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1. INTRODUCTION. For geometers, Hilbert's influential work on the foundations 
of geometry is important. For analysts, Hilbert's theory of integral equations is just as 
important. But the address "Mathematische Probleme" [37] that David Hilbert (1862- 
1943) delivered at the second International Congress of Mathematicians (ICM) in Paris 
has tremendous importance for all mathematicians. Moreover, a substantial part of 
Hilbert's fame rests on this address from 1900 (the year after the American Mathe- 
matical Society began to publish its Transactions). It was by the rapid publication of 
Hilbert's paper [37] that the importance of the problems became quite clear, and it 
was the American Mathematical Society that very quickly supplied English-language 
readers with both a report on and a translation of Hilbert's address. (In Paris, the 
United States and England were represented by seventeen and seven participants, re- 
spectively.) 

Indeed, this collection of twenty-three unsolved problems, in which Hilbert tried 
"to lift the veil behind which the future lies hidden" [37, p. 437] has occupied much 
attention since that time, with many mathematicians watching each contribution at- 
tentively and directing their research accordingly. Hermann Weyl (1885-1955) once 
remarked that "We mathematicians have often measured our progress by checking 
which of Hilbert's questions had been settled in the meantime" [110, p. 525]. (See 
also [31] and [115].) 

Hilbert and his twenty-three problems have become proverbial. As a matter of 
fact, however, because of time constraints Hilbert presented only ten of the prob- 
lems at the Congress. Charlotte Angas Scott (1858-1931) reported on the Congress 
and Hilbert's presentation of ten problems in the Bulletin of the American Mathemat- 
ical Society [91]. The complete list of twenty-three problems only appeared in the 
journal Gottinger Nachrichten in the fall of 1900 [37], and Mary Winston Newson 
(1869-1959) translated the paper into English for the Bulletin in 1901 [37]. Already 
by September 1900, George Bruce Halsted (1853-1922) had written in this MONTHLY 
that Hilbert's beautiful paper on the problems of mathematics "is epoch-making for the 
history of mathematics" [34, p. 188]. In his report on the International Congress, Hal- 
sted devoted about forty of the article's eighty lines to the problems. As to the actual 
speech, no manuscript was preserved, nor was the text itself ever published. 

Recently, Ivor Grattan-Guinness presented an interesting overview of Hilbert's 
problems in the Notices of the American Mathematical Society, discussing the form 
in which each of the twenty-three problems was published [30]. Yet, in dealing with 
the celebrated problems from this viewpoint, he failed to mention the most interesting 
problem of Hilbert's collection: the canceled twenty-fourth. Hilbert included it neither 
in his address nor in any printed version, nor did he communicate it to his friends 
Adolf Hurwitz (1859-1919) and Hermann Minkowski (1864-1909), who were proof- 
readers of the paper submitted to the Gottinger Nachrichten and, more significantly, 
were direct participants in the developments surrounding Hilbert's ICM lecture. 

So, for a century now, the twenty-fourth problem has been a Sleeping Beauty. This 
article will try to awaken it, thus giving the reader the chance to be the latter-day 
Prince (or Princess) Charming who can take it home and solve it. This paper also aims 
to convince the reader of the utility of the history of mathematics in the sense to which 
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Constantin Caratheodory (1873-1950) referred in his speech at an MAA meeting in 
1936 [10, p. 101]: "I will be glad if I have succeeded in impressing the idea that it 
is not only pleasant and entertaining to read at times the works of the old mathemat- 
ical authors, but that this may occasionally be of use for the actual advancement of 
science." 

2. THE CANCEIED PROBLEM. Let me preface my fairy tale "Looking back- 
ward, 2003-1888" (i.e., from the present back to the discovery of a finite ideal basis 
in invariant theory) with some questions that will serve as a guide for the remainder of 
my investigation: 

i. Why did Hilbert give a talk on unsolved problems and not on new results or 
methods in general use? 

ii. How should the twenty-fourth problem be classified in relation to Hilbert's fa- 
mous collection of twenty-three problems? 

iii. Why and how did Hilbert deal with the canceled twenty-fourth problem later? 
And what part did this problem play in Hilbert's later research? 

iv. Finally, where did I find the canceled problem? 
Let me begin by presenting the problem itself. The twenty-fourth problem belongs 

to the realm of foundations of mathematics. In a nutshell, it asks for the simplest proof 
of any theorem. In his mathematical notebooks [38:3, pp. 25-26], Hilbert formulated 
it as follows (author's translation): 

The 24th problem in my Paris lecture was to be: Criteria of simplicity, or proof 
of the greatest simplicity of certain proofs. Develop a theory of the method of 
proof in mathematics in general. Under a given set of conditions there can be but 
one simplest proof. Quite generally, if there are two proofs for a theorem, you 
must keep going until you have derived each from the other, or until it becomes 
quite evident what variant conditions (and aids) have been used in the two proofs. 
Given two routes, it is not right to take either of these two or to look for a third; 
it is necessary to investigate the area lying between the two routes. Attempts at 
judging the simplicity of a proof are in my examination of syzygies and syzygies 
[Hilbert misspelled the word syzygies] between syzygies [see Hilbert [42, lec- 
tures XXXII-XXXIX]]. The use or the knowledge of a syzygy simplifies in an 
essential way a proof that a certain identity is true. Because any process of ad- 
dition [is] an application of the commutative law of addition etc. [and because] 
this always corresponds to geometric theorems or logical conclusions, one can 
count these [processes], and, for instance, in proving certain theorems of ele- 
mentary geometry (the Pythagoras theorem, [theorems] on remarkable points of 
triangles), one can very well decide which of the proofs is the simplest. [Author's 
note: Part of the last sentence is not only barely legible in Hilbert's notebook but 
also grammatically incorrect. Corrections and insertions that Hilbert made in this 
entry show that he wrote down the problem in haste.] 

In answer to the first question, we begin with a short prehistory of Hilbert's famous 
speech. As preparation for treating the second question, we next present some remarks 
on the nature of the proposed problems. Hilbert intended to build up the whole science 
of mathematics from a system of axioms. However, before one formalizes and ax- 
iomatizes, there must be some (meaningful) mathematical substance that can be taken 
for granted without further analysis [52, pp. 171, 190], [53, p. 65], [57, 7th ed., An- 
hang 9, p. 288]. For Hilbert, the subject of foundations fell, generally speaking, into 
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two main branches: proof theory and metamathematics, related to formalization and 
meaning, respectively [51, p. 152], [58:3, p. 179]. Proof theory was developed in order 
to increase certainty and clarity in the axiomatic system, but in the end what really 
mattered for Hilbert was meaning. The penultimate question will lead us finally to an 
investigation of how Hilbert carried out his twofold research program on foundations 
by incorporating into it both proof theory and metamathematics. 

3. THE PREHISTORY. In the winter of 1899-1900 Hilbert, though but thirty-eight 
years old one of the most respected German mathematicians of the day, was invited 
to present one of the major addresses at the opening session of the forthcoming ICM 
in Paris. Three years earlier, at the Zurich Congress, Henri Poincare (1854-1912) had 
delivered the speech "Sur les rapports d'analyse pure et de la physique mathematique" 
[On the relationships between pure analysis and mathematical physics]. Hilbert vacil- 
lated between replying to Poincare and choosing another subject, for example, a col- 
lection of important, open questions through which at the end of the century he could 
try to sense the future of mathematics. In January, he asked for Minkowski's opinion. 
His friend wrote in a letter of 5 January 1900: "Most alluring would be the attempt to 
look into the future and compile a list of problems on which mathematicians should 
test themselves during the coming century. With such a subject you could have people 
talking about your lecture decades later" [71] (see also [87, p. 69]). 

Minkowski was correct, of course, yet Hilbert continued to waiver. At the end of 
March, he asked Hurwitz for his opinion on the matter. Finally, in the middle of July, 
Hilbert surprised both Minkowski and Hurwitz with page proofs of the paper "Mathe- 
matische Probleme" [37], an expanded version of his Paris talk written for publication 
in the Gottinger Nachrichten. However, by that time Hilbert had already missed an 
ICM deadline, so the program mailed to Congress participants included an announce- 
ment of neither a major lecture nor any other contribution by Hilbert himself. One 
must bear in mind that at this juncture in his life Hilbert was extremely pressed for 
time; he had prepared the Paris address during a summer term in which he was obliged 
to lecture ten hours a week. It is noteworthy that in one of these courses, on the theory 
of surfaces, he developed the celebrated invariant integral that would also play an es- 
sential role in the twenty-third problem just a few weeks later [37, pp. 472-478] (see 
as well [99, pp. 253-264]). 

Both friends advised him to shorten the lecture. Hilbert agreed, presenting only ten 
of the problems. 

4. ON THE ROLE OF PROBLEMS. How should Hilbert's proposed problems be 
characterized? Time pressures probably explain some of the points commented upon 
by Grattan-Guinness (personal selection, mixture of distinct kinds of problems that are 
only partially grouped, overlapping or missing problems) [30, pp. 756-757]. (Opinions 
on this subject differ. See, for example, those of Pavel S. Alexandrov (1896-1982) in 
his edition of the problems [37, German ed., p. 20].) Still, it was Hilbert's aim to 
present "merely samples of problems" or, more precisely, problems that showed "how 
rich, how manifold, and how extensive the mathematical science of to-day is" [37, 
p. 478]. Moreover, it was Hilbert's conviction that a branch of science is full of life 
only as long as it offers an abundance of problems: a lack of problems is a sign of 
death [37, p. 438]. Eight of the twenty-three problems read more like research pro- 
grams than problems as such; of the remaining fifteen problems, twelve have been 
completely solved. Also, in a general sense one can regard the twenty-third problem 
as a program that could not be implemented (the further development of the methods 
of the calculus of variations) except from a certain vantage point as a (solved) problem 
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(invariant integrals in the calculus of variations). It is of interest to note that Hilbert's 
notebooks [38:3, pp. 69-70] contain an unpublished entry fully anticipating the later 
general concepts of sufficient conditions (field theories) in the calculus of variations 
of Andre Roussel (1904-?), Hermann Boerner (1906-1982), or Rolf K6ltzler (see [99, 
pp. 387402]). 

Using words that recall Hilbert's, Andre Weil (1906-1998) once said, "Great prob- 
lems furnish the daily bread on which the mathematician thrives" [105, p. 324]. As a 
matter of fact, all of Hilbert's problems have served up beautiful food for thought. De- 
spite their great importance, however, we should not on their account elevate Hilbert to 
the stature of a prophet of future mathematics, for he himself regarded such prophecies 
as absolutely impossible. Indeed, quite typical of him, he regarded the impossibility 
of prophecies as a veritable axiom [38:3, inserted pages]. This conviction notwith- 
standing, Hilbert dared to make some predictions. He considered the seventh problem, 
which deals with the irrationality and transcendence of certain numbers, extraordi- 
narily difficult and did not expect a speedy solution, but such problems have been 
treated successfully since the 1920s [8:1, pp. 241-268], [115, pp. 171-202]. On the 
other hand, he was quite right in his prognosis that Fermat's Last Theorem would be 
solved in the twentieth century [112]. In 1970, the year Yurij Matiyasevich showed 
that Hilbert's tenth problem is unsolvable [70] (see also [115, pp. 85-114]), J. Fang 
wrote [18, p. 123]: "The tenth problem, like the eighth, is not likely to be solved in the 
near future." The eighth problem (the Riemann Hypothesis), the problem that Hilbert 
viewed as the most important of mathematics (see [98, p. 14]), still shows little sign of 
yielding to the intense efforts to settle it. 

To return to the subject of Hilbert's collection of problems as a whole, the history of 
mathematics records almost nothing else comparable to what Hilbert single-handedly 
undertook because, to quote a letter of Hilbert's student John Von Neumann (1903- 
1957) to Hendrik Kloosterman (1900-1968), chairman of the program committee of 
the 1954 ICM: "The total subject of mathematics is clearly too broad for any one of us. 
I do not think that any mathematician since Gauss has covered it uniformly and fully, 
even Hilbert did not, and all of us are of considerably lesser width (quite apart from 
the question of depth) than Hilbert" [85, p. 8]. Nevertheless, in 1900 Hilbert "dared 
to chart out the most promising avenues for research in the twentieth century" [12]. 
(During the Millennium Meeting in Paris in May 2000, the Clay Mathematics Institute 
(CMI) of Cambridge, Massachusetts, identified seven Millennium Prize Problems, for 
each of which it has put up a one million dollar prize for a solution. The Scientific 
Advisory Board of the CMI declared that the problems "are not intended to shape the 
direction of mathematics in the next century" [12].) When he received his doctoral 
degree in 1866, Georg Cantor (1845-1918) followed the custom of the day by defend- 
ing certain theses that he had advanced. (Hilbert was four years old at the time.) The 
third of these reads [9, p. 8]: "In mathematics the art of asking questions is more valu- 
able than solving problems." Indeed, it is precisely by the identification of concrete 
problems that mathematics has been able to and will continue to develop. That is the 
deeper reason why Hilbert took the risk of offering a list of unsolved problems. For the 
axiomatization of a theory one needs its completion. On the other hand, for the devel- 
opment of a mathematical theory, one needs problems. In addition to the completion 
of a theory, Hilbert insisted on problems and therefore on the development of a theory. 
In other words, Hilbert was not at all the pure formalist he is often taken to be. 

Hilbert also explained to his audience what the nature of good problems should 
be, his words echoing what he wrote elsewhere [38:1, p. 55]: "The problems must be 
difficult while being plain-not elementary yet convoluted, because confronted with 
them we would be helpless, or we would need some exertion of our memory, to bear all 
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the assumptions and conditions in mind." In other words, the formulation of a problem 
has to be short and to the point. Hilbert himself possessed an uncanny ability to make 
things simple, to eliminate the unnecessary so that the necessary could be recognized. 

The last quotation in the previous paragraph is taken not from the Paris address 
(see [37, p. 438]) but from a parallel remark in Hilbert's mathematical notebook, where 
I also found the canceled twenty-fourth problem. To the best of my knowledge, the 
twenty-fourth problem has remained unpublished until now, and I do not know of any 
responses to this problem, with the exception of Hilbert's own. Surprisingly, although 
Hilbert was under time pressure when he prepared the Paris address, he made little 
use of his notebook as a source of inspiration. The notebook (more precisely, the three 
copybooks [38:1-3] in which Hilbert wrote down mathematical remarks, questions, 
and problems from 1885 onward) is housed in the University of Gottingen Library's 
Special Collections (Handschriftenabteilung). Unfortunately, no entry in the notebook 
is dated, which makes it difficult to attach an exact date to the entry concerning the 
twenty-fourth problem. On the basis of entries (datable to 1901) dealing with results 
in Werner Boy's dissertation and Otto Blumenthal's habilitation [38:3, pp. 29, 33] that 
appear only a few pages after the one concerning the twenty-fourth problem [38:3, 
pp. 25-26], it is very likely that Hilbert wrote the entry in which he mentioned the 
cancellation in 1901. 

5. SIMPLICITY AND RIGOR. It is widely believed among mathematicians that 
simplicity is a reliable guideline for judging the beauty (see [84, sect. 4-5], [106, 
chap. 6]) or elegance [113] of proofs, but like all aesthetic principles, such a crite- 
rion is highly subjective. Can one really say that certain mathematical proofs are sim- 
pler than others? In other words, the question of what the simplest proof is depends 
upon interpretation, and interpretation brings nonmathematical concepts into play. As 
a formal means of overcoming such subjective aspects of nonmathematical reasoning, 
Hilbert developed a proof theory that deals with formulas and their deduction. In this 
framework, each mathematical statement (theorem) becomes a deducible formula [54, 
p. 137], [56, p. 489]. On the first level, this theory is concerned with the set of provable 
theorems, but in a broader sense, it also deals with the structure of proofs, for example, 
with the concept of the simplicity of a proof. In the emerging fields later called proof 
theory and metamathematics [51, p. 152], Hilbert wanted as early as 1900 to have 
a detailed investigation of the question of simplicity (see also [42, lecture 37]). This 
furnished the rationale for a twenty-fourth problem. Still, an obvious question arises: 
Is the formula that is (by whatever means) assigned to the simplest proof of a given 
theorem a derivable formula in proof theory itself? 

By 1899 geometric concepts had already been formalized and their relative consis- 
tency proved by Hilbert (by assuming the consistency of the theory of real numbers; 
see [43], [57]). But Hilbert's ultimate goal was more ambitious: to prove the con- 
sistency of mathematics itself. The next step was to address arithmetic (and then, of 
course, logic proper [44, p. 176]). Indeed, shortly after the publication of the Grund- 
lagen der Geometrie [57] in 1899, Hilbert presented his ideas on the foundations of 
arithmetic [43] in the same way that he had treated geometry. Furthermore, later edi- 
tions of the Grundlagen [57] articulated these ideas [57, chap. 13]; from the third 
through the seventh editions of the Grundlagen the arithmetic axioms [43] appeared 
as an appendix [57, Anhang 6]. In the beginning, however, the necessary task of prov- 
ing consistency for the proposed system of axioms was only indicated, not actually 
executed. 

This task, however, was brought to the fore a few months later, as the second prob- 
lem in Hilbert's Paris address (see Kreisel [66, pp. 93-130]). This rapid progress in 
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Hilbert's foundation of arithmetic (axiomatization and the related question of con- 
sistency) and logic is quite remarkable. Hilbert believed that such investigations of 
formalization carried out by an extension of his axiomatic method would not merely 
be promising but would necessarily be successful, especially if pursued by means of 
the reduction of proofs to an algebraic calculus or "logical arithmetic" [44], [45]. That 
was still his belief in the 1920s ([48], [51]-[56]; see also [66]). Hilbert wanted to 
achieve his objective of establishing the consistency of axiomatized mathematics by 
proceeding from a purely finitary standpoint, i.e., he accepted only those facts that can 
be expressed in a finite number of (elementary) symbols and admitted only those op- 
erations that can be executed in a finite number of steps. (Haskell Brooks Curry, who 
took his doctor's degree with Hilbert in 1929, translated Hilbert's technical term "finit" 
as "finitary.") 

In support of the preceding statement, let me quote from Charlotte Angas Scott's 
interview with Hilbert for her ICM report [91, pp. 67-68]: "As to our aim with regard 
to any problem, there must be a definite result of some kind; it cannot be laid aside 
until we have obtained either a satisfactory solution or a rigorous demonstration of the 
impossibility of a solution. The mathematical rigor that is essential in the treatment of 
a problem does not require complicated demonstrations; it requires only that the result 
be obtained by a finite number of logical steps from a finite number of hypotheses 
furnished by the problem itself; in seeking this rigor we may find simplicity." 

In his speech, Hilbert did not deal with proving the simplicity of proofs from the 
finitary perspective as fully as he did in the interview with Scott just cited. Here is what 
he said to his Paris audience [37, p. 441]: "Besides it is an error to believe that rigor in 
the proof is the enemy of simplicity. On the contrary we find it confirmed ... that the 
rigorous method is at the same time the simpler and the more easily comprehended. 
The very effort for rigor forces us to find out simpler methods of proof." At the end 
of her report, Scott thanked all the speakers for their assistance. This acknowledgment 
lends credence to the suggestion that Hilbert had explained his idea to her in greater 
detail. The first part of the quotation, the expression of a belief in the solvability of 
each well-posed problem, might flatly be called the Hilbert axiom (see [37, p. 445]). 
In the second part of the quotation, however, the role of simplicity (from the finitary 
point of view) is clearly emphasized, much more clearly than in the lecture. 

The question as to what constitutes a rigorous proof is a logical question. By ex- 
amining the language in which the proof is expressed one may ask: What are the 
conditions under which a strict logical deduction proceeding by a long chain of formal 
inferences and calculations and leading from link to link by blind calculations can be 
regarded as simple? As early as 1900, Halsted reported that in Hilbert's opinion "math- 
ematical rigor which we require does not necessitate complicated demonstrations; the 
most rigorous method is often the simplest and the easiest to comprehend" [34, p. 189]. 
To Hilbert, the qualities of rigor and simplicity are not at odds with each other but go 
hand in hand. In 1943, in Hilbert's obituary, Weyl echoed that sentiment: "With Hilbert 
rigor figures no longer as enemy but as promoter of simplicity" [109:4, p. 124]. 

Naturally, it has been an open question ever since Hilbert's time how or to what 
extent investigations of simplicity might be carried out, if they can be carried out at all. 

6. THE PLACE OF THE TWENTY-FOURTH PROBLEM IN PROOF THE- 
ORY. Why did Hilbert cancel the question of simplicity, as formulated in the twenty- 
fourth problem? We do not have the necessary historical sources to give a definitive 
answer to this question, but we can make some conjectures and present evidence in 
support of them. Moreover, we can look at the progress of Hilbert's proof theory and 
metamathematics from the perspective of the canceled problem. 
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I do not think that the main reason was time pressure; rather I believe it was the 
status nascendi of proof theory. In Hilbert's actual speech, the three problems offoun- 
dation (the first, second, and sixth problems in [37]) that he chose to include among 
the ten presented were already, from his perspective, an acceptable representation of 
this branch of mathematics, for in the printed version these three were not supple- 
mented by additional problems of this genre. Moreover, one of the three problems on 
foundations is concerned with the consistency of the axioms of arithmetic (the sec- 
ond problem; see [66]), which later played a prominent role in Hilbert's program [115, 
pp. 37-58]. In conjunction with the twenty-fourth problem, this shows that, even at the 
time, Hilbert had at least a vague idea of metamathematics. Also, Hilbert had already 
included a decision theory problem on his list: the tenth problem seeks an algorithm 
to determine whether or not an arbitrary polynomial with integer coefficients has an 
integer root. (As mentioned earlier, in 1970 Matiyasevich established the nonexistence 
of such an algorithm [70], [8:2, pp. 323-378], [115, pp. 85-114].) 

In his 1917 Zurich talk "Axiomatisches Denken" [Axiomatic thinking], Hilbert sur- 
veyed the role of axiomatization and tried to turn the attention of mathematicians to 
the study of proofs (see [48]). He pointed out clearly that the problem of simplicity 
is among the significant questions of foundations and is closely related to tasks faced 
in the realm of proving consistency: "When we consider the matter [axiomatization of 
logic] more closely we soon recognize that the question of consistency of the integers 
and of sets is not one that stands alone, but that it belongs to a vast domain of difficult 
epistemological questions which have a specifically mathematical tint: for example (to 
characterize this domain of questions briefly) the problem of solvability in principle of 
every mathematical question [which we have earlier called the "Hilbert axiom"], the 
problem of the subsequent checkability of the results of a mathematical investigation, 
the question of a criterion of the simplicity for mathematical proofs, the question of the 
relationship between content and formalism [Inhaltlichkeit und Formalismus] in math- 
ematics and logic, and finally the problem of decidability of a mathematical question 
by a finite number of operations. We cannot rest content with the axiomatization of 
logic until all questions of this sort and their interconnections have been understood 
and cleared up" ([48, p. 412], [58:3, p. 153], English translation in [17, p. 1113]; see 
also [18, p. 195]). Furthermore, near the end of his life, Hilbert created an index for 
his notebooks by inserting one extra page on which the problem of simplicity appears 
among the few key words [38:3, inserted page]. Indeed, the problem did not let go of 
him. 

7. A LOOK AT HIIRERT'S FOUNDATIONS OF MATHEMATICS. From Hil- 
bert's point of view, any part of mathematics can be represented by a deductive system 
based on a finite set of axioms. Hilbert's idea was to axiomatize the branches of math- 
ematics and then to investigate the consistency of their axioms, especially those of 
arithmetic, which underlies all other branches. For this purpose, one must first for- 
malize the system (by means of formal logic) in order to make rigorous derivations 
possible. 

In Hilbert's formalistic view, mathematics is to be replaced by mechanical deriva- 
tions of formulas, without any reasoning concerning their specific content. Recall the 
words of Griffith [32, p. 3]: "A mathematical proof is a formal and logical line of 
reasoning that begins with a set of axioms and moves through logical steps to a con- 
clusion .... A proof confirms truth for the mathematics." In such a formal system, 
in proof theory, the subject of research is the mathematical proof itself [48, p. 413], 
[58:3, p. 155]. To master this subject (in the object language), one must control the 
field of proofs (in a metalanguage). However, since one cannot be universal and can- 
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not know everything that is to be known of all proofs, according to Hilbert's ideas one 
must develop proof theory completely from the finitary viewpoint and its intuitively 
convincing methods (see [60:1, secs. 2c-e]). Within this kind of framework (finitism), 
he hoped to be able to reduce any branch of mathematics to a system that rests on more 
solid ground. In any area of mathematics, there are questions that by their very nature 
refer to the infinite. This fact notwithstanding, Hilbert never specified precisely what 
the finitary, or for that matter what the simplest, proofs were. Clearly, for Hilbert, it 
had to be possible to convert any proof of a mathematical theorem into a finite one. 
Hilbert was probably led by certain examples (for instance, syzygies in the algebraic 
calculus [40], [42, lectures 47-48]) to the idea of finite (or even simplest) proof, but he 
had not yet thought to extend these particular results and to express them in a general 
form as a problem. The idea was still too vague. Nevertheless, since Hilbert's time the 
question has persisted: What is simplicity? 

Three years after the Paris address, Hilbert gave a talk in Gottingen on the foun- 
dations of arithmetic in which he promised to work out details of the axiomatic ap- 
proach. He tried to accomplish this in his Heidelberg lecture [44] at the 1904 ICM and 
in the course "Logische Prinzipien des mathematischen Denkens" [Logical principles 
of mathematical thought] (see [45], [46]) that he taught after the Heidelberg congress 
at the University of Gottingen [81, pp. 92-94, 98-101]. Strictly formalistic reasoning 
cannot prove the consistency of an axiomatic system, because the necessary formulas 
for proving consistency are not derivable within this system (G6del's second incom- 
pleteness theorem [26]). In a different sense, in his metamathematics, Hilbert intended 
to establish such concepts as consistency by intuitive justifications, i.e., by appealing 
to self-evident principles of reasoning and by direct methods involving purely finitary, 
combinatorial inferences. Metamathematics must restrict itself to counting beans, as 
Hans Freudenthal (1905-1990) sarcastically characterized this attitude [20, p. 1056]. 

After 1904, Hilbert's research took an unexpected turn, and a thirteen-year break 
from the circle of ideas under discussion here ensued. These were the years during 
which Hilbert was developing the theory of integral equations (see the survey of Ernst 
Hellinger (1883-1950) in Hilbert [58:3, pp. 94-145] and [88, pp. 117-129]). In the 
latter years of this period, World War I took its toll on his ability to conduct research. 
In the aforementioned lecture on axiomatic thinking delivered in Zurich in 1917, how- 
ever, Hilbert picked up the problem of simplicity again and presented the same ex- 
amples we know from the twenty-fourth problem in the notebook [38:3, pp. 25-26]. 
He later based an article, "Axiomatisches Denken" [48], on the Zurich talk. Arend 
Heyting (1898-1980) regarded the discussion of simplicity in this article as the most 
important, because it demonstrated that Hilbert viewed proofs as mathematical objects 
in themselves: "In it we perceive the germ of the later 'Proof Theory'" [36, p. 36]. 
(See also [48, pp. 412-413], [58:3, p. 153].) As noted earlier, Hilbert held this view 
as early as 1900 (see [42, lecture 37]). In the Winter Term of 1917, he returned to it, 
delivering a course "Principien der Mathematik" [Principles of mathematics], which 
was worked out by Paul Berays (1888-1977) [47] and which finally led to the book 
Grundlagen der Mathematik [60]. The basic idea of Hilbert's proof theory is to ensure 
the validity of arguments by reducing mathematics to a finite number of rules of in- 
ference that govern the manipulation of formulas. The set of derivable formulas is, of 
course, infinite, but it is "generated" by a finite subset of formulas. Is such an extended 
set consistent? Or one might ask generally: Is this proof theory itself consistent? 

In the 1920s, during which quantum theory was rapidly emerging, Hilbert, too, 
was occupied with the physical and mathematical problems of quantum mechanics. 
Still, in this period he launched a major effort, the so-called Hilbert program, to prove 
that mathematics is consistent (for the mathematical statements, not for Hilbert's 
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philosophical opinion, see the 1922 essay "Neubegriindung der Mathematik" [New 
foundations of mathematics] [49]). The theory (metamathematics) that supported this 
formalism was more or less completed by Hilbert in a 1922 talk, "Logische Grundla- 
gen der Mathematik" [Logical foundations of mathematics], in Leipzig [51], although 
a more readable version is his 1928 paper "Grundlagen der Mathematik" [53]. In 
his 1925 lecture "Uber das Unendliche" [On the infinite] [52], Hilbert expressed his 
philosophical thoughts in their mature form. Among other things, in an epistemolog- 
ical aside, he mentioned that in mathematics one finds the philosophical concept of 
"ideal propositions" (in Kant: regulative device [regulatives Prinzip]) as counterparts 
of the real or "finite propositions" (in Kant: constitutive device [konstitutives Prinzip]). 
Such ideal elements do not correspond to anything in reality but serve as regulators 
in Kant's terminology "if ... one understands as an idea a concept of reason which 
transcends all experience and by means of which the concrete is to be completed into 
a totality" [52, p. 190]. The reliability of such ideal methods is to be established by 
finitary means. 

Thus, only in his early sixties did Hilbert truly proceed to create proof theory and 
metamathematics. In this proof theory, he developed his formalistic standpoint in detail 
and dealt with the question of whether or not a formula can be deduced from the 
axioms that define a system. Hilbert regarded any derivable formula as an "image" 
of mental activity, for he was convinced that each mode of thought is accompanied 
by such symbols [44, p. 176]; he expressly formulated this conviction in the "axiom 
of thinking" [45, p. 119]. For Hilbert, both nature and human reflections on nature 
were finite. Therefore, Hilbert's program rested on the 'finite.' Relying upon a purely 
finite approach, in a system in which the axioms were regarded only as hypotheses 
for a theory and not as self-evident mathematical truths (see [57, chap. 1, sec. 1], 
[44], and [46, p. 141, 186]), Hilbert wanted to show that the essential mathematical 
methods could never lead to contradictions [52, pp. 162, 164]. The kind of formal 
axiomatic method regarded instrumentally by Hilbert is not in itself sufficient for the 
foundations of mathematics; for such a purpose, the axiomatization must be extended 
beyond its formal viewpoint. Meaning (inhaltliche Mathematik) is then introduced at 
the metamathematical level, in the metalanguage. In the end, the details of his program 
remained to be worked out (for the most refined presentation, see [51]). 

Hilbert's aim was to secure meaning by using finite concepts. We mention Zer- 
melo's credo as a conviction that is the antithesis of Hilbert's. The following artic- 
ulation of Zermelo's leading ideas is taken from his five "theses about the infinite 
in mathematics" (1921): "Each genuine mathematical proposition has an 'infinitary' 
character, i.e. it... has to be viewed as a combination of infinitely many 'elementary' 
sentences. The infinite is neither physically nor psychologically given to us in the real 
world. It has to be comprehended and 'posited' as an idea in the Platonic sense. Since 
infinitary propositions can never be derived from finitary ones, also the 'axioms' of all 
mathematical theories have to be infinitary and the 'consistency' of such a theory can 
only be proved by exhibiting a corresponding consistent system of infinitely many ele- 
mentary sentences" (Nachlass Zermelo, quoted in [15, pp. 148, 158]). For more about 
Zermelo's prejudice against a finitary character of genuine mathematical propositions, 
see [29], [116]. In light of the fact that in his former G6ttingen days Zermelo was on 
common ground with Hilbert [80, pp. 5, 118-122], it is indeed striking how widely 
divergent Hilbert's and Zermelo's opinions on the foundation of mathematics became. 

8. THE HIITRERT AXIOM: SOLVABILITY OF EVERY PROBLEM. Modem 
formalism descends from Hilbert's theory but has evolved into something quite differ- 
ent from it. Metamathematics, a term coined by Hilbert, has over the years come to be 
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regarded as a virtual synonym for proof theory. (Paul Berays already equated the two 
in 1934 [60].) "Proof theory" is now primarily a name for the study of formal models 
of mathematical systems. Hilbert's optimistic belief, the Hilbert axiom [37, p. 445] 
that he had preserved from his university days, is summed up by the quotation [38:3, 
p. 95]: "The proof of all proofs: that it must always be possible to arrive at a proof." 
This stands in remarkable contrast to the fact that in the last decades of the nineteenth 
century, especially during the time Hilbert was a student, pessimism was widespread. 
In 1872, the well-known physiologist and physicist Emil Du Bois-Reymond (1818- 
1896) delivered a famous speech in Leipzig, "Uber die Grenzen der Naturerkenntnis" 
[On the limitations of knowledge in the natural sciences], that was widely read (eight 
editions of the talk had appeared by 1898). Du Bois-Reymond, a brother of the mathe- 
matician Paul Du Bois-Reymond (1831-1889), maintained that certain problems were 
unsolvable, among them the natures of matter and force or the origin of motion. He 
concluded the lecture with the then oft-quoted agnostic catchwords "Ignoramus et ig- 
norabimus" [We are ignorant and we shall (always) be ignorant]. 

Up until the end of his career, Hilbert continued to reject again and again the "fool- 
ish ignorabimus" of Du Bois-Reymond and his successors (for Hilbert's last lecture, 
delivered in 1941, see [73, p. 71]). In his notebook, Hilbert phrases his "Noscemus" 
[We shall know] this way [38:3, p. 104]: "That there is no ignorabimus in mathematics 
can probably be proved by my theory of logical arithmetic." Elsewhere he contin- 
ued [38:3, p. 98]: "Maybe it will turn out that there is no sense in saying there are 
insoluble problems." In K6nigsberg, on September 8, 1930, in his famous speech "Na- 
turerkennen und Logik" [Natural philosophy and logic] [55], Hilbert pointed out that 
the positivist philosopher Auguste Comte (1798-1857) had once asserted that science 
would never succeed in ascertaining the secret of the chemical composition of the bod- 
ies in the universe. Then, preparing his optimistic concluding words, Hilbert went on 
to say: "A few years later this problem was solved" [55, p. 963] (see also [87, p. 196]). 

Indeed, in the course of time Hilbert's group, the formalists, achieved large parts of 
their goals in the foundations of mathematics (Wilhelm Ackermann, John Von Neu- 
mann, see [54, p. 137]; Paul Berays [60:1, p. v]). It seemed then that the proof of the 
consistency of number theory was more or less a matter of finding the proper mathe- 
matical technique. Consequently, at the 1928 ICM in Bologna, Hilbert's talk concerned 
problems of foundations [54, pp. 139-140]. In his program, Hilbert added to the old 
problem of consistency the new problem of the completeness of formal systems (first 
mentioned in [57, introduction], then in the second problem of the Paris address [37], 
and also in [45, chap. 1, sec. 3]). Hans Hahn (1879-1934) communicated Hilbert's 
extended program to the Vienna Circle, and in 1930 a young Austrian mathematician 
named Kurt Godel (1906-1978) demonstrated in his Ph.D. dissertation [24] that first- 
order predicate logic is complete, i.e., every true statement in it can be derived from 
its axioms (see [93]). 

Even the things one most confidently expects do not always come to pass. In one 
of the great ironies in the history of mathematics, it was coincident with Hilbert's 
great 1930 speech in Konigsberg that the same mathematician Godel again entered 
the scene, unnoticed by Hilbert; Godel was in Konigsberg attending a philosophi- 
cal congress [93]. Indeed, it was only in the discussion that took place on Septem- 
ber 7 (one day before Hilbert's famous speech) that Godel made an offhand remark 
on a work in progress, which is now known as Godel's incompleteness theorem ([33, 
pp. 147-148], see also [25]). Already in November 1930 the Leipzig journal Monats- 
hefte fir Mathematik und Physik received the epoch-making, 25-page article "Uber 
formal unentscheidbare Satze" [On formally undecidable propositions] [26], in which 
the 25-year-old author proved striking results in a way that Hilbert had not anticipated. 
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To be specific, Godel gave negative answers to the remaining problems of foun- 
dations posed by Hilbert at the 1928 ICM [54]. Over Hilbert's great expectations fell 
the shadow of harsh reality represented by Godel's results: (axiomatic) mathematical 
knowledge is always imperfect; we cannot prove all that is to be known. (In 1781, 
Konigsberg's other great son Immanuel Kant (1724-1804) had stated this result philo- 
sophically in The Critique of Pure Reason: "What the things-in-themselves [Dinge an 
sich] may [finally] be I do not know, nor do I need to know, since a thing can never 
come before me except in appearance" [Critique, version A, p. 276; trans. N. Kemp 
Smith].) G6del's results confirmed Cantor's belief that there are no foundations of 
mathematics without metaphysics, i.e., without infinite methods. And thus Hilbert's 
prediction, the sketched but never completely established finitary program, met the 
fate that the Bible so eloquently ordains: "The wind bloweth where it listeth, and thou 
hearest the sound thereof, but canst not tell whence it cometh, and whither it goeth: so 
is every one that is born of the spirit" (John 3:8). 

If we wished to continue on this theme, we would soon encounter the names of 
Ernst Zermelo (1871-1953), Thoralf Skolem (1887-1963), Adolf Fraenkel (1891- 
1965), Rudolf Carnap (1891-1970), Alonzo Church (1903-1995), Stephen Cole 
Kleene (1909-1994), Alan Turing (1912-1954), and others. That, however, would 
be another story (see Jean-Yves Girard's contribution to [82:2, pp. 515-545]). Hans 
Freudenthal provided a rather sad postscript to the foregoing discussion [20, p. 1057]: 
"At a closer look, 1931 is not the turning point but the starting point of foundations of 
mathematics as it has developed since. But then Hilbert can hardly be counted among 
the predecessors." Still, of those who insisted on the importance of mathematical 
proofs themselves and regarded proofs as mathematical objects, Hilbert obviously 
must be counted among the first. 

Furthermore, Hilbert's work on metamathematics has greatly improved our un- 
derstanding of the nature of mathematical reasoning. Despite the fact that Hilbert's 
program was largely discredited by Godel's theorems, Hilbert's ideas concerning foun- 
dations are not without value for certain areas. In a letter to Constance Reid dated 
March 1966, Godel himself underscored this point: "I would like to call your attention 
to a frequently neglected point, namely the fact that Hilbert's scheme for the founda- 
tion of mathematics remains highly interesting and important in spite of my negative 
results. What has been proved is only that the specific epistemological objective which 
Hilbert had in mind cannot be obtained .... However, viewing the situation from a 
purely mathematical point of view, consistency proofs on the basis of suitably chosen 
stronger metamathematical presuppositions (as have been given by Gerhard Gentzen 
(1909-1945) and others) are just as interesting, and they lead to highly important in- 
sights into the proof theoretic structures of mathematics .... As far as my negative 
results are concerned, apart from the philosophical consequences mentioned before, I 
would see their importance primarily in the fact that in many cases they make it pos- 
sible to judge, or to guess, whether some specific part of Hilbert's program can be 
carried through on the basis of given metamathematical presuppositions" ([28]; see 
also [87, pp. 217-218]). 

Indeed, there is a surprising amount of work that can be carried out along the lines 
of the Hilbert program. In some sense, part of it was already done by Hilbert and his 
collaborators, particularly Wilhelm Ackermann (1896-1962) and Paul Berays (1888- 
1977). The first major variation of Hilbert's program was due to Gerhard Gentzen, 
who in the 1934 paper "Die Widerspruchsfreiheit der Zahlentheorie" [21] established 
the consistency of number theory (see [72]), which Ackermann did independently in 
1940 [2]. In accordance with Godel's results, such investigations must resort to princi- 
ples that lie outside pure number theory. For example, transfinite induction is used, but 
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apart from this "transcendental" element, the proofs are carried out completely within 
the framework of number theory. (Noteworthy in this connection is the fact established 
by Church that G6del's results cannot be obtained by finite means [11].) 

In the axiomatic approach, the "tree" of all possible mathematical formulas grow- 
ing from axioms is not only extremely expansive but, as Godel pointed out, even 
disconnected. However, from a finitary standpoint, the restriction to "meaningful ques- 
tions" (the Hilbert tree) would lead to a "human mathematics" (see the interview 
with Mikhael Gromov in [82:2, pp. 1213]). True, G6del's results dictate certain limits 
to Hilbert's foundations of mathematics, but there remains much of value in continu- 
ing Hilbert-like programs. To give one important example: nonstandard analysis, in the 
spirit of Abraham Robinson (1918-1974), is a new branch of mathematics that grew 
out of model theory around 1960 and owes much to the ideas of Hilbert. In addition, 
the advent of computer science led to a rebirth of Hilbert's proof theory. 

9. SIMPLICITY VERSUS COMPLEXITY. Hilbert was not alone in his desire for 
maximal simplicity in mathematical proofs. This issue was of importance, for example, 
to the French mathematician Emile Lemoine (1840-1912), who showed great interest 
in simplifying geometric constructions. In 1888, Lemoine reduced all geometric con- 
structions by ruler and compass to five basic operations. One of them, for instance, 
was simply placing an end of the compass at a given point. Lemoine quantified the 
simplicity of a construction as the total number of times these five basic operations 
were used in it. In this way, he was able assign a numerical value to the complexity of 
a geometric construction [68]. 

It is probable that in some analogous way Hilbert wanted to make proofs in gen- 
eral a measurable object of another theory ("logical arithmetic") in which only finite 
methods were acceptable. The reduction of proofs to an algebraic calculus by means of 
formal logic would allow one to decide which of two given proofs is simpler merely by 
comparing the number of operations involved in each. In invariant theory [1], Hilbert 
had already touched upon the question of how to express relations in terms of a finite 
basis (see also his 1897 lecture [42]). From such a viewpoint, it would seem possible 
to arrange mathematical proofs into strata characterized by their degree of simplic- 
ity. Mathematics would then assume the appearance of a neatly organized warehouse 
in which formulas would be stacked in hierarchical order: the lower the stratum, the 
simpler the proof. 

As to the complexity of technical details for proofs that sit in this mathematical stor- 
age facility, I would remind the reader of four well-known problems. The proof of the 
Burnside conjectures (see [61, p. 106]) occupies about one thousand pages, while a 
complete proof of Ramanujan's conjectures is estimated to require at least two thou- 
sand pages. Nevertheless, such proofs, including those of Fermat's Last Theorem by 
Andrew Wiles [97], [112] or of the "Four-color Problem" by Appel and Haken [3], 
are examples of the kind of finite mathematics that Hilbert hoped to establish by his 
program (see [101]). Wiles's proof can be carried out by hand; by contrast, no proof 
unaided by technology is yet known for the four-color problem. Of course, in gen- 
eral, computer-aided proofs have too many cases for any human being to check them 
step by step. However, even for finite proofs created solely by the human brain, there 
remains Hilbert's practical question [38:1, p. 53]: "whether in mathematics problems 
exist that cannot be dealt with in a prescribed short time?" His example (see [38:2, 
p. 1], [38:3, inserted index]; see also [48, p. 414] or [58:3, p. 155]): compute the nth 
digit in the decimal expansion of 7r, where n is equal to 10 raised to the 10th power 
to the 10th power, i.e., n = 11010. (In the theory of invariants one is faced with sim- 
ilar questions. Hilbert's first papers settled the finiteness question only in principle, 
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without any indication that we can actually calculate certain numbers; [42, lecture 37], 
[74], [89].) 

The solvability of this problem in finitely many operations is evident, but from 
an epistemological viewpoint such computing tasks, which have been undertaken by 
Yasumasa Kanada, Takahashi, Fabrice Bellard, the brothers Gregory and David Chud- 
novsky, and others and which have provided millions of digits of Xr (as of April 1999 
the number was up to 68 billion), are problematic. Imagine a supercomputer of the 
largest size possible, that of the universe, and imagine also that this computer has been 
calculating since the Big Bang. On the basis of the standard model of cosmology it is 
obvious that the number N of steps that this computer would have been able to exe- 
cute must be finite. (It has been assumed that the total number of long-lived particles 
(electrons and protons) in the universe is about 1080 (Sir Arthur Eddington, 1931). 
This empirical assumption provides the maximal number of components of the central 
processing unit. On the other hand, quantum mechanics requires a minimal time for an 
operation. Coupled with the elapsed time due to the cosmological standard model the 
total number N of operations this computer would be able to carry out is somewhere 
between 10120 and 10160; see [22, pp. 44-46], [104, pp. 64-65]). For the given n (or, 
more generally, for any given natural number), one can choose a natural number g 
for which ng > N. Even at the rate of one thousand operations for the calculation of 
one digit of Jr, the "Jr-hunters" will likely remain below 1015 for the foreseeable fu- 
ture. The upshot of this discussion is that there is and will always be a limit to our 
knowledge; in the end, it is the complexity of the required operations that determines 
our access to the (presumed) realm of Platonic knowledge. (Incidentally, dealing with 
the prime-number theorem G. H. Hardy (1877-1947) looked upon n34, the Skewes 
number, as the largest number in mathematics of any practical significance.) 

Therefore, the complexity of computations (or, more precisely, of algorithms) is of 
the utmost importance (see the concise survey [90]). Suppose that a problem can be 
solved by means of any of several algorithms. For various reasons, it might be de- 
sirable to compare the complexities of the algorithms at hand. Such complexities are 
formulated in terms of Turing machines. Among the classes of complexity there are 
those of practical interest that can be solved by a deterministic and a nondeterminis- 
tic Turing machine, respectively, whose time complexity is bounded by a polynomial 
time function (P-problem and NP-problem, respectively). Obviously, the class of NP- 
problems contains that of P-problems. In 1971, Stephen Cook formulated the P versus 
NP problem (now among the Millennium Prize Problems [12]): N = NP? The strong 
connections to computer science become obvious here. This rapidly increasing field of 
research has developed natural links with the search for the most effective and shortest 
algorithms, an endeavor with clear ties to Hilbert's vision of proof simplicity (see [66], 
[83], [116]). 

One might ask: How many proofs do mathematicians publish each year? A back- 
of-the-envelope calculation yields a rough approximation: multiplying the number of 
journals by the number of yearly issues by the number of papers per issue by the aver- 
age number of theorems per paper, someone has arrived at an estimated lower bound of 
two hundred thousand theorems a year! Who could conceivably judge which of them 
are established via the simplest possible proof? Nevertheless, we read in Hilbert's note- 
book: "All our effort, investigation, and thinking is based on the belief that there can be 
but one valid view" [38:3, p. 96]. That means also there must be a simplest proof. In a 
more colloquial spirit, Hilbert added [38:3, inserted page]: "Apply always the strictest 
proof! Philological-historic import must be wiped out. Given 15-inch guns, we don't 
shoot with the crossbow." He resorted to the same metaphor a second time with a ref- 
erence to the Franco-Prussian war (1870-1871) [38:2, p. 99]: "We did not go to war 
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against France with bows and arrows, although they too might have produced their 
effect." 

Regarding the diversity of proofs, I point to the history of the fundamental the- 
orem of algebra as a celebrated example. There are two basic ideas: for an algebraic 
proof, the approach espoused by Leonhard Euler (1707-1783), and for an analytic one, 
the mode of attacked favored by Jean-Baptist Le Rond D'Alembert (1717-1783). Of 
course, there is the research of Carl Friedrich Gauss (1777-1855) that forms a link be- 
tween the two. Despite his motto "Pauca, sed matura" [Few, but ripe], Gauss returned 
to this subject many times and altogether gave four proofs of this important theorem. 
For Gauss, the simpler and more elegant he could make the proof, the better. 

Frequently, a mathematical theorem is regarded as "deep" if its proof is difficult. 
The opposite of "deep" is "trivial," a term suggesting that little or no proof is neces- 
sary. Nevertheless, there is a constant movement in mathematics toward simplification, 
toward finding ways of looking at a matter from an easier, more "trivial," and hope- 
fully more revealing vantage point. The simplicity of a proof depends on a multitude 
of factors: the length of its presentation, the techniques used, one's familiarity with the 
concepts involved, the proof's abstract generality, the novelty of ideas, and so forth. 
We read these words in Hilbert's notebook [38:3, p. 101]: "Always endeavor to make a 
proof with the least elementary means, for that way mastery of the subject comes best 
to the fore (the opposite of Weierstrass and Kronecker and their imitators). 'Elemen- 
tary' is the designation only for what is known and familiar." 

As to the mathematician's temptation to undertake generalization for generaliza- 
tion's sake, Hilbert declared [38:1, p. 45]: "The mathematicians' function should be to 
simplify the intricate. Instead they do just the opposite, and complicate what is sim- 
ple, and call it 'generalizing'. Even if a method or an elaboration achieves no more 
than half, yet is two times simpler, I find that a great advantage." A simpler proof 
makes us wiser; the simpler its premises and deductions are, the more convincing a 
theory is. A proof is the most straightforward way to justify mathematical reasoning. 
"A mathematical proof," to quote G. H. Hardy, "should resemble a simple and clear-cut 
constellation, not a scattered cluster in the Milky Way" [35, p. 113]. 

In contrast to such views, Solomon Feferman remarked [19, p. 20]: "A proof be- 
comes a proof after the social act of 'accepting it as a proof.'" The social perspec- 
tive thus becomes relevant to the informal concept of the simplest proof. From this 
viewpoint complicated and long proofs, having features that might hamper or retard 
acceptance, would fail the test of simplicity. A famous historical example is the work 
of Girard Desargues (1591-1661) that was not well received in his time because De- 
sargues invented too many "strange" new technical terms. 

10. THE BACKGROUND OF THE TWENTY-FOURTH PROBLEM. Instead of 
proving mathematical theorems, we can examine deductive systems themselves and 
explore their properties. In this setting we investigate proofs themselves as mathemat- 
ical objects. In order to be able to manipulate objects, however, we must first learn to 
distinguish them. This process begins by attributing certain properties (e.g., simplicity, 
complexity, shortness) to proofs as distinguishing markers. 

It is evident that the question of simplicity is connected with the internal structure of 
such theories, extending all the way back to the choice of axioms and their particular 
formulation. In other words, the simplicity of axiom systems is also involved in the 
twenty-fourth problem. Here again, one is confronted by subjective viewpoints that 
lead into controversial areas of the foundations of mathematics. 

However, we ought to remember that in no way is the equivalence of axiom sys- 
tems affected by such requirements of efficiency, nor do we intend to suggest that 
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well-constructed axiom systems with "shortest axioms" (whatever that might mean) 
will automatically give rise to the shortest or simplest proofs (see [95]). Although 
some research has been done with a view toward simplifying certain axiomatic sys- 
tems (above all by Lesniiewski (1886-1936) and his school), the problem has not yet 
been fully discussed. (I am indebted to Fred Rickey for bringing these developments 
to my attention.) 

The final goal of presenting a branch of mathematics is to express it as a formalized 
system. However, the mathematical research that precedes the creation of such formal 
systems has need of its problems (for research) and examples (for representation). As 
we emphasized earlier, important problems appeared to Hilbert "as the life nerve of 
mathematics" [109:4, p. 123]. It is of consequence that he always began a project with 
clear but extremely simple examples and that very special results led him eventually 
to general ideas. As a case in point, he usually started lectures on ordinary differential 
equations with a thorough investigation of the elementary but instructive examples 

y"(x) = O, y"(x) + y(x) = 0 

[87, p. 104] (see also [41, p. 1 (insertion)]). However, "The detailed work will not 
receive the highest sacred fire unless the look is turned to generality and to the under- 
standing of foundations" [38:3, insertion]. 

So, it is not surprising that the twenty-fourth problem consists of a general program 
that is illustrated by two specific examples. For Hilbert, the simplest mathematical op- 
eration was addition, so he used this operation in one of the examples to motivate the 
twenty-fourth problem. To each geometric or logical process, there corresponded for 
Hilbert an "adding together." In this way, he was able to formalize certain geomet- 
ric concepts arithmetically, especially calculations with straight lines (Streckenrech- 
nung) [57, sec. 15, 28]. Hilbert went into some detail about this subject in his address 
at the Heidelberg ICM [44]. He also investigated the possibility of correspondences of 
this kind for geometric constructions. "The geometrical figures are graphic formulas," 
he said in his Paris talk [37, p. 443]. There is no doubt that certain constructions or 
proofs rely completely on finite processes, i.e., their truth can be proved in a finite 
number of steps. And it was exactly this finitary point of view that Hilbert advocated. 

"Simplicity ... is simplicity of ideas, not simplicity of a mechanical sort that can be 
measured by counting equations or symbols," declared the Nobel Laureate physicist 
Steven Weinberg [106, p. 107]. He went on to say: "Any symmetry principle is at 
the same time a principle of simplicity" [106, p. 110]. Weinberg's rejection of mere 
counting does not clash with Hilbert's finite notion of simplicity; rather, it supports 
Hilbert's belief because Hilbert was deeply convinced that proofs as shown in Riemann 
(1826-1866) are better achieved through ideas than through long calculations (this was 
Hilbert's "Riemann principle"). Weinberg's statement that "We demand a simplicity 
and rigidity in our principles before we are willing to take them seriously" [106, p. 118] 
coincides exactly with Hilbert's intention to use the simplest possible, yet rigorous 
concept. 

In the end, Hilbert's aim was to justify classical mathematics by finite methods. 
"To preserve the simple formal rules of Aristotelian logic [in light of finite methods] 
we must supplement the finitary statements with ideal statements," Hilbert had de- 
clared in a lecture "On the infinite" delivered in Minster on June 4, 1925 [52, p. 174] 
(see also [87, p. 177]). However, such "adjoint" [adjungierte] ideal statements (for 
example, the existence of the infinite, of the continuum, and of ideals in algebra) ob- 
viously depart from the finite viewpoint. Nevertheless, such extended finite systems 
are indispensable for the development of mathematics. But such an extension of a fi- 
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nite domain that was taken to consist of meaningful true propositions of mathematics 
and their justifying proofs (termed "real mathematics" by Hilbert) is legitimate, pro- 
vided this extension (termed "ideal" by Hilbert) does not cause any contradictions. 
Such accommodation was strictly rejected by Leopold Kronecker (1823-1891), and in 
the beginning Hilbert refused to accept Kronecker's views [38:1, p. 53, 79, 91]. From 
Hilbert's point of view any branch of mathematics dealing with ideal concepts could 
be accepted, as long as there was a proof that such an extended system was consistent. 

Hilbert's justification rested on a division of mathematics into two parts: the real 
mathematics to be regulated and the ideal mathematics serving as regulator. There- 
fore, in Hilbert's reasoning, the question of how to establish the reliability of the ideal 
methods (the regulators) by finite means is given great weight, and the consistency of 
extended systems proves to be an item of central importance. Hilbert attempted to se- 
cure the ideal (i.e., infinitary) parts of mathematics by formalizing them, then calling 
for a proof of their reliability. He believed that this could be done by finitary means 
alone [52, pp. 170-171]. In pursuing this objective (i.e., the justification of infinite 
deductions), Hilbert finally approached Kronecker's finitism to a certain extent: once 
metamathematics was taken to be a weak part of arithmetic, it closely corresponded to 
finitary mathematics a la Kronecker [56, p. 487]. 

11. SYZYGIES AS A POSSIBLE PARADIGM FOR SIMPLICITY. It may be 
very hard to define the simplicity of proofs, but we nevertheless recognize "simplic- 
ity" in proofs when we see it. Different criteria for assessing simplicity (for example, 
proof length [27], total number of symbols in the proof, the absence of certain terms, 
the number of basic operations) may become relevant as the context changes so that 
different facets of simplicity may be emphasized by some criteria, downplayed by oth- 
ers (see [75:6, chap. 7]). In an interesting historical remark on simplicity in geometry, 
Rene Descartes (1596-1650) discussed in his La Geometrie (1637) the question of 
when one curve is simpler than another (see [6, chap. 25]). Keeping all these factors 
in mind, what features of simplicity can we define precisely? 

The introduction of measures of simplicity for proofs is, to be sure, a delicate busi- 
ness. As mentioned earlier, Hilbert was guided by his investigations of invariants [1], 
in which he made use of special algebraic objects known as syzygies ([74, pp. 163- 
183] gives a comprehensive survey of the old theory). Geometric facts that are in- 
dependent of the coordinate system-in other words, invariants-can frequently be 
expressed through the requirement that some related algebraic condition be satisfied. 
For example, in Euclidean geometry, the relevant invariants are embodied in quantities 
that are not altered by geometric transformations such as rotations, dilations, and re- 
flections. In analytical terms, the invariants in question are invariants of tensors or, to 
employ the terminology of Hilbert's time, invariants of an n-ary form of degree m un- 
der linear transformations ([39], [42]; see also [74], [79], [89]). Old papers in invariant 
theory typically consisted of masses of endless algorithmic computations, whereas by 
viewing invariants in a broader framework Hilbert proved his theorems in a few pages, 
almost without calculations (see [40], [74], [79], [89]). 

In algebra, the term "syzygy" is used to signify a relationship. Starting with a 
polynomial ring R = K[xl, x2 ..., xn] over a field K, Hilbert had shown-we use 
modem terminology (see [61, chap. 8, sec. 4], [111, p. 251])-that the set of all 
invariants i form an ideal I of R and any invariant i can be represented by afinite basis 
il, i2, .. ., ik so that all invariants are integral rational functions of the generators (ba- 
sic invariants). However, at the same time these basic invariants are not algebraically 
independent: they belong to the zero-sets of certain polynomial relations, the syzygies 
of the preceding paragraph. The collection of syzygies is closed under the operations 
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of addition and multiplication. Moreover, syzygies constitute an ideal in the relevant 
polynomial ring. The syzygy ideal itself has a finite basis, the elements of which are 
not always algebraically independent. Thus, one obtains second-order syzygies, and 
so on. 

In the theory it is proved that the foregoing cascade of syzygies comes to a halt 
in a finite basis whose members are algebraically independent after at most k steps, 
where k is the number of invariants of the basis [13, chap. 3], [74], [79]. (In his pa- 
pers [1], Hilbert actually proved a stop in "at most k + 1" steps; see also [39], [42, 
lecture 47].) Hilbert extended this result by establishing that any ideal I in a polyno- 
mial ring R = K[xl, x2, ..., Xn] over a field K (or over a ring of integers) is finitely 
generated, a fact now known as Hilbert's Basis Theorem [1], [42, lecture 35], [58:2, 
no. 16, pp. 199-270] (for generalizations, see [88], [8:2, pp. 431-444], [61, pp. 387, 
391], and [92]). 

Accordingly, this special part of algebra can be placed in the kind of finitary frame- 
work we have been discussing. As to the reduction of proofs to an algebraic calculus, 
it may well be that what Hilbert had in mind was to generalize the situation described 
by the basis theorem (see [48, p. 413], [17, p. 1113], and [18, p. 196]). In a lecture 
"Theorie der algebraischen Invarianten nebst Anwendungen auf Geometrie" [Theory 
of algebraic invariants together with applications to geometry] [42] that Hilbert deliv- 
ered in 1897 when his research in invariant theory had been completed, he remarked: 
"With each mathematical theorem, three things are to be distinguished. First, one needs 
to settle the basic question of whether the theorem is valid .... Second, one can ask 
whether there is any way to determine how many operations are needed at most to carry 
out the assertion of the theorem. Kronecker has particularly emphasized the question 
of whether one can carry it out in a finite number of steps" [42, lecture 37]. Consis- 
tent with this statement is the following quotation taken from the same collection of 
lectures: "It can also happen that a given invariant has several different symbolic rep- 
resentations. When making symbolic calculations, one of course chooses the simplest 
one" [42, lecture 31] (for the symbolic representation see [89, p. 22]). 

Moreover, Hilbert's theory of algebraic number fields was partly foreshadowed by 
certain finite investigations of so-called algebraic modular systems (Modulsysteme) 
by Kronecker [13, p. 147]. Hilbert might have felt that these investigations could serve 
as an example of a finite theory [56, p. 487]. In view of the twenty-fourth problem, it 
could well be that Hilbert's general outline had its roots in the structure of the afore- 
mentioned systems. 

12. CONCLUSIONS. His biographer Otto Blumenthal (1876-1944) stressed that 
Hilbert was a man of problems [58:3, p. 405]. This meant that Hilbert's starting points 
were always simple, but important problems. I believe that this way to create a theory 
will salvage essential parts of his proof theory and metamathematics. Indeed, the meth- 
ods of proof theory are now playing, not surprisingly, a significant role in computer 
science. Moreover, despite Godel's results that reveal the goal of the original Hilbert 
program to be unattainable, a modified Hilbert program did lead to the development 
of proof theory, metamathematics, and decision theory (or, as it is sometimes called, 
computability theory). 

In the end, neither Hilbert nor his staunchest adversary on foundational issues, 
Luitzen Egbert Brouwer (1881-1966), felt any more obliged than most mathemati- 
cians today to adhere to restrictive philosophical doctrines in their "everyday" math- 
ematical research, despite the caveat of Godel's triumph. A striking example is found 
in Brouwer's topological research-at least until 1917-in which the use of geometric 
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intuition plays a vital role (as it does in every contemporary mathematician's geomet- 
rical paper) [64, pp. 145, 148-156]. 

Hilbert believed in the ultimate efficacy of (finite) mathematics. His writings, lec- 
tures, letters, and discussions display the full conviction that well-posed mathematical 
problems are always questions with meaningful answers in the same way that ques- 
tions about physical reality have answers. As to parallels between nature and thought, 
Hilbert stated in his mathematical notebook: "Between thought [Denken] and event 
[Geschehen] there is no fundamental and no quantitative difference. This explains the 
pre-established harmony [between thought and reality] and the fact that simple exper- 
imental laws generate ever simpler theories" [38:3, p. 95] (see also [56, p. 485]). We 
have mentioned earlier that Hilbert believed thought and nature to be finite. Later on, 
Hilbert became convinced of this metaphysical principle: there is a realm beyond phe- 
nomena, and the universe is governed in such a way that a maximum of simplicity and 
perfection is realized (compare also Einstein's view in [78]). 

The idea of the infinite had stirred men's emotion like no other subject ([52, p. 163]; 
see also [87, p. 176]). Hilbert broached the old question of the limits of human abil- 
ity to handle the infinite. Can we grasp the mathematical infinite in finite terms? Is 
it possible for a special problem or, beyond that, for a whole theory? Or is it a con- 
tradiction in itself? Suppose that in mathematics we could eliminate ideal concep- 
tions (for example, the continuum), i.e., express them in finite form. Would it then be 
possible to exploit this finiteness to establish a framework for gauging the simplicity 
of proofs? Or, if we insist upon remaining in the realm of the finite, could we then 
carry out all the necessary mathematical reasoning? Can the limited human brain even 
begin to grasp in finite terms all the theorems in mathematics that stand in need of 
proof? 

How could this great mathematician ever have believed that such dreams would be 
realized [20, p. 1056]? Does it appear that after Hilbert's discovery of the extremely 
general finiteness principle upon which his proof of the basis theorem was based, 
Hilbert was overly optimistic about finiteness results in other algebraic and even in 
foundational contexts? Was Hilbert's unwavering belief in the power of thought just 
naive? Was it indebted to the widespread belief in irresistible progress that prevailed at 
the turn of the twentieth century, part of the Zeitgeist? David Mumford, Fields medal- 
ist in 1974, remarked in a paper "The Finite Generation of Subrings Such As Rings of 
Invariants" dealing with Hilbert's fourteenth problem [8:2, pp. 431-432]: "However 
my belief is that it [Hilbert's belief in finiteness] was not at all a blind alley: that on the 
one hand its failure reveals some very significant and far-reaching subtleties in the cat- 
egory of varieties .... In fact, my guess is that it was Hilbert's idea to take a question 
that heretofore had been considered only in the narrow context of invariant theory and 
thrust it out into a much broader context where it invited geometric analysis and where 
its success or failure had to have far-reaching algebro-geometric significance." We can 
add this to it: Hilbert's philosophical ideas led him to believe that through an extension 
of these finite properties he had first become aware of in invariant theory it could be 
possible to establish the foundations of mathematics by finitary means. The price one 
normally pays for aiming impossibly high but, like Sisyphus, repeatedly falling short 
of one's objective is despair. Yet, even after Godel's results, which set up impassable 
roadblocks to the achievement of Hilbert's goal, the aging Hilbert was full of hope that 
these foundational objectives were attainable in a modified sense. From our viewpoint, 
however, a distinction is to be made between the program Hilbert intended to carry out 
and its realizable part [94]. 

We extract another quotation from Hilbert's Paris lecture [37, p. 444]: "Occasion- 
ally it happens that we seek the solution under insufficient presuppositions or in an 
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incorrect sense, and for this reason do not succeed. The problem then arises: to show 
the impossibility of the solution under the given hypotheses." What does simplest proof 
mean in this context-the simplest counterexample? If we consider the last quotation 
in relation to the second problem on the Hilbert list, the Continuum Problem, then 
a remark of Godel, who had profound insights into the problem, is most interesting. 
I quote from a letter of Godel to Constance Reid [28, 4 June 1969], [28, 22 March 
1969] (see also [87, p. 218]): "It is frequently overlooked that, disregarding questions 
of detail, one quite important general idea of his has proved perfectly correct, namely 
that the Continuum Problem will require for its solution entirely new methods de- 
riving from the foundation of mathematics. This, in particular, would seem to imply 
(although Hilbert did not say so explicitly) that the Continuum Hypothesis is undecid- 
able from the usual axioms of set theory." Evidently, the open-minded Hilbert was not 
so misguided by preconceived notions to think that something he wished to be true had 
to be true (as is sometime maintained; see [20, p. 1057]). 

Despite the fact that problems form the basis of mathematics and determine its 
progress, for Hilbert they were not the be-all and end-all. Mathematics is more than 
a collection of isolated problems. It is only the mathematical method that prepares 
the ground for mathematics, highlights the basic ideas, and finally makes mathematics 
more than a hodgepodge of problems. On the other hand, Hilbert was fully aware of 
the vital part problems play [37, p. 444]: "He who seeks for methods without having a 
definite problem in mind seeks for the most part in vain." 

Mathematics is not unlimited in scope, true, but for all its limitations it does con- 
tinue to make progress. Despite an ever-growing diversity of mathematical areas and 
a rapidly expanding body of mathematical knowledge, the simplification of proofs by 
axiomatic methods has made mathematics as a whole a more efficient and unified en- 
terprise. "Axiomatics is the rhythm that makes music of the method, the magic wand 
that directs all individual efforts to a common goal" [38:3, p. 93]. From the begin- 
ning, for Hilbert such a common goal was the unity of mathematics ("the science of 
mathematics ... is an indivisible whole, an organism whose ability to survive rests 
on the connection between its parts" (translation by Weyl [109:4, p. 123]) in which 
axiomatics, proof theory, and metamathematics are but distinct parts. 

No one will dispute the fact that Hilbert's spirit and influence have played important 
roles in mathematics. Although a naive assumption that progress is inevitable (in math- 
ematics or otherwise) no longer prevails and, with the passage of time, Hilbert's once 
highly acclaimed work on the foundations of mathematics is looked upon more criti- 
cally, we should respect the past-not play the tempting role of "a backward-looking 
prophet" (Friedrich Wilhelm Schelling, 1775-1806) and demean the past by making 
unfair comparisons with the present. 

Hermann Weyl's oft-cited poetic remark sums up the impact of Hilbert's contribu- 
tions [108:4, p. 132]: "I seem to hear in them from afar the sweet flute of the Pied Piper 
that Hilbert was, seducing so many rats to follow him into the deep river of mathemat- 
ics." By introducing his problems, Hilbert himself stoked the fires of our mathematical 
enthusiasm. In a lecture, he once pointed out to the audience that in mathematics we 
cannot use and furthermore do not need such lame excuses as "the ladder is too short" 
or "the experiments are too expensive" [50, p. 24]. On another occasion, he stirred 
his listeners with the words: "We hear within us the perpetual call: There is the prob- 
lem. Seek its solution. You can find it by pure reason, for in mathematics there is no 
ignorabimus" [37, p. 445]. 

That is what Hilbert believed. Clearly, because of Godel's results, there are some ob- 
jections to Hilbert's profession of faith in mathematics. Nevertheless, mathematicians 
will forever find inspiration in the optimistic tone sounded in the famous line from his 
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Paris address [37, p. 445] that was engraved on his tombstone (see [87, p. 220]): 

"Wir miissen wissen, wir werden wissen" [We must know, we shall know]. 
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