysis is to uncover ≤ from D. 

                                     
4 The assumption that the probability of a random error does not depend on the item is a necessary as-
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Let }0)(1)(|{: =∧=∈= idjdDdbij  be the number of observed counterexamples for 

the implication j → i. We define a binary relation ≤0 on I by: 

 0 0iji j b≤ ⇔ = . (1) 

This relation ≤0  consists of all the implications which are not violated empirically in 

the data set D. Leeuwe (1974) showed that this relation is a quasi-order on the item set 

I. 

IITA consists of two steps. In the first step, we construct a set {≤L  | L = 0,1, 2, ..., 

n} of quasi-orders on the item set I. In the second step, we calculate the fit of each con-

structed quasi-order ≤L to the data set D. We chose then the quasi-order which fits best 

to the data. 

Construction of the Quasi-Orders ≤L 

We construct the relations ≤L inductively, starting with the quasi-order ≤0. 

Assume that we have constructed in step L of the construction process a quasi-order 

≤L. In step L+1 we add all item pairs to this quasi-order which have not more than L+1 

counterexamples in the data set (i.e., bij ≤ L+1) and do not cause an intransitivity5 to 

item pairs already contained in ≤L or added in this step to ≤L. The procedure to con-

struct ≤L+1 from ≤L consists of three steps.  

First, we determine the set AL+1 = { (i,j) | bij ≤ L+1 ∧ (i,j) ∉ ≤L } of item pairs which 

have not more than L+1 counterexamples in the data set and are not contained in ≤L.  

Second, we repeat the two following operations until the set BL+1 is empty: 

- We check for each element of AL+1  if it causes an intransitivity to other ele-

ments of ≤L ∪ AL+1. Elements which cause such an intransitivity are marked. Let 

BL+1 be the set of all marked elements. 

- We delete all marked elements from AL+1.  

                                                                                                                      

sumption. If this assumption is heavily violated, then our analysis method should not be used. Assume, 
for example, that we have a set of mathematical problems and that some of these problems are open 
problems and some others are multiple choice problems with 4 answer alternatives. For the multiple 
choice problems the probability that a subject, who is not able to find the correct solution, marks by 
chance the correct answer alternative is around 25%. For the open problems the chance that a subject 
finds the correct solution by chance is close to 0%. Thus, our assumption on the error probabilities is 
heavily violated in this case and our analysis method should not be used for this set of items. 
5 It is not possible to define the relation  ≤L simply by i ≤L j ⇔ bij ≤ L, since this relation is for L > 0 not 

always transitive (Leeuwe, 1974). 
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When this process ends none of the remaining implications in AL+1 causes an intransi-

tivity to other elements in ≤L ∪ AL+1. 

Thus, in the third step we define ≤L+1 = ≤L ∪ AL+1. The relation ≤L+1 is by construc-

tion transitive.  

This construction method results in a set { ≤L  | L = 0,1, 2, ..., n } of quasi-orders. It 

is clear from the construction method that ≤0  ⊆ ≤1  ⊆ ≤2 ⊆ ... ⊆ ≤n. Note that some of 

these quasi-orders may be identical. If, for example, AL+1 = ∅, then ≤L = ≤L+1. See 

Schrepp (1999) for a detailed description of the construction method. 

A Method to Determine the Best Fitting Quasi-Order 

Our inductive construction method results in a set of quasi-orders on I. Which of 

these quasi-orders describes the data best? To determine this optimal quasi-order we 

compare each ≤L to the data set D. Then we chose the quasi-order ≤L which fits the data 

relatively best among the constructed quasi-orders { ≤L | L = 0,1, 2, ..., n }. 

Assume for a level L that ≤L is the correct quasi-order underlying the data set D. 

How many counterexamples for an implication j → i must we expect under this as-

sumption? 

Define for each item i in I: 

 
{ | ( ) 1}

i
d D d i

p
n

∈ =
=  (2) 

The number pi is the relative frequency of subjects in the data set, who agreed to 

item i.  

Our basic assumption on the data is that there is a (maybe empty) set of true logical 

implications between the items. These implications are true for all response patterns of 

subjects. A violation of such an implication is only possible by the influence of random 

errors. Let γ be the probability that a true implication is violated due to random errors. 

Under our assumption that ≤L is the correct quasi-order we are able to estimate the er-

ror probability γ from the observed bij-values. This can be done by: 
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In this formula bij/pj*n is the number of observed counterexamples to the implication 

j → i relative to the number of cases in which such a counterexample is possible, i.e., 

item j is answered with 1. The value |≤L| – m is the number of non-reflexive implications 

in ≤L. 

Thus, γ represents the amount of random errors in the data under the assumption 

that ≤L is the correct quasi-order. 

To determine how many counterexamples we have to expect for an implication j → i 

we have to distinguish two cases: 

1. Assume (i,j) ∉ ≤L . Since there is no information available about the dependencies of 

i and j, we assume that these items are independent. Thus, the expected number tij 

of counterexamples to j → i (under the assumption that ≤L is the correct quasi-

order) is equal to the expected value of the number of response patterns with d(i) = 

0 and d(j) = 1. Therefore, tij = (1-pi) * pj * n * (1-γ). Here (1-pi) * pj * n is the ex-

pected number of response patterns with d(i) = 0 and d(j) = 1 and (1-γ) is the 

probability that no random error has occurred. 

2. Assume (i,j) ∈ ≤L and i ≠ j. In this case (since we assume that ≤L is the correct 

quasi-order) all counterexamples to j → i must result from random errors. Thus, the 

expected number of counterexamples to j → i should be tij = γ * pj * n. The value tij 

is the number of data patterns pj * n in which a subject agreed to item j (since only 

in this case a counterexample can occur) multiplied with the error probability γ. 

We can now derive a measure for the fit between ≤L and the data set D by: 

 

2

2

( )

( , )
( )

ij ij
i j

L

b t

diff D
m m

≠
−

≤ =
−

∑
 (4) 

The value diff(≤L,D) is the mean quadratic difference between the observed counter-

examples to j → i and the expected number of counterexamples under the assumption 

that ≤L is the correct quasi-order.  

To determine the optimal tolerance level L we calculate the diff(≤L,D)  value for all 

levels L = 0,1,...,n and chose the level for which this value is minimal. 

Note that our assumption concerning the stochastic independence of i and j in the 

case of (i,j) ∉ ≤L may be wrong. But we use the tij only to compare the quasi-orders ≤L. 

If the estimation of tij is wrong, this does influence all levels L in the same way. Thus, 
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the quasi-order ≤L closest (we can compare two quasi-orders by their symmetric dis-

tance, see the description of our simulation study for a detailed definition) to the correct 

quasi-order should show the best diff-value. 

The described method to compare the constructed quasi-orders {≤L | L = 0,1, 2, ..., 

n} can also be used outside the context of explorative data analysis. In knowledge space 

theory quasi-orders on problem sets are sometimes derived from models of the underly-

ing cognitive problem solving processes (see Albert, Schrepp & Held, 1994). In this case 

we can distinguish competing models of problem solving by their derived quasi-orders. 

It is then possible to use our method to determine which of these derived quasi-orders 

(and thus which of the investigated models of problem solving) fits best to the data. 

Our algorithm shares some features with Item tree analysis (Leeuwe, 1974). A com-

parison of our algorithm to item tree analysis can be found in Schrepp (1997, 1999). In 

these papers both algorithms are compared concerning their ability to reconstruct the 

correct implications from simulated data. The results of these simulations (the simula-

tion procedure in these papers is similar to the procedure we describe in the next sec-

tion) show that IITA produces better results than ITA. Since the main advantage of the 

described algorithm compared to ITA is the inductive construction of the quasi-orders 

≤L we have chosen the name Inductive Item Tree Analysis. 

An Example 

Assume that I = {a, b, c, d, e} is a questionnaire with 5 items. Assume that the im-

plications a → b, a → c, a → d, a → e, b → c, b → d, b → e, c → e, and d → e are true 

for this questionnaire. The following Hasse-diagram depicts these implications. 

a

b

cd

e
 

Figure 1. Hasse-diagram of the assumed implications. 

The set S of all patterns consistent with these implications is given by: 
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S = {(1,1,1,1,1), (0,1,1,1,1), (0,0,1,1,1), (0,0,1,0,1), (0,0,0,1,1), (0,0,0,0,1), (0,0,0,0,0) } 

If no errors are possible, then each subject must show a response pattern from S. We 

simulate the response behavior of 200 subjects to the items in I accordingly to our error 

model. Therefore, we randomly select 200 times a latent pattern s from S. For each item 

i we change s(i) with probability .05 from 1 to 0 respectively from 0 to 1. The result is a 

simulated response pattern d. Thus, the simulated response patterns result from the 

latent patterns by applying an error rate of .05. 

Table 1 shows the resulting simulated response patterns and their frequencies. Pat-

terns with frequency 0 are not shown. 

Table 1 

Simulated Response Patterns and their Frequencies. 

pattern freq.  pattern 
(cont.) 

freq. 
(cont.) 

 pattern 
(cont.) 

freq. 
(cont.) 

00101 30  10111 5  11110 2 
00011 28  00100 4  01110 2 
01111 27  11011 4  01000 1 
11111 24  01101 3  01011 1 
00001 24  10011 3  11101 1 
00111 21  10001 2  00010 1 
00000 14  01001 2  00110 1 

 

We try now to reconstruct the quasi-order underlying the simulated data with the 

help of IITA. Table 2 shows the observed bij-values for the data set in Table 1. 

Table 2 
The Observed ijb -Values for the Simulated Data Set from Table 1. 

j 

  a b c d e 

 a 0 36 88 81 136 
 b 10 0 61 59 113 
i c 9 8 0 37 64 
 d 3 7 38 0 62 
 e 2 5 9 6 0 
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We use our inductive method to construct the set {≤L  L = 0, ..., 200} of quasi-

orders on I. The resulting quasi-orders (we show only those quasi-orders which are not 

identical to a quasi-order with a higher tolerance level) are depicted in Figure 2 as 

Hasse-diagrams. 

The value of diff(≤L,D) is minimal for L=10. Thus, ≤10 is the optimal solution for the 

simulated data set. Therefore, IITA detected the quasi-order underlying the data suc-

cessfully. But this is of course not always possible.  

a b c d e≤0

≤3

≤5

≤7

a

e

b c d≤2

a

d

b

e

c

a

d

b

e

c
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d

b

e

c

a

d

b

e

c

≤8 a

d

b

e

c

≤9 a

d

b

e

c

≤10 a

d

b

e

c

≤36 a,b

d

e

c

≤37 a,b

d

e

c

≤38 a,b

c,d

e

≤136 a,b,c,d,e

 

Figure 2. Hasse-diagrams of the constructed quasi-orders on I. 

The Reproducibility Coefficient 

As we have already mentioned a Boolean analysis has, in general, not the goal to ex-

plain a data set D completely by the generated deterministic dependencies, i.e., the de-

rived implications in ≤. But to control the quality of the constructed quasi-order we 

need an estimation of how much of the structure in the data can be explained by these 

dependencies. 

As we have seen the derived deterministic implications determine a set S of latent 

patterns which are compatible with these dependencies. A simple approach to measure 

the fit between S (respectively ≤) and D is to compute: 

 
|D|

|}Sd|Dd{|)S,D(fit ∈∈
=  (5) 
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i.e., the relative frequency of observed data patterns compatible with the implications in 

≤. 

But this approach is not adequate. Assume, for example, that we have a linear order 

i1 → i2 → ... → i10 on a set of 10 items. Assume further a probability of .1 that the value 

s(i) of an item in the latent pattern of a subject is not equal to the value d(i) in the 

response pattern of the subject. The probability that an observed response pattern is an 

element of S is then approximately 0.910 ≈ .35. Thus, even if the linear order fits perfect 

to the latent structure we can expect only 35% of the response patterns to be compati-

ble with it. 

If we have a linear order on a set of 20 items this value decreases to .920 ≈ .12. Thus, 

even a small value of fit(D,S) does not indicate that the derived dependencies are not in 

accordance with the data.  

A measure which is able to overcome the described problem is the reproducibility co-

efficient (Guttman, 1944). Let dist(r,s) = {i ∈ I  r(i) ≠ s(i)} be the distance between 

two response patterns. The value of dist(r,s) is the number of items in which r and s 

differ. We calculate for every response pattern r the minimal distance mdist(r,S) = 

min{dist(r,s)  s ∈ S} to a pattern from S. We define now the reproducibility coefficient 

repro(≤, D) by: 

 
nI

Sdmdist
Drepro Dd

∗
−=≤
∑
∈

),(
1),(  (6) 

Here |I| * n is the number of cells in the data matrix. Thus, the reproducibility coef-

ficient can be interpreted as the percentage of cells in the data matrix which are com-

patible with S (and thus with ≤). We count for each response pattern d in D the mini-

mal number of values d(i) we have to change to transform d into a pattern in S. Thus, 

repro gives an insight about the minimal number of random errors that must have oc-

curred under the assumption that all implications in ≤ are correct. 

A Simulation Study 

We test the ability of IITA to extract the true implications from the data in a simu-

lation study. This simulation study should answer the following questions: 
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- Is the algorithm able to detect the valid implications with high accuracy if enough 

data are available? 

- How much data do we need to ensure that the underlying quasi-order is recon-

structed with high accuracy? 

We use an item set I consisting of 9 hypothetical items for the simulation. The simula-

tion procedure consists of the following steps: 

1. A relation R on I is constructed randomly. Therefore, we loop over all possible pairs 

(i,j) of items with i ≠ j and include each pair (i,j) with probability δ in R. The re-

flexive pairs (i,i) are all included in R. The probability δ is changed randomly be-

tween the simulations to produce relations with different size. 

2. The transitive closure ≤ of R is computed. Thus, ≤ is the smallest quasi-order which 

contains the relation R. 

3. The set }1)(1)(|}1,0{:{ =→=∧≤→= isjsjiIsS  of all possible latent patterns con-

sistent with ≤ is computed. 

4. The set S is used to generate a simulated data set D with n data patterns. To gen-

erate this data set we repeat the following steps n times: 

a) An element s ∈ S is chosen randomly. 

b) For each i ∈ I:  

i) if s(i) = 1, then s(i) is set to 0 with probability τ 

ii) if s(i) = 0, then s(i) is set to 1 with probability τ 

5. We analyze D with IITA. This results in a quasi-order ≤opt. 

6. The quasi-orders ≤ and  ≤opt are compared by: 

 
( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ){ }
dist , \ \

, | , , , ,

opt opt opt

opt opti j i j i j i j i j

≤ ≤ = ≤ ≤ ∪ ≤ ≤

= ∈≤ ∧ ∉≤ ∨ ∉≤ ∧ ∈≤
 (7) 

The value of dist(≤,≤opt) is the number of implications in which ≤ and ≤opt differ. If 

dist(≤,≤opt) = 0 then the relation ≤ is perfectly reconstructed from the data. 
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The accuracy of IITA depends clearly on the number of available data patterns, i.e., 

the size of D, and the error probability τ. The number of available data patterns is var-

ied as 50, 100, 200, 400, and 800. The error probability is varied as .03, .05, .08, and .1. 

For each combination of values for n and the error probability τ we carry out 1000 

simulations. The following table shows the mean value of dist(≤,≤opt) over these 1000 

simulations. The values in parentheses indicate the diff-value divided by the number of 

non-reflexive item pairs (i,j). 

 

Table 3 

Mean Value of dist(≤,≤opt) for Different Error Probabilities and Different Values for n. 

 n 

τ 50 100 200 400 800 

.03 0.96 (.013) 0.66 (.009) 0.51 (.007) 0.42 (.006) 0.34 (.005) 

.05 1.20 (.016) 0.93 (.013) 0.7 (.001) 0.65 (.009) 0.59 (.008) 

.08 2.17 (.03) 1.83 (.025) 1.67 (.023) 1.62 (.023) 1.49 (.021) 

.10 3.04 (.042) 2.47 (.034) 2.44 (.034) 2.35 (.033) 2.26 (.031) 

 

In each simulation the algorithm had to decide for 72 item pairs (i,j) (since the 9 re-

flexive pairs (i,i) are always classified correctly) if j→ i is true or not. As the simulation 

results show, this is done with high accuracy, even if the number of available response 

patterns is small. For example, for τ = .05 and n = 100 in average less than 1 item pair 

is not classified correctly. Thus, the constructed quasi-order ≤opt differs in average in 

1.3% of all non-reflexive item pairs from the true quasi-order ≤.  

As we can see from Table 3 dist(≤,≤opt) increases with an increasing error level τ and 

decreases with an increasing number n of simulated response patterns. 

In each simulation the not correctly classified pairs (i,j) can be divided into two sub-

sets. The first subset consists of all implications j i→  with (i,j) ∈ ≤ but (i,j) ∉ ≤opt . 

These are the correct implications which are not detected by IITA. The second subset 

consists of all implications j i→  with (i,j) ∉ ≤ but (i,j) ∈ ≤opt . These are implications 

which are detected erroneously by IITA.  

IITA is a method of explorative data analysis. Thus, the detected implications have 

to be investigated and confirmed in subsequent research. It is in general costly to inves-
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tigate implications which then prove to be not true. Thus, the errors represented by the 

second subset should be small compared to the errors in the first subset. 

The following table shows the mean value of the erroneously detected implications, 

i.e., the mean of | (≤opt \ ≤) |, over the 1000 simulations in each condition. 

 

Table 4 

Mean Value of | (≤opt \ ≤) | for Different Error Probabilities and Values for n. 

 n 

τ 50 100 200 400 800 

.03 .64 .45 .33 .29 .24 

.05 .44 .29 .16 .12 .12 

.08 .33 .15 .09 .06 .04 

.10 .21 .09 .05 .03 .02 

 

The amount to which the erroneously detected implications contribute to the dist-

value depends on the error probabilities. This is on the first sight a surprising result. 

The reason is that the algorithm uses the estimation of the error probability γ to chose 

the best fitting level. 

If τ is small and the data set D contains only a small number of patterns, then the 

error constant γ will be overestimated in some simulations. In this case a higher toler-

ance level L will be accepted, i.e., the quasi-order ≤opt will contain erroneously detected 

implications. 

If the number of data patterns is sufficiently large or if the error probabilities are 

relatively high, then most errors result from valid implications which are not detected 

by IITA. 

Possible Extensions of the Analysis Method 

IITA is designed to detect logical implications between items from observed response 

patterns. In this section we describe some extensions of this method. 
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Up to this point we restricted ourselves to direct implications. Depending on the con-

tent of the items it can be of interest to analyze more complex logical dependencies. It 

is, for example, possible that each subject who disagrees (0) to item j will agree (1) to 

item i. In this case we have to consider implications of the form ¬j → i. Or it may be 

possible that each subject who agrees to item i and item j will agree to item k. In this 

case we have to consider implications of the form i ∧ j → k.  

We can use exactly the same method as described in the previous section to analyze 

such complex dependencies! Let X be a term consisting of variables for the items in I 

and the logical operators ¬, ∧, and ∨. To analyze if X → i or i → X is true for some 

item i, we simply have to add a column X in the data matrix D. The value in this col-

umn is 1 if X is true for the item values in the corresponding row and 0 otherwise. Then 

we can simply analyze the extended data matrix by IITA. 

If we want, for example, to consider the negations of the items, we have to add for 

each item i a item ¬i to D. The value of this item ¬i in each row is simply the comple-

ment of the value for i. 

Our second extension deals with the handling of incomplete data. In many data sets 

we have to face the problem that some subjects answered only a part of the items in the 

questionnaire. To solve this problem we can simply exclude all incomplete response pat-

terns from the analysis. This strategy is of course not optimal, since it throws away 

valuable information. We show in the following how the algorithm can be modified to 

handle also incomplete data. 

Let d be the response pattern of a subject. If the subject does not answer item i we 

assign - to this item. Thus, d can be considered as a mapping d: I → {0,1,-}. 

Let oi be the number of response patterns in which item i is not answered, i.e.,  

oi = |{ d ∈ D | d(i) = - }| and qij be the number of subjects who agreed to item j and 

answered item i, i.e., qij = | { d ∈ D | d(j) = 1 ∧ d(i) ≠ - }|. 

Now we are able to formulate the necessary modification of the algorithm. The only 

step we have to change is the method to determine the best fitting quasi-order. The first 

thing we have to change is the calculation of the tij values.  

Assume (i,j) ∉ ≤L. As before tij should be the expected value of the number of re-

sponse patterns with d(i) = 0 and d(j) = 1. Since we have to consider the case that an 

item is not answered we have to set 
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 tij = ( 1 - (pi + oi)) * pj * n * (1-γ). (8) 

Assume (i,j) ∈ ≤L. The number of response patterns in which a counterexample to i 

→ j can occur is given by qij. Thus,  

 tij = γ * qij. (9) 

In the calculation of γ we have to consider the cases in which an item is not an-

swered. Thus, 

 
{ / | }

( )
ij ij L

L

b q i j i j
m

≤ ∧ ≠
γ =

≤ −
∑  (10) 

The rest of the algorithm stays the same. 

Connections to Other Data Analytic Methods 

There are some obvious connections between IITA (or any other method of Boolean 

analysis) and other well known methods of data analysis. 

Guttman Scaling 

IITA can be interpreted as a generalization of Guttman scaling. A Guttman scale de-

fines a linear order i1 < i2 < .... < im on a set I = {i1, ..., im} of items by simply setting 

ik < il if the number of subjects responding with a 1 to item ik is lower than the number 

of subjects responding with a 1 to item il.  

The assumption of a linear sequence of items poses heavy restrictions on the data. 

Thus, in practical applications a Guttman scale offers only in rare cases an adequate 

description of a data set. IITA is far less restricted, since we assume only a partial-order 

of logical implications. Thus, our method is able to produce a reasonable description of 

the logical implications between items for some data sets where no adequate Guttman 

scale exists. 

As an example we analyze a data set from Suchman (1950). This data set is one of 

the classical examples for Guttman scaling. Suchman asked soldiers about the symp-

toms of fear they show under battle.  

The following symptoms are asked: 
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1. Violent pounding of the heart 

2. Sinking feeling in the stomach 

3. Feeling sick in the stomach 

4. Shaking or tremble all over 

5. Feeling of stiffness 

6. Feeling of weakness 

7. Vomiting 

8. Loosing control of the bowels 

9. Urinating in pants 

The following table shows the observed response patterns of 100 subjects where a 1 

means that the symptom was observed. 

 

Table 5 

Observed Response Patterns and Their Frequencies in the Data from Suchman (1950). 

Pattern freq.  pattern 
(cont.) 

freq. 
(cont.) 

 pattern 
(cont.) 

freq. 
(cont.) 

 pattern 
(cont.) 

freq. 
(cont.) 

000000000 7  110100001 2  100001000 1  111001001 1 

100000000 7  110101000 2  001100000 1  100101011 1 

110000000 7  110101001 2  111000000 1  110110001 1 

111111011 7  111101011 1  010110001 1  111101000 1 

111101001 6  010000000 1  010101001 1  110100110 1 

111111111 6  001000000 1  111001000 1  110110010 1 

111111001 5  000010000 1  110110000 1  101111001 1 

110001000 3  010001000 1  110010001 1  111011001 1 

111100000 3  100000010 1  100001011 1  111111000 1 

110001001 3  100010000 1  101110001 1  110111001 1 

010000001 2  100000001 1  111110000 1  111110011 1 

110100000 2  100100000 1  100111001 1  111101101 1 

110111000 2  111101111 1       

 

The data can be very well described by a Guttman scale which is given by the left 

Hasse-diagram in Figure 3. This Guttman scale has a reproducibility coefficient of .93. 

Thus, 93% of the cells in the data matrix are in accordance with that linear order. 

We analyze now the same data set with IITA. The following table shows the ob-

served bij-values. 
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Table 6 

The ijb -Values for the Suchman Data. 

j 

 1 2 3 4 5 6 7 8 9 
1 0 6 2 3 2 2 0 0 4 
2 17 0 4 6 5 5 0 3 6 
3 44 35 0 20 11 19 1 5 12 
4 30 22 5 0 4 12 0 2 10 
5 51 43 18 26 0 27 3 6 23 
6 34 26 9 17 10 0 1 4 10 
7 75 64 34 48 29 44 0 13 42 
8 63 55 26 38 20 35 1 0 32 
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Figure 3. Guttman scale and best fitting quasi-order for the Suchman data. 

The optimal fit is found at level 12. The resulting quasi-order is depicted as the right 

Hasse-diagram in Figure 3. The quasi-order has a reproducibility coefficient of .92. 

Thus, 92% of the cells in the data matrix can be explained by the quasi-order.  

Figure 3 shows that our result is almost identical to the Guttman scale. The only ex-

ception is that we found the additional implication 6 → 9. This additional implication 

seems to be well supported by the data, since the reproducibility coefficient stays more 
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or less the same when the additional implication is added to the set of implications de-

rived from the Guttman scale. 

The similarity of our analysis result to the Guttman scale is quite interesting, since 

IITA uses a totally different technique to derive an order from a data set. 

Feature Pattern Analysis 

Feature pattern analysis (Feger, 1994) can be seen as a generalization of Guttman 

scaling to higher dimensions. This method makes use of the information about the co-

occurrence of the item values to built up a representation of the data by logical rules 

(for a geometric representation of FPA see, for example, Feger 2000). 

Feature pattern analysis (FPA) is a stepwise procedure. First, it tries to find a repre-

sentation of the data by analyzing the contingency tables of all item pairs. If no suffi-

cient fitting representation is found the analysis operates on contingency tables of item 

triples, etc. 

A solution of FPA in the first step is equivalent to a Guttman scale. FPA is a scaling 

method. The representation found by the method connects all items of the test or ques-

tionnaire. 

We give now a rough description of FPA. For details see Feger (1994, 2000). Assume 

that we are in step n of the analysis. The analysis operates on all contingency tables 

resulting from the combination of n items. The researcher has to define a tolerance level 

L. In each contingency table one cell with a frequency ≤ L is defined to be a zero cell6.  

The interpretation of a zero cell is that the combination of item values defining this 

cell does not occur regular (with the exception of random errors) in the data. A zero cell 

can be represented by a number of logical dependencies. We show this by two examples.  

Assume first that we have a contingency table of two items i and j defined by: 

I j freq.  

0 0 20  

0 1 2 zero cell 

1 0 18  

1 1 20  

                                     

6 If in one of the contingency tables no cell with a frequency ≤ L exists,  then FPA gives no solution for 

this step. 
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Thus, the pattern i = 0 and j = 1 does not occur regular in the data set. Therefore, 

we have the implications j → i and ¬ i → ¬ j. 

Assume now that we have a contingency table of three items i, j, and k and that the 

zero cell is given by i = 1, j = 1, and k = 0. Here we can derive the dependencies i ∧ j 

→ k, i ∧ ¬ k→ ¬ j, and j ∧ ¬ k → ¬ i. 

To form a proper representation of the data the zero cells have to fulfill a consistency 

criterion. This criterion ensures that the derived dependencies are logically consistent. 

Again we show that with an example. Assume that we have three items i, j, and k. As-

sume further that we are in step 2 of a FPA. The zero cell in the contingency tables of i 

and j is (i = 1, j = 0), the zero cell for j and k is (j = 1, k = 0), and the zero cell for i 

and k is (i = 1, k = 0). Thus, i → j, j → k, and i → k, and these logical dependencies 

are consistent.  

Assume now that the zero cells are given by (i = 1, j = 0), (j = 1, k = 0), and (i = 

0, k = 1). Thus, i → j, j → k, and k → i. These logical dependencies are inconsistent. 

FPA selects in step n one zero cell from each contingency table of the n items. Since 

it is possible that more than one cell in the contingency table shows a frequency less 

than the tolerance level L there can be multiple solutions for one step of FPA. In this 

case FPA computes for each solution the sum z of the frequencies in the zero cells. The 

solution with the lowest z-value is chosen as the solution for this step. 

The z-value of a solution is also used as a measure for the adequacy of a solution, i.e., 

for the fit of the solution to the data. 

We have to mention here one major difference between FPA and Guttman scaling on 

one side and methods of Boolean analysis on the other side. FPA and Guttman scaling 

try to find a representation of the data which connects all items. In contrast for a Boo-

lean analysis it is a natural result that some of the items do not show a dependency to 

other items. 

As an example we analyze a data set from Gloning, Lienert & Quatember (1972). 

This set contains the data of 162 aphasic patients of the Universitäts-Nervenklinik in 

Vienna. Each patient was tested with respect to 5 tasks.  

These tasks are: 

A point to an object on a picture (Example: Please show me the ship.) 

B name an object on a picture (Example: Please tell me how this object is 

called.) 
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 C repeat a sentence (Example: Please repeat exactly what I say.) 

D name as fast as possible words beginning with a given letter (Please tell 

me as many word as possible starting with M.) 

E the number of verbal and phonemic errors produced when the patient per-

forms the tasks B, C, and D 

The items were dichotomized at the median and recoded in a way that 1 indicates 

aphasic behavior and 0 indicates normal or almost normal behavior. The observed re-

sponse patterns of the data set can be found in Table 9. 

Feger (2000) used the aphasic data set as an example for his scaling method. His 

analysis supports a solution for dimension 2, which shows a z-value of 38. Thus, each of 

the 10 zero-cells is violated in average by only 3.8 of the 162 response patterns. This is a 

very good fit to the data. The zero cells of this solution and the corresponding logical 

dependencies are shown in Table 7. We restrict our analysis of logical dependencies in 

this example to logical formulas which do not contain negations of symptoms. Thus, 

Table 7 shows only one of the three logical dependencies, which follow from each zero-

cell. 

 

Table 7 

Results of FPA for the Aphasic Data Set. 

Cell zero cell violations logical dependency 

ABC 101 7 A ∧ C → B 

ABD 101 2 A ∧ D → B 

ABE 100 3 A → (B ∨ E) 

ACD 101 1 A ∧ D → C 

ACE 100 2 A → (C ∨ E) 

ADE 100 2 A → (D ∨ E) 

BCD 101 6 B ∧ D → C 

BCE 100 7 B → (C ∨ E) 

BDE 100 1 B → (D ∨ E) 

CDE 011 7 D ∧ E → C 

 

Thus, each logical dependency has the form X → Y where X and Y are items or a 

conjunction or disjunction of two items. 
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We analyzed the aphasic data set with IITA. The analysis showed that the items A, 

B, and C are equivalent (i.e., A ↔ B ↔ C) and that item D implies the items A, B, 

and C (i.e., D → A, B, C). 

To get a comparable result to FPA we analyze the aphasic data set again with the 

described extension of IITA to complex dependencies. We include for each conjunction 

X ∧ Y or disjunction X ∨ Y of two items (with X ≠ Y) a virtual item in the data ma-

trix. This item has the value 1 if the conjunction or disjunction is true for the corre-

sponding row in the data matrix and 0 otherwise. Thus, the total number of items is 25 

(5 real items, 10 disjunctions, and 10 conjunctions). This analysis showed some addi-

tional and more complex dependencies. 

A first interesting result is that all logical dependencies from Table 7 are also found 

by IITA. But our analysis uncovered also a number of new dependencies.  

A Hasse-diagram or a listing of all the detected implications is for this 25 item data 

set not informative. Therefore we show the results in form of a minimal set (i.e., all de-

tected implications can be derived logically from this set) of logical formulas: 

 D → A, B, C (11) 

 A ↔ B ↔ C (12) 

 A → D ∨ E (13) 

 B → D ∨ E (14) 

 C → D ∨ E (15) 

The set S of all consistent patterns is given by:  

 S = { (0,0,0,0,0), (0,0,0,0,1), (1,1,1,0,0), (1,1,1,1,0), (1,1,1,0,1) }  

The reproducibility coefficient for this solution is .9. 

An interesting observation from our comparison to FPA and Guttman scaling is that 

if a good fitting scale exists this scale is (together with a number of additional depend-

encies) reproduced by an analysis with IITA. 
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Latent Class Analysis 

There are also some similarities between Boolean analysis and latent class analysis. 

The basic assumption of latent class analysis is that the set of subjects which pro-

duced the data set D can be split into several subsets which are called latent classes. 

Each latent class x is described by an n-tuple (πx1, ..., πxm) where πxi ∈ [0,1] for each i= 

1, ..., m. 

The interpretation of (πx1, ..., πxm) is A subject in latent class x answers item i with 

probability πxi positive. Each latent class occurs with probability πx in the population.  

The result of a latent class analysis of a binary data set D is thus given by: 

π1   (π11, ..., π1m) 

... (16) 

πt    (πt1, ..., πtm) 

where t is the number of latent classes. 

For a more detailed introduction into latent class analysis see, for example, Clogg 

(1995) or Rost and Langheine (1997). 

The result of an analysis with IITA is a partial quasi-order ≤ on the item set I. As we 

have seen this quasi-order corresponds to a set S := {s: I → {0, 1} | i ≤ j ∧ s(j) = 1 → 

s(i) = 1} of latent states. The discrepancies between S and the data set D are explained 

by random errors. Let τ be the probability of a random error. 

Thus, latent class analysis and IITA have in common that they both produce a sepa-

ration of the population into a number of latent classes or states. In latent class analysis 

these latent classes are n-tuples of probabilities. A latent class describes the answer 

probabilities of a subject in that class. In our method the latent states are n-tuples of 0s 

and 1s. A latent state describes the responses of a subject in that state. 

The main difference of both analysis methods is the way the results are interpreted. 

Latent class analysis tries to fit a model to the data. Thus, the latent classes together 

with their frequencies try to explain the data completely. The fit of the model can be 

tested by statistical methods (for details see, for example, Rost & Langeheine, 1997). 

IITA tries, in the tradition of Boolean analysis and data mining techniques, to un-

cover existing deterministic dependencies between items. It does not assume that these 
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dependencies together with some error parameters explain the data set completely. The 

existence of other probabilistic dependencies is not explicitly modeled in IITA. 

It is also possible to estimate the frequencies of the latent states and the error prob-

ability τ in IITA. The frequencies f(s) of the latent states can be estimated in the fol-

lowing way. 

For each response pattern d ∈ D we calculate the minimal distance mdist(d,S) to a 

latent state from S. Define the set Md by Md = {s ∈ S | dist(s, d) = mdist(d,S)}. Md is 

the set of all latent states with a minimal distance to d. We define now ms,d by: 
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The frequency f(s) of a latent state s can then be estimated by: 

 ∑
∈

=
Dd

d,s
|D|

m)s(f  (18) 

The probability τ can be estimated directly from the reproducibility coefficient as τ = 

1 – repro(≤ ,D). 

As an example we analyze a data set from the International Social Science Survey 

Programme (ISSP) for the year 1995. The ISSP is a continuing annual program of 

cross-national collaboration on surveys covering important topics for social science re-

search. The program conducts each year one survey with comparable questions in each 

of the participating nations. 

The theme of the 1995 survey was national identity. We analyze the results for ques-

tion 4 for the data set of Western Germany. The statement for question 4 was: 

Some people say the following things are important for being truly German. Others 

say they are not important. How important do you think each of the following is … 

1. to have been born in Germany 

2. to have German citizenship 

3. to have lived in Germany for most of one’s life 

4. to be able to speak German 

5. to be a Christian 

6. to respect Germany’s political institutions 

7. to feel German 
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The subjects had the response possibilities Very important, Important, Not very im-

portant, Not important at all, and Can’t choose to answer those statements. 

To apply IITA to this data set we have to change the answer categories7 . The an-

swers Very important and Important are coded as 1. The answers Not very important 

and Not important at all are coded as 0. Every response pattern containing the answer 

Can’t choose to one of the items is removed from the data set. The resulting data set 

contains 1126 response patterns. The observed ijb -values are shown in Table 8.  

Table 8 
Observed ijb -values for the data from question 4 of ISSP 1995. 

j 

  1 2 3 4 5 6 7 

 1 0 335 232 450 107 487 342 

 2 34 0 89 165 46 198 115 

 3 93 251 0 313 81 360 227 

i 4 19 35 21 0 26 82 37 

 5 311 551 424 661 0 682 537 

 6 24 36 36 50 15 0 32 

 7 71 145 95 197 62 224 0 

 

The optimal fit is found at level 95. The resulting quasi-order is depicted in Figure 4 

as a Hasse-diagram. This quasi-order has a reproducibility coefficient of .94.  

                                     

7 Please note that for an analysis with latent class analysis a recoding of the data would be not necessary, 

since latent class analysis is able to handle polytomous data directly. 
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Figure 4. Best fitting quasi-order for the data from question 4 of ISSP 1995. 

The set of latent states compatible with this quasi-order is given by: 

 S :=  { (0,0,0,0,0,0,0), (0,0,0,1,0,1,0), (0,1,0,1,0,1,0), (0,0,0,1,0,1,1),  

  (0,1,0,1,0,1,1),  (0,1,1,1,0,1,1), (1,1,1,1,0,1,1), (0,1,1,1,1,1,1), (1,1,1,1,1,1,1) }. 

If we estimate the error probability τ and the frequencies of the states we get τ = .06 

and the frequencies are given by: 

 

State Frequency 

0000000 .046 

0001010 .069 

0101010 .078 

0001011 .062 

0101011 .111 

0111011 .124 

1111011 .226 

0111111 .046 

1111111 .239 

 

We also applied the generalization of IITA to incomplete data to this data set. Here 

the answer Can’t choose is coded as ‘-‘. The full data set contains 1282 response pat-

terns. The result of the analysis are exactly the same (naturally with other values for 

the bij and the optimal tolerance level) as described in Figure 4. 
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We analyze now the data for question 4 from ISSP 95 with latent class analysis. For 

the analysis we used the freeware program LEM from J. Vermunt8. 

As a criterion to determine the number of latent classes we used the Bayesean infor-

mation criterion BIC9, which gives an optimum of 3 latent classes for this data set. 

The frequencies of the latent classes and the corresponding answer probabilities are 

given by: 

.1111  (.0224, .1443, .0493, .3733, .3006, .7032, .1531) 

.3927  (.9207, 1.000, .9516, 1.000, .6206, .9813, .9649) 

.4959  (.3082, .7571, .5266, .9384, .1180, .9364, .7292) 

Accordingly to this interpretation of the data there are three classes of subjects. 

Class 1 occurs with a frequency of 11% in the population and can be described by show-

ing a high probability to find statement 6 to be important, a small probability to find 

statements 4 and 5 to be important, and a very small probability to find any of the re-

maining statements to be important. Class 2 occurs with a frequency of 39% in the 

data. A subject in this class finds statement 5 to be important with medium probability 

and all other items with a high probability to be important. Class 3 occurs with a fre-

quency of 50% in the data. Subjects in this class find statements 4 and 6 with a very 

high probability to be important, statements 2 and 7 with a high probability to be im-

portant, and statement 3 with a medium probability to be important. 

We summarize now the main differences and similarities between LCA and Boolean 

analysis. Both methods allow to split up the data into a number of latent states. For 

each latent state a frequency of occurrence in the population can be estimated.  

The main difference between both methods lies in the nature of the latent states. In 

LCA the states are vectors of probabilities. In Boolean analysis the states describe vec-

tors of 0s and 1s. Thus, if a subject is in a latent state in the sense of LCA we know 

with which probability he or she will answer any of the items positively. If a subject is 

in a latent state in the sense of Boolean analysis we know which answer he or she will 

give to each of the items (with the exception of a small fixed error probability). 

                                     

8 The program from J. Vermunt can be downloaded free of charge from the Web under the link 

www.kub.nl/faculteiten/fsw/organisatie/departementen/mto/software2.html. 
9 There exists a number of different approaches to determine the optimal number of latent classes. Since 

our goal is mainly to work out the differences of Boolean analysis and LCA we go not into detail here. 
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Thus, a latent class model with l classes shows that the population can be split into l 

subgroups. For each member of a subgroup we can determine the probability for his or 

her answers to each of the items.  

The result of a Boolean analysis provides also a split of the population into sub-

groups, which are represented by the constructed deterministic states. But for each 

member of such a subgroup we know exactly how he or she will respond in principal 

(with the exception of some random errors in the response behavior) to each of the 

items.  

Since the latent states in the sense of LCA are vectors of probabilities we can expect 

to find a sufficient explanation of the data with less states than in a comparable analy-

sis by Boolean analysis, which represents the different possible response patterns by de-

terministic vectors of 0’s and 1’s.  

Configural Frequency Analysis 

Configural frequency analysis (Lienert, 1972) uses statistical techniques to search10 for 

patterns in cross classification data. 

Assume that we have a cross classification table of n (dichotomous) items. A con-

figural frequency analysis (short CFA) starts from a base model which assigns an ex-

pected probability Pexp(c) to each cell c in the cross classification table. Let Pobs(c) be 

the observed frequency of a cell c in the cross classification table. 

CFA makes use of statistical tests (for example Chi-square test or a binomial test) to 

find out if Pobs(c) > Pexp(c) or Pexp(c) > Pobs(c) is true for any cell c in the cross classifi-

cation table. If Pobs(c) > Pexp(c) is significant, then the cell c is called a type. If Pexp(c) > 

Pobs(c) is significant, then the cell c is called an antitype.  

CFA can be applied as a method for exploratory data analysis. Assume a set I of di-

chotomous items and a data set D of response patterns to that items. It is now possible 

to use CFA to analyze all cross classification tables of all item pairs, item triples, etc. 

The detected types respectively antitypes are then a description for the regularities in 

the data.  

                                     

10 Configural frequency analysis can also be used in a confirmatory context. See, for example, von Eye 

and Brandtstädter (1997). 
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Since a high number of tests is applied in this approach the α-level must be adjusted. 

This can be done, for example, by a Bonferroni adjustment, which replaces the overall 

α-level in each of the tests by α/t, where t is the number of tests. Another problem as-

sociated with this method is to choose the right base model. If there is no adequate in-

formation on the data available, then the only possible choice for the base model is to 

assume that all items are independent and to compute the expected frequencies from 

this assumption. 

As an example for CFA we use again the aphasic data set from Gloning et al. (1972), 

which is already described in the section concerning FPA. We describe in the following 

the analysis of Lienert (1972) for the cross classification table of all 5 items. As base 

model it is assumed that all items are independent. 

Remember that for each item i the value pi is defined to be the relative frequency of 

rows in the data matrix D which show a value 1 for item i. The expected probability 

Pexp(d) of a cell d in the cross classification table is (under the assumption that all items 

are independent) given by: 

 ∏∏
==

−=
})i(d|i{

i
})i(d|i{
iexp )p(p)d(P

01

1  (19) 

Table 9 (this table is taken from Lienert, 1972 p. 334) shows the cross classification 

table of all 5 items with the corresponding frequencies, expected probabilities and chi-

square values. 

The overall chi-square value is with 394.55 for 26 degrees of freedom highly signifi-

cant. This shows that the assumption of item independence must be rejected. Lienert 

identified 4 types in the table. They show a highly significant difference Pobs(c) > Pexp(c) 

and are indicated by an asterisk in the table. 

We compare now these results with the results of an analysis of the aphasic data 

with IITA, which we have already described in the section concerning feature pattern 

analysis. Remember that the set S of all patterns consistent with the logical dependen-

cies detected by IITA is given by:  

S = { (0,0,0,0,0), (0,0,0,0,1), (1,1,1,0,0), (1,1,1,1,0), (1,1,1,0,1) } 

Thus, S contains all 4 patterns identified as types by CFA plus the additional pat-

tern (1,1,1,0,0). Thus, the results of CFA are surprisingly similar to our analysis results. 
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This is a quite interesting result, since both methods represent very different approaches 

of data analysis. 

 

Table 9 

Cross Classification of the Aphasic Data set, from Lienert (1972). 

Cell  Obs. Frequency Exp. Frequency Chi-Square 

11111 5 3.549 0.594* 
11110 34 3.822 238.316* 
11101 14 4.905 16.861* 
11100 0 5.283 5.283* 
11011 0 3.637 3.637* 
11010 1 3.917 2.172* 
11001 7 5.028 0.773* 
11000 1 5.415 3.599* 
10111 0 3.637 3.637* 
10110 2 3.917 0.938* 
10101 4 5.028 0.210* 
10100 1 5.415 3.599* 
10011 0 3.728 3.728* 
10010 0 4.015 4.015* 
10001 3 5.154 0.900* 
10000 0 5.550 5.550* 
00111 1 4.436 2.661* 
01110 3 4.777 0.661* 
01101 2 6.132 2.784* 
01100 0 6.603 6.603* 
01011 0 4.547 4.547* 
01010 5 4.896 0.002* 
01001 7 6.285 0.081* 
01000 0 6.769 6.769* 
00110 2 4.896 1.713* 
00101 5 6.285 0.263* 
00100 7 6.769 0.008* 
00011 7 4.660 1.175* 
00010 8 5.019 1.771* 
00001 23 6.442 42.557* 
00000 20 6.938 24.593* 

Conclusions 

We described an algorithm for exploratory data analysis which allows us to extract 

logical implications between items from observed response patterns. This algorithm, 

which we called IITA is based on a simple model of the data. We assume that there 

exists a number of valid logical implications, which form a quasi-order ≤ on the item 

set. Thus, without the influence of errors every subject should show responses which are 
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compatible with ≤. We assume that each observed response pattern results from a pat-

tern compatible with ≤ under the influence of random errors. This influence of random 

errors is described by an error parameter. A central assumption is that the error prob-

ability is independent from the items, i.e., the probability that an error occurs is the 

same for all items. 

Our simulation study shows that IITA is able to reconstruct the true logical implica-

tions with high accuracy from observed data patterns. 

We compared IITA with other well known methods of data analysis. A comparison to 

scaling methods like Guttman scaling or feature pattern analysis shows that if a good 

fitting scale exists this scale is reproduced by IITA. Since our analysis method is not 

restricted to a special structure it is no surprise that in these cases some additional de-

pendencies are found, which can not be derived from the scale. 

In our comparison to configural frequency analysis we found that the detected types 

of such an analysis are with one exception identical to the latent states which can be 

derived from the logical dependencies detected by IITA. 

In these three comparisons IITA produced results which are very similar to the re-

sults of the methods it is compared to. Thus, a natural question is what the benefits of 

an analysis with IITA are. Please note that the data sets used in these comparisons are 

data sets which are often used to demonstrate the described analysis methods. Thus, 

there is some agreement that these methods produce very good results on these data 

sets. It is therefore a promising result that IITA produced very similar results in these 

examples. It is also clear that IITA can be applied in areas where some of the other 

methods will not produce reasonable results. For example, the scaling methods Guttman 

scaling and FPA poses heavy restrictions on the data (for example uni-dimensionality in 

Guttman scaling) and can thus only be applied to data sets which fulfill these require-

ments. 

We compared IITA also with latent class analysis. Both analysis methods compute 

quite different forms of output. IITA searches for logical dependencies between items 

which can be used to compute the set of latent states compatible with them. If a subject 

is in a latent state, we know which answer he or she will give to each of the items (with 

the exception of a small fixed error probability). The result of a latent class analysis is a 

set of probability vectors, which are called latent classes. Thus, if a subject is in such a 

latent class we know with which probability he or she will answer any of the items posi-

tively. 
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