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Symmetrical Flexure of Beams

In the following theory of flexure of beams it is assumed that the
cross-section of the beam has an axis of symmetry which coincides with
the y-axis of the Cartesian frame of reference. The x-axis coincides
with the axis of the beam. The axis of the-beam represents the locus of
the cross-sectional centroids of the beam in the form of a straight line

as shown in Figure 1.
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If a beam is slightly bent as shown in Figure 2, then the lins
elements of initial length 4x located by y relative to the 2z axis suffer
a deformation which can be given from the observed geometry of
deformation. The great Swiss mathematician Jacob Bernoulli (1655-1705),
the first man %o study mathematically deformable body mechanies in
1691-16G94, observed from his simple experiments on large deformation of
beams that plane cross-sections perpendicular to the axis of the beam
before bending remain plane and perpendicular to the bent axis of the
beam after bending. He used this observation as the central hypothesis
in his pioneering theory of large bending of beams. Bernoulli was led

to this problem when he acted as a consulting engineer to a well-known



Bent

Neutral

Axis
{E/25MCa)

Iv-2

carrlage manufacturer in Zurich, Switzerland, who was puzzled about the
reason why his very well-made carriage wheels 3ometimes developed a
crack in the rim despite the high quality material and expert
craftsmanship that went into the production of the wheels, The
reasonableness of Bernoulli's hypothesis can easily be checked by
bending an eraser on the surface of which are drawn parallel lines
perpendicular to the longitudinal axils of the eraser., See Figure 2 for
illuatration.
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Bending of the beam will deform the initlal length of the fibres of
the small element of the beam, all of which are initially parallel to
the x-axis and have the same length ax.

In contrast with the difficult large bending theory of Bernoulli,
attention in engineering theory i3 restricted to very small bending
deformations of beams for which the curved longitudinal fibres can be
approximated by straight lines as depicted in Figure 2.

From the geometry of deformation of the small element of the bent
beam which is based on the Bernoulli Hypothesis, the length of the
deformed fibre Ax(y) at vy is given by the proportion:
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Ax/p = Ax(y)/(p=-y)

where p=p(x) denotes the radius of curvature of the bent axis of the
beam, It is important to observe that in bending the centre line of the
beam which passes through the centroid of the cross-section suffers no
stretching in the bending of the beam. This 1line was called curva
elastica by Bernoulli; 1later, it was simply called elastica. In
contemporary literature elastica is called the neutral axiz of the beam.
Already in 1620, Beeckman had observed that in the bending of bars, the

outer fibres of the bar extend and the inner fibres contract, which
implies the existence of an unextended neutral fibre between the outer
and inner fibres of the beam., Therefore, the bent line segment Ax at
the centroid y=0, still has the 1initial undeformed length Ax. Solving
for the deformed line segment at y:

Ax{(y) = [{p=y)/plix = [1=(y/p)lax

The Beeckman idea of linear strain measure gives the average

engineering strain of the line segment Ax(y):

Eeq = LAX(Y)- 8x1/8x = [Ax(y)/bx1-1 = [(1-Cy/p)]-1

At the point, the linear strain is given by the limit

e, =1lim e__ = lim {[1-Cy/p}] = 1} = =(y/¢p)
xx Ax+Q ~XX Ax+0

Wwhere p=p(x). The constitutive equation in the form of Hooke's Law gives

O’xx = Eexx = E[-(y/p] = =E(y/p) = =Eyx

where the curvature of the bent axis of the beam is
k(x) = 1/p(x)
The great Swiss mathematiclan, physlcist and engineer, Leonhard

Euler (1708-1783), demonstrated in his first scientific paper written in
1727, that Jacob Bernoullil's equation of bending,



Iv-y
M (g) = k(x)
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which infers that the bending moment is proportional to the curvature of

the bent elastica of the beam, can be obtained by finding the moment of

the stresses (stress couple) relative to a particular point of the

cross-section at x, and then by using Hooke's Law expressed the normal
stresses T x in terms of curvature x of the bend elastica, and finally,
like Jacob Bernoulli, Euler expressed the curvature in terms of the
vertical displacement uy of the beam. In order to accomplish this,
Fuler had to invent the concept of the Modulus of Elasticity E as a
material constant, and separate the equilibrium problem from the con-
stitutive property of the material. It was a brilliant contribution by
a 19-year old student, and 1in honour of this great achievement the
Equation of Flexure of Beams established in this way 1s called the

Bernoculli-Euler Equation of Flexure, Euler's only mistake was to locate

the neutral axis in the bottom of &the beam, which is what Jacob
Bernoulli had done before him.
The stress resultant system at the centroild of a generic

cross—-section x 1is:

Flo) 0. dA = [ [GxxI + o J1dA = [f -Ec(x)ydATi + [f axydA]3

It
A X A Xy A A

-Ex(x) [i ydAlT + [iaxydA]j = of « [£°xy]3 = ny(c)j

where «x(x) 1is constant for the entire cross-section and, therefore,

independent of the cross-sectional integral, the bending stress

UXX = =Eye(x)
and
f ydA = 0
A
when y is measured from the centroid of the cross-section. The

corresponding couple-moment of stresses, representing the so-called

stress-couple, i3 usually called the bending moment by engineers:
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(9]
[

X i X i (yj+zk) x (cxxI+oxyﬁ)dA = iYoxdi(jxi) + ;yoxydﬁ(jxj)

ACkxT Akx]) = (- A dA
+ izoxxd (kx1) + £Zaxyd (kx3) = ¢ iyaxxd )] + (£Zaxx Y3

+

(—i20xydﬁ)i = (-iycxdi)k = Mz(o)ﬁ

for owing to the symmetry of % x Wwith respect to y-axis,

J 2o dA = f z[- Ex(x)y]dA = ~ Ex(x) S zydA = 0O
A XX A A

because for any cross-sectional area with at least one axis of symmetry

passing through the origin,

J yzdA = 0
A

and, for cxy(z) = axy(-z). which implies planar stress,

fzZog dA = O
A XY

Therefore,
M, (0) = —IAyaxdi

Substituting for the bending stress % from the Hooke's Law

O = -Ex(x)y

yields after arbitrarily grouping it into three physically and
geometrically distinet factors,

M,(0) = 7 YIEx(0YIdA = Ex(x)/ y°dA = Ex(xT
A A z

where the Second Moment of the Cross<Sectional Area about the z-axis is
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T =4 y%dA > 0
ZzZ A

which is always a positive definite scalar quantity. The Bernoulli-

Euler Equation of Flexure,

Mz(a) = EIzzx(x)

expresses the stress-couple by a product consisting of three factors, E,
I,, and k(x), each factor signifying a distinct conceptual feature of
the bending of the beam 3¢ that the influence of each physically
distinet factor on the bending of the beam can be separately studied.
The Modulus of Elasticity E refers to the material property of the beam,
Izz(x) refers to the cross-sectional geometry of the beam at x, and «(x)
= 1/p(x) refers to the geometry of the bent axis of the beam at the

cross section x. It should be observed that Iz has no physical

FA
meaning, or explanation, beyond the fact that as an arbitrarily

constructed factor it is entirely a geometrical function of the

cross-section of the beam.

From elementary differential geometry the curvature of a curve
corresponding to the bent axis of the beam can be expressed in terms of
the ordinate of the curve, which in this case corresponds to the

displacement Uy(x) of the bent axis of the beam:

(%) = 1/p(x) = (dzuy/dxz)/[1+(duy/dx)2]3/2

This curvature expression can be derived as follows!:
The curvature of a curve, such as the bent axis of a beam, can be

defined as the arc-rate of change of the unit tangent vector E(s) of the

curve:
dt/ds = %(s8) = [1/p(s)]n

where k denotes the curvature vector of the curve, and the unit normal

vector
n(s) = (dt/ds)/|dtsds|

The rotation of the tangent vector t over a unit arc-length of the

curve,

|dE/ds| = |k(8)| = «(®)
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measures the rate of bending of the curve relative to its arc-length, as

shown in Figure 2, where

T2 =%+ € =1

This can be proven from the geometry 1Iin Figure 3 when it is

observed that

|at] = |t| sinas
and for small As, and thus for small A4, the finite ratio
|at|/as = |at/as| = (}T]|sinde/As) = sinA¢/As = A$/AS

because for small 4¢, 3inde = Ad,

| g

In the limit As+0Q:

|dt/ds| = 1im (a¢/4s) = d¢/ds
As~+0

From geometry of the bent axis in Figure 3,

tang = 1lim {Au (x)/4x) = du {x)/dx
AX+0 y

and thus,
b = tan-1(duy/dx)
However,

A = p A}
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where p denotes the radius of curvature, and
Ad/ A = 1/p
Thus,

de/ds = 1im (A¢/A8) = 1/p = x
As+0

Therefore,

k = 1/p = d¢/ds = (dx/ds)(de/dx)
and

-1 2 2 2

d4/dx = dltan (duy/dx)]/dx = (duy/dx W1+ (duy/dx) ]
The arc-length can be found from the position vector

F:XE+U(X)3

Y

of the bent axis of the beam as a function of x by the arc-length square

2

ds dr * dr = [dx(dr/dx)] * {dx(dr/dx)]

dx2 [(dr/dx) * (dr/dx)] = dx2 (1 + (duy/dx)2]

as
dF/dx = 1 + (du,/dx) 3
Since x can be expressed as a function of arc-length s, then
x = x(s)

and

dx = ds (dx/ds)

Therefore,

482 {1 - (dx/ds)2 [1 + (duy/dx)zl} =0

which for d32 3 0 glves

{dx/ds) = 1/t + (duyfch()elw2

Finally, the curvature of the bent axis of the beam can be

expressed by means of its transverse displacement uy(x):

k(x) = 1/p(x) = (dzuy/dxa)/[1 + (duy/dx)2]3/2
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If the beam undergoes very small bending, the type of bending usually
permitted in engineering design, then following the important idea of
Daniel Bernoulli {(1700-1782), a nephew of Jacob and a friend of Euler,
which he used in 1734, the beam equation can be linearised. In small

bending, the slope of the beam at every x is very small, such that

(duy/dx)z << 1

Then the square of the slope can be neglected in comparison with 1, and

consequently,

2,32,

{1+(du_/dx)
y
This important simplification of Daniel Bernoulli linearises the
Bernoulli-Euler Bending of Beam Equation:
2 2
EIzz(d uy/dx Y} o= Mz(u) (I

For this very reason, the name Bernoulli in the practically important

linear Bernoulli-Euler Beam Equation refers to both Jacob and Daniel

Bernoulli. It is important to realise that Mz(a) denotes the stress-
couple, 1i.e., the moment of the stresses acting in the cross-section
about the z-axis which passes through the centroid. Mz(ﬂ) is not the
couple-moment Mz(x) of the external applied loads (which is measured by
the moments of applied forces relative to x) acting at the same section
X, even though Mz(o) is evaluated in terms of the applied couple-moment
Mz(x) from the equilibrium of the sectional free-body of the beam, which
is isolated as a free-body from the entire beam by an imaginary section

at x.

Euler Equation of Beam Bending:
Some years later, after Euler had established his celebrated Field

Equations of Beams (which also included the inertia forces):

dF = -
y(o)/dx py(x)

dM (a)/dx
z

u"

- Fy(c)

he derived another form of the beam equation in bending. By taking a
derivative of the Bernoulli-Euler Beam Equation with respect to x and
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substituting from the second field equation gives:

2 2
d[EIzz(d uy/dx yl/dx = de(o)/dx = - Fy(o)

Taking another derivative with respect to x and again substituting from

the first field equation gives

2 2 2 2
d [EIzz(d uy/dx J1/dx -[dFy(c)/dx] = py(X)

The Euler Equation of Flexure,

2 2 2 2
d [EIzz(d uy/dx Y1/dx py(x) (I

connects the applied load intensity py(x) to the bending properties of
the beam at point x along the axis of the beam.

If the beam is homogeneous, i.e. if,

E # E(x)
and if, moreover, the beam is also prismatic, i.e.

I (x)

Z * IZZ

then the Euler Equation of Flexure hecomes
EI_(d*u_sdx") = p(x) (ID)
zz y y

It should be noted that for EIzz = constant,

3 3

-EI__d”u /dx” = F _(a)
zz y y

which permits the calculation of Fy(o) as a function of displacement

u (x).
Y
. M
Bending Stresses axx(y):

From Hooke's Law, a3 demonstrated,

M M
axx(y) = E:xx(y) z - Ey x(x)
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due to the bending caused by the stress-couple Mz(c). Substituting from
the Bernoulli-Euler Equation of Flexure

k(x) = Mz(c)/EIzz
gives the bending stress

M
cxx(y) = - HZ(O)y/Izz

Thus bending stresses vary linearly with y, and venish at the centroid,
where y=0:

M
Oxx(y=0) =0

Combined State of Stress:
A fundamental assumption in mechanics of deformable solids is that

small strains are superposable as shown in Figure 4. Therefore, a small

axial strain
F

= F (¢
€ x x( }/AE
which is constant over the cross-section and created by the normal

stress resultant Fx(c). can be superimposed on the bending strain

M
sxx(y) 2 - MZ(U)y/Izz

created by the bending moment Mz(o) such that the total strain at peint

¥y 1In the cross-section at x is

F M
exx(y) et exx(y) = [Fx(o)/AE] + [- Mz(o)y/IzzE]
From Hooke's Law, the corresponding total, or compound normal stress at
y is

Gxx(y) = E€xx(y) = [Fx(o)/A] - [Mz(o)y/Izz]

Trace of the Neutral Plane in the Cross-Section
Under Compound State of Stress:

The trace of the neutral plane in a cross-section is defined as the
locus of points yN at which the normal stress vanishes:

oxx(yN) = [Fx(c)/A] - [Mz(c)yN/Izz] =0
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from which
Yy = Fx(a)IZZ/Mz(o)A

It i3 easy to see, that the neutral plane passes through the centroid:

yy =0
if, and only if,
Fx(o) =0
that is, for the case of pure bending when there is no axial 3tress
resultant.
y Y
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Shear Stresses in Beams Brought About by Bending

The French engineers used the theory of flexure given above, which
Was entirely correctly established by Henri L.C. Navier (1785-1836) in
nis lectures at the Ecole des Ponts et Chaussées published in 1826.

Everything in his book on mechanies of materials looks familiar to us.
In it Euler's theory of beams and columns are perfected and the first
Statically indeterminate elastic problems are solved. The design of
beams wa3 essentially based on allowable bending stresses L and
professional experience of the engineer. Navier's book made structural
theory into a sclence of mechanics, However, Navier, who also founded
three dimensional theory of elasticity and mechanics of perfect fluids,
seems not to have realised that another 1important stress had Dbeen
neglected in the beam theory, a stress which has an important function
in bending of beams and often governs the deslign of such structural
members.

In 1844, a young Russian engineer, Dimitril Ivanovich Zhuravskii
{1821-1891), whilst designing bridges for the first Russlan railroad,
noted that many of the simply-supported timber baulks 1in the bridge
decks which he had designed split longitudinally in the centre of the
eross-section, a place where according to Navier the bending stress %«
is zero. Zhuravskii concluded that another important stress component
in bending of beams had been neglected by Navier, a stress which is
important in equilibrating the beam. The basic problem he faced was how
this stress could be found. Zhuravskii hit on a brilliant 1idea: he

sliced a secondary free-body, the so-called Zhuravskii Free-Body, out of

the transversely cut free-body of length 4x by means of a horizontal
section. The first such free-body he sliced along the split in the beam
at the centre of the cross-section. By investigating the equilibrium
state of this free-body he readily discovered that it was not in axial
force equilibrium under the bending stresses. The only stress component
that could provide axial force equilibrium of his free-bedy had to be a
sShear stress acting along the surface of the horizontal cut. See Figure
5 for illustration. Zhuravskil evaluated these longitudinal shear
stresses for sufficlently narrow beams by using an average shear stress
across the width of the beam,
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b/2
= f
-b/2

fyx ondz/b(y) =T

where b(y) denotes the width of the beam at y.
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Figure 5

Zhuravskii established a simple shear stress formula, the so-called
Zhuravskii Shear Stress Formula, for shear stress distribution over the
depth of the beam by cutting the Zhuravsgkil free-body with a horizontal

section at arbitrary y as shown in Figure 6. The stress resultant of
bending stresses oxx(y') + onx(y') acting on the transverse

cross-section of the Zhuravskii free-body at x+aAx is given by

a e
Fx(cxx+ﬁaxx) = ; (UXX+AUXX) b(y')dy' = —; [Mz(o)+AMz(c)/Izz]y'b(y')dy'
) e
= -[Mz(u)/Izz] ;’ y'b(yt)dy' - [AMz(c)/Izz] ;’ y'b(y")dy'

The stress resultant of bending stresses -oxx(y') acting on the

transverse cross-section of the Zhuravskii free-body at x is

C [+
Fx(—oxx) z —; —[Mz(c)/Izz] y'b(y')dy' = [Mz(c)/Izz] ; y'e(y')dy?
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The horizontal average shear stress acting on the lower horizontal

surface at y contributes a stresgs resultant in x-direction

—tb(y) &

It is important to realise that the horizontal face has a normal vector

n = -], therefore the average stress t acts in the -I direction as shown
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in Figure 7.
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Since Zhuravskii's free-body must be in equilibrium, the Equlvalent

Force System constructed at x must vanish:

Fx =0 Fx'x = —tb(y) AX + Fx(cxx+onx) + Fx(-oxx)
C
= -1b(y) Ax - [AMz(c)/Izz] ; y'b(y')dy' = 0

Solving for the unknown average shear stress at x:

e
t =z =1im [AMz(o)/Ax] ! y'b(y')dy'/Izzb(Y)
ax 0 y

c
-[sz(c)/dx][j y'b(y')dy' 1/1,,b(y)

However, by substituting from Euler's Fleld Equation
sz(c)/dx = - Fy(c)

Zhuravsikii Formula for the average shear stress due to bending of beams
becomes



Iv-1y

T = Fy(o)Q(Y)/Izzb(Y)

where
C
Q, = J y'bly")dy’
Y
Yy
represents the First Moment of the Cross-Section of the Zhuravskii

free-body about the z-axis located at the centroid of the entire cross-

section. It i3 important to realise that Zhuravskii's shear stress 1
represents the average shear stress Pyx acting across the width of the
beam. The average shear stress T i3 only then a good approximation to
the actual shear stress axy when the width of the beam b(y) is mmall
relative to the helght of the beam, i.e. wWwhen the croass-section 1is
sufficiently narrow. Otherwise the maximum shear stress Oxy may be

considerably larger than the calculated average shear stress T.

Equality of the Magnitude of Shear Stresses og4 = Uji:

The average shear stress cyx acting on the horizontal plane at a
point (x,y) in the beam can be found from the Zhuravskii Shear Stress
Formula:

Oy T T3 Fy(c)Qy/Izzb(y)
The bending stress acting on the cross-section at the point (x,y) can be
found from the Bending Stress Formula:

Ouy = = MZ(U)Y/IZZ
If a rectangular element of the beam is isolated as shown in Figure 8
the following stresses are acting on it:

The stresses o x and ny are given by the two formulae, but the
shear stress °xy acting in the cross-section is not given. It can be
found from the moment equilibrium of the finite rectangular element ax

by a4y in the Figure 9. The Equivalent Force System constructed at the

centroid ¢ of the rectangular element must vanish for equilibrium.
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Using only the Equivalent Couple-Moment for equilibrium gives:

9 |
i
[}
=
1]

(Ax/?)(oxy + ony)Ay + (Ax/2)oxyAY

(Ay/2)(cyx+5oyx)Ax - (AY/?)(cyx)

AX AY Iy + (&% ay Aaxy/Z)

&Y AX Ty ™ (Ay ax Aoyx/2) = 0

Dividing this expression by AxAy and taking the limit ax+0, ay+0, gives

Oy = Oyx = 0

Wwhich implies that the magnitudes, but not the directions, of the shear

stresses ¢ and ¢ are equal:
Xy yx d

“xy * %yx

The shear stresses must always act in the way shown in Figure 9:
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the two sets of parallel shear stresses must always constitute two

opposing force couples if moment equilibrium of the element is to be

maintained.

Y
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Figure 9
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