
Architecture Recovery as first step in System Appreciation

Sandipkumar Patel
sandipkumar_patel@infosys.com

Yogesh Dandawate

yogesh_dandawate@infosys.com

John Kuriakose

john_kuriakose@infosys.com

SET Labs, Infosys Technologies

Pune, India

Introduction and Motivation

A large percentage of software projects within the practical context of software engineering

activity deal with the evolution of systems. This implies that previous engineering activity has

produced an executable representation of the business requirement’s and now the software has

to be changed due to changed implementation technologies including improvements to

language, tools and runtime platforms or changes in the business context that require

enhancements to be built into the software system. In either case we observe that the initial

architecture representation is rendered obsolete.

There exists a mental model of the ‘to be’ or what we call the prescribed architecture that is

initially captured either informally or even using available tools. However as the software

evolves over its lifecycle the real architecture emerges. This architecture is in the source code

and is rarely studied and measured for compliance with the prescribed model. This is what we

call the as-is architecture and typically is represented only within source code. Significant effort

and some amount of expertise in program comprehension are required for a developer or

architect to understand this actual architecture.

In maintenance projects the first important phase of activity is well known as the system

appreciation phase and one of the key deliverables from this phase is documentation that

describes what the system does in terms of its functional features and how it achieves those

feature in terms of its the architecture and the design. We focus on the specific tasks of

recovering the as-is architecture from the source code.

Previous work in software architecture [1] has provided sufficient basis for the architecture

views and styles of representation. Parnas has demonstrated that that the decomposed modular

views of a software system is important in managing it design and evolution. [2,3]. We therefore

intend to recover this modular view that represents the decomposition of software system, into

its major building blocks. These can be organized to provide the big picture view of the system

in terms of responsibilities and interactions. This view is best understood by styles such as the

layered style, the ring style [1] or the box-and-line style.

Pervious work in this area [4] has demonstrated beneficial results in architecture recovery by

observing the dependencies that exist among code elements. We start with a similar premise but

adopt a different approach.

Approach

Our work is based on the premise that syntactical dependencies between code elements are

always preserved in source code and form the basis of higher order relationships between

packages and modules. Thus we set out to recover the modular view based on these syntactic

dependencies. The key concept in our approach is the dependency usage graph that we extract

from source code where code elements form nodes and the dependency relationships from edges

between them. The edges are directional and each node therefore has a set of incoming and

outgoing edges representing the elements that use a particle node (I am used by) and the code

elements that are used by this node (I depend on) respectively. Our edges are classified based on

clear taxonomy that we develop for this purpose. This taxonomy defines the strength of the

relationship by attaching a numeric weight for each category within the taxonomy. This

assignment is based on our subjective interpretations of design strengths based on syntactic

features of the java language.

If W(D) represents weight for a dependency.

 W(SuperClassAccess) > W(SuperInterfaceAccess) > W(Proceduraldefinition) > W(ConstructorInvocation) >

W(StaticMethodInvocation) > W(InstanceMethodInvocation) > W(InterfaceMethodInvocation) > W(TypeUseAccess\) >

W(ObjectInstantiationAccess).

Once the usage graph is available our algorithm first identifies language libraries and third-

party libraries by identifying packages for which source code has not been supplied. This also

represents a very simple mechanism for the user to determine his sphere of interest in large code

bases – the specific subset of packages that he is interested in. Next our algorithm captures the

inbound and outbound edges at each node and clusters the packages by detecting the current

Top package with least inbound edges. Specific differentiation is achieved by removing self

(dependencies on self) and dependency cycles. We address dependency cycles by systematically

eliminating the weakest dependency relationship between the code elements in a cycle. Our

algorithm assigns a layer index to each package that determines whether a package is above,

below or a peer to other packages.

The model is finally visualized in text form using our simple variation of the ring view

espoused in [1]. We call our visualization as the brick layout of software modules. The layout is

different from the layering style in that is does not mandate strict dependencies to a single layer

below. A module may freely depend on any of its peers and all modules below it at any depth

below this module. Other than the visualization of packages in this brick layout we address two

other concerns.

� The reduction of cognitive complexity by aggregating many packages into domain

friendly language – we use a simple regular expression based mapping to organize

packages into architecture modules. The names of these architecture modules can be

such that even non-technical stakeholders get a grip of their responsibility and

function. For example: javax.swing.* = SWING User Interface

represents the mapping that all packages with “javax.swing” will be now shown in

our results as SWING User Interface.

� The second contribution we make is with regard to our model in the form of the

dependency usage graph. While the visualization captures the relationships at a high

level of packages (with respect to Java) our model is strong on knowledge fidelity.

Architecture Recovery as first step in System Appreciation 3

We are able to support interactive exploration of the elements shown in our

visualization from package � To Type � to Method level to examine the exact

nature of relationships that contribute to a packages position in the brick layout. We

do this with the intention of supporting tool based comprehensions of a given code

bases interactively.

Results and Future Work

We have evaluated our approach by running it on two open source software systems viz. JUnit –

www.junit.org and JEdit – www.jedit.org and on a proprietary source of business application

for the banking domain called SETL Bank. The results are promising and are attached in the

appendix for the open source systems.

Specifically our approach is fairly lightweight and has reduced cognitive overload for non-

technical stakeholders. It also supports our ongoing work related to tool based interactive

program comprehension.

We are currently enhancing our work in two directions.

� Annotate the dependency usage graph with information about statement (location in

source code) and data variable. To achieve this we need to analyze the source code

over and above the compiled byte code.

� Design a simple language to capture architecture constraints that are derive the

prescribed or ‘to-be’ model of the software system. This is crucial to measure

architectural compliance as software evolves over time. This language will capture the

“is allowed” (allowed-to-depend-on) and what is not allowed in terms of syntactic

dependencies. It allows us to capture and apply partial architectural constraints on a

software system

References

[1] Clements Paul…[et al.], Documenting Software Architectures: Views and Beyond, chapter 2 pages

53-101, Addison Wesley (ISBN 0-201-70372), 2002

[2] Parnas D.L., The secret history of information hiding. In Software Pioneers: Contributions to

Software Engineering. Springer, 2002.

[3] Parnas, D. On the Criteria for Decomposing Systems into Modules. In Communications of the ACM,

vol. 15, no. 12, pp. 1053–1058, 1972

[4] Sangal, N., Jordan, E., Sinha, V., and Jackson, D. 2005, Using dependency models to manage

software architecture. In companion to the 20th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA ‘05), San Diego, CA, USA,

October 16 - 20, 2005, ACM Press, New York, NY, 164-165.

Appendix 1: Recovered Architecture View from JUnit

Appendix 2: Recovered Architecture View from JEdit

