
On Rootkit and Malware Detection in Smartphones

Bryan Dixon
Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309-0430, USA
bryan.dixon@cs.colorado.edu

Shivakant Mishra
Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309-0430, USA
mishras@cs.colorado.edu

Abstract

Dramatic increase in smartphone sales and third-party
applications that users can download has significantly in-
creased the possibility of rootkits and malware targeted for
smartphones. This paper discusses the current state of re-
search in detection and mitigation of propagation of mali-
cious code, such as viruses, malware and even rootkits in
smartphones. A new strategy is introduced that offers a so-
lution to efficiently detect the presence of rootkits and mal-
ware in smartphones. A preliminary prototype based on this
strategy has been built for the android dev phone. The pa-
per discusses the design, implementation and preliminary
performance of this prototype.

1. Introduction

With an uptake in the smartphone market, there has been
an emergence of viruses, malware, and even rootkits to gain
access to smartphones. These security threats are trouble-
some due to the large amount of personal data that smart-
phone users store in their phones as well as confidential
transactions that these users perform using voice and/or data
interface of their smartphones. Additionally this malicious
code leads to both a dramatic drain in the battery, as well
as creating an abnormal load on the cellular network. In
particular, with the emergence of open-source smartphones
platforms such as android and third-party applications that
users can download on their phones, the threat of malware
and rootkits targeted for smartphones has significantly in-
creased. While these threats have existed for PCs and desk-
tops for a very long time, solutions developed for PCs are
not effective in the smartphones environment for a variety of
reasons, including resource constraints, power constraints,
mobility and device functionality. As a result, investigation
of malicious code on smartphones, as well as how this mali-
cious code could be detected, prevented from spreading, or
its impact could be mitigated is an important research area.

2. Related Work

There are varied number of infection vectors that viruses,
malware, and root kits targeted for smartphones can make
use of to propagate themselves, which makes it harder to
stop them at the network level. Current approaches to ad-
dress the problem of malicious code on smartphones can be
categorized into three categories. Approaches in the first
category rely on monitoring the volume of traffic to de-
termine if a phone or a set of phones is possibly infected.
They attempt to mitigate or slow the spread of malicious
code by limiting the data rate either globally [5] or in the
local vicinity [2]. Approaches in the second category pro-
vide system-level defenses to reduce the ability of malicious
code to propagate or gain access to a smartphone. One way
to do this is to challenge the malicious code, e.g. by utiliz-
ing graphical turing test via a visual CAPTCHA [6]. An-
other approach is to develop sophisticated admission con-
trol mechanisms to make it difficult for a malicious code to
gain access to a smartphone by making use of trusted hard-
ware.

3. Our Approach

Our observation is that any detection/prevention ap-
proach that relies on running on the smartphones is funda-
mentally limited by the resource constraints of the phones.
Though running malicious code detection software similar
to that of a PC on the phone may be effective, running such
code would need it to run nearly constantly in the back-
ground limiting the battery life, which isn’t an effective so-
lution since battery life is usually the most important fea-
ture of a smartphone. This leads to this approach not be-
ing utilized since this is an undesired behavior on a phone,
even if it makes it more secure. This provides a clear ad-
vantage to adversary who can exploit these limitations of
a smartphone to design malicious code, while the detec-
tion/prevention mechanisms are limited or non-existent be-
cause of these constraints.



In this position paper, we propose that a promising ap-
proach is to look for a solution that resides outside the
smartphones. The key observation is that users often con-
nect their smartphones to a PC or desktop for information
synchronization. Based on this observation, we are explor-
ing strategies that run detection/prevention software on a
PC/desktop, and look for malicious code on smartphones
via a USB or other such interface.

This strategy requires access to the phone’s filesystem
and a mechanism to manipulate and navigate the files from
the computer. This will allow a PC to scan some or all files
to detect malicious code. In the basic mechanism, we down-
load and scan all files of the phone on a PC. This obviously
takes a large amount of time. The basic function of our
technique involves creating hashes of all files and storing
them on the PC when the phone is first connected to the PC.
Subsequently, whenever the phone is connected, the phone
computes the hashes of all files and sends them to the PC.
The PC then compares these hashes with the hashes stored
on the PC, and download and scans only those files that have
changed. Assuming that only a few files change in a typi-
cal usage scenario, this technique reduces the scanning time
significantly. This technique however has a weakness in
the face of a relatively stronger adversary, such as a rootkit.
Such an adversary can store the hash of a file before modi-
fying the file and then report this stored hash to the PC when
connected. We have considered that using a keyed hashing
mechanism requiring a key from the PC will make it signif-
icantly harder for such an adversary to succeed. Addition-
ally, with the limited computational power of a phone, time
required to calculate and return the expected hash value in
such a scenario would be far greater than the expected delay
of such a computation.

We have implemented this strategy on Google’s Android
platform. We used a product called BusyBox that provides
the tools needed to fully list the directories along with all
attributes. BusyBox also provides cksum command that is
used to hash the files. When it was run we could navigate
and hash the entire phone in about 10 minutes, compared to
over 50 minutes to download all the files from the phone,
many of which failed to download. Our observation is very
few files change regularly so the time to compute which
files have changed and only download those should lead to
a great reduction in the time a phone is required to be con-
nected to a computer.

A significant advantage of using our strategy is in de-
tecting the presence of rootkits on smartphones. Rootkits
compromise and gain long term control over an infected
machine and are the worst kind of the malicious code in
that they can expose all functionality of the core system to a
malicious user. With this level of access and control, a ma-
licious user could make use of the rootkit to eavesdrop on
conversations, emails and messaging services [1, 3]. Since

a rootkit has low level access and can virtually hide itself
from detection from any tools that run on the device itself,
most malicious code detection tools are rendered useless.

The techniques that we have proposed so far are also vul-
nerable to rootkits. A rootkit could hide itself by pretending
to be the operating system. It could keep copies of origi-
nal files before modification, so as to respond correctly to
hash queries. To address this, we are currently exploring
challenge-response mechanisms to detect the presence of
rootkits. The simplest mechanism is to look for variations in
expected run times of function calls or some complex com-
putation on the phone. If a rootkit existed, it would likely
take longer than normal to compute and return the results.
The assumption here is that a rootkit would have to interpret
commands and what the desired result should be versus just
computing and returning the result. Another possible mech-
anism is to determine the amount of available memory in the
smartphone. In this mechanism, the PC maintains an esti-
mate of how much memory should be free on a smartphone.
When a phone is connected, the PC can present a challenge
to store large amount of test data that can fit in the estimated
free memory space. The PC then reads the same test data to
ensure that the data is indeed successfully stored. The as-
sumption here is that a rootkit will typically occupy a large
amount of memory and won’t be able to respond to such
a challenge. Coprocessor-based mechanisms to detect the
presence of rootkits in PCs and desktops have been devel-
oped [4]. We plan to borrow ideas from these mechanisms
to incorporate in our prototype.

4. Future Work

We have implemented a preliminary prototype so far.
Future work entails adding more sophisticated functional-
ity to detect a root kit. We will evaluate our prototype with
different types of malware and rootkits that are currently
available. We will evaluate the performance of our proto-
type in terms of response time and power consumption.

References

[1] J. Bickford et al. Rootkits on Smart Phones: Attacks, Impli-
cations and Opportunities. In HotMobile 2010.

[2] A. Bose. Propagation, Detection and Containment of Mobile
Malware. PhD thesis, The University of Michigan, 2008.

[3] A. Kushnerov. Smart phone under threat of at-
tacks. http://www.theticker.org/about/2.8220/smart-phone-
under-threat-of-attacks-1.2174454, March 2010.

[4] N. Petroni et al. Copilot - a Coprocessor-based Kernel Run-
time Integrity Monitor. In 2004 USENIX Security Symposium.

[5] M. Williamson et al. Throttling viruses: Restricting propaga-
tion to defeat malicious mobile code. In 2002 CSAC.

[6] L. Xie et al. Designing System-level Defenses against Cell-
phone Malware. In SRDS 2009.


