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ABSTRACT
Given a set S of segments in the plane, the intersection
graph of S is the graph with vertex set S in which two
vertices are adjacent if and only if the corresponding two
segments intersect. We prove a conjecture of Scheinerman
(PhD Thesis, Princeton University, 1984) that every pla-
nar graph is the intersection graph of some segments in the
plane.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory

General Terms
Theory

Keywords
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1. INTRODUCTION
In this paper, we consider intersection models for planar

graphs. A segment model of a graph G maps every vertex
v ∈ V (G) to a segment v of the plane so that two segments
u and v intersect if and only if uv ∈ E(G). Although this
graph family is simply defined, it is not easy to manipulate.
Actually, even if this class of graphs is small (there are less

than 2O(n log n) such graphs with n vertices [15]) a segment
model may be long to encode (in the models of some of these

graphs the endpoints of the segments need at least 2
√

n bits
to be coded [14]). There are also interesting open problems
concerning this class of graphs. For example, we know that
deciding whether a graph G admits a segment model is NP-
hard [12] but it is still open whether this problem belongs
to NP or not. Here we focus on a conjecture proposed by
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Scheinerman [16], stating that every planar graph has a seg-
ment model.

Many work has been done toward this conjecture. Several
proofs [2, 4, 10] have been given for bipartite planar graphs.
The case of triangle-free planar graphs was proved by de
Castro et al. [3] and recently de Fraysseix and Ossona de
Mendez [5] proved it for every planar graph that has a 4-
coloring in which every induced cycle of length 4 uses at
most 3 colors.

Another approach to this problem has been proposed [13,
6]. Since it is known [7] that planar graphs are intersection
graphs of Jordan arcs in the plane and since two non-parallel
segments intersect at most once, it was asked whether planar
graphs are intersection graphs of Jordan arcs in the plane if
every pair of Jordan arcs s1 and s2 intersect at most once
and in a non-tangent way (i.e. around their intersection
point we successively meet s1, s2, s1 and s2). It was al-
ready known when tangent intersection are allowed; indeed
every planar graph is the contact graph of touching circles
[11]. The authors and Ochem [1] answered positively to this
question. This approach of Scheinerman’s conjecture was
decisive since by improving the proof of this result it yields
a proof of Scheinerman’s conjecture that we present here.
However, the construction we give here does not exactly
correspond to a stretching of the strings of the construction
given in [1].

The paper is organized as follows. In Section 2 we give
some definitions. In particular we define premodels and we
outline how to obtain a segment model from a premodel. In
Section 3 we describe premodels that exist for 3-bounded W-
triangulations, a family of plane graphs including 4-connected
triangulations. Then in Section 4 we finally construct seg-
ment models for general triangulations, which implies the
existence of segment models for general planar graphs.

Due to space limitations, some proofs are omitted and
can be found in the full version of the paper attached in
appendix.

2. PRELIMINARIES
A plane graph is an embedded planar graph. Given a

plane graph G, let V (G), E(G) and F (G) be respectively
the sets of vertices, edges and inner faces of G. A near-
triangulation is a plane graph in which every inner face is
a triangle. A triangulation is a near-triangulation with a
triangular outer face. It is easy to see that every planar
graph is the induced subgraph of some triangulation. This
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implies that it is sufficient to consider triangulations. Indeed
if a planar graph G is isomorphic to the graph induced by a
set V (G) ⊆ V (T ) of vertices in a triangulation T , then by
removing the segments corresponding to V (T ) \ V (G) from
a segment model of T , we clearly obtain a segment model of
G.

In all the paper, the bold notations correspond to geo-
metrical objects like points, segments or lines. For example
we will usually denote by v the segment corresponding to a
vertex v and by (v) the line prolonging this segment. Fur-
thermore since we consider finite planar graphs, the segment
sets we consider are all finite. Given a segment set S, its set
of representative points RepS is the set that contains the
intersection points and the ends of the segments in S. A
segment set S is unambiguous if every segment s ∈ S has
distinct endpoints, and if parallel segments of S do not inter-
sect. From now on we use the following definition of model.

Definition 1. Given a segment set S, its intersection
graph GS is the graph with vertex set S and where two ver-
tices are adjacent if and only if the corresponding segments
intersect. Furthermore if (1) S is unambiguous, if (2) the
intersection of any three segments of S is empty, and if (3)
every endpoint belongs to exactly one segment, then S is a
model for any graph G isomorphic to GS .

For the proof in Section 4 we need some geometrical struc-
tures to represent the triangular inner faces. To each trian-
gular inner face abc we will associate a face segment, abc,
acb or bca.

Definition 2. Given an unambiguous segment set S and
three pairwise intersecting segments a, b and c, a face seg-
ment f = abc is a segment [p,q] such that:

• p is the intersection point of a and b, and going around
p we consecutively meet a, f and b,

• q is an internal point of c that does not belong to any
other segment of S, and

• none of its internal points belongs to any segment of
S.

The points p and q are respectively called the cross-end and
the flat-end of abc.

Note that the second item implies that face segments are
non-trivial, i.e. p �= q. Note also that in this definition a
and b play the same role, so a face segment abc is also a
face segment bac but it is not a face segment acb.

Definition 3. Given an unambiguous segment set S, two
face segments f1 and f2 on S are non-interfering if one of
the following holds:

- The segments f1 and f2 do not intersect.

- The segments f1 and f2 have the same cross-end p and
this point is the intersection point of exactly two seg-
ments of S, a and b. Furthermore, one of the lines
(a) and (b) separates f1 and f2 in distinct half-planes.

Definition 4. A full model of a near triangulation T is
a couple M = (S, F ) of segments sets such that:

• S is a model of T .

• F is a set of non-interfering face segments on S such
that for each inner face abc of T , F contains one of
the following face segments: abc, acb,bca.

• S ∪ F is unambiguous.

The next theorem is the main result of the paper.

Theorem 1. Every triangulation T has a full model M =
(S, F ).

2.1 Premodels
In our proofs, we use a different kind of model. The main

difference with full models is that more than two segments
of S can intersect in a same point.

In the following, we consider a segment set S and a set
F of non-interfering face segments on S, where S ∪ F is
unambiguous. Let us denote the segments of S (resp. F )
by s1, s2, . . . (resp. f1, f2, . . . ). Given a representative point
p, its incidence sequence I(p) is the undirected circular se-
quence of segments (from S ∪ F ) we meet by going around
p. This sequence is undirected because it will make no dif-
ference going clockwise or anti-clockwise. By extension, the
partial topological incidence sequence of p, I∗(p) is the se-
quence obtained in the following way. Prolong every seg-
ment that ends at p and consider its new incidence se-
quence. Then replace every occurrence of si and fi that
was not in I(p) before by (si) and (fi). It is clear that
I(p) is a subsequence of I∗(p) (i.e. I(p) ⊆ I(p)). We say
that I(p) is of the form ([r1], r2, . . . , rk) for ri ∈ S ∪ F ,
if either I(p) = (r1, r2, . . . , rk), I(p) = (r2, . . . , rk), or
I(p) ⊆ ((r1), r2, . . . , rk) ⊆ I∗(p).

Let us define types for the representative points, depend-
ing on their incidence sequence. These types are not always
entirely determined by the incidence sequence and we will
have to assign a type (among the possible ones) to each
representative point. Furthermore, these types are in corre-
spondence with some graphs we also describe here.

• A point is a segment end if its incidence sequence is
(s1). The corresponding graph is the single vertex s1.

• A point is a flat face segment end if its incidence se-
quence is (s1, f1, s1). The corresponding graph is the
single vertex s1.

• A point may be a crossing if it has an incidence se-
quence of the form (s1, [f1], s2, [f2], s1, [s2]) or (s1, [f1], s2,
s1, [f2], s2). The corresponding graph is the edge s1s2.

• A point may be a path–(s1, s2, . . . , sk)–point with k ≥
2, if it has an incidence sequence of the form (s1, s2, . . . ,
sk, (s1), (s2)) (See Figure 1). Such a typed point is
in correspondence with path–(s1, s2, . . . , sk), the graph
with vertex set {s1, . . . , sk} and edge set {sisi+1 | 1 ≤
i < k}.

• A point may be a fan–s1�– (s2, . . . , sk)–point with k ≥
2, if it has an incidence sequence of the form (s1, [f1], s2,
. . . , sk, (s1), [f1], (s2)) (See Figure 2), with f1 = s1s2x.
Note that since f1 is a face segment it occurs at most
once in the incidence sequence. Such a typed point is
in correspondence with fan–s1�– (s2, . . . , sk), the graph
with a vertex s1 dominating a path (s2, . . . , sk).
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Figure 1: A path–(s1, s2, . . . , sk)–point, its partial realization, and its corresponding graph

s1
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s2 s3 sk s2 s3 sk

s1

s1

f1

f1

Figure 2: A fan–s1�– (s2, . . . , sk)–point, its partial realization , and its corresponding graph

In fact, there are three more kinds of special points that
are not detailed here but can be found in the full version of
the paper.

Actually, the graphs we considered here are plane graphs,
and their inner faces are the grey faces in the figures. As in
[5], we need a bipartite digraph to describe the constraints
between segments and representative points.

Definition 5. Given a segment set R, the constraints
digraph ConstR is the bipartite digraph with vertex sets R
and RepR, and where r ∈ R and p ∈ RepR are linked if and
only if p ∈ r. More precisely, there is an arc from p to r
if p is an endpoint of r, otherwise (when p is an internal
point of r) the arc goes from r to p.

Informally this graph describes the fact that the position of
a segment is determined by its endpoints, and determines
the position of its internal representative points.

Definition 6. Given a segment set S, a set F of non-
interfering face segments on S and a function τ that assigns
a type to each representative point, the triple M = (S, F, τ )
is a premodel of a near-triangulation T if the following holds:

- The set S∪F is unambiguous and the digraph ConstS∪F

is acyclic.

- A vertex a ∈ V (T ) if and only if a ∈ S.

- An edge ab ∈ E(T ) if and only if a and b intersect
in a point p such that the graph corresponding to τ (p)
contains the edge ab.

- A face abc ∈ F (T ) if and only if one of the following
holds:

- either there exists a face segment abc, acb or bca
in F ,

- or, a,b and c intersect in a point p such that
abc is an inner face of the graph corresponding to
τ (p).

Note that a premodel M = (S, F, τ ) of a near-triangulation
T has a bounded number of representative points. There are
at most 2|V (T )| segment ends, at most F (T ) flat face seg-
ment ends, and at most E(T ) points of another type (since
each of them corresponds to at least one edge of T ).

Remark 1. If a premodel M = (S, F, τ ) of a near-trian-
gulation T has 2|V (T )|+|F (T )|+|E(T )| representative points,
then (S,F ) is a full model of T .

2.2 Local Perturbations
In this subsection we describe how to transform a pre-

model M = (S, F, τ ) of a near triangulation T into a full
model M′ = (S′, F ′) of T . In the following the segments
denoted by ri are segments of S ∪ F . Let us define three
basic moves: prolonging, gliding and traversing.

Lemma 1 (prolonging). Consider a premodel M = (S,
F, τ ) of a near triangulation T with an intersection point p
which is the end of a segment s1 ∈ S. If for every segment
s2 ∈ S that has an end in p, there is no directed path from
s2 to s1 in ConstS∪F , it is possible to prolong s1 across p
without creating a cycle in ConstS′∪F (where S′ is the new
segment set). Furthermore, if the type τ (p) is still applicable
to p then (S′, F, τ ) remains a premodel of T .

Remark 2. Consider a premodel M = (S, F, τ ) with a
point p that is the intersection of exactly two segments from
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r1

r2 ri

r1

r2 ri

p p1 p2

Figure 3: gliding of r2, . . . , ri on r1.

S, s1 and s2. By prolonging all the segments that end at
p we obtain a segment set S′ such that ConstS′∪F remains
acyclic.

A segment set R is flexible if every representative point p
is internal for at most two segments of R. Note that accord-
ing to the defined types for every premodel M = (S, F, τ ),
the set S ∪ F is flexible.

Definition 7. A move of a segment set R = {ri = [ai, bi]
| 1 ≤ i ≤ |R|} is a segment set R′ such that R′ = {r′i =
[a′

i,b
′
i] | 1 ≤ i ≤ |R|}. An interpolation of this move is a

continuous function defined for t ∈ [0, 1] that gives a move
Rt of R such that R0 = R and R1 = R′.

Lemma 2 (gliding). Consider a flexible and unambigu-
ous segment set R such that ConstR is acyclic, and a rep-
resentative point p of R. If the segments r1, r2, . . . , ri are
consecutive around p, if all the segments r2, . . . , ri have an
end at p and are in the same half-plane delimited by (s1)
(See Figure 3), and if in ConstR the vertex r1 cannot be
reached from any rj with 2 ≤ j ≤ i, then there exists a move
R′ with an interpolation Rt such that for every t ∈]0, 1]:

- The set Rt is unambiguous and ConstRt is acyclic.

- The point p splits into two representative points pt
1 and

pt
2, which incidence sequence are respectively (rt

1, r
t
2, . . . ,

rt
i, r

t
1) and the incidence sequence of p without the oc-

currences of rt
2, . . . , r

t
i.

- For every representative point q �= p of R there is
a representative point qt in Rt with exactly the same
topological incidence sequence.

- There is no other representative point (i.e. |RepRt | =
|RepR| + 1).

- Every segment rt ∈ Rt (resp. representative point qt ∈
RepRt) that is not reachable from any pt

1 in Constt
R

is static, that is rt = r (resp. qt = q).

Lemma 3 (traversing). Consider a flexible and unam-
biguous segment set R such that ConstR is acyclic, and
a representative point p of R which incidence sequence is
(r1, . . . , ri, . . . , rj , r1, rj+1, . . . , rk, ri) with 2 < i ≤ j ≤ k
(See Figure 4). There exists a move R′ with an interpola-
tion Rt such that for every t ∈]0, 1]:

- The set Rt is unambiguous and ConstRt is acyclic.

- The point p splits into i representative points pt
l , for

1 ≤ l ≤ i, which incidence sequence are (rt
i, r

t
2, . . . , r

t
i)

for l = 1, (rt
1, r

t
l , r

t
1, r

t
l) for 1 < l < i, and (rt

1, r
t
i, . . . , r

t
j ,

rt
1, rj+1, . . . , rk, rt

i) for l = i.

r2 ri ri
r2

p

rj
rj

rk rk

r1 r1

Figure 4: traversing

- For every representative point q �= p of R there is
a representative point qt in Rt with exactly the same
topological incidence sequence.

- There is no other representative point (i.e. |RepRt | =
|RepR| + i − 1).

- Every segment r ∈ R (resp. representative point q ∈
RepR) that is not reachable from pt

i in ConstRt is
static, that is rt = r (resp. qt = q).

Given an intersection point p in a premodel M = (S, F, τ )
of T , a partial realization of p is an operation that com-
bines a basic move at p and the addition of new face seg-
ments (eventually none), and that yields another premodel
M′ = (S′, F ′, τ ′) of T . A simple example of a partial real-
ization at p is prolonging a segment s across p, choosing s
in such a way that τ (p) still applies and that the constraints
digraph remains acyclic. Such a partial realization is called
a maximization of p, and if p is already internal in two seg-
ments we say that this point is maximal. In a premodel, we
say that a point p is simple if it is either a segment end, a
flat face segment end, or a maximal point without any seg-
ment of S ending here (at p). Otherwise, we say that this
point is special.

Proposition 1. Consider a premodel M = (S, F, τ ) of
a near-triangulation T . Every special point p of M that is
maximal admits a partial realization.

Proof. Note that since p is special and maximal there
are at least three segments from S intersecting at p. We
distinguish different cases according to the type of p.

If this point is a path–(s1, s2, . . . , sk)–point we do a glid-
ing of {s3, . . . , sk} on s2 to a new representative point q (by
Lemma 2 since p is not an end of s2). Let p and q be
respectively typed as the crossing point of s1 and s2, and
as a path–(s2, . . . , sk)–point (See Figure 1). Under these
conditions the gliding keeps the constraints digraph acyclic
and preserves the topological incidence sequence of the other
representative points (so that their type can remain un-
changed). Thus, since the graph that corresponded to p (the
path (s1, . . . , sk)) is the union of the graphs corresponding
to p and to q, we are done.

If this point is a fan–s1�– (s2, . . . , sk)–point we do a travers-
ing of {s3, . . . , sk} along s2 and through s1 to a new repre-
sentative point q. We add the face segments s1sisi−1, with
3 ≤ i ≤ k, and we let q be typed as a path–(s2, . . . , sk)–
point (See Figure 2). Under these conditions the traversing
keeps the constraints digraph acyclic and preserves the topo-
logical incidence sequence of the other representative points.
Thus since the graph that corresponded to p (the fan–s1�–
(s2, . . . , sk)) is the union of the graphs corresponding to the
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a1 = cr b1 = ap

c1 = bq

T

a2

b1

b2

c1

c2

Figure 5: A 3-bounded W-triangulation T .

new crossing points, to the new face segments, to p and to
q, we are done.

For the other kinds of types, we refer to the full version of
the paper. This concludes the proof of the proposition.

Now let us note that any partial realization increases the
number of representative points. Since a premodel with the
maximum number of representative points is a full model
(cf. Remark 1), we have the following corollary.

Corollary 1. Any premodel M = (S, F, τ ) of a near-
triangulation T admits a sequence of partial realizations that
yield a full model M′ = (S′, F ′) of T .

3. THE CASE OF 4-CONNECTED TRIAN-
GULATIONS.

Let T be a near-triangulation. A chord of T is an edge not
incident to the outer face but which ends are on the outer
face. A separating 3-cycle C is a cycle of length 3 such that
some vertices of T lie inside C whereas other vertices are
outside. It is well known that a triangulation is 4-connected
if and only if it contains no separating 3-cycle.

Definition 8. A W-triangulation T is a 2-connected near-
triangulation containing no separating 3-cycle. Such a W-
triangulation is 3-bounded if its outer boundary is the union
of three paths, (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr), that
satisfy the following conditions (see Figure 5):

• a1 = cr, b1 = ap, and c1 = bq.

• the paths are non-trivial ( i.e. p ≥ 2, q ≥ 2, and r ≥ 2).

• there exists no chord aiaj, bibj , or cicj .

This 3-boundary of T will be denoted by (a1, . . . , ap)-(b1, . . . ,
bq)-(c1, . . . , cr).

In the following, we will use the order on the three paths
and their directions, i.e. (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr)
will be different from (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap) and
(ap, . . . , a1)-(cr, . . . , c1)-(bq, . . . , b1).

Property 1. Consider any W-triangulation T 3-bounded
by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).

(1) If p = 2 (see Figure 6, left), for any triangle BCD,
there exists a premodel M = (S, F, τ ) of T contained in
the triangle BCD such that

• every special point p of M is a point of bq = c1 =
[BC], a2 = b1 = [BD] or cr = a1 = [CD],

a

b

c

a

b

c

Figure 7: The cases (A) and (B).

• B is a path–(b1, b2, . . . , bq)–point,

• C is a path–(c1, c2, . . . , cr)–point,

• D is a fan–a2�– (d1, . . . , ds, a1)–point (where d1, d2,
. . . , ds are inner vertices of T ) such that there is
a face segment incident only if s = 0 (i.e., D is a
fan–a2�– (a1)).

(2) If p > 2 (see Figure 6, right), for any triangle ABC
there exists a point D inside this triangle and a premodel
M = (S, F, τ ) of T contained in the polygon ABCD
such that

• every special point p of M is a point of ap = b1 =
[AB], bq = c1 = [BC], [CD] (that is contained in
a1 = cr) or [AD] (that is contained in a2),

• A is a path–(a2, . . . , ap)–point.

• B is a path–(b1, b2, . . . , bq)–point,

• C is a path–(c1, c2, . . . , cr)–point,

• D is the crossing point of a1 and a2 (with possibly
one face segment incident to it corresponding to the
inner face of T incident to a1a2),

Note that in both cases, at most one face segment is in-
cident to D, since a1a2 is incident to exactly one inner face
of T . Furthermore since path–points cannot have incident
face segments, there is no face segment incident to A,B,C
(resp. B,C) when p > 2 (resp. p = 2).

This property is the core of our construction and its proof
can be found in the full version of the paper. Our proof
is based on a decomposition of 4-connected triangulations
already used in [1, 8, 18].

4. PROOF OF THEOREM 1
We prove that every triangulation T has a full model

(S, F ) by induction on the number k of separating 3-cycles
in T . If k = 0 the triangulation T is a W-triangulation
3-bounded by (a, b)-(b, c)-(c, a), where a, b and c are the
vertices on its outer-boundary. Then Property 1 provides us
a premodel M = (S, F, τ ) of T and by Corollary 1 we obtain
a full model (S′, F ′) of T .

If k ≥ 1, let C = (a, b, c) be a 3-cycle such that the tri-
angulation T ′ induced by the vertices on and inside C does
not contain any separating 3-cycle. Let T1 be the triangu-
lation obtained by removing all the vertices that lie strictly
inside the cycle C. Let T2 be the subgraph of T induced by
all the vertices of T that lie strictly inside the cycle C. By
definition of C, T2 is either (A) a single vertex v or (B) a
W-triangulation (see Figure 7). In T1, the cycle C delimits
a face and is no more a separating 3-cycle. Since T1 has
one separating 3-cycle less than T , the induction hypothesis
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b1
b2

bq

c1 c2

cr = a1

a2

a3

ap
c1 c2

cr = a1

b1
bq

b2

a2
d1

ds
D

B B

CC

D

A

Figure 6: Property 1 for one W-triangulation T with p = 2 and one with p > 2.

acdacd

acb

a

vba

v

a

b

c c

b

vcb

acv

Figure 8: Case (A): Modifications inside Rε.

implies that T1 admits a full model M = (S, F ). Since abc
is an inner face of T1 there is a corresponding face segment,
say acb, in F and let respectively B and C be its flat end
and its cross end. Note that there might be an other face
segment incident to C. If it exists we denote it acd since it
would correspond to a face acd adjacent to the edge ac in
T1. Since F is non-interfering we know that (a) or (c) sep-
arate acb and acd in distinct half-planes. Here we assume,
without loss of generality that the line (a) separates them.
Now let ε > 0 be a real such that for every representative
point p ∈ RepS∪F \ {B,C} we have dist(p,acb) > ε, and
let the region Rε be the set of points at distance at most ε
from acb. The definition of ε implies that (1) the only seg-
ments intersecting Rε are a, b, c, acb and eventually acd if
it exists; and that (2) the endpoints of a, b and c (resp. the
flat end of acd) are not in Rε. Since there is no inner face
abc in T we remove acb from F and we add some segments
and face segments in Rε to obtain a full model of the whole
T .

Case (A): T2 is a single vertex v.
Since acb and acd (if it exists) are non-interfering, it is

easy to draw in the region Rε a segment v that only intersect
a, b, and c; and three face segments vba, vcb, and acv such
that the set {vba,vcb,acv,acd} is non-interfering (see Fig-

ure 8). Now it is clear that from the model M of T1 we have
added a segment for v, three crossings for va, vb and vc, re-
moved the face segment of acb, and added the face segments
of vba, acv and vcb; thus we have a full model of T .

Case (B): T2 is a W-triangulation.
Let a1, a2, . . . , ap be the neighbors of a inside the cycle

(a, b, c) going from c to b excluded. Similarly let b1, b2, . . . , bq

(resp. c1, c2, . . . , cr) be the neighbors of b (resp. c) inside the
cycle (a, b, c) going from a to c (resp. from b to a) excluded.
It is clear that a1 = cr, b1 = ap, and c1 = bq. Furthermore,
since there is no separating 3-cycle inside C, we have that:

• p, q, and r ≥ 2.

• (a1, a2, . . . , ap, b2, . . . , bq , c2, . . . , cr) is a cycle, thus T2

is a W-triangulation.

• T2 has no chord axay, bxby, or cxcy with y > x + 1.

Thus T2 is a W-triangulation 3-bounded by (a1, a2, . . . , ap)-
(b1, b2, . . . , bq)-(c1, c2, . . . , cr). Here we choose this particu-
lar 3-boundary because of the assumption that (a) separates
acb and acd (if it exists). We now apply Property 1 with re-
spect to this 3-boundary and this implies that if p = 2 (resp.
p > 2) then T2 has a premodel M′ = (S′, F ′, τ ′) inside the
triangle BCD (resp. the polygon ABCD), where A is a
point of a ∩ Rε (See Figure 9) and D is an internal point
of [A,B] (resp. a point strictly inside ABC). If p = 2 we
prolong b1 = [BD] across D until reaching A and note that
since all the special points lie on BCD, Lemma 1 implies
that the constraints digraph of M′ remains acyclic. Note
also that according to the definition of Rε, the full model
M and the premodel M′ only intersect at A, B and C. Now
we are going to merge M and M′ in order to construct a
premodel M∗ = (S∗, F ∗, τ∗) of the whole T . To do this, let
S∗ = S∪S′ and F ∗ = (F \acb)∪F ′∪{a1a2a,ab1b,bc1c};
where a1a2a goes from D to a point of [A,C], ab1b goes
from A to a point of b ∩ Rε, and bc1c goes from B to
a point of c ∩ Rε (See Figure 9). Observe that F ∗ is non-
interfering, in particular we see that a1a2a does not interfere
with another face segment f at D, since f would be inside
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ABCD. We now define τ∗ as follows. Let A be a fan–a�–
(ap, . . . , a2)–point, let B be a fan–b�– (bq, . . . , b1)–point, and
let C be a fan–c�– (a, cr, . . . , c1)–point. If p > 2 the point D
remains the crossing point of a1 and a2, even with its new
incident face segment. If p = 2 the point D was either a
fan–a2�– (d1, . . . , ds, a1)–point (for some vertices d1, . . . , ds)
or a fan–a2�– (a1)–point. In the first case let D be a fan–a2�–
(a1, ds, . . . , d1)–point (possible since it has no incident face
segment in M′). In the second case let D be the crossing
point of a1 and a2 with one or two incident face segments.
Note that in both case the graph corresponding to D remains
unchanged. For the other representative points of M∗ let
their type remain as in M or M′.

We now verify that M∗ is a premodel of T .

- It is clear that S∗ ∪ F ∗ is unambiguous and we show
here that ConstS∗∪F∗ is acyclic. Indeed this digraph
arises from the union of ConstS∪F and ConstS′∪F ′
(where S′ has a segment a2 prolonged until A when
p = 2) by adding the vertices corresponding to the new
face segments and their flat end point, and adding the
arcs incident to these vertices. But since the face seg-
ments have out-degree zero in the constraints digraphs,
there is no cycle in ConstS∗∪F∗ passing through a
face segment. Thus a cycle would be in the union of
ConstS∪F and ConstS′∪F ′ . These two digraph being
acyclic, this cycle should successively pass through a
segment of ConstS′∪F ′ , through one of the points A,
B and C, and through a segment of ConstS∪F . But
this is impossible since in ConstS′∪F ′ the only points
that intersect M, A, B and C, have in-degree zero.

- Since V (T ) is the disjoint union of V (T1) and V (T2)
we have that a vertex v ∈ V (T ) if and only if v ∈ S∗.

- Note that E(T ) = E(T1) ∪ E(T2) ∪ {aa1 = acr} ∪
{aa2, . . . , aap}∪{bb1, . . . , bbq}∪{cc1, . . . , ccr}, that A
was not a representative point in M (resp. was ei-
ther an end point or a path–(a2, . . . , ap)–point in M′)
and that now it is a fan–a�– (ap, . . . , a2)–point, that B
was a flat face segment end in M (resp. was a path–
(b1, . . . , bq)–point in M′) and that now it is a fan–b�–
(bq, . . . , b1)–point that C was the crossing point of a
and c in M (resp. was a path–(c1, . . . , cr)–point in
M′) and that now it is a fan–c�– (a, cr, . . . , c1)–point.

Since the other representative points remain with the
same corresponding graphs, one can easily check (see
Figure 10) that E(T ) is exactly the set of edges induces
by M∗.

- Note that F (T ) = (F (T1)\acb)∪F (T2)∪{a1a2a, ab1b,
bc1c} ∪ {aaiai+1 | 2 ≤ i < p} ∪ {bbibi+1 | 1 ≤ i < p} ∪
{ccici+1 | 2 ≤ i < p} ∪ {accr}. According to the face
segments added in F ∗ (the ones in F ∗ \ (F ∪ F ′)), the
faces induced by A, B and C, and since the other rep-
resentative points remain with the same corresponding
graphs, one can easily check (see Figure 10) that F (T )
is exactly the set of faces induced by M∗.

Finally since T has a premodel M∗, Corollary 1 implies
that it has a full model, proving Theorem 1.

5. CONCLUSION
West conjectures that every planar graph is the intersec-

tion graph of segments using only four directions [17]. Note
that since in unambiguous segment models, parallel seg-
ments induce a stable set, an unambiguous segment model
using only four directions would correspond to a four col-
oring of the planar graph. This conjecture holds for some
families of planar graphs. Indeed, every bipartite planar
graph has a segment model using only two directions [10, 2,
4] and every triangle free planar graph (that is 3-colorable by
Grötzsch’s theorem) has a segment model using only three
directions [3].

De Fraysseix and Ossona de Mendez proposed [5] the fol-
lowing generalization of Scheinerman’s Conjecture : ”Every
planar linear hypergraph is the intersection hypergraph of
segments in the plane.”, where a linear hypergraphs is an hy-
pergraph such that two hyperedges intersect in at most one
vertex. This generalization does not holds since the second
author found a counterexample [9].

In our proof we need the constraints digraph to be acyclic
in order to perform local perturbations (like gliding or travers-
ing) on the segment set. We wonder whether this condition
is necessary: is it always possible to do local perturbations in
any flexible segment set R (with possibly cycles in ConstR)?
The flexibility of R is required since Pappus’s construction
gives us a segment set with only one point that is internal
in 3 segments, and such that some glidings are impossible.
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