Is Multiplication Just Repeated Addition?

 Insights from Japanese Mathematics Textbooks for Expanding the Multiplication ConceptMakoto Yoshida, Ph.D.
William Paterson University
YoshidaM@wpunj.edu

2009 NCTM Annual Conference
April 23, 2009

Can you draw a picture that represents 3×4 ?

Or

Or

Or it does not matter?

How many wheels?

3×4, or 4×3, or it doesn't matter?

How many wheels?

3×4, or 4×3, or it doesn't matter?

If you say
multiplication is repeated addition, are the both $3+3+3+3$ and $4+4+4$?

What is the total length?

$$
3 m
$$

Is this $3+3+3+3$, or $4+4+4$, or it doesn't matter?
How should we write this usnig multiplication 3×4 or 4×3 ?

How did you learn to remember multiplication table of 3 ?

$3 \times 1=3$	$1 \times 3=3$
$3 \times 2=6$	$2 \times 3=6$
$3 \times 3=9$	$3 \times 3=9$
$3 \times 4=12$	$4 \times 3=12$
$3 \times 5=15$	Or
$3 \times 6=18$	$5 \times 3=15$
$3 \times 7=21$	$6 \times 3=18$
$3 \times 8=24$	$7 \times 3=21$
$3 \times 9=27$	$8 \times 3=24$
	$9 \times 3=27$

If the first number represents number of groups... (3 groups of ...)
$3 \times 1=3$
000
$3 \times 2=6$
000000
$3 \times 3=9$
000000000
$3 \times 4=12$
000000000000
$1 \times 3=3$
$2 \times 3=6$
000
$3 \times 3=9$
000000000
$4 \times 3=12$
000000000000

If the second number represents number of groups...
$3 \times 1=3$
$3 \times 2=6$
000
$3 \times 3=9$
000000
$3 \times 4=12$
000000000000
$1 \times 3=3$
$2 \times 3=6$
$3 \times 3=9$
$4 \times 3=12$
00
000000
000000000
000000000000

NCTM: Focal Points

Grade 3: Developing understandings of multiplication and division and strategies for basic multiplication facts and related division facts.

Grade 4: Developing quick recall of multiplication facts and related division facts and fluency with whole number multiplication.

Grade 5: Developing an understanding of and fluency with division of whole numbers.

NCTM: Focal Points

Grade 6: Developing an understanding of and fluency with multiplication and division of fractions and decimals.

Grade 6: Connecting ratio and rate to multiplication and division.

Grade 6: Writing, interpreting, and using mathematical expressions and equations

Devlin on Multiplication

Multiplication simply is not repeated addition, and telling young pupils it is inevitably leads to problems when they subsequently learn that it is not. Multiplication of natural numbers certainly gives the same result as repeated addition, but that does not make it the same... Telling students falsehoods on the assumption that they can be corrected later is rarely a good idea. And telling them that multiplication is repeated addition definitely requires undoing later.

Tokyo Shoseki's Mathematics for Elementary School (Grades 1 to 6)

The textbook follows 1989 Japanese National Course of Study that was examined in the 1995 TIMSS.

It is translated into English and available at www.globaledresources.com.

2B, p. 14

Let's find out how many children are on each ride at the amusement park!

- How many children are on the tea-cup ride?
- How many children are on the boat ride?

There are 5 children on each boat and there are 4 boats. There are 20 children altogether.

Let's check other rides!

Let's look at the teacup ride again! Can we use multiplication for it?

Important ideas of multiplication

- Multiplication sentences describe equal set situations.
- Repeated addition and skip counting are ways to find the total (product).
- The numbers in a multiplication sentences mean something specific:
- Number in a group - multiplicand
- Number of groups - multiplier
- Total number of objects - product

2 Please arrange your counters to show the following math sentences.
(1) 3×2
(2) 2×3
(3) 5×2

(2)

Developing Multiplication Facts

- Organized according to the multiplicand.
- Emphasis on students developing the multiplication table.
- Focusing on one specific property: when the multiplier increases by 1 , the product increases by the multiplicand.
- Array diagrams are used to promote the understanding of the basic facts.
- 1 as the multiplicand is treated last. 0 as the multiplicand is discussed in Grade 3.

0 as a factor
3A p. 2

6A, p. 8

If a tape is as long as two 3 cm tapes put together, we can say the tape is " 2 times" as long as a 3 cm tape.

You can use the multiplication math sentence 3×2 to find the length that is two times as long as 3 cm .

Book 2B, p. 44

2 How many chocolates are in the box?
Think about many different ways to find the answer.

Book 2B, p. 44

1 Please describe how these friends found the answer.

Properties of Multiplication

3A, p. 6

Multiplication Algorithm (Gr. 3)

3A, p. 71

1 Multiplication of 2-digit Number and I-digit Number

1 We bought 3 pieces of 32 -yen construction paper.
How much did they cost altogether?

3A, p. 71

3A, p. 72

3B, p. 49

Division

- Partitive Division
- Partitioning, fair share
- Quotitive Division
- Measurement division, repeated subtraction

There are 12 cookies. If 3 people divide them evenly, how many cookies will one person get?

There are 12 cookies. If one child gets 3 cookies, how many children can get cookies?

Similarities/Differences

- Both problems involve measurements.
- One involves liquid measures while the other is about linear measurements.
- Both problems involve quantities greater than 1 unit
- With decimals, the whole quantity is represented using the notation " 2.3 " but with fractions, mixed numbers are not used to express the whole quantity.

Similarities/Differences

- Decimals and fractions as collections of decimal/fraction units, that is, " 0.3 " is three " 0.1 " units, and $3 / 4$ is three " $1 / 4$ " units.

Addition of Decimals

3B, p. 34

Addition of Fractions

3 There is $\frac{3}{5} \ell$ of juice in a carton and $\frac{1}{5} \ell$ in a bottle. How much juice is there altogether?

2 Let's think about how to calculate $\frac{3}{5}+\frac{1}{5}$.
1 How many $\frac{1}{5} \ell$ are in each $\frac{3}{5} \ell$ and in $\frac{1}{5} \ell$?

$\frac{3}{5}+\frac{1}{5}=$

3B, p. 62

1, p. 93

Teaching Guide

p. 60 (Grade 3):

Calculations such as $1 / 5+2 / 5$ can be thought of as the same as that of whole numbers, taking $1 / 5$ as a unit.
p. 69 (Grade 4):
... it is important to help children think of it as counting numbers of a fraction whose numerator is one so that they can see the similarity between addition and subtraction of whole numbers and fractions.

Decimals/Fractions as Numbers

- Representing decimals/fractions on a number line

3B, p. 32

3B, p. 60

Improper fractions

Improper fractions

3 How many m are three $\frac{1}{3} m$? Four $\frac{1}{3} m$?

4B, p. 41

Multiplication of Decimals: Decimal x Whole Number

1 Multiplication of Decimal Numbers
1 They bought six 0.2ℓ packs of juice.
How much is the total amount of juice?

4B, p. 60

Using Number Structure

1 How many 0.1ℓ do you need to make 0.2ℓ ?
2 How many 0.1ℓ are there in the amount that is 6 times as much as 0.2ℓ ?

4B, p. 62

Laying Foundation

| Times as much | |
| :--- | :--- | :--- |
| 11 There are tapes of different
 lengths. Please compare the
 length of each tape to the
 length of the white tape. | length (cm) |

4B, p. 72

3 How many times as long is the yellow tape compared to the white one?

$$
12 \div 8=\square \text { (times) }
$$

- You can also use decimal numbers to express a "times as much" relationship.

4B, p. 73

Use of Representations

Decimal Multipliers

5A, p. 27

Even if the length of the ribbon is shown as a decimal number, we can construct a multiplication sentence just like we do with whole numbers to find the price of the ribbon.

$$
180 \times 3.4
$$

2 Let's think about how to calculate 180×3.4 !

5A, p. 28

Developing Algorithm

5A, p. 29

More than a procedure

5A, p. 31
© Let's think about the relationship between the multiplier and the size of the product!
(1) $180 \times 1.8=$
(2) $180 \times 0.8=$
1 Which one of the products becomes smaller than 180 ?
: In multiplication of decimal numbers, if the multiplier is less than I, the product will be less than the multiplicand.

If multiplier >1, then the product $>$ multiplicand If multiplier < I, then the product < multiplicand

$$
5 \mathrm{~A}, \mathrm{p} .31
$$

Tokyo Shoseki's Mathematics for Elementary School (Grades 1 to 6)

Global Education Resources www.globaledresources.com Booth \# 1538

