
A SURVEY ON k–FREENESS

FRANCESCO PAPPALARDI

Abstract. We say that an integer n is k–free (k ≥ 2) if for every
prime p the valuation vp(n) < k. If f : N → Z, we consider
the enumerating function Sk

f (x) defined as the number of positive
integers n ≤ x such that f(n) is k–free. When f is the identity
then Sk

f (x) counts the k–free positive integers up to x. We review
the history of Sk

f (x) in the special cases when f is the identity, the
characteristic function of an arithmetic progression a polynomial,
arithmetic. In each section we present the proof of the simplest
case of the problem in question using exclusively elementary or
standard techniques.

1. Introduction - The classical problem

We say that an integer n ∈ N is square free if for any prime p | n,
one has p2 - n. If µ denotes the Möbius function, then µ2 is the
characteristic function of the set of square free numbers. It is a classical
statement that

S(x) := #{n ≤ x | n is square free } =
6

π2
x + O(

√
x).

The proof is simple and it goes as follows: we start from the identity

µ2(n) =
∑
d2|n

µ(d),

which follows from the fact that µ is multiplicative. From this we
obtain

S(x) =
∑
n≤x

µ2(n) =
∑
n≤x

∑
d2|n

µ(d)

=
∑

d≤
√

x

µ(d)
( x

d2
+ O(1)

)
= x

∑
d≤
√

x

µ(d)

d2
+ O(

√
x)
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= x
∞∑

d=1

µ(d)

d2
+ O

√x + x
∑

d>
√

x

1

d2

 =
x

ζ(2)
+ O(x1/2)

where ζ denotes the Riemann ζ function.
Similarly, if k ≥ 2, we say that an integer n ∈ N is k–free if for each

prime p | n, one has pk - n. If µ(k) denotes the characteristic function
of k–free integers, then one has the identity:

µ(k)(n) =
∑
dk|n

µ(d).

The same proof as above gives:

Sk(x) := #{n ≤ x | n is k–free} =
x

ζ(k)
+ O( k

√
x).

To improve the error term one can consider the generating zeta func-
tion of µ(k). Indeed, it is quite simple to verify that for each s ∈ C
with <(s) > 1,

∞∑
n=1

µ(k)(n)

ns
=

ζ(s)

ζ(ks)
.

Therefore the right hand side above can be extended to a meromor-
phic function on C with poles on s = 1 and on the complex numbers
of the form ρ/k where ρ ranges over the zeros of ζ(s).

From the Perron integral (see the book of G. Tenenbaum: Introduc-
tion to analytic and probabilistic number theory, 1995 on page 130):

1

2πi

∫
<(s)=2

ys

s
ds =


0 if y < 1

1/2 if y = 1

1 if y > 1,

we deduce that if x 6∈ N,

Sk(x) =
1

2πi

∫
<(s)=2

ζ(s)

ζ(ks)

xs

s
ds.

Computing the residues, we obtain:

Sk(x) =
x

ζ(k)
+
∑

ρ
ζ(ρ)=0

aρ,kx
ρ/k.

where aρ,k can be computed in terms of the residue of 1/ζ(s) at s = ρ.
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If we assume the Riemann Hypothesis and we write ρ = 1/2 + iγ,
then the above identity becomes

Sk(x) =
x

ζ(k)
+ O(x1/2k

∑
γ

aρ,kx
iγ/k).

This argument suggests that the right error term in an asymptotic
formula for the number of k–free integers corresponds to the largest real
part of the zeroes of the Riemann ζ–function. Therefore the following
conjecture should hold:

Sk(x) =
x

ζ(k)
+ O(x1/2k+ε).

The above statement has a clear connection with the Riemann Hy-
pothesis and therefore it is quite unlikely that it will be proven in the
near future.

Using oscillation theorems, it is also possible to prove that

Rk(x) := Sk(x)− x

ζ(k)
= Ω( 2k

√
x).

This was shown in 1968 by Vaidya [38].
In this direction Balasubramanian and Ramachandra in 1988 [3, 4]

gave an effective proof that

R2(x) = Ω±(
√

x).

The upper bound for Rk(x) has attracted the work of many authors.
Not much can be said unconditionally except that, using the classical
zero–free region estimates due to Vinogradov and Korobov through
exponential sums, Walfisz [40] showed that for a suitable constant c,
uniformly on k,

Rk(x) � k
√

x exp{−ck−8/5 log3/5 x log log1/5 x}.

We assume the Riemann Hypothesis for the rest of this section and
list the achievements on the problem of estimating Rk(x):
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• In 1911 Axer [1] showed that for every ε > 0

Rk(x) � x2/(2k+1)+ε.

• In 1981 Montgomery and Vaughan [27] showed that for every
ε > 0

Rk(x) � x1/(k+1)+ε.

In the same paper, they improved the above in the case k = 2
showing that for every ε > 0

R2(x) � x9/28+ε.

• In the same year the exponent above was improved by Graham
[11] showing for every ε > 0

R2(x) � x8/25+ε.

• In 1985 Baker and Pintz [2] showed that for every ε > 0

R2(x) � x7/22+ε.

The same result was also obtained by Jia in 1987 [22].
• In 1984 Yao [39] showed that for every ε > 0

Rk(x) � x9/(9k+7)+ε.
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• In 1988 Li [24] showed that for every ε > 0

Rk(x) � xmax{2/(2k+3),9/(10k+8)+ε}.

• In 1989 Graham and Pintz [13] showed that for every ε > 0

Rk(x) � xD(k)+ε,

where

D(k) =


7/(8k + 6), if 2 ≤ k ≤ 5;
67
514

if k = 6;

11(k − 4)/(12k2 − 37k − 41) if 7 ≤ k ≤ 12;

23(k − 1)/(24k2 + 13k − 37) if 13 ≤ k ≤ 20.

For k ≥ 21 the definition of D(k) is more complicated, but
it may be shown that D(k) ∼ 2 log 2/(k + log k) for k → ∞.
These estimates could be improved for large k by appealing
to Vinogradov’s method. The authors obtain Rk(x) � xE(k),
where E(k) = 1/(k + ck1/3) for some constant c.

• The most recent contribution to our knowledge is due to Jia
[23] in 1993. He showed that for every ε > 0

R2(x) � x17/54+ε.

2. k–free numbers in arithmetic progressions

Let q ∈ N and let a ∈ Z/qZ be such that gcd(a, q) is k–free, then we
set

Sk(x; a, q) := #{n ≤ x | n is k–free and n ≡ a mod q}.

The first result about the distribution of k–free numbers in arith-
metic progressions that we would like to mention is due to Prachar in
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1958 [35]. He proved that if (a, q) = 1 and if

δk,q :=
1

qζ(k)

∏
l|q

(
1− 1

lk

)
,

then

Sk(x; a, q) = δk,qx + O( k
√

xq−1/k2

+ q1/kkω(q)),

where ω(q) denotes the number of prime divisors of q. Prachar’s proof
goes as follows: using the formula

µ(k)(n) =
∑
dk|n

µ(d),

and interchanging the order of summation, we write

(1) Sk(x; a, q) =
∑

d≤ k√x

µ(d)#{m ≤ x/dk | dkm ≡ a mod q}.

Observing that since gcd(a, q) = 1, the sum above is only supported at
values of d such that gcd(d, q) = 1. Furthermore

#{m ≤ x/dk | dkm ≡ a mod q} =
x

qdk
+ O(1).

Let us split the sum in (1) in two sums; the first with the values

d ≤ k
√

x/q1/k2
and the second with the values k

√
x/q1/k2

< d ≤ k
√

x.
For the first sum note that

∑
d≤ k√x/q1/k2

gcd(d,q)=1

µ(d)#{m ≤ x/dk | dkm ≡ a mod q} =

∑
d≤ k√x/q1/k2

gcd(d,q)=1

µ(d)

(
x

qdk
+ O(1)

)
=

x

q

∞∑
d=1

gcd(d,q)=1

µ(d)

dk
+ O

x

q

∑
d> k√x/q1/k2

1

dk
+

k
√

x

q1/k2

 =
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x

qζ(k)

∏
l|q

(
1− 1

lk

)
+ O

(
k
√

x

q1/k2

)
=

δk,qx + O

(
k
√

x

q1/k2

)
since 1− (k − 1)/k2 > 1/k2.

For the second sum note that if k
√

x/q1/k2
< d ≤ k

√
x and ndk ≤ x,

then necessarily n ≤ q1/k. Therefore
(2) ∑

k√x

q1/k2 <d≤ k√x

gcd(d,q)=1

∑
n≤x/dk

ndk≡a mod q

µ(d) �
∑

n≤q1/k

#{d ≤
(x

n

)1/k

| dkn ≡ a mod q}.

Next note that for a fixed n, by the Chinese remainder Theorem
the congruence dkn ≡ a mod q has at most 2kω(q) solutions d ∈ Z/qZ.
Hence

#{d ≤ (x/n)1/k | dkn ≡ a mod q} ≤ 2kω(q)

((x

n

)1/k 1

q
+ O(1)

)
.

Finally (2) is

O

(
kω(q)

(
q1/k +

x1/k

q1+1/(k2−k)

))
.

The above together with the estimate for the first sum complete the
proof of Prachar’s statement.

In the more general situation when gcd(a, q) > 1, in order to exist a
k-free number n ≡ a mod q, gcd(a, q) must be k–free. In this case the
density of such n depends upon q.

An asymptotic formula of the type

Sk(x; a, q) ∼ δk,a,qx

in this general case appeared in the book of Landau (Handbuch der
Lehre von der Verteilung der Primzahlen, 1953) for k = 2 and Ostmann
(Additive Zahlentheorie, 1956) for k > 2. The value of the density is
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given by

δk,a,q =
ϕ(q)

(a, q)ϕ(q/(a, q))

1

ζ(k)q

∏
l|q

(
1− 1

lk

)−1

.

An error term for the general case has been worked out by Cohen and
Robinson in 1963 [9].

By comparing the main term in Prachar’s Theorem with the er-
ror term, we deduce that when k is fixed, the asymptotic formula of
Prachar holds uniformly for q ≤ x2/3−ε since kω(q) � qε. In 1975 Hooley
[15] proves that if gcd(a, q) = 1, then

S2(x; a, q) = δ2,qx + O(
√

xq−1/2 + q1/2+ε)

improving Prachar’s result in the range x1/3 < q < x2/3−ε. In the
same paper Hooley proves that for every 5/8 ≤ α < 3/4 there exists a
constant η = η(α) such that

S2(x; a, q) = δ2,qx + O

((
x

q

)1−η
)

for a positive proportion of q ∈ (Q, 2Q) provided that x5/8 < Q ≤ xα

and gcd(a, q) = 1.
A further contribution to this problem in the case gcd(a, q) = 1 was

proposed by McCurley in 1982 [26] when he proved that there exist
absolute computable constants c1 and c2 such that if q is such that
none of the L-functions associated to real characters modulo q have a
Siegel zero, then

Sk(x; a, q) = δk,qx+O

(
(xq)1/k

exp(c1

√
log x/k3)

)
if x ≥ exp(c2k log2 q).
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Furthermore let q and k be such that L(s, χk) has no Siegel zeros for
all χ modulo q. Then there exist constants c3 and c4 such that

Sk(x; a, q) = δk,qx+O

(
x1/k

exp(c3

√
log x/k3)

)
if x ≥ exp(c4k log2 q)
and (a, q) = 1.

Average type results for k–free numbers in arithmetic progressions
have also been considered. Orr in 1971 [31] proved the following two
statements.

For any constant A

∑
q≤x2/3/ logA+1 x

max
a∈Z/qZ

gcd(a,q) square free

|S2(x; a, q)− δ2,a,qx| �
x

logA x

and for y ≤ x

∑
q≤y

∑
a∈Z/qZ

gcd(a,q) square free

|S2(x; a, q)− δ2,a,qx|2 � xy + x8/5 log5 x.

Warlimont in 1969 [41] proved some similar statements showing that
if y ≤ x

∑
q≤y

∑
a∈(Z/qZ)∗

|S2(x; a, q)− δ2,qx|2 �


xy if 1 ≤ y ≤ x

1
3

or y ≥ x1/3 log10/3 x;

y
4
3 x

2
3
+ε if y = xα, 1

2
≤ α ≤ 1.

To the author’s knowledge, the above results have not been general-
ized to the case of k–free numbers.

We conclude this section mentioning the results of Suryanarayana
[37] obtained in 1969 where he showed that the number of k-free inte-
gers ≤ x which are relatively prime to m equals
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ϕ(m)δk,mx + O

(
ϕ(m)2ω(m)

m
x1/k

)
,

saving a factor of 2ω(m)

m
with respect to the direct estimate.

In the same paper Suryanarayana also shows that

∑
n≤x

gcd(n,m)=1
n k–free

n = ϕ(m)δk,m
x2

2
+ O

(
ϕ(m)2ω(m)

m
x1+1/k

)

and that

∑
n≤x

∑
d|n

(d,n/d)=1
d k–free

d =
∏

l

(
1− 1

lk
+

1

l2 + l

)
· x2

2
+ O(x1+1/k).

3. The general problem of k–freeness

If f : N → Z is any function, we define

Sk
f (x) := #{n ≤ x | f(n) is k–free}.

We have the following clear identity:

Sk
f (x) =

∞∑
d=1

µ(d)#{n ≤ x | dk | f(n)}

which is suggesting that if the probability that f(n) is divisible by an
integer D is given by a number Pf (D), then one might expect to hold
an asymptotic formula of the type

Sk
f (x) ∼

∏
l

(
1− Pf (l

k)
)
x.



SURVEY ON k–FREENESS 11

This problems turns out to be quite challenging in general and the
above formula is not often known to hold.

A natural variation to the problem is to restrict the argument of the
function f to prime values. Therefore we set:

S̃k
f (x) := #{p ≤ x | p is prime and f(p) is k–free}.

We mention that a result of Mirsky of 1949 [25] deals with the case
when f(t) = t + a with a ∈ Z. In this case for any constant A,

S̃k
f (x) := #{p ≤ x | p prime, p+a is k–free} = βaπ(x)+O

(
x

logA x

)

where π(x) is the number of primes p ≤ x and

βa =
∏

l prime

(
1− 1

lk(l − 1)

)

is the so called Artin k–dimensional constant.
We would like here to prove this statement with a much weaker

error term. Indeed if π(x;−a, q) counts the number of primes p ≤ x,
p ≡ −a mod q, then using some prime number Theorem for arithmetic
progressions,

S̃k
f (x) =

∑
d≤x1/k

µ(d)π(x;−a, dk)

=
∑

d≤log x

µ(d)

(
π(x)

ϕ(dk)
+ O

(
x

log3 x

))
+

 ∑
d≤x1/k

d>log x

π(x;−a, dk)


= βaπ(x) + O

( ∑
d>log x

π(x)

ϕ(dk)
+

x

log2 x
+
∑

d>log x

x

dk

)

= βaπ(x) + O

(
x

log2 x

)
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where we used the clear estimate π(x;−a, q) � x/q. This concludes
the proof.

The last result that we mention in this section is due in 1998 to
Brüdern, Granville, Perelli, Vaughan and Wooley [8]. They consider
L1 and L2 means of exponential sums supported on k–free numbers.
As a corollary of various results, they show that

#{n ≤ x | n = a3+b3+c3, a, b, c ∈ N and n is square free} � x11/12.

4. The case of polynomials in one variable

In this section we consider the case when f(t) ∈ Z[t] is a polynomial
without multiple roots, primitive and such that the greatest common
divisors of all the f(n)’s is k–free (to avoid pathologies like f(t) =
t(t + 1)(t + 2)(t + 3) whose values are always divisible by 8).

This interesting case has also attracted several authors.
After Nagell in 1922 [28] proved that a polynomial of degree deg f

less or equal then k assumes infinitely many k–free values, the Italian
mathematician Ricci in 1933 [36] proved that if

δf,k =
∏

l prime

(
1− %f (l

k)

lk

)

where once again %f (d) is the number of roots of f in Z/dZ, then

Sk
f (x) ∼ δf,kx

provided that deg f ≤ k. The asymptotic formula above is conjectured
to hold also when deg f > k and this is the main open question in this
part of the subject.

Here we would like to prove the statement of Ricci’s Theorem and
more precisely that for any ε > 0
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Sk
f (x) = xδf,k + O

(
x

log1−ε x

)
if deg f ≤ k.

Indeed write r for deg f , let z = log x and P (z) denote the product of
all primes up to z, write

Sk
f (x) =

∑
n≤x

µ(k)(f(n))

=
∑
d≥1

µ(d)#{n ≤ x | dk | f(n)}

=
∑

d|P (z)

µ(d)#{n ≤ x | dk |f(n)}+ O(
∑
p>z

#{n ≤ x |pk |f(n)}).(3)

Now note that

#{n ≤ x | dk | f(n)} = %f (d
k)
( x

dk
+ O(1)

)
.

Furthermore we have that

a) if pk | f(n), then p ≤ cxr/k for a suitable constant c = c(k, f)
(Note that the hypothesis r/k ≤ 1 will be crucial in the sequel);

b) %f is a multiplicative function;
c) %f (p

k) is uniformly bounded in term of k and f for all primes
p. So there exists c̃ = c̃(k, f) such that %f (p

k) ≤ c̃

Hence (3) equals:

∑
d|P (z)

µ(d)%f (d
k)
( x

dk
+ O(1)

)
+ O

∑
p>z

x

pk
+
∑

p≤cxr/k

1


= x

∑
d|P (z)

µ(d)%f (d
k)

dk
+ O

(
(1 + c̃)π(z) +

x

zk−1 log z
+

xr/k

log x

)

= x

∞∑
d=1

µ(d)%f (d
k)

dk
+ O

(
x
∑
d>z

c̃ω(d)

dk
+

x

log x log log x

)

= xδf,k + O

(
x

log1−ε x

)
,

where we used the estimate c̃ω(d) = dε and this completes the proof.

The next case, degree of f equals k+1, had to wait until 1953, when
Erdős [10] under this hypothesis showed that Sk

f (x) →∞ as x →∞.
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In 1976 Hooley [18], improving his results of 1967 [16, 17], applies
the large sieve to Ricci’s proof showing that if f is irreducible, then

Sk
f (x) = xδf,k + O

(
x

logk/(k+2) x

)
if deg f = k + 1.

The next conquest is due to Nair [29] who in 1976 proves that if
λ =

√
2− 1/2 = 0.9142 · · · , and f is irreducible, then

Sk
f (x) = xδf,k + O

(
x

logk−1 x

)
if deg f ≥ λk.

In two subsequent papers [21, 30], the second in collaboration with
Huxley, Nair improves his results proving that for some σ = σ(k, f) > 1
that can be explicitly computed, one has

Sk
f (x) = xδf,k + O

(
x1−σ

)
if k ≥

√
2(deg f)2 + 1− (deg f + 1)/2.

Furthermore in the same paper Nair also proves that there exists a
suitable positive α ≤ 70/71 such that

Sk
f (x) = xδf,k + O (xα) if deg f = k + 1 ≥ 7.

Nair’s approach was also employed by Hinz [14] in 1982 to prove gen-
eralizations of these results in the algebraic number fields settings.

More recently in 1998, Granville [12] proves that the abc–conjecture
of Œsterle, Masser and Szpiro implies that if f ∈ Z[t] does not have
repeated roots and if the greatest common divisor of all values f(n) is
square free, then the conjecture always holds for f when k = 2:

abc =⇒ S2
f (x) ∼ δf,2x.
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Granville’s statement is indeed more general and does not assume
that the greatest common divisor of all values f(n) is square free.
Furthermore his paper [12] deals also with other problems involving
square-free numbers.

The first ones to use the abc–conjecture to the problem of counting
square free values of polynomials were Browkin, Filaseta, Greaves and
Schinzel [7], who in 1995 proved that the abc–conjecture implies that
the cyclotomic polynomial Φm(n) is square free for infinitely many
values of n.

For a given integer d, we set %̃f (d) to be the number of roots of f(t)
in (Z/dZ)∗. Furthermore we define

δ̃f,k =
∏

l prime

(
1− %̃f (l

k)

lk−1(l − 1)

)
.

It is reasonable to conjecture that

S̃k
f (x) ∼ δ̃f,k

x

log x
.

Indeed if the degree of f is less or equal to k, this can be proven along
the lines of Ricci’s Theorem. However the above is considered to be in
general a more difficult problem with respect to the previous one.

It is a result of Hooley [19] of 1977 that if deg f = k + 1 ≥ 55 and f
is irreducible, then there exists a constant ∆k > 0 such that

S̃k
f (x) = δ̃f,k

x

logx
+ O

(
x

log1+∆k x

)
if deg f = k + 1 ≥ 55.

Hooley [20] later improved the above range for k to k ≥ 41, under
some technical conditions. Nair [29, 30] and later Huxley and Nair [21]
also consider this problem.

5. The case of classical arithmetical functions

As we will see, the behavior of Sk
f in the case of classical arithmetical

functions is rather different from the case of polynomials.
We recall that the Carmichael function λ(n) is defined as the largest

possible order of any element in the unit group of the residues modulo
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n ≥ 1. More explicitly, for a prime power pν , we have

λ(pν) =

{
pν−1(p− 1), if p ≥ 3 or ν ≤ 2;

2ν−2, if p = 2 and ν ≥ 3

and for arbitrary n ≥ 2,

λ(n) = lcm(λ(pν1
1 ), . . . , λ(pνs

s )),

where n = pν1
1 · · · pνs

s is the prime factorization of n. Clearly λ(1) = 1.
Furthermore for every integer n we have that λ(n) | ϕ(n) and the
equality holds when n is a prime power.

Another cognate function is the order function: if a ∈ Z \ {0,±1},
then for each n coprime to a, we define

orda(n) := min{e ∈ N | ae ≡ 1 mod n}.

Clearly orda(n) | λ(n). It is convenient to extend the definition of
orda(n) setting it to be equal to 0 when gcd(a, n) 6= 1.

In [34], Saidak, Shparlinski and the author prove that

Sk
λ(x) = (κk + o(1))

x

log1−αk x
,

where

κk :=
2k+2 − 1

2k+2 − 2
· ηk

eγαkΓ(αk)
, αk :=

∏
l prime

(
1− 1

lk−1(l − 1)

)
and ηk is defined by

ηk := lim
T→∞

1

logαk T

∏
l≤T

l−1 is k–free

log

(
1 +

1

l
+ . . . +

1

lk

)
.

For example we have k2 = 0.80328 . . . and α2 = 0.37395 . . ..

As for the order function, in [35] the author proves that

Sorda(x) = (ιa,k + o(1))
x

log1−βa,k x
.

The constants ιa,k and βa,k have a complicated definition. However
in the case when a is square free and k ≥ 3, the definition for βa,k
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simplifies in

βa,k :=

[∏
l

(
1− 1

lk−2(l2 − 1)

)]
·

1− 1

2

∏
l|[2,a]

1

1− lk−2(l2 − 1)

 .

The proof of both results follows the same framework using a classical
statement, due to Wirsing [42]:

Theorem. Assume that g(n) is multiplicative, 0 < g(pν) ≤ c5c
ν
6,

c6 < 2 and ∑
p≤x

g(p) = (1 + o(1))τπ(x)

for some τ 6= 0. Let γ denote the Euler constant, and Γ the gamma-
function. Then ∑

n≤x

g(n) ∼ 1

eγτΓ(τ)

x

log x

∏
l≤x

∞∑
ν=0

g(lν)

lν
.

It is immediate to check that both

µ(k)(λ(n)) and µ(k)(orda(n))

are multiplicative functions. In order to apply Wirsing’s Theorem, one
needs to find an asymptotic formula for

S̃k
λ(x) = #{p ≤ x | p− 1 is k-free}

in the case of λ, and for

S̃k
orda

(x) = #{p ≤ x | p - a, ordp(a) is k–free}

in the case of orda.
The first of these asymptotic formulas is due to Mirsky [25] and we

already referred to it in the last part of Section 3. For any constant
A > 0 we have

S̃k
λ(x) = αkπ(x) + O

(
x

logA x

)
.
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The second asymptotic formula is proven in [35] by using the Cheb-
otarev density Theorem in an unconditional version:

S̃k
orda

(x) = βa,kπ(x) + O

(
x

logσ x

)
,

where σ = σ(a, k) can be explicitly computed.
In general if f in any function such that µ(k)(f(n)) is multiplicative,

then Wirsing’s Theorem gives that

S̃k
f (x) ∼ τf,kπ(x) =⇒ Sk

f (x) ∼ π(x)

eγτf,kΓ(τf,k)

∏
p≤x

∞∑
ν=0

µ(k)(pν)

pν
.

Unfortunately Wirsing’s Theorem does not provide any error term.

The last classical function that we will discuss is the Euler function.
It has a rather different behavior with respect to the others. Indeed
Banks and the author in [5] showed that for a fixed integer k ≥ 3, the
asymptotic relation

Sk
ϕ(x) =

3αk

2

x (log log x)k−2

(k − 2)! log x

(
1 + Ok

(
(log log log x)2(k+1)2k−4−1

(log log x)1−1/k

))

holds as x →∞ with the constant αk defined by

αk :=
1

2k−1

∏
l>2

(
1− 1

lk−1

k−2∑
i=0

k−2−i∑
j=0

(
k − 1

i

)(
k − 1 + j

j

)
(l − 2)j

(l − 1)i+j+1

)
.

The above statement reminds Landau’s Theorem for the number of
integers up to x with at most k − 1 prime factors. Indeed if ϕ(n) is
k–free, then ω(n) ≤ k − 1.

6. k–free numbers with restricted digits.

Let g ∈ N, D ⊂ {0, 1, . . . , g−1} be a subset with d elements and let e
be the number of elements in D which are coprime with g. Furthermore
denote by Ag(D) the set of those integers which are coprime with g and
such that all their digits in base g are in D.
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It is natural to consider the counting function

Sk
D,g(x) = #{n ≤ x | n is k–free and n ∈ Ag(D)}.

Banks and Shparlinski [4] prove that there exists a constant c > 0
depending on D and k such that if x = gm and m →∞, then

Sk
D,g(x) = δD,gx

logg d + O

(
xlogg d

exp(c
√

log x)

)
,

where

δD,g =
e

ζ(k)d

∏
l|g

(
1− 1

lk

)−1

.

Furthermore if r is an integer, Br denotes the set of those odd integers
having exactly r ones in their binary expansion and

Sk
Br

(x) = #{n ≤ x | n is k–free and n ∈ Br}.

Then there exists a constant d > 0 such that, if x = 2m and m →∞,
then

Sk
Br

(x) =

(
m−1
k−1

)
ζ(k)(1− 2−k)

(
1 + O

(
1

exp(dδ
√

log x)

))
,

provided that r/m ∈ [(log 2 + δ)/k, 1/2].

7. Conclusion

Many variations of the results in the literature could be considered
and would provide a good project for young mathematicians. We list
a few here. Some might be easier, some might be very difficult, others
might already be known.

(1) Find an asymptotic formula for Sk
f (x) when f is some other

classical arithmetic functions: e.g. f = σ, τ, ω, Ω;
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(2) Find an asymptotic formula for Sk
f (x) when f(n) is the n–th

coefficient of a modular form;
(3) Find an asymptotic formula for Sk

inda
(x), where the index func-

tion is defined as inda(n) = ϕ(n)/ orda(n). Some partial results
already appeared in [33];

(4) Find an asymptotic formula for the values of an arithmetic func-
tion on numbers in arithmetic progressions;

(5) Given a finitely generated subgroup Γ ⊂ Q∗, we know that for
all but finitely many primes p we can consider the reduction
〈Γ mod p〉 ⊂ (Z/pZ)∗. Furthermore there exists an integer MΓ

such that if gcd(n,MΓ) = 1, then the reduction 〈Γ mod n〉 is a
well defined subgroup of (Z/nZ)∗. Find an asymptotic formula
for the number of integers n up to x such that (n, MΓ) = 1 and
#〈Γ mod n〉 is k–free.

We realize that this survey is far from complete. For example we
completely left out important topics like k–free values of multivariate
polynomials or binomial coefficients, gaps between k–free numbers and
surely many others.
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