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Abstract. In this paper the deterministic and stochastic tidal equation in 2-D
have been studied. The main results of this work are the existence and unique-
ness theorem for strong solutions. These results are obtained by utilizing a global
monotonicity property of the sum of the linear and nonlinear operators and ex-
ploiting the generalized Minty-Browder technique.

1. Introduction

The ocean tides have long been of interest to humans. A full account of the
general theory and history of the tidal waves can be found Lamb [8] and summarized
as follows. First, Newton [16] established the foundations for the mathematical
explanation of tides, which motivated Maclaurin [11] to investigate the effect on
tidal dynamics due to Earth’s rotation. Although Euler realized that the horizontal
component of the tidal force has more effect than the vertical component to drive
the tide, the first major theoretical formulation for water tides on a rotating globe
was made by Laplace [9], who formulated a system of partial differential equations
relating the horizontal flow to the surface height of the ocean. The Laplace theory
was developed further by Thomson and Tait [21] and Poincaré [19].

In the last few decades many rapid progress in theoretical and experimental studies
of ocean tides can be observed. These days both the experimental and the theoretical
information on ocean tides are being used to study important problems not only in
oceanography but also in atmospheric sciences, geophysics as well as in electronics
and telecommunications. For extensive study on the recent progress in this field we
refer the readers [13, 14, 18].

Marchuk and Kagan [13] considered the tidal dynamics model which can be ob-
tained from taking the shallow water model on a rotating sphere and is a slight
generalization of the Laplace model. The existence and uniqueness of the deter-
ministic tide equation by using the classical compactness method have been proved
in [5, 13]. In this paper we have considered the model described in [5, 13] and proved
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the existence and uniqueness of strong solutions for the stochastic tide equation in
bounded domains. A brief description of the model has been given in Section 2. In
Section 3 we have defined few standard well known function spaces and then proved
the global monotonicity property of the nonlinear operator of the tidal equation.
Then we establish certain new a priori estimates which play a fundamental role in
the proof of existence and uniqueness of weak and strong solution proved in the
second half of Section 3 and in the Section 4 for the deterministic and stochastic
cases respectively. The monotonicity argument used here is the generalization of the
classical Minty-Browder method for dealing with global monotonicity. Here the use
of global monotonicity avoids the classical method based on compactness and thus
the results apply to unbounded domains and hence the existence and the uniqueness
results are new even in the deterministic case. The Minty-Browder technique for
dealing with local monotonicity was first used by Menaldi and Sritharan [15] for
the stochastic Navier-Stokes equation and by Manna, Menaldi and Sritharan [12]
for the stochatic Navier-Stokes equation with artificial density. Similar ideas were
used by Sritharan and Sundar [20] for the stochastic Navier-Stokes equation with
multiplicative noise and also in Barbu and Sritharan [2, 3].

2. Tidal Dynamics: The Model

Under the following assumptions: (1) the Earth is a perfectly solid body, (2) tides
in the ocean do not change the Earth’s gravitational field, and (3) there is no energy
exchange between the mid-ocean and the shelf zone, Marchuk and Kagan [13] obtain
the following mathematical model

∂tw + A1w − κh4w +
r

h
|w|w + g∇ξ = f , (2.1)

∂tξ + Div(hw) = 0, (2.2)

in O × [0, T ], where O is a bounded 2-D domain (horizontal ocean basin) with
coordinates x = (x1, x2) and t represents the time. Here ∂t denotes the time-
derivative, 4, ∇ and Div are the Laplacian, gradient and the divergence operators
respectively.

The unknown (dependent) variables (w, ξ), functions of (x, t), represent the total
transport 2-D vector (i.e., the vertical integral of the velocity)and the deviation of
the free surface with respect to the ocean bottom.

The coefficients A1 = [aij] is a 2-dimensional antisymmetric square matrix with
constant coefficients a11 = a22 = 0 and −a12 = a21 = 2ωz, the Coriolis parameter
(i.e., ωz = ω cos(ϕ), ω is the angular velocity of the Earth rotation and ϕ the
latitude), κh > 0 the constant horizontal macro turbulent viscosity coefficient, r > 0
the constant bottom friction coefficient equal to a numerical constant, g the Earth
gravitational constant, h = h(x) is the (vertical) depth at x in the region O and
f = γLg∇ξ+ is the known tide-generating force with γL the Love factor.
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The domain contour ∂O consists of two parts, a solid part Γ1 coinciding with the
shelf edge and the open boundary Γ2. The vector w0 of full flow is considered a
known function of the horizontal coordinates and time. Thus a non-homogeneous
Dirichlet boundary condition are added to the above PDE, namely

w = w0 on ∂O × [0, T ]. (2.3)

The full flow satisfies

w0 = 0 on Γ1 (2.4)

and ∮
dt

∫

Γ2

w0 · ndx = 0, (2.5)

where the time integral is extended to one time-period and n is a normal to the
contour Γ2.

Here (2.4) represents the fact that the no-slip boundary condition is fulfilled on
the contour Γ1 while (2.5) means that the water transfer via the open boundary Γ2,
integrated during the tidal cycle turns to zero.

To take into consideration the redistribution of water masses, one should add an
integro-differential term of the form

g∇
∫

O
K(x, y)ξ(y)dy, (2.6)

where K(x, y) = G(λ′, ϕ′, λ, ϕ) with λ the longitude and ϕ the latitude has the form
∑

n

(1 + kn − hn)αn

∑
m≤n

gnmPnm(sin ϕ)Pnm(sin ϕ′) cos[m(λ + λ′)], (2.7)

where kn, hn are the Love factors of order n, αn := (0.18)(3/2n + 1), gn0 := (2n +
1)/(4π), gnm := [(2n + 1)(n!)2]/[2π(n − m)!(n + m)!], and Pnm are the associated
Legendre functions. Note that the n-term correspond to the expansion in spherical
harmonics.

Denote by A the following matrix operator

A :=

(−α4 −β
β −α4

)
(2.8)

and the nonlinear vector operator

v 7→ γ(x)|v|v :=

(
γ(x)v1

√
(v1)2 + (v2)2

γ(x)v2

√
(v1)2 + (v2)2

)
, (2.9)

where α := κh and β := 2ωz are positive constants, γ(x) := r/h(x) is strictly
positive smooth function. In this model we assume the depth h(x) to be continuously
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differentiable function of x, nowhere becoming zero, so that

min
x∈O

h(x) = ε > 0, max
x∈O

h(x) = µ, and max
x∈O

|∇h(x)| ≤ M, (2.10)

where M is a some positive constant which equals to zero at a constant ocean depth.
To reduce to homogeneous Dirichlet boundary conditions the natural change of

unknown functions

u(x, t) := w(x, t)−w0(x, t), (2.11)

and

z(x, t) := ξ(x, t) +

∫ t

0

Div(hw0(x, s))ds, (2.12)

which are referred to as the tidal flow and the elevation. The full flow w0, which is
given a priori on the boundary ∂O, has been extended to the whole domain O×]0, T ]
as a smooth function and still denoted by w0.

Then the tidal dynamic equation can be written as




∂tu + Au + γ|u + w0|(u + w0) + g∇z = f ′ in O × [0, T ],

∂tz + Div(hu) = 0 in O × [0, T ],

u = 0 on ∂O × [0, T ],

u = u0, z = z0 in O × {t = 0},

(2.13)

where

f ′ = f − ∂w0

∂t
+ g∇

∫ t

0

Div(hw0)dt−Aw0, (2.14)

u0(x) = w0(x)−w0(x, 0), (2.15)

z0(x) = ξ0(x). (2.16)

So the nonlinear and linear partial differential equations in (2.13) are coupled with
an integro-differential equation (2.14).

An integro-differential term of the form

Kz(x) := g∇
∫

O
K(x, y)z(y)dy (2.17)

may be added, where the kernel is a symmetric function K(x, y) = K(y, x) for any
x, y in O. Then the first equation in (2.13) will be replaced by

∂tu + Au + γ|u + w0|[u + w0] + g∇[z + Kz] = f in O × [0, T ], (2.18)

where K denotes the integral operator (2.17).
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3. Deterministic Setting: Global Monotonicity and Solvability

In this paper the standard spaces used are as follows:
H1

0(O) with the norm

‖v‖
H1
0

:=
( ∫

O
|∇v|2dx

)1/2

, (3.1)

and L2(O) with the norm

‖v‖
L2

:=
( ∫

O
|v|2dx

)1/2

. (3.2)

Using the Gelfand triple H1
0(O) ⊂ L2(O) ⊂ H−1(O) we may consider 4 or ∇ as

a linear map from H1
0(O) or L2(O) into the dual of H1

0(O) respectively. The inner
product in the L2 or L2 is denoted by (·, ·) and the induced duality by 〈·, ·〉. So
clearly

(u,v)L2 =

∫

O
u(x) · v(x)dx

for any u and v in L2(O).
Notice that by the divergence theorem,

(g∇z, hv)L2 = −(gz, Div(hv))L2 , ∀z ∈ L2(O), v ∈ L2(O). (3.3)

Lemma 3.1. For any real-valued smooth functions ϕ and ψ with compact support
in R2, the following hold:

‖ϕψ‖2

L2
≤ ‖ϕ∂1ϕ‖L1‖ψ ∂2ψ‖L1 , (3.4)

‖ϕ‖4

L4
≤ 2‖ϕ‖2

L2
‖∇ϕ‖2

L2
. (3.5)

Proof. The results stated above are classical and well known [7]. ¤

Notice that by means of the Gelfand triple we may consider A, given by (2.8), as
mapping H1

0(O) into its dual H−1(O).
Define the non-symmetric bilinear form

a(u,v) := α[(∂1u1, ∂1v1) + (∂2u2, ∂2v2)] + β[(u1, v2)− (u2, v1)] (3.6)

on the (vector-valued) Sobolev space H1
0(O) := H1

0(O,R2), where (·, ·) denotes the
inner product in the (vector-valued) Lebesgue space L2(O) := L2(O,R2), e.g., see
Adams [1] for detail on Sobolev spaces. Thus if u has a smooth second derivative
then

a(u,v) = (Au,v)
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for every v in H1
0(O). Moreover, the bilinear form a(·, ·) is continuous and coercive

in H1
0(O), i.e.,

|a(u,v)| ≤ C1‖u‖H1
0
‖v‖H1

0
, ∀u,v ∈ H1

0(O), (3.7)

(Au,u) = a(u,u) = α‖u‖2
H1

0
, ∀u ∈ H1

0(O), (3.8)

for some positive constants C1 = α + β.
Now we state an useful result as a lemma from [6].

Lemma 3.2. Let X be a normed linear space and let Ω ⊂ X be open. Let J : Ω → R
be twice differentiable in Ω. Let K ⊂ Ω be convex. Then J is convex if and only if,
for all u,v ∈ K,

J ′′(v;u,u) =
d2

dθ dα
J(v + θu + αu)

∣∣∣
θ,α=0

≥ 0.

Let us denote the nonlinear operator B(·) by

v 7→ B(v) := γ|v + w0|[v + w0]. (3.9)

Then we have the following lemma:

Lemma 3.3. Let u and v be in L4(O,R2). Then the following estimate holds:

〈B(u)−B(v),u− v〉 ≥ 0. (3.10)

Proof. Suppose J(v) denotes the functional

v 7→ 1

3

∫

O
|v(x)|3γ(x)dx.

Then simple calculations give,

d

dα
J(v + θu + αw) =

∫

O
γw(v + θu + αw)|v + θu + αw|dx,

and

d2

dθ dα
J(v + θu + αw) = 2

∫

O
γuw|v + θu + αw|dx.

Hence

J ′′(v;u,u) =
d2

dθ dα
J(v + θu + αu)

∣∣∣
θ,α=0

= 2

∫

O
γ|v|u2dx ≥ 0,

for any u,v ∈ L4(O,R2), since γ(x) is a positive function.
Thus in view of Lemma 3.2, J(v) is a convex functional and so

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v)

which yields

J(v + θ(u− v)− J(v) ≤ θ[J(u)− J(v)].
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Dividing both sides by θ and letting θ → 0 we deduce

〈J ′(v),u− v〉 ≤ J(u)− J(v)

and then

〈J ′(u)− J ′(v),u− v〉 ≥ 〈J ′(u),u− v〉 − [J(u)− J(v)]

≥ −J(v) + J(u)− [J(u)− J(v)]

= 0, (3.11)

for every u and v where the above integrations in O make sense.
Then with the help of (3.11) we can conclude that

〈B(u)−B(v),u− v〉 = 〈J ′(u + w0)− J ′(v + w0), [u + w0]− [v −w0]〉
≥ 0,

i.e., inequality (3.10). ¤

Notice that the nonlinear operator B(·) is a continuous operator from L4(O) into
L2(O). We can check

‖B(v)‖L2 ≤ C2‖v‖L4 , ∀v,w0 ∈ L4(O) (3.12)

‖B(u)−B(v)‖L2 ≤ C2

[‖u‖L4 + ‖v‖L4

]‖u− v‖L4 , ∀v,w0 ∈ L4(O),
(3.13)

where the constant C2 is the sup-norm of the function γ.
With the above notation, the tidal dynamics equation can be written in a weak

sense as

(u̇,v)L2 + a(u,v) + (B(u),v)L2 + (g∇z,v)L2 = (f ,v)L2 , ∀v ∈ H1
0(O)

(3.14)

(ż + Div(hu), ζ)L2 = 0, ∀ζ ∈ L2(O), (3.15)

u(0) = u0, z(0) = z0, (3.16)

where f is given by the integro-differential equation (2.14).

Proposition 3.4 (energy estimate). Under the above mathematical setting let

w0 ∈ L2(0, T ;H1
0(O)), f ∈ L2(0, T ;L2(O)), u0 ∈ L2(O), z0 ∈ L2(O). (3.17)

Let u in L2(0, T ;H1
0(O)) and z in L2(0, T ; L2(O)) be the solution of deterministic

parabolic variational equality (3.14)-(3.16) such that u̇ belongs to L2(0, T ;H−1(O))
and ż belongs to L2(0, T ; L2(O)), with H−1(O) the dual space of H1

0(O). Then we
have the energy equality
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1

2

d

dt
‖u(t)‖2

L2 + α‖u(t)‖2
H1

0
+ (B(u(t)),u(t))L2 + (g∇z(t),u(t))L2

= (f(t),u(t))L2 , (3.18)

which yields the following a priori estimates

sup
0≤t≤T

[‖u(t)‖2
L2 + ‖z(t)‖2

L2

] ≤ C, (3.19)

∫ T

0

‖u(t)‖2
H1

0
dt ≤ C, (3.20)

where the constant C depends on the coefficients and the norms ‖f‖L2(0,T ;H−1),
‖w0‖L2(0,T ;H1

0), ‖u(0)‖L2 and ‖z(0)‖L2.

Proof. From (3.14) we notice that,

(u̇(t),u(t))L2 + a(u(t),u(t)) + (B(u(t)),u(t))L2 + (g∇z(t),u(t))L2

= (f(t),u(t))L2 , ∀u ∈ H1
0(O) (3.21)

(ż(t) + Div(hu(t)), z(t))L2 = 0, ∀z ∈ L2(O), (3.22)

which with the help of (3.8) give the desired estimate (3.18).
From the definition of the nonlinear operator B(·) and Lemma 3.3, we notice that,

( B(u(t)), u(t) )L2 ≥ ( γ |w0(t)|2, u(t) )L2

≥ −r

ε
‖w0(t)‖2

L4 ‖u(t)‖L2

≥ − r

2ε

[‖w0(t)‖4
L4 + ‖u(t)‖2

L2

]
. (3.23)

Then the energy equality (3.18) yields,

d

dt

∥∥u(t)‖2
L2 + 2α‖u(t)‖2

H1
0
≤ 2(f(t),u(t))L2 +

r

ε

[‖w0(t)‖4
L4 + ‖u(t)‖2

L2

]

− 2(g∇z(t),u(t))L2 . (3.24)

Using the divergence theorem and the inequality

2ab ≤ δa2 +
1

δ
b2,

we obtain,

|g(∇z(t),u(t))L2| = | − g(z(t), Div u(t))L2|
≤ g

2

[2g

α
‖z(t)‖2

L2 +
α

2g
‖Div u(t)‖2

L2

]
.
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Since in L2-norm divergence is bounded by gradient,

|g(∇z(t),u(t))L2| ≤ g

2

[2g

α
‖z(t)‖2

L2 +
α

2g
‖u(t)‖2

H1
0

]
(3.25)

Also

|(f(t),u(t))L2| ≤ 1

2

[‖f(t)‖2
L2 + ‖u(t)‖2

L2

]
. (3.26)

Hence from (3.24) we have,

d

dt
‖u(t)‖2

L2 + 2α‖u(t)‖2
H1

0

≤ ‖f(t)‖2
L2 + ‖u(t)‖2

L2 +
r

ε

[‖w0(t)‖4
L4 + ‖u(t)‖2

L2

]

+ g
[2g

α
‖z(t)‖2

L2 +
α

2g
‖u(t)‖2

H1
0

]

= (1 +
r

ε
)‖u(t)‖2

L2 +
2g2

α
‖z(t)‖2

L2 +
α

2
‖u(t)‖2

H1
0
+

r

ε
‖w0(t)‖4

L4 + ‖f(t)‖2
L2 .

Integrating the above equation in t we have,

‖u(t)‖2
L2 +

3α

2

∫ t

0

‖u(s)‖2
H1

0
ds

≤ (1 +
r

ε
)

∫ t

0

‖u(s)‖2
L2ds +

2g2

α

∫ t

0

‖z(s)‖2
L2ds +

r

ε

∫ t

0

‖w0(s)‖4
L4ds

+

∫ t

0

‖f(s)‖2
L2ds + ‖u(0)‖2

L2 . (3.27)

Now equation (3.22) yields

1

2

d

dt
‖z(t)‖2

L2 = −Div(hu(t)), z(t))L2 . (3.28)

Notice that

|Div(hu(t)), z(t))L2| =
∣∣(h Div u(t), z(t))L2 + (u(t) · ∇h, z(t))L2

∣∣
≤ |(h Div u(t), z(t))L2|+ |(u(t) · ∇h, z(t))L2|
≤ ‖h‖L∞ ‖Div u(t)‖L2 ‖z(t)‖L2

+ ‖u(t)‖L2 ‖∇h‖L∞ ‖z(t)‖L2 .
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Now using the assumption on h from (2.10), we have

|Div(hu(t)), z(t))L2| ≤ µ‖u(t)‖H1
0
‖z(t)‖L2 + M‖u(t)‖L2 ‖z(t)‖L2

≤ µ

2

[ α

2µ
‖u(t)‖2

H1
0
+

2µ

α
‖z(t)‖2

L2

]

+
M

2

[‖u(t)‖2
L2 + ‖z(t)‖2

L2

]
.

Thus from (3.28) and from the above equation we get,

d

dt
‖z(t)‖2

L2 ≤ M‖u(t)‖2
L2 + (

2µ2

α
+ M)‖z(t)‖2

L2 +
α

2
‖u(t)‖2

H1
0
. (3.29)

Integrating in t we have,

‖z(t)‖2
L2 ≤ M

∫ t

0

‖u(s)‖2
L2ds + (

2µ2

α
+ M)

∫ t

0

‖z(s)‖2
L2ds+

+
α

2

∫ t

0

‖u(s)‖2
H1

0
ds + ‖z(0)‖2

L2 . (3.30)

Next we add (3.27) and (3.30) to get

‖u(t)‖2
L2 + ‖z(t)‖2

L2 + α

∫ t

0

‖u(s)‖2
H1

0
ds

≤ (1 + M +
r

ε
)

∫ t

0

‖u(s)‖2
L2ds + (

2g2

α
+

2µ2

α
+ M)

∫ t

0

‖z(s)‖2
L2ds

+
r

ε

∫ t

0

‖w0(s)‖4
L4ds +

∫ t

0

‖f(s)‖2
L2ds + ‖u(0)‖2

L2 + ‖z(0)‖2
L2 .

Let

K = max{1 + M +
r

ε
,
2g2

α
+

2µ2

α
+ M},

then the above equation becomes

[‖u(t)‖2
L2 + ‖z(t)‖2

L2

]
+ α

∫ t

0

‖u(s)‖2
H1

0
ds

≤ K

∫ t

0

[‖u(s)‖2
L2 + ‖z(s)‖2

L2

]
ds +

r

ε

∫ t

0

‖w0(s)‖4
L4ds

+

∫ t

0

‖f(s)‖2
L2ds + ‖u(0)‖2

L2 + ‖z(0)‖2
L2 .

Now by virtue of equation (3.5) in Lemma 3.1 and by the assumption on w0 in the
proposition we have,

‖w0(t)‖L2(0,T ;L4) ≤ ‖w0(t)‖L2(0,T ;H1
0) ≤ K ′.
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Hence using the Gronwall’s inequality we have the desired a priori estimates (3.19)
and (3.20). ¤
Corollary 3.5. Note that since h=h(x) is a bounded function, we can get similar
energy estimate by taking the inner product of the tidal dynamics equation with hu.
If we denote

F (u) := Au + B(u)− f ,

where the operators A and B are defined by (2.8) and (3.9) respectively, then the
tidal dynamics equation can be written in a week sense as





(u̇(t), hu(t))L2 + (F (u(t)), hu(t))L2 + (g∇z(t), hu(t))L2 = 0,

∀u ∈ H1
0(O)

(ż(t) + Div(hu(t)), z(t))L2 = 0, ∀z ∈ L2(O).

(3.31)

Now by divergence theorem,

(g∇z(t), hu(t))L2 = −(gz(t), Div(hu(t)))L2 = (gz(t), ż(t))L2 =
g

2

d

dt
‖z(t)‖2

L2 .

Thus from (3.31) we have the energy equality,

d

dt

[‖
√

hu(t)‖2
L2 + g‖z(t)‖2

L2

]
+ 2(F (u(t)), hu(t))L2 = 0. (3.32)

Note that the energy equality (3.32) also yields a priori estimates similar to (3.19)-
(3.20).

Proposition 3.6 (Uniqueness). Let (u, z) be a solution of the deterministic tide
equation (3.14)-(3.16) with regularity

u ∈ C0(0, T ;L2(O)) ∩ L2(0, T ;H1
0(O)), z ∈ L2(0, T ; L2(O)),

and let the data f , u0 and z0 satisfy the condition

f ∈ L2(0, T ;H−1(O)), u0 ∈ L2(O), z0 ∈ L2(O).

If (v, z̃) is another solution of the deterministic tide equation (3.14)-(3.16), such
that v ∈ C0(0, T ;L2(O)) ∩ L2(0, T ;H1

0(O)) and z̃ ∈ L2(0, T ; L2(O)), then
[‖u(t)− v(t)‖2

L2+‖z(t)− z̃(t)‖2
L2

]
e−Kt

≤ ‖u(0)− v(0)‖2
L2 + ‖z(0)− z̃(0)‖2

L2 , (3.33)

for any 0 ≤ t ≤ T , where K is a positive constant.

Proof. Notice that if u and v are two solutions then w = u−v solves the determin-
istic equation

d

dt
w(t)+Aw(t)+g∇(

z(t)− z̃(t)
)

= B(v(t))−B(u(t)) in L2(0, T ;H−1(O)).
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Multiplying the above equation by w(t), taking the inner product and applying the
result from Lemma 3.3, we get

1

2

d

dt
‖w(t)‖2

L2 + α‖w(t)‖2
H1

0
+

(
g∇(

z(t)− z̃(t)
)
,w(t)

)
L2
≤ 0.

Using the result from (3.25) in the above equation we have,

d

dt
‖w(t)‖2

L2 + 2α‖w(t)‖2
H1

0
≤ −

(
g∇(

z(t)− z̃(t)
)
,w(t)

)
L2

≤ 2g2

α
‖z(t)− z̃(t)‖2

L2 +
α

2
‖w(t)‖2

H1
0
.

Thus

d

dt
‖w(t)‖2

L2 +
3α

2
‖w(t)‖2

H1
0
≤ 2g2

α
‖z(t)− z̃(t)‖2

L2 . (3.34)

Again notice that

d

dt
(z(t)− z̃(t)) + Div(hw(t)) = 0.

Taking inner product with z(t)− z̃(t) we have as before (3.29)

d

dt
‖z(t)− z̃(t)‖2

L2 ≤ M‖w(t)‖2
L2 + (

2µ2

α
+ M)‖z(t)− z̃(t)‖2

L2

+
α

2
‖w(t)‖2

H1
0
. (3.35)

Let us denote

K =
2g2

α
+

2µ2

α
+ M.

Then adding (3.34) and (3.35) and rearranging we have

d

dt

[‖w(t)‖2
L2 + ‖z(t)− z̃(t)‖2

L2

] ≤ K
[‖w(t)‖2

L2 + ‖z(t)− z̃(t)‖2
L2

]
. (3.36)

Hence using Gronwall’s inequality we have the desired estimate (3.33) for any
0 ≤ t ≤ T . ¤

A finite-dimensional Galerkin approximation of the deterministic tide equation
can be defined as follows. Let {e1, e2, . . .} be a complete orthonormal system (i.e., a
basis) in the Hilbert space L2(O) belonging to the space H1

0(O) (and L4(O)). Denote
by L2

n(O) the n-dimensional subspace of L2(O) and H1
0(O) of all linear combinations

of the first n elements {e1, e2, . . . , en}.
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Let us consider the following ODE in Rn





d(un(t),v(t))L2 + a(un(t),v(t))dt + (B(un(t)),v(t))L2dt

+ (g∇zn(t),v(t))L2dt = (f(t),v(t))L2dt,(
żn(t) + Div(hun(t)), ζ(t)

)
L2 = 0,

(3.37)

in (0, T ), with the initial conditions

(u(0),v)L2 = (u0,v)L2 , and (z(0), ζ)L2 = (z0, ζ)L2 , (3.38)

for any v in the space L2
n(O) and ζ in L2

n(O). The coefficients involved are locally
Lipschitz and we use the a priori estimates (3.19) and (3.20) to show global existence
of a solution un(t) in the space C0(0, T,L2

n(O)).

Proposition 3.7 (2-D existence). Let f , u0 and z0 be such that{
f ∈ L2(0, T ;H−1(O)),

u0 ∈ L2(O), z0 ∈ L2(O).
(3.39)

Then there exists a solution (u(t, x), z(t, x)) with the regularity{
u ∈ C0(0, T ;L2(O)) ∩ L2(0, T ;H1

0(O)),

z, ż ∈ L2(0, T ; L2(O))
(3.40)

satisfying the deterministic tide equation (3.14)-(3.16) and the a priori bounds
(3.19)-(3.20).

Proof. Let us denote
F (u) := Au + B(u)− f ,

where the operators A and B are defined by (2.8) and (3.9) respectively.
Then

dun(t) + F (un(t))dt + g∇zn(t)dt = 0.

Using the a priori estimates (3.19)-(3.20), it follows from the Banach-Alaoglu theo-
rem that along a subsequence, the Galerkin approximations {un} have the following
limits:

un −→ u weakly star in L∞(0, T ;L2(O)) ∩ L2(0, T ;H1
0(O)),

zn −→ z weakly in L2(0, T ;L2(O)),

F (un) −→ F0 weakly in L2(0, T ;H−1(O)),

where u has the differential form

du(t) + F0(t)dt + g∇z(t)dt = 0, in L2(0, T ;H−1(O))

and the energy equality similar to (3.32) holds, i.e.,

d
[‖
√

hu(t)‖2
L2 + g‖z(t)‖2

L2

]
+ 2

(
F0(t), hu(t)

)
L2dt = 0.
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Since the Galerkin approximations {un} satisfy the energy equality

d
[‖
√

hun(t)‖2
L2 + g‖zn(t)‖2

L2

]
+ 2

(
F (un(t)), hun(t)

)
L2dt = 0.

Integrating in 0 ≤ t ≤ T we have,

‖
√

hun(T )‖2
L2 + g‖zn(T )‖2

L2+ 2

∫ T

0

(
F (un(t)), hun(t)

)
L2dt

= ‖
√

hun(0)‖2
L2 + g‖zn(0)‖2

L2 .

Hence

−2

∫ T

0

(
F (un(t)), hun(t)

)
L2dt = ‖

√
hun(T )‖2

L2 + g‖zn(T )‖2
L2

− ‖
√

hun(0)‖2
L2 − g‖zn(0)‖2

L2 . (3.41)

Considering the fact that the initial conditions un(0) and zn(0) converge to u(0) = u0

and z(0) = z0 respectively in L2, and the lower-semi-continuity of the L2-norm, we
deduce

lim
n

inf
[
− 2

∫ T

0

(
F (un(t)), hun(t)

)
L2dt

]

≥ ‖
√

hu(T )‖2
L2 + g‖z(T )‖2

L2 − ‖
√

hu(0)‖2
L2 − g‖z(0)‖2

L2

= −2

∫ T

0

(
F0(t), hu(t)

)
L2dt. (3.42)

Here notice that from the equation (3.8) and the monotonicity property of the
nonlinear operator B(·), i.e. from Lemma 3.3, we have

(
F (un(t))− F (v(t)), hun(t)− hv(t)

)
L2 ≥ 0. (3.43)

Multiplying both sides of (3.43) by 2, integrating in 0 ≤ t ≤ T and rearranging the
terms we have

∫ T

0

(
2F (v(t)), hv(t)− hun(t)

)
L2dt

≥
∫ T

0

(
2F (un(t)), hv(t)− hun(t)

)
L2dt

= −2

∫ T

0

(
F (un(t)), hun(t)

)
L2dt + 2

∫ T

0

(
F (un(t)), hv(t)

)
L2dt.
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Taking limit in n and using (3.42) we get

∫ T

0

(
2F (v(t)), hv(t)− hu(t)

)
L2dt

≥ −2

∫ T

0

(
F0(t), hu(t)

)
L2dt + 2

∫ T

0

(
F0(t), hv(t)

)
L2dt

=

∫ T

0

(
2F0(t), hv(t)− hu(t)

)
L2dt.

Let us consider v := u+λw with λ > 0 and w ∈ L∞(0, T ;L2(O))∩L2(0, T ;H1
0(O)).

Then we have

λ

∫ T

0

(
2F (u(t) + λw(t)), hw(t)

)
L2dt ≥ λ

∫ T

0

(
2F0(t), hw(t)

)
L2dt. (3.44)

Dividing by λ on both sides of the inequality above, and letting λ go to 0, one
obtains

∫ T

0

(
F (u(t))− F0(t), hw(t)

)
L2dt ≥ 0.

Since w is arbitrary and h = h(x) is a positive, bounded and continuously differen-
tiable function, we conclude that F0(t) = F (u(t)). Thus the existence of a solution
of the deterministic tide equation (3.14)-(3.16) has been proved. ¤

4. Stochastic Tide Equation

Let us consider the tide equation subject to a random (Gaussian) term i.e., the

forcing field f has a mean value still denoted by f and a noise denoted by Ġ. We can
write (to simplify notation we use time-invariant forces) f(t) = f(x, t) and the noise

process Ġ(t) = Ġ(x, t) as a series dGk =
∑

k gk(x, t)dwk(t), where g = (g1,g2, · · · )
and w = (w1, w2, . . .) are regarded as `2-valued functions in x and t respectively. The
stochastic noise process represented by g(t)dw(t) =

∑
k gk(x, t)dwk(t, ω) is normal

distributed in H with a trace-class co-variance operator denoted by g2 = g2(t) and
given by





(g2(t)u,v) =
∑

k

(gk(t),u) (gk(t),v),

Tr(g2(t)) =
∑

k

|gk(t)|2 < ∞.
(4.1)
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We interpret the stochastic tide equations as an Itô stochastic equations in vari-
ational form





d(u,v)L2 + a(u,v)dt + (B(u),v)L2dt + (g∇z,v)L2dt

= (f ,v)L2dt +
∑

k

(gk,v)L2 dwk(t),

(ż + Div(hu), ζ)L2 = 0,

(4.2)

in (0, T ), with the initial condition

(u(0),v)L2 = (u0,v)L2 and (z(0), ζ)L2 = (z0, ζ)L2 , (4.3)

for any v in the space H1
0(O) and any ζ in L2(O).

Proposition 4.1 (energy estimate). Let

{
w0 ∈ L2(Ω; L2(0, T ;H1

0(O))), f ∈ L2(0, T ;L2(O)),

g ∈ L2(0, T ; `2(L2(O))),u0 ∈ L2(O), z0 ∈ L2(O).
(4.4)

Let u(t) be an adapted process in C0(0, T,H1
0) which solves the stochastic ODE (4.2).

Then we have the energy equality





d[‖u(t)‖2
L2 ] + 2α‖u(t)‖2

H1
0
dt + 2(B(u(t)),u(t))L2dt + 2(g∇z(t),u(t))L2dt

=
[
2(f(t),u(t))L2 + Tr(g2(t))

]
dt + 2

∑

k

(gk(t),u(t))L2dwk(t),
(4.5)

which yields the following a priori estimate





E
{

sup
0≤t≤T

[‖u(t)‖2
L2 + ‖z(t)‖2

L2

]
+ 2α

∫ T

0

‖u(t)‖2
H1

0
dt

}

≤ 2CKT + 2
[‖u(0)‖2

L2 + ‖z(0)‖2
L2

]
+

2r

ε

∫ T

0

E
[‖w0(t)‖4

L4

]
dt

+ 2

∫ T

0

[‖f(t)‖2
L2 + Tr(g2(t))

]
dt,

(4.6)

for any 0 ≤ t ≤ T and K is a positive constant and the constant C depends on the
coefficients and the norms ‖f‖L2(0,T ;H−1), ‖u(0)‖L2 and ‖z(0)‖L2 .

Proof. It is straightforward to see that (4.2) and (3.8) yield the energy estimate
(4.5).
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Next we take the first equation of (4.2) by replacing v by u and proceed in the
same way as in Proposition 3.4 to get the estimate similar to (3.27)

‖u(t)‖2
L2 +

3α

2

∫ t

0

‖u(s)‖2
H1

0
ds

≤ (1 +
r

ε
)

∫ t

0

‖u(s)‖2
L2ds +

2g2

α

∫ t

0

‖z(s)‖2
L2ds +

r

ε

∫ t

0

‖w0(s)‖4
L4ds

+

∫ t

0

‖f(s)‖2
L2ds +

∫ t

0

Tr(g2(s))ds + 2

∫ t

0

∑

k

(gk(s),u(s))L2dwk(s)

+ ‖u(0)‖2
L2 . (4.7)

Similarly we consider the second equation of (4.2) by replacing ζ by z to get the
estimate like (3.30)

‖z(t)‖2
L2 ≤ M

∫ t

0

‖u(s)‖2
L2ds + (

2µ2

α
+ M)

∫ t

0

‖z(s)‖2
L2ds

+
α

2

∫ t

0

‖u(s)‖2
H1

0
ds + ‖z(0)‖2

L2 . (4.8)

Now let us set

K = max{1 + M +
r

ε
,
2g2

α
+

2µ2

α
+ M}.

Then summing up (4.7) and (4.8) and rearranging the terms we have

[‖u(t)‖2
L2 + ‖z(t)‖2

L2

]
+ α

∫ t

0

‖u(s)‖2
H1

0
ds

≤ K

∫ t

0

[‖u(s)‖2
L2 + ‖z(s)‖2

L2

]
ds +

r

ε

∫ t

0

‖w0(s)‖4
L4ds

+

∫ t

0

‖f(s)‖2
L2ds +

∫ t

0

Tr(g2(s))ds + 2

∫ t

0

∑

k

(gk(s),u(s))L2dwk(s)

+ ‖u(0)‖2
L2 + ‖z(0)‖2

L2 . (4.9)
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Taking the sup norm in [0, T ] and then taking the mathematical expectation we
have

E
{

sup
0≤t≤T

[‖u(t)‖2
L2 + ‖z(t)‖2

L2

]
+ α

∫ T

0

‖u(t)‖2
H1

0
dt

}

≤ KE
{ ∫ T

0

[‖u(t)‖2
L2 + ‖z(t)‖2

L2

]
dt

}
+

r

ε
E

{ ∫ T

0

‖w0(t)‖4
L4dt

}

+

∫ T

0

[‖f(t)‖2
L2 + Tr(g2(t))

]
dt + ‖u(0)‖2

L2 + ‖z(0)‖2
L2

+ 2E
{

sup
0≤t≤T

∣∣
∫ t

0

∑

k

(gk(s),u(s))L2dwk(s)
∣∣
}

. (4.10)

Now by means of martingale inequality, we deduce

E
{

sup
0≤t≤T

∣∣
∫ t

0

∑

k

(gk(s),u(s))L2dwk(s)
∣∣
}

≤ C1E
{( ∫ T

0

∑

k

(gk(t),u(t))2
L2dt

)1/2
}

≤ C1E
{( ∫ T

0

Tr(g2(t))|u(t)|2dt
)1/2

}

≤ C1E
{(

sup
0≤t≤T

|u(t)|) ( ∫ T

0

Tr(g2(t))dt
)1/2

}

≤ 1

4
E

{
sup

0≤t≤T
‖u(t)‖2

L2

}
+ C2

1E
{∫ T

0

Tr(g2(t))dt
}

≤ 1

4
E

{
sup

0≤t≤T

[‖u(t)‖2
L2 + ‖z(t)‖2

L2

]}
+ C2

1E
{∫ T

0

Tr(g2(t))dt
}
. (4.11)

Using (3.19) on the first term of the right hand side of (4.10), applying (4.11) and
rearranging the terms we get the desired estimate (4.6). ¤

Now we deal with the existence and uniqueness of the SPDE and its finite-
dimensional approximation.

Proposition 4.2 (uniqueness). Let u be a solution of the stochastic tide equation
(4.2) with the regularity

{
u ∈ L2(Ω; C0(0, T ;L2(O)) ∩ L2(0, T ;H1

0(O))),

z ∈ L2(Ω×O × (0, T )),
(4.12)
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and let the data f , g, u0 and z0 satisfy the condition{
f ∈ L2(0, T ;H−1(O)), g ∈ L2(0, T ; `2(L2(O))),

u0 ∈ L2(O), z0 ∈ L2(O).
(4.13)

If v in L2(Ω; C0(0, T,L2(O))∩L2(0, T,H1
0(O))) is another solution of the stochastic

tide equation (4.2), then[‖u(t)− v(t)‖2
L2+‖z(t)− z̃(t)‖2

L2

]
e−Kt

≤ ‖u(0)− v(0)‖2
L2 + ‖z(0)− z̃(0)‖2

L2 , (4.14)

with probability 1, for any 0 ≤ t ≤ T and K is a positive constant.

Proof. Indeed if u and v are two solutions then w = v− u solves the deterministic
equation

d

dt
w(t)+Aw(t)+g∇(

z(t)−z̃(t)
)

= B(v(t))−B(u(t)) in L2(0, T ;H−1(O)).

Thus the proof of uniqueness follows directly from Proposition 3.6, with probability
1. ¤

If a given adapted process u in L2(Ω; L∞(0, T ;L2(O)) ∩ L2(0, T ;H1
0(O))) satisfies

d(u(t),v)L2 = (F(t),v)L2dt + (g(t),v)L2dw(t), (4.15)

for any function v in H1
0(O) and some functions F in L2(0, T ;H−1(O)) and g in

L2(0, T ; `2(L2(O))), then we can find a version of u (which is still denoted by u) in
L2(Ω; C0(0, T ;L2(O))) satisfying the energy equality

d‖u(t)‖2
L2 =

[
2(F(t),u(t))L2 + Tr(g2(t))

]
dt + 2(g(t),u(t))L2dw(t) (4.16)

see e.g. Gyongy and Krylov [4], Pardoux [17].

Definition 4.3. (Strong Solution) A strong solution u is defined on a given filtered
probability space (Ω, F , Ft, P ) as a L2(Ω; L∞(0, T ;L2(O)) ∩ L2(0, T ;H1

0(O)) ∩
C0(0, T ;L2(O))) valued function which satisfies the stochastic tide equation (4.2) in
the weak sense and also the energy inequality (4.6).

Proposition 4.4 (2-D existence). Let f , g, u0 and z0 be such that{
f ∈ L2(0, T ;H−1(O)), g ∈ L2(0, T ; `2(L2(O))),

u0 ∈ L2(O), z0 ∈ L2(O).
(4.17)

Then there exist adapted processes u(t, x, ω) and z(t, x, ω) with the regularity{
u ∈ L2(Ω; C0(0, T ;L2(O)) ∩ L2(0, T ;H1

0(O))),

z, ż ∈ L2(Ω; L2(0, T ; L2(O)))
(4.18)

satisfying the stochastic tide equation (4.2) and the a priori bound (4.6).
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Proof. Consider a finite dimensional Galerkin approximation of the stochastic tide
equation.
Let us denote

F (u) := Au + B(u)− f ,

where the operators A and B are defined by (2.8) and (3.9) respectively.
Then

dun(t) + F (un(t))dt + g∇zn(t)dt = g(t)dw(t).

Then Using the a priori estimates (4.6), it follows from the Banach-Alaoglu theorem
that along a subsequence, the Galerkin approximations {un} have the following
limits:

un −→ u weakly star in L2(Ω; L∞(0, T ;L2(O)) ∩ L2(0, T ;H1
0(O))),

zn −→ z weakly in L2(Ω; L2(0, T ;L2(O))),

F (un) −→ F0 weakly in L2(Ω; L2(0, T ;H−1(O))),

where u has the Itô differential

du(t) + F0(t)dt + g∇z(t)dt = g(t)dw(t) in L2(Ω; L2(0, T ;H−1(O))),

and the energy equality similar to stochastic version of (3.32) holds, i.e.,

d
[‖
√

hu(t)‖2
L2+g‖z(t)‖2

L2

]
+ 2

(
F0(t), hu(t)

)
L2dt

= Tr(g2(t))dt + 2(g(t), hu(t))L2dw(t).

Since the Galerkin approximations {un} satisfy the energy equality

d
[‖
√

hun(t)‖2
L2+g‖zn(t)‖2

L2

]
+ 2

(
F (un(t)), hun(t)

)
L2dt

= Tr(g2(t))dt + 2(g(t), hun(t))L2dw(t).

Integrating between 0 ≤ t ≤ T and taking the mathematical expectation we have

E
[
‖
√

hun(T )‖2
L2 + g‖zn(T )‖2

L2 − ‖
√

hun(0)‖2
L2 − g‖zn(0)‖2

L2

]

+ 2E
[ ∫ T

0

(
F (un(t)), hun(t)

)
L2dt

]
= E

[ ∫ T

0

Tr(g2(t))dt
]
.



STOCHASTIC ANALYSIS OF TIDAL DYNAMICS EQUATION 21

Considering the fact that the initial conditions un(0) and zn(0) converge to u(0) and
z(0) respectively in L2, and the lower-semi-continuity of the L2-norm, we deduce

lim
n

inf E
[
−

∫ T

0

(
2F (un(t)), hun(t)

)
L2dt

]

= lim
n

inf E
[
‖
√

hun(T )‖2
L2 + g‖zn(T )‖2

L2 − ‖
√

hun(0)‖2
L2 − g‖zn(0)‖2

L2

−
∫ T

0

Tr(g2(t))dt
]

≥ E
[
‖
√

hu(T )‖2
L2 + g‖z(T )‖2

L2 − ‖
√

hu(0)‖2
L2 − g‖z(0)‖2

L2

−
∫ T

0

Tr(g2(t))dt
]

= E
[
−

∫ T

0

(
2F0(t), hu(t)

)
L2dt

]
(4.19)

Next, equation (3.8) and Lemma 3.3 yield

2E
[ ∫ T

0

(
F (un(t))− F (v(t)), hun(t)− hv(t)

)
L2

]
≥ 0. (4.20)

Rearranging the terms we have

E
[ ∫ T

0

(
2F (v(t)), hv(t)− hun(t)

)
L2dt

]

≥ E
[ ∫ T

0

(
2F (un(t)), hv(t)− hun(t)

)
L2dt

]

= −2E
[ ∫ T

0

(
F (un(t)), hun(t)

)
L2dt

]
+ 2E

[ ∫ T

0

(
F (un(t)), hv(t)

)
L2dt

]
.

Taking limit in n and using (4.19) we get

E
[ ∫ T

0

(
2F (v(t)), hv(t)− hu(t)

)
L2dt

]

≥ −2E
[ ∫ T

0

(
F0(t), hu(t)

)
L2dt

]
+ 2E

[ ∫ T

0

(
F0(t), hv(t)

)
L2dt

]

= E
[ ∫ T

0

(
2F0(t), hv(t)− hu(t)

)
L2dt

]
.

Now we take v := u + λw with λ > 0 and w is an adapted process in
L2(Ω; L∞(0, T ;L2(O)) ∩ L2(0, T ;H1

0(O))).
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Then we have

λE
[ ∫ T

0

(
2F (u(t) + λw(t)), hw(t)

)
L2dt

]
≥ λE

[ ∫ T

0

(
2F0(t), hw(t)

)
L2dt

]
.

Dividing by λ on both sides of the inequality above, and letting λ go to 0, we obtain

E
[ ∫ T

0

(
F (u(t))− F0(t), hw(t)

)
L2dt

]
≥ 0.

Since w is arbitrary and h = h(x) is a positive, bounded and continuously differen-
tiable function, we conclude that F0(t) = F (u(t)). Hence the existence of a strong
solution of the stochastic tide equation (4.2) has been proved. ¤
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