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Abstract Rubin has offered multiple imputation as a 
general approach to inference from survey data sets 
with missing values filled in through imputation. In 
spite of the considerable scope of work on the 
subject, the literature on multiple imputation has 
failed to produce a set of clear and sufficient 
conditions for the validity of multiple imputation that 
would justify many of its previous applications. In 
fact, significant counterexamples to multiple 
imputation inference are easily produced. 

This paper extends previous work of Rao and Shao 
and of Fay to obtain valid inferences from imputed 
data sets. The paper includes extensions of Rao and 
Shao's Biometrika results to both multiple imputation 
and to fractionally weighted imputation under 
appropriate conditions. 

1. INTRODUCTION 
One of the significant contributions of multiple 
imputation (Rubin 1978, 1987) is its emphasis on the 
quantification of the effect of missing values on 
inference. The methodology seems of special 
importance to survey research, where imputation has 

. .  

frequently been used to fill in missing values for item 
nonresponse. A number of researchers in this and 
other fields previously recognized that traditional 
methods of inference from survey data, such as 
design-based inference, are compromised when 
imputed values are treated as observed. Until 
quantitative measures of effect of missing data 
became available, however, imputed values were 
almost always treated as observed in variance 
estimation. Indeed, even with the availability of 
multiple imputation, inclusion of the effect of missing 
data in variance estimation continues as the exception 
rather than the rule in most practice. 

Chapter 1 of Rubin (1987) promises much. 
Although the development first describes multiple 
imputation from a Bayesian perspective, the 
combination of simple examples where multiple 
imputation gives the "right" answer from a frequentist 
perspective and envisioned applications to four clearly 
complex problems (Examples 1.1-1.4 on pp. 4-7) 
leads to the impression that an almost universal tool 
has been invented. This impression has been 

enforced by an extensive literature of theoretical work 
and applications to a number of complex problems. 

Consequently, counterexamples to multiple 
imputation (Fay 1991, 1992), usually in the form of 
slightly altered versions of the simple examples for 
which multiple imputation is correct, provided a new 
perspective on possible limitations of multiple 
imputation inference. Among other consequences, the 
counterexamples surfaced a current shortcoming in 
both the theory and practice of multiple imputation, 
namely, an absence of a clear characterization of 
when the technique produces inferences with 
asymptotically valid frequentist interpretations. 

For example, Fay (1992) described an instance 
where an imputation employed two imputation 
classes, but the usual direct sample estimates, 
including the imputed values, were made for both the 
imputation classes and for two classes cutting across 
the imputation classes. Multiple imputation inference 
was shown to be consistent for the first set of 
inferences but inconsistent for the second. In the 
second case, multiple imputation overstates the 
variance of the direct estimates for each class and 
understates their covariance. 

In general, the counterexamples share the feature 
that the analyst, using direct sample estimates for a 
domain, conducts an analysis inconsistent with the 
imputer 's original assumptions. These 
counterexamples each grant the imputer the correct 
model. The analyst ignores the model's information 
about the population, and computes instead the direct 
estimates commonplace in survey practice. The 
counterexamples also assume that the inference is 
from a sample to a population; in general, none of the 
counterexamples show the multiple imputation 
variance to be wrong for inferences about the effect 
of missing data if the entire population is observed, 
except for missing data. 

A second flaw in both the theoretical development 
and practice of multiple imputation has been the 
absence of a consistent approach to accommodate 
issues of stratification, clustering, and weighting to 
compensate for varying probabilities of selection. 
The apparent hope has appeared to have been that the 
imputation model would correctly compensate for all 
of these design factors. Experienced survey 
practitioners generally recognize, however, that 
complex sample designs frequently have marked 
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effects on estimation of model parameters when 
dealing with complex survey data with complete 
response. There is no convincing reason that models 
specified for missing data problems will always be 
immune from such problems. 

Previously, Fay (1992) considered the following 
three estimators and estimators of their variance for a 
problem with two imputation classes and two 
additional classes cutting across the imputation 
classes: 

1) Mean imputation, using a jackknifed variance 
estimator including the effect of estimating the 
imputation class means, along the general lines 
of Fay (1991) and Rao and Shao (1992); 

2) Multiple imputation, with m=10 imputations, 
according to Rubin (1987); 

3) The single-imputation hot deck, following Rao 
and Shao (1992), including their variance 
estimator. 

The three estimators are ranked in increasing order of 
variance. 

In the Monte Carlo results, the variance estimates 
in both cases 1) and 3) appeared virtually unbiased. 
The multiple imputation variances were equally 
successful for the overall mean and means of the 
imputation classes, but unacceptable for the means of 
the cross-classes. 

Because this comparison involved three separate 
estimators and their variance estimates, multiple 
imputation could remain the method of choice in 
applications in which properties of the multiple 
imputation estimator were preferred, in spite of its 
inferential deficiencies. Mean imputation, 1), is not 
a general purpose solution if estimates of distributions 
as well as totals are of interest. For example, use of 
mean imputation for earnings would lead to spikes or 
artificial concentration of the imputed values near the 
middle of the earnings distribution, distorting the 
estimated earnings distribution. The single imputation 
hot deck, 3), while avoiding extreme distortion in the 
estimated distribution, produces estimates of mean 
earnings with generally higher variance than the 
multiple imputation alternative. 

This paper revisits this situation and demonstrates 
that the results of Rao and Shao (1992) have far 
wider implications than apparent at first glance. 
Section 2 reviews elements of multiple imputation and 
the Rao and Shao (1992) results as initially presented. 
Section 3 introduces fractionally weighted imputation 
as an alternative to multiple imputation. Like 
multiple imputation, fractionally weighted imputation 
uses more than one imputation for missing values in 
order to increase the precision of estimates. As 

Section 3 will describe further, fractionally weighted 
imputations are generally improper in the sense of 
Rubin (1987), unlike a well-constructed multiple 
imputation, which should be proper. Also unlike 
multiple imputation, inference for fractionally 
weighted imputation on does not employ variability 
between the different imputations in variance 
estimation; instead, the Rao-Shao variance formulas 
extend, without any required modification, to 
fractionally weighted imputation. This separation of 
the purposes of variance reduction and variance 
estimation has highly beneficial effects: for the same 
number of imputations, fractionally weighted 
imputation generally produces estimates with smaller 
variance than multiple imputation. Fractionally 
weighted imputation also permits construction of 
confidence intervals based on normal approximations 
rather than the more complex procedures required 
with multiple imputation. 

The Rao-Shao results are stated for a specific 
weighted hot-deck, where the probability of selection 
is proportional to the weight of the "donor." Since 
unweighted hot decks have appeared more frequently 
in practice, Section 3 also discusses modifications of 
the Rao-Shao estimator for the unweighted hot deck, 
along with consideration of circumstances that would 
justify its use. These results pertain both to a single 
imputation hot deck and to fractionally weighted 
imputation. 

In the spirit of this extension of the Rao-Shao 
results, Section 3 also exhibits a variance estimator 
for a proper multiply imputed data set. The range of 
application of this variance estimator is more 
restricted than the scope of the Rao-Shao variance 
estimator for fractionally weighted imputation, 
however. 

Section 4 revisits the example of Fay (1992), but 
with an expanded analysis. Now 4 estimators, instead 
of the previous 3, are available for consideration, with 
2 competing variance estimators for the multiple 
imputation estimator, including the variance estimator 
from Section 3. The section summarizes a more 
extensive set of available Monte Carlo results than 
presented earlier. 

Section 5 turns to a discussion of calculation for 
the Rao-Shao variance estimator. A possible reading 
of Rao and Shao (1992) might leave the impression 
that the required calculations would be onerous and 
potentially limiting. Section 5 discusses how the 
calculations can be organized to be carded out 
effectively, without requiting the creation and 
permanent retention of supplemental complex data 
sets. In fact, the calculations can already be 
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implemented through the VPLX program (Fay 1990, 
1993a) with relative ease, and modest enhancements 
to VPLX could further simplify the calculation and 
thus facilitate general use of the Rao-Shao estimator. 

For somewhat more than a decade, a number of its 
advocates have been inclined to view multiple 
imputation as the only practical way to represent 
uncertainty from missing data for complex 
applications. Recent developments, including the 
implications of the work of Rao and Shao (1992), 
have challenged that preeminence. This paper does 
not systematically review other approaches to missing 
data, including work of S~irndal, Tollifson, and others, 
which offer even more alternative paths. These 
comparisons are clearly of future interest but beyond 
the scope of this effort. 

Section 6 concludes with a number of conjectures 
about further extensions of the Rao and Shao 
approach. A companion document (Fay 1993b) 
reports results in more detail than their discussion in 
Sections 4 and 5 and is available from the author. 

In keeping with the intent of the Proceedings, this 
version of the paper departs little from the original 
presentation, but some clarifications and a few 
extensions have been added. The most significant of 
these is to introduce the term fractionally weighted 
imputation to replace repeated imputation in the 
original version, to avoid any confusion with previous 
definitions of the latter term in Rubin (1987) or 
elsewhere. Section 6 notes other departures from the 
original version. 

2. SOME ALTERNATIVE APPROACHES TO 
INFERENCE FROM MISSING DATA 

2.1 Multiple Imputation. Multiple imputation (MI) 
(Rubin 1978, 1987) has been widely discussed 
elsewhere. For purposes of comparison to other 
approaches, MI inference for a "hot deck" situation 
with a single imputation class will be summarized 
here. 

Suppose a simple random sample, yj, j=l,...,n, of 
size n is drawn from an infinite (or extremely large) 
population. Suppose further that the values of yj are 
observed only for a subset of respondents, j ~ Ar. 
Multiple imputation, for m > 2, provides m imputed 

values Y('Moa, &--1,...,m, for each nonrespondent j 
A,,,. Assuming that the data are missing at random 
(e.g., Rubin 1978), inferences about the population 
mean may be based on first computing m separate 

estimates Y'(Mo0. based on the observed valuesy(*M~0 

= Yi, J E Ar, and imputed values Y(*Moa. J (E A,r. The 
MI estimate of the population mean, 0, is 

Jll  

Multiple imputation provides inferences about the 
underlying true 0 through the approximation 

- t, (2.2) 

where 7" denotes the estimated total variance 
comprised of variance in the completed data set plus 
variance due to imputation of the missing values: 

7" - # +  (1 + m - I ) ~  (2.3) 

where 
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a, - ' , ' - ' ] E a , . ,  
0. .1  

ff',o - ( n ( n -  l )) ! - t  

(2.4) 

estimates the variance of the estimator under complete 
response, and 

Jll 

- (m - l )- '  E (Y(uoo- ~uo. )2 (2.5) 

estimates the between imputation variability. The 
degrees of freedom, v, for the t-distribution, t,, in 
(2.2) is estimated by 

m . (2.6) 
v - ( m - l )  1 + (re+l) 

Naturally, there are restrictions on the manner in 

which the multiple imputations, Y(~0, P-1,...,m, j 
A~ are derived. The most obvious choice, repeatedly 
making independent draws from yj, j EAr ,  is not 
"proper," in the sense of Rubin (1987), since these 
draws do not represent the full uncertainty in 
estimating the data, for purposes of MI variance 
estimation. Depending on the extent of assumptions 
about the population distribution of the y's, several 
choices are available. A useful general approach, 
called the approximate Bayesian bootstrap (Rubin and 
Schenker 1986, Rubin 1987, p. 124), for each 
imputation ~: 

1) draws a hot deck by drawing r times, with 
replacement, from the r elements of A,, 
and then 
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2) draws from the hot deck of 1) the n-r values, y ~ t ,  
j ~ An,, again by sampling with replacement. 

(Note for clarification: Rao and Shao (1992, p. 812) 
slightly misdescribe this procedure, stating that n 
rather than r values should be drawn at step 1).) 
Because of its simplicity, the approximate Bayesian 
bootstrap was used in the results for MI reported in 
Section 4. 
2.2 Rao and Shao: Jackknife Variance Estimation. 
Rao and Shao (1992) proposed a modification to the 
standard design-based stratified jackknife variance 
formula to provide suitable estimates of missing data 
uncertainty for a data set with single imputation. The 
initial motivation (Rao and Shao 1992, p. 812) for 
studying single imputation was to provide an 
alternative for large statistical agencies who prefer 
this approach to multiple imputation for its greater 
simplicity of data storage and processing. 

Under their proposal, the "hot deck" must conform 
to specified conditions. For example, in the simplest 
case, a single imputation class and a simple random 
sampling design, imputations are made through simple 
random sampling with replacement from the donors. 
For multi,stage stratified sampling, which may lead to 
differential probabilities of selection and associated 
weights, the authors consider the selection of "donors" 
in the imputation with probabilities proportional to 
their respective survey weights within the imputation 
class. Estimates are produced from the singly 
imputed data set in the normal manner, that is, b y  
using the imputed values as if they were observed for 
purposes of estimation. The analysis is modified at 
the point of variance estimation to reflect the 
uncertainty due to missing data. 

For simplicity, the case of simple random sampling 
with a single imputation class will be described in this 
section, although appendix A.1 employs their general 
results for multiple imputation classes under stratified 
multistage sampling, in extending their results to 
fractionally weighted imputation. 

The estimator of the mean may be written: 

Y(nm ~ Y',. + 1-  y,,,. (2.7) 

where ~" is the respondent mean and ~',~ is the mean 
of the imputed values. 

The standard jackknife variance formula is: 

n 1-1 

where 

-- 1 (tI~(HD) _ y~) 
Y(H/~ (-, t)  " (n  - 1)  

( n -  l) 

i f ; l e A ,  

i f j  e A,, 

(2.9) 

represents the mean of y computed by omitting 
observation j. Thus, (2.9) treats imputed values as if 
they were observed, and may appropriately be called 
"naive" for doing so. Rao and Shao modify (2.8) and 
(2.9) by: 

Vj  
/it 1-!  

where 

l 
. i  

n-1 

1 ! 

n - 1  

teA., (2.11) 

i f j  cA,  

and where Y,(-I~)" (r~, - y j ) l (r-1) .  In other words, 
if j  ~ An,, then (2.11) is computed in the same way as 
(2.9), by omitting the imputed value for j. If j ~ A,, 
then Y1 is omitted and the imputed values are adjusted 
to reflect yi's influence on the mean of the imputed 
values. Rao and Shao establish the consistency of 
this variance estimate, both for the single imputation 
class, as shown, and for multiple classes. 

To summarize the strategy in their proof, Rao and 
Shao show 

1) that the modification in (2.9) is the one 
required to estimate variances under mean 
imputation; and 

2) the amount by which the variance using the 
hot deck values, (2.7), exceeds the variance of 
the estimator using mean imputation is 
asymptotically equivalent to the increase in 
expected value for (2.10), when going from 
mean imputation to the single imputation hot 
deck. 

(The direct applicability of replication methods for 
variance estimation for 1) was observed by Fay 1991, 
although without taking the critical step 2) by Rao 
and Shao to extend replication to the hot deck.) 
Thus, the required correction to (2.9) to produce an 

44 



appropriate variance estimator for mean imputation 
fortuitously yields an appropriate variance estimator 
for the single imputation hot deck. 

3. EXTENSIONS OF THE RAO-SHAO 
VARIANCE ESTIMATOR FRACTIONALLY 

WEIGHTED AND MULTIPLE IMPUTATION 
3.1 Fractionally weighted imputation. Fractionally 
weighted imputation (FWI) resembles MI in most 
respects but may be distinguished 1) by the manner in 
which the imputations are made, and 2) estimation 
and analysis of the resulting data set. 

FWI differs from MI by drawing imputations from 
the full set of donors in the manner of the original hot 
deck. For example, as noted in Section 2.1, the 
approximate Bayesian bootstrap is one of the 
available methods to produce the variation among 
multiply imputed sets assumed by the MI analysis. If 
the first step of the approximate Bayesian bootstrap is 
skipped, imputations appropriate for fractionally 
weighted imputation (FWI) result. In other words, 
FWI is the process, in this instance, of producing m 
imputed values for each missing case, simply by 
repeating the hot deck selections independently, with 
replacement. FWI is generally improper, from the 
point of view of MI, since the FWI imputations do 
not fully provide the variation required by MI 
variance estimation. 

The FWI estimator assigns a fractional weight to 
each imputed value. For example, if the analysis of 
a complete data set would be unweighted, then each 
of the m imputed values should receive the weight 
1/m, and observed values receive a weight of 1. 
More generally, the m imputed values should divide 
the original weight for the case equally. Thus, each 
imputed value receives a fractional weight. This 
represents a fundamental difference from MI: for 
FWI, a single, weighted analysis of the data set is 
envisioned, instead of m separate analyses in (2.1). 
The distinction between (2.1) and fractional weighting 
collapses for linear estimators, but differences would 
occur with nonlinear estimators. 

As noted in Section 2.2, the Rao-Shao (RS) 
variance estimator (2.10)-(2.11) begins as a variance 
estimator under mean imputation but extends to the 
single imputation hot deck. Further extension of their 
estimator to FWI, under the conditions of their proof, 
is virtually immediate. Appendix A.1 discusses this 
extension. 

The RS variance estimator does not employ 
variation among the m different imputed sets in 
estimating the variance from (2.10). Instead, each of 
the m imputed values is given a weight of m ~ times 

the weight of the imputed case, as if the imputed 
values had become a cluster of observations. The RS 
variance calculation is performed once on these 
weighted estimates, instead of the m separate variance 
calculations required by MI. The RS variance 
estimator, when applied to FWI, therefore 
incorporates two features of variance estimation for 
complex samples - weighting and clustering - that are 
often incorrectly treated by general purpose statistical 
software but are always handled by any general 
software designed for analysis of data from complex 
samples. In other words, the MI variance estimator 
built upon variance expressions familiar in the context 
of simple random samples; the RS variance estimator 
employs concepts familiar in analysis of complex 
surveys. 

Because the effect of missing data is incorporated 
in the variance calculation as a whole, instead of 
isolated as in (2.4) for MI, it is generally unnecessary 
to reference a t-distribution to obtain adequate 
approximations for construction of confidence 
intervals. 
3.2 Unweighted Hot Deck. The RS estimator was 
developed for weighted imputation, even though the 
unweighted hot deck is far more common. Rao and 
Shao (1992, p. 816) note the bias of the unweighted 
hot deck and discuss the weighted hot deck for 
purposes of its overall consistency, under their 
assumptions about missingness. This consistency 
does not necessarily extend to estimates for 
subdomains cutting across the imputation classes, 
however, and many of the other applications of 
imputed values in survey analyses. Consequently, 
most analyses rest implicitly on stronger modeling 
assumptions than Rao and Shao considered. 

The author expects that the popularity of the 
unweighted hot deck will continue into the future, 
although applications of the weighted hot deck should 
begin to appear with greater regularity. Consequently, 
it is worthwhile to note the extension of Rao and 
Shao's general approach to the unweighted hot deck, 
both for single imputation and FWI versions. 
Appendix A.2 discusses this extension in detail. 
Because both weighted and unweighted quantities are 
involved in the calculation, the statement of 
conditions becomes somewhat more involved. 
Nonetheless, the conditions appear quite mild. In 
general, the variance estimator is based on using the 
survey weights in most parts of the calculation, except 
for terms of y,(-l')-(ry,- yj)l(r-1), and the full 
sample mean, which are computed on an unweighted 
basis. Again, the variance estimator can be motivated 
by constructing the appropriate variance estimator for 
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mean imputation, which in this case involves the 
unweighted mean. 

One could employ the stratified jackknife to assess, 
for a given sample, the degree of evidence about 
whether the weighted and unweighted analyses differ 
significantly from each other in expected value. 
Accumulation of empirical evidence on this question 
across a series of applications could help inform 
practice on this question. 
3.3 Var i anc e  Es t imat ion  for Mul t ip le  Imputa t ion .  
The original form of the RS variance estimator does 
not succeed at capturing all of the variance of the MI 
estimator, because it does not successfully capture the 
additional variation usually added by proper 
imputation, such as the variance arising from step 1) 
of the approximate Bayesian bootstrap. In some 
cases, however, it is possible to add additional terms 
to (2.10) to accomplish this end. Specifically, in 
some cases, including the examples studied in Section 
4, MI differs from FWI by an increase variance due 
to step 1) of the approximate Bayesian bootstrap, or 
other equivalent adjustments to represent the full 
uncertainty in the data, and this component of 
variation simply increases the overall variance as a 
separate additive piece. In fact, this extension is not 
true to the same level of generality as the previous 
extensions of the RS variance estimator. This section 
discusses this possibility for only the case of simple 
random sampling; Appendix A.3 discusses the issues 
in extending this approach to the general case. 

The strategy is to supplement the jackknife 
replicates in the RS variance estimator by additional 
replicates to represent the increased variance of MI 
compared to FWI. For simplicity, one such version, 
which employs the original n replicate estimates from 
the RS estimator plus n additional replicates, will be 
described here. 

n-I 

/1 1-1 

+ (Y~-o. (-J) - fc~.) 21 
1"I 

(3.1) 

where 

~(-~? - ~ [ ~ , _ y ~  
n-I 

t ~  - 

__ _1 ( r ~ + ( . - r ) y - .  
n 1 

- Y~Mo#~) if J e A.,  

(3.2) 

parallels the terms in (2.11), and 

m 

" Ycuo. if./ cA, ,  

if 

(3.3) 

In general, this approach assumes that the additional 
variance added by step 1) of the approximate 
Bayesian bootstrap and its equivalents is 
asymptotically omitted from the RS variance 
estimator. This condition holds for simple random 
sampling but may fail in some applications to 
complex designs. Appendix A.3 discusses this issue 
further. 

4. A COMPARISON OF IMPUTATION 
PROCEDURES AND VARIANCE ESTIMATORS 
Following the earlier example in Fay (1991), we 
consider imputation for a problem with two 
imputation class, s and t, of equal sizes in the 
underlying population. We consider in addition two 
tabulation classes, a and b, independently cutting 
across the imputation classes, again of equal size in 
the population. In other words, the imputation class 
variable and tabulation variable divide the population 
into 4 equal-sized cells. 

The new results reported here compare 4 estimators 
and 5 variance estimators, again ranked by generally 
increasing order of variance of the estimator: 

1) Mean imputation, using a jackknifed variance 
estimator including the effect of estimating the 
imputation class means, as before; 

2) Fractionally weighted imputation, with m = 5 
and the RS variance estimator, (2.10); 

3) Multiple imputation, with m = 5 imputations, 
the MI variance estimator, (2.3), and the 
modified RS variance estimator (3.1); and 

4) The single-imputation hot deck, using the RS 
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variance estimator, (2.10). 
The simulations were performed by first drawing 

the distributions of a, b, r, and s, and drawing the 
response from the probability of response and the 
observed values for respondents from the presumed 
distribution. The analysis examined three different 

z distributions for y,: normal, Bernoulli, and x~. The 
expected number of total respondents was 70 for three 
different populations: n=100 with response probability 
p=.7; n=140, p=.5; and n=350, p=.2. A second set of 
populations with the same p's was also studied. Each 
evaluation used 20,000 repetitions. 

The performance of the 4 estimators was evaluated 
in terms of their actual variance. The performance of 
the variance estimators were assessed both in terms of 
1) their relative bias in estimating the true variance of 
the estimator and 2) the actual coverage probability 
for nominal 95% two-sided confidence intervals. 
Average lengths of confidence intervals were also 
measured. The intervals were based on (2.2) and 
(2.6) for MI, and the normal approximation (i.e., 
1.96) for the other 4 estimator/variance estimator 
combinations. 

The degree of bias in variance estimation and 
confidence coverage are both important issues for 
survey research applications. It is particularly true of 
Federal practice that variance measures are often 
published in the form of averages or generalizations. 
For example, the usually reported standard error for 
the unemployment rate from the Current Population 
Survey is based on average values over several 
months. Thus, seriously biased variance estimators, 
even if they should exhibit acceptable performance in 
constructing confidence intervals in direct application, 
do not serve the purpose of variance generalization or 
averaging well. On the other hand, close agreement 
between nominal and actual coverage probabilities is 
also a desirable feature, especially in applications 
where the variance estimate is used directly without 
reliance on a generalization. 

Tables 1, 2, and 3 abstract results available in full 
detail from the author. Table 1 assesses performance 
for estimation for one of the two imputation classes. 
Multiple imputation is consistent in this case. The 
first three comparisons consider progressively lower 
response rates for normal data, but the patterns with 
increasing nonresponse are similar for other 
distributions. With moderately high response, r=.7, 
estimates using the hot deck have a considerably 
higher variance than the other alternatives. Both FWI 
and MI have a bit higher variance than mean 
imputation, with FWI having only a slight edge over 
MI. For very low response, r=.2, however, FWI still 

is within sight of mean imputation, while the MI 
estimator shows no measured advantage over the hot 
deck. For the same three comparisons, all variance 
estimators show reasonable properties, although there 
is a slight deterioration in performance of MI 
confidence coverage for low response. (This pattern 
was consistently repeated for the binomial and chi- 
squared populations as well, although these results are 
not shown in the table.) 

The remaining comparisons in Table 1 largely 
repeat the lessons from the normal population, with 
r=.7. The table shows little to choose among the 
variance estimators. In all cases, confidence coverage 
is reduced by the skewness of the distributions, but 
this effect is reduced with increasing sample size. 

Table 2 presents results for the mean of a cross- 
class not used in the imputation. In this case, the MI 
variance estimator is not consistent, and the MI 
variance estimates are upwardly biased by about 20- 
25%. MI confidence coverage is not severely harmed 
for nonnormal populations, however, and in some 
cases the effect of skewness in the population offsets 
the bias in the MI variance estimate to produce 
approximately the correct coverage. On the other 
hand, the fact that this offsetting occurs in some 
instances offers only a bit more than the accuracy of 
a stopped clock, which is correct twice a day. Better 
confidence coverage would tend not to occur for 
normal or nearly normal populations, and thus the 
advantage to MI could only occur for sufficiently 
small samples. Furthermore, the example has not 
managed to show MI at its worst; the effects of the 
inconsistency of the MI variance estimator could be 
made worse, for example, by increasing the number 
of tabulation classes. 

Table 3 shows the effect on inferences about 
differences in means for cross-classes. Because the 
symmetry of the Monte Carlo setup removed the 
impact of skewness, the 4 consistent variance 
estimators exhibit exemplary confidence coverage. In 
marked contrast, confidence intervals based on the MI 
variance estimator are punishingly conservative. 
(Although not shown, the performance of MI further 
deteriorates with decreasing response.) 

Although the preceding comparisons would make 
FWI estimator the clear favorite over MI, the 
consistent performance of the modified RS variance 
estimator for the MI estimator, in contrast to the 
unreliable performance of the MI variance estimator, 
should help to promote an objective assessment of 
MI. Without attempting to account for the 
phenomenon, the author notes his own perception that 
a mystique has grown around MI. The emphasis on 
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Bayesian motivation has perhaps dissuaded some 
researchers from the realization that the whole 
approach could be assessed from a frequentist 
perspective, in fact clarifying properties that had 
remained obscured in many previous discussions. 
The simulations here show that the MI estimator does 
in fact have a variance that can be estimated 
consistently in eases where the MI variance estimator 
is inconsistent, and that, when both variance 
estimators are available, there appears to be no 
objective reason to favor the MI variance estimator 
over the modified RS variance estimator. 

5. COMPUTATIONAL CONSIDERATIONS 
In general, Rao and Shao's approach permits the use 
the single hot deck for tabulation in the same way as 
before, but requires modification of the usual replicate 
values for variance estimation. Since the hot deck 
described by Rao and Shao differs somewhat from 
most practice, either practice will have to change to 
meet theory, or the current theory will have to be 
extended to meet practice (as this paper has partially 
accomplished). In addition, past experience indicates 
that the availability of convenient algorithms will 
affect the degree to which this research influences 
survey practice. Consequently, this section describes 
a general computational approach and a specific 
implementation in order to encourage the practical use 
of the RS estimator. 

Although there are many mathematically equivalent 
computational strategies to implement the RS variance 
estimator, some are more convenient than others. For 
example, one approach, to create permanent sets of 
replicate estimates modified in the required manner, 
will probably represent a hindrance to use of this 
method. A preferable strategy is to create modified 
replicates on an "as needed" basis. This second 
approach permits analytic flexibility without requiting 
prespecification of each potential use of the imputed 
values. 

The VPLX program (Fay 1990, 1993a) is written in 
portable FORTRAN 77 for the analysis of complex 
survey data through replication. The current VPLX 
can implement the full RS variance estimator, 
including applications to multistage designs, if the 
user specifies the RS variance estimator through a 
series of commands in the VPLX syntax. A standard 
run consists of a CREATE step to establish the basic 
replicates, a TRANSFORM step in which the user, 
through a series of standard functions implements the 
RS adjustments to the replicates, and a DISPLAY 
step to compute the variances. Without the 
TRANSFORM step, the naive variance estimates 
would result. A new version of VPLX, available 

approximately November, 1993, will implement the 
RS adjustment in the TRANSFORM step as a single 
function call, simplifying even complex applications 
from the user's perspective. 

A VPLX implementation of the RS variance 
estimator now requires about a page (i.e., about 50 
lines) of commands, including comments. Generally, 
much more complex applications require only 
somewhat more commands. For example, 
approximately 3 pages of commands, again including 
comments, 1) read observed and mean, repeated, and 
hot deck imputations from a file, 2) establish related 
variables squaring the original variates and grouping 
them into 4 categorial intervals, 3) cross-classify the 
variates by imputation class and tabulation class, 4) 
perform the RS adjustments to the replicates and 
compute differences of class means, 6) calculate and 
write 126 estimates, estimated standard errors, and 6 
covariance matrices to a file. 

1 This paper reports results of research undertaken by 
a staff member of the Census Bureau. The views 
expressed are attributable to the author and do not 
necessarily reflect thosc of the Census Bureau. 
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