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Function of metathoracic scent glands in terrestrial Heteroptera 

 

Abstract: 

Defensive function is characteristic of the secretion of metathoracic glands of terrestrial 

Heteroptera; however, various other, mostly pheromonal functions are carried out by the 

secretion. Alkanes and aldehydes are effective in defence both against vertebrate and 

arthropod predators and as alarm pheromones, while esters usually act as attractive 

pheromones. However, the exact composition of the secretion is specific for individual 

families. The attractants from the secretion of the metathoracic glands have numerous 

functions, such as epigamic, aggregation, migratory and hibernation pheromones. The 

utilization of the secretion as kairomones by parasitoids is reported. Sequestration (storing 

chemicals obtained from food) occurs in many heteropteran families; the sequestered 

chemicals have mainly defensive function, though they could take part in intraspecific 

communication in some species as well. 
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Funkce metathorakálních pachových žlaz u terestrických ploštic 

 

Abstrakt: 

Obranná funkce je charakteristická pro sekreci metathorakálních žláz terestrických ploštic, i 

když touto sekrecí jsou vykonávány i různé další, většinou feromonální funkce. Alkany a 

aldehydy jsou účinné v obraně proti predátorům z řad obratlovců i bezobratlých a jako 

poplašné feromony, zatímco estery obvykle fungují jako atraktanty. Přesné složení sekrece je 

ale specifické pro jednotlivé čeledi. Atraktanty ze sekrece metathorakálních žláz mají mnoho 

funkcí, například jako epigamní, agregační, migrační a hibernační feromony. Je známo 

využívání sekrece parasitoidy jako kairomonu. Sekvestrace (ukládání látek získaných z 

potravy) se vyskytuje u mnoha čeledí ploštic; sekvestrované látky mají převážně obrannou 

funkci, ačkoliv se u některých druhů mohou účastnit i vnitrodruhové komunikace. 

 

Klíčová slova: 

Heteroptera, metathorakální, žlázy, obrana, allomony, feromony, sekvestrace. 
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1 INTRODUCTION: 

 

    Heteroptera is one of the most successful groups of hemimetabolous insects. Their success 

is evident especially in their ecological diversity as no other major group of insects utilizes 

such an enormous array of different habitats as do the Heteroptera (Schuh and Slater 1995). 

One of the keys to this success is well-developed allomonal (inter-specific) and pheromonal 

(intra-specific) communication, provided by so-called scent gland system (Carayon 1971, 

Staddon 1979). 

    Of several types of heteropteran scent glands, the dorsoabdominal glands and the 

metathoracic glands are of the greatest importance, both often significant in defence (Remold 

1963). As the dorsoabdominal glands are primarily developed in larvae, often persisting to 

adulthood, the metathoracic glands are exclusive for adults (Staddon 1979). 

 

    In this text I focus on terrestrial true bugs of the infra-orders Cimicomorpha, Aradomorpha 

and Pentatomomorpha. Object of my interest are the metathoracic glands (MTG in text). I 

hope both limitations contributed to better coherence of work. Besides, the work also refers to 

sequestration as a possible supplement to or replacement of antipredatory function of MTG or 

other glands. 

    When reviewing the functions of the MTG secretion, I especially focus on their variability, 

mechanisms, specifics in individual families, and ecological significance. I hope the text will 

provide a reader with a complex image of great variety of functions of the glands, and will 

offer some information useful in further research. 

    The classification of Heteroptera used in this text is taken over mostly from Schuh and 

Slater (1995), with exceptions of Aradomorpha, taken over from from Sweet (1996), and 

Lygaeoidea ("Lygaeidae s.l."), taken over from Henry (1997). 

 

2 MORPHOLOGY: 

 

    The morphology of MTG is reviewed briefly in this text, with focus on the mechanisms of 

their function. For more information on morphology of MTG, see Carayon (1971) and 

Staddon (1979). 
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    MTG occupy a ventral possition in the hind part of the metathorax (Staddon 1979). The 

gland itself does not usually extend over the edge of the metathorax but can reach second 

abdominal segment in well-fed bugs, as reported in Coreidae (Hepburn 1971). 

    Carayon (1971) classified heteropteran MTG two basic types: type omphalien, with one 

opening in metasternum, exceptionally two openings, close to each other; and type 

diastomien, with two openings in both metacoxal cavities; the omphalien type is probably 

primitive while the diastomien type is derived, occuring in terrestrial Heteroptera (Carayon 

1971). However, as the glands are often reduced, often being secondary divided, and of 

various ontogenesis, the division of all MTG types actually seems to be much more 

complicated (Staddon 1979). 

 

    Typical diastomien MTG apparatus consists of paired lateral reservoirs with branching 

secretory tubules ("primary glands"), unpaired median reservoir with accessory gland, and 

paired excretory tubules (Staddon 1979) (fig. 1). However, morphology of MTG varies in 

different families. These specifics are mentioned in systematic part. 

    MTG are associated with a cuticle of complicated structure called evaporatorium (fig. 2). 

This cuticle is usually situated on metapleura but can completely cover lateral and ventral 

parts of thorax, as seen in some Plataspidae (Carayon 1971). Although some authors suggest 

that the main function of this structure is improving evaporation (Carayon 1971), it seems that 

it primarily prevents the secretion to overflowing to the rest of the body, especially to the 

tracheal openings (Remold 1963). For better effect, the evaporatorium is covered by 

mushroom-shaped sculptures, holding the fluid. These sculptures are complicated in structure, 

often being taxon-specific (Carayon 1971, Hepburn 1971) (fig. 3, 4). 

    It should be noted that the nomenclature of MTG structures is complicated and 

inconsistent; in this text the most established terms are used, mostly taken over from Staddon 

(1979). 

 

    The stored secretion differs in individual parts of the gland. Johansson (1957) noted that 

only the fluid from median reservoir had "bug-odour" while the fluid from lateral reservoir 

had pleasant smell for humans. This feature is caused by two stage synthesis of the 

metathoracic gland secretion: as the tubular glands mostly secrete esters, their derivates are 

synthetised on the accessory gland; thus, the blend of lateral reservoirs contains mostly esters 

while aldehydes, alcohols etc. are the stored in the median reservoir blend (Games and 

Staddon 1973, Aldrich 1978).  
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Fig. 1. Diastomien MTG with undivided median reservoir. C. mc., metacoxal comb; gl., lateral glandular 
reservoir; gl.a., accessory gland; r., median reservoir; o., orifice (after Carayon 1971). 
 

 

Fig. 2. The opening (o) and evaporative area (ea) of the metathoracic scent glands of Oncopeltus fasciatus (A) 
and Dolycoris baccarum (B). The dotted area is covered by the flaked (mushroom-shaped) cuticle. II: 
mesothorax. III: metathorax (Johansson 1970). 

 
Fig. 3. Dolycoris baccarum. Flaked cuticle from the evaporative area, 1100:1.  
Fig 4. Pentatoma Rufipes. Flaked cuticle from the evaporative area, 5600:1 (Johansson 1970). 
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    Both blends can be used as final secretion of the gland (Games and Staddon 1973) and the 

size of lateral and median reservoirs, often sexually dimorphic, can themselves express the 

characteristics of the secretion (Staddon 1985). 

 

    The glandular apparatus is pigmentless, with an exception of median reservoir, which is 

pigmented an orange colour (e.g. Waterhouse and Gilby 1964, Staddon 1979). As the 

reservoir stores the most aggresive chemicals, it is presumed that the pigment prevents 

autotoxication (Waterhouse and Gilby 1964). However, the composition and the exact 

function of the pigment has not been investigated yet. 

    The reservoirs are not attached to any muscle; instead, their content is probably excreted by 

raising the haemolymph pressure by abdominal muscles (Staddon 1979). On the other hand, 

excretory tubules are articulated by dorsoventral muscle (Johansson 1957) and a chitine flap 

separating the reservoirs is attached to muscles as well (Remold 1963). 

 

3 HETEROPTERAN FAMILIES 

 

3.1 CIMICOMORPHA 

 

3.1.1 Reduvioidea 

 

3.1.1.1 Reduviidae 

 

    Chemical ecology of the assassin bugs is characteristic for this group. They possess unique 

paired Brindley’s and ventral scent glands, both located between metathorax and abdomen 

(Carayon 1971) (fig. 5). The morphology of reduviid MTG is also different from all other 

families. They are completely divided, with a small pigmentless reservoir, an unbranched 

secretory tubule and no accessory gland (Staddon 1979); moreover, MTG are often reduced or 

absent in some subfamilies of Reduviidae, such as Emesinae and Tribelocephalinae 

(Schofield and Upton 1978, Staddon 1979). Although possessing evaporatoria, Reduviidae 

also use long and stout setae, so-called metacoxal comb, to atomize the MTG secretion 

(Weirauch 2006). 
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Fig. 5. Thorax of Panstrongilus herreri (Reduviidae: Triatominae) in lateral view (Weirauch 2006). 

 

    Chemical ecology of Triatominae, a subfamily including many human parasites and Chagas 

Disease vectors, is known relatively well, in contrast to other subfamilies. During a 

copulation, Triatoma infestans excretes 3-pentanone (which composes as much as 85% of 

MTG secretion), serving as an attractant. However, the function of this behaviour is not clear 

(Manrique 1995). When disturbed, the bugs release a secretion with the main components of 

isobutyric acid and 2- and 3-methyl-1-butanol, whereas 2-methyl-1-butanol composes only 

about 3% of MTG secretion and the other two chemicals do not occur in the secretion at all 

(Manrique 2006). Thus, MTG probably have a minor function in defence in this species. 

    In another triatomine species, Dipetalogaster maximus, 3-methyl-2-hexanone excreted 

from MTG probably acts as alarm and attractant pheromone, respectively, depending on its 

concentration (Rossiter and Staddon 1983). 

 

3.1.2 Cimicoidea 

 

3.1.2.1 Cimicidae 

 

    MTG of Cimex lectularius produce trans-2-hexenal, trans-2-octenal, acetaldehyde and 2-

butanone. While unsaturated aldehydes have demonstrably served as an alarm pheromone in 

this species, a piece of paper saturated with female secretion triggered aggregation behaviour 

(Levinson and Bar Ilan 1971, Levinson et al. 1974). Individuals of C. lectularius were also 
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spat out by bats (natural hosts of bedbugs) when releasing their MTG secretion, showing its 

defence function (Levinson et al. 1974). 

 

3.1.3 Miroidea 

 

3.1.3.1 Miridae 

 

    The mirid MTG secretion has predominantly sexual function, with females as the main 

excretors of the pheromones (McBrien 1999). Moreover, the composition of the secretion 

differs in calm and disturbed bugs; however, experiments failed to prove an alarm function 

(Groot et al. 2001, Wardle et al. 2003). As mirid females are much more sensitive to plant 

volatiles than males (Groot et al. 1999), the pheromones also probably take part in the 

colonisation of new hosts. 

 

    The secretion of mirid MTG usually consists of a species-specific blend of various esters; 

however, species-specifity is not neccessary in the reception- Phytocoris relativus was even 

attracted to a synthetic Oncopeltus fascitaus (Lygaeidae) pheromone as it contained esters 

analogous to those of the mirid (Zhang and Aldrich 2003a). 

    In Campylomma verbasci, the crucial chemicals for the attractive function are butyl 

butyrate and trans-2-butenyl acetate (Smith 1991, Drijfhout 2000). In Lygus rugulipennis, a 

mixture of hexyl butyrate and trans-2-hexenal serves as an attractant while other chemical, 

trans-2-hexenyl butyrate, is non-attractive, probably serving as a vaporization decelerator 

(Innocenzi et al. 2004, 2005). Similar situation occurs in Phytocoris relativus, where hexyl 

acetate and octenyl butyrate are essential (Millar 1997), and in Phytocoris calii, where a 

mixture of hexyl, trans-2-octenyl and trans-2-hexenyl/octyl acetate has a pheromonal 

function (Zhang and Aldrich 2008).  

 

    The function of non-attractive chemicals has been investigated extensively. One of their 

possible functions may be an inhibition of the reception of the attractants by related species, 

strengthening interspecific barrier. For example, a mixture of two chemicals from an 

attractant secreted from MTG of Phytocoris difficilis (hexyl and trans-2-octenyl acetates) also 

worked as an attractant for Phytocoris breviusculus. However, after addition of two remaining 

chemicals (trans-2-hexenyl and trans-2,4-hexadienyl acetates) the mixture lost its effect on 

this species (Zhang and Aldrich 2003a).  
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    Such a function may be exploited in even more sophisticated way. Secretion of male P. 

difficilis contains 68% of hexyl butyrate. When added to an attractive blend, this chemical 

drastically inhibited male reaction to the blend, functioning as an anti-sex pheromone in P. 

difficilis (Zhang and Aldrich 2003b). Moreover, hexyl butyrate is excreted by disturbed 

female Lygocoris pabulinus, preventing females nearby from releasing their attractant (Groot 

et al. 2001). 

 

    An exception in Miridae is Lopidea robiniae, a large aposematic bug whose MTG have 

primarily defensive function. Thus, the MTG secretion differs from a typical mirid one, 

containing trans-2-octenal with trans-2-hexenal, trans-2-hexenol, trans-2-heptenal, trans-2-

octenol and cis-2-octenol. This untypical defensive secretion was particularly effective against 

birds, the most significant predators of this species (Staples et al. 2002). 

 

3.2 ARADOMORPHA: 

 

    MTG of Aradomorpha are well developed, with large evaporatoria (Usinger 1959). 

However, little is known about the chemical ecology of the group. It is for certain that flat 

bugs produce a volatile scent when disturbed (Långström et al. 2004) and there is a possibility 

of a pheromonal function as Aradomorpha can be found in aggregations of several hundred 

individuals (Usinger 1959). 

 

3.3 PENTATOMOMORPHA 

 

3.3.1 Pentatomoidea 

 

3.3.1.1 Pentatomidae 

 

    Evaporatorium of Pentatomidae is much larger than those of other families, extending onto 

mesothorax (Johansson 1970). The accessory gland is long and wavy (Choudhuri 1970, 

Nagnan et al. 1994) (fig. 6), probably increasing its surface for more effective synthesis of 

secondary MTG products. The morphology of MTG of all Pentatomoidea has many specifics 

(Kment, unpublished), too numerous to be discussed in this text. 
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Fig. 6. Median reservoir (R) with a wavy accessory gland (AG) in Lincus sp. (after Nagnan et al. 1994). 

 

In pentatomid MTG secretion, two phases were reported – clear fluid containing unpolar 

molecules, such as alkanes and long chain carbohydrates, and yellow fluid, with significant 

proportion of polar molecules, such as aldehydes (Gilby and Waterhouse 1965, MacLeod 

1975). Its function, if any, remains unknown. 

 

    In Nezara viridula, cosmopolitan bug with scent gland chemistry characteristic for 

Pentatomidae, tridecane, trans-2-decenal, 4-oxo-trans-2-hexenal and minor components of 

trans-2-decenyl acetate, trans-2-hexenyl acetate, dodecan and trans-2-hexenal were present in 

MTG secretion (Waterhouse et al. 1961, Gilby and Waterhouse 1965). However, secretion of 

bugs from various populations differed dramatically – for example, American population did 

not secrete any trans-2-decenal (found in secretion of Australian and Hawaiian population), 

having 33% of the secretion composed of trans-2-heptenal instead (Gilby and Waterhouse 

1965, 1967). 

    Comparison of many MTG secretions revealed uniformity of pentatomid MTG secretion as 

it is rarely composed of other chemicals than C11-C13 (sometimes C15) alkanes, C6, C8 and C10 

unsaturated aldehydes and oxo-aldehydes, with minor amount of alkenyl acetates (Park 1962, 

Everton et al. 1974, Smith 1974, MacLeod 1975, Kou 1989, Nagnan et. al. 1994, Aldrich 

1997a, Stránský 1998, Krall 1999, Durak 2008). 
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    Pentatomid MTG secretion is mostly defensive, with sophisticated mechanism of 

functioning. Unpolar alkanes are not toxic themselves, however, they disrupt the lipidic layer 

of the cuticle, enabling toxines to penetrate the cuticle and strenghtening effectiveness of 

defensive secretion against arthropod predators (Remold 1963). Of various alkanes, tridecane 

showed to be the most effective in disrupting the lipidic layer, followed by undecane and 

dodecane (Gunawardena 1991). As these three chemicals are by far the most abundant 

alkanes in heteropteran secretion, this mechanism is obviously widely used in defence of 

Heteroptera. 

 

    The function of attractant for N. viridula was noted in tridecane (Lockwood 1986); 

however, as this alkane is also excreted by male dorsoabdominal glands (Aldrich et al. 1978), 

the attractive function of MTG is very uncertain in this case, being an insignificant side effect 

of the defensive secretion instead. On the other hand, MTG secretion of Podisus genus 

contains α-terpineol in addition to characteristic pentatomid chemicals (e.g. tridecane, trans-

2-decenal, 4-oxo-trans-2-hexenal); therefore, MTG probably contributes to intraspecific 

communication in Podisus (Aldrich 1997a). 

 

    Secretion of MTG of sequestrating Pentatomidae is unique among all Heteroptera and even 

insects. Secretion of Murgantia histrionica contains more than 85% of trans-2,6-

octadienedial, while secretion of Eurydema ventrale is even more bizarre, being composed of 

trans-2-trans-6-octadienedial, 2,6-octadiene-1,8-diol diacetate a benzylalcohol. On the other 

hand, MTG secretion of E. oleraceum is quite usual among Heteroptera, with trans-2-octenal, 

pentadecane, trans-2-octenyl acetate and small quantity of α-pinene. As there are some 

indications that secretions of these species are sexually dimorphic, pheromonal function can 

be presumed for the blends (Aldrich 1996). 

 

3.3.1.2 Tessaratomidae 

 

    This pentatomoid family has probably the most aggressive MTG secretion seen in 

Heteroptera. For example, the secretion of Tessaratoma pappilosa, which can be sprayed to 

the distance of 15-25 cm (Muir 1907), causes severe burns on human skin and even temporary 

blindness when sprayed into one’s eyes (Falkenstein 1931). Secretion of Musgraveia 

sulciventris had similar effect (Cant 1996). However, the composition of the secretion of their 

MTG is suprisingly similar to that of Pentatomidae. Tessaratoma aethiops produces a 
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secretion composed of nearly an half of tridecane with support of trans-2-octenyl acetate, 

trans-2-octenal, trans-2-hexenal and trans-4-oxo-2-hexenal (Baggini 1966). This blend was 

highly lethal to ants (Janaiah 1979) and strong juvenoid-like effects of secretion of 

Tessaratoma javanica were also noted on late instar larvae of Dysdercus genus (Ashok et al. 

1978, Rao et al. 1980). Effectiveness of defence against possible vertebrate predators needs 

not to be reiterated. 

 

3.3.1.3 Scutelleridae 

 

    MTG secretion of Scutelleridae is very similar to that of Pentatomidae (Aldrich 1988), 

perhaps with minor occurence of alkanes. 

    Small MTG (only 0.01% of body weight) of Tectocoris diophthalmus excrete mixture of 

trans-2-hexenal with trans-2-hexenyl and trans-2-octenyl acetates (Staddon 1987) while 

species with larger MTG, Hotea gambiae, excretes mixture of trans-2-hexenal with trans-2-

octenal, 4-oxo-trans-2-hexenal, trans-2-decenal, limonene and β-pinene (Hamilton et al. 

1985).  

    Pachycoris stalii secretes tridecane, trans-2-hexenal, trans-4-oxo-2-hexenal, trans-2-

hexenyl acetate and dodecane. However, lateral reservoirs are filled with pure trans-2-hexenal 

in females and 99% tridecane in males, with the rest of the chemicals located in median 

reservoir (Williams 2001). These results disagree with established conception that aldehydes 

can be synthetised only in median reservoir (Games and Staddon 1973, Aldrich 1978). 

 

3.3.1.4 Plataspidae 

 

    Squash bugs are one of the less investigated families among Heteroptera, yet their MTG 

secretion can be characterised as close to pentatomid (Aldrich 1988), composed of alkanes 

and unsaturated carbohydrates (Baggini 1966, Kitamura 1984). Unfortunately, origin of the 

volatiles is not specified in these works. 

 

3.3.1.5 Cydnidae 

 

    MTG of burrowing bugs are sexually monomorphic, with composition of secretion 

matching that of Pentatomidae (Aldrich 1988)- for example, in secretion of various glandular 
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origin of Macrostycus sp., 4-oxo-trans-2-hexenal, tridecane, trans-2-decenyl acetate, 

dodecane and trans-2-octenyl acetate were identified (Baggini 1966). 

    An exception in Cydnidae is Sehirus cinctus cinctus, a species feeding on mint whose MTG 

secretion composed almost entirely of monoterpenoids- α- and β-pinene (about 90% of 

secretion), β-myrcene, limonene and α-terpinolene, effective against lizard (Anolis 

carolinensis) and bird (Charadrius vociferus, Sturnus vulgaris) predators (Krall 1997). The 

author also suggests that these chemicals, which do not occur in mint, may be synthetised by 

modifying those obtained from host plant. 

 

3.3.2 Coreoidea 

 

3.3.2.1 Coreidae 

 

    Secretion of Coreidae usually consists of saturated carbohydrates. Eight species  of 

Coreidae investigated by Waterhouse and Gilby (1964) all secreted hexanal and hexyl acetate- 

about 90% of total amount, with supplement of 10% of hexanol and acetic acid. The "ester 

odour" of Coreidae also differed from the characteristic heteropteran smell. It must be 

mentioned that the composition of the secretion varied greatly (by 50% in some cases!), being 

affected by sex, treatment, season (with less ester and alcohol in autumn) etc. (Waterhouse 

and Gilby 1964). Similar results appeared in other coreid species, with a minor fraction of 

butyric acid and various C8-C12 even numbered saturated esters, with exception of heptyl 

acetate (McCulough 1971, 1973, 1974, 1974b, Kitamura 1984, Steinbauer and Bauer 1995, 

Blatt 1998, Prudic 2008). 

    Unlike larval secretion, consisting of unsaturated aldehydes and oxo-aldehydes, the 

secretion of adults, based on MTG, does not contain characteristic defensive chemicals; the 

secretion was also completely ineffective against Stagmomantis californica (Mantodea: 

Mantidae) predator (Prudic 2008). Its function is defensive, though, as it is active in alarm 

signalisation. However, the effect of the alarm pheromone in Coreidae is stage-specific since 

the adults‘ reaction to larval secretion is much weaker than that to their own and vice versa 

(Blatt 1998, Prudic 2008). When the alarm reaction to pure chemicals was tested, adults of 

Thasus neocalifornicus reacted to hexanal and hexyl acetate while hexanol was much less 

effective (Prudic 2008). 

    Coreid MTG pheromones may also work in hibernation behaviour as their function of 

alarm pheromone seems to shift to an attractant during autumn (Blatt 1998). On the other 
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hand, coreid MTG secretion seems to lack any epigamic function, which is generally provided 

by male dorsal and ventral abdominal glands with miscellaneous composition of the secretion 

(Aldrich 1976, 1988, 1993). 

 

3.3.2.2 Hyocephalidae 

 

    The MTG secretion of Hyocephalus sp. contains only two components, both also common 

in Coreidae – 98% of hexanal with 2% of hexanol (Waterhouse and Gilby 1964). As the 

median reservoir of Hyocephalidae lacks any pigment, preventing autotoxication (Waterhouse 

and Gilby 1964), Hyocephalidae either possess unique protective mechanisms or their 

secretion is not aggresive enough to penetrate the wall of the reservoir. 

 

3.3.2.3 Rhopalidae 

 

    Family Rhopalidae consists of two subfamilies: Serinethinae and Rhopalinae. Serinethinae, 

as one of the few groups of Heteroptera, have fully disfunctional MTG (Carayon 1971). 

Instead, their defence is based on cyanolipides, sequestered from Sapindaceae plants. 

Furthermore, species of Jadera need to feed on Sapindaceae to produce lactone, 4-methyl-

2(5H)-furanone, which serves as an attractant pheromone and enables the bugs to colonise 

host plants in great numbers (Aldrich 1990a). 

    On the other hand, members of the subfamily Rhopalinae have small but functional MTG 

(Aldrich 1979), which, as reported from Niesthrea louisianica, the only bug of this family 

whose MTG secretion have been analysed, contain monoterpenes – thymol, limonene, 

β-pinene and terpinolene in this case (Aldrich 1990b). 

 

3.3.2.4 Alydidae 

 

    Pheromonal function of male secretion of many alydid species is often reflected by 

hypertrophied glandular tubules or lateral reservoirs of male MTG, modified for synthesis of 

esters (Aldrich 1993). In Riptortus clavatus, trans-2-hexenyl trans-2-hexenoate and trans-2-

hexenyl cis-3-hexenoate work as epigamic and attractant pheromones in mixture with 

myristyl isobutyrate – although the natural ratio of the blend is 5:1:1, both hexenoates were 

almost equally effective in the mixture with miristyl isobutyrate, showing interchangeability 

of the pheromone components (Leal 1995, Endo 2005). Other alydid species, Riptortus 
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serripes and Melanacanthus scutellaris, have slightly different pheromone compounds – 

trans-2-hexenyl cis-3-hexenoate and trans-2-hexenyl trans-2-octenoate in R. serripes and 

trans-2-hexenyl butyrate in M. scutellaris; on the other hand, some species (e.g. Alydus 

eurinus and Megalotomus quinquespinosus) do not have sexually dimorphic MTG, suggesting 

their minor role in sexually attractive secretion (Aldrich 1993). 

    As secretions of both sexes generally contain significant fractions of trans-2-hexenal and 

trans-2-octenal, defensive function of MTG secretion is also likely in Alydidae (Aldrich 

1993). 

 

3.3.3 Pyrrhocoroidea 

 

3.3.3.1 Pyrrhocoridae 

 

    According to results from investigation of four Dysdercus species and Pyrrhocoris apterus, 

trans-2-hexenal and trans-2-octenal are characteristic for pyrrhocorid MTG secretion, usually 

composing together about 90% of the secretion. In addition, small amounts of tridecane and 

various C6 and C8 carbohydrates are frequent in the secretions. Occurence of linalool is also 

one of the very few characteristics for the Dysdercus spp. secretion (Daroogheh and 

Olagbemiro 1982, Farine et al. 1993). The pyrrhocorid secretion works simultaneously as a 

contact poison on ants and as an alarm pheromone (Farine 1988). 

 

    An exception in Pyrrhocoridae is D. fasciatus whose MTG secretion is expressively 

sexually dimorphic, with significat amount of 4-oxo-trans-2-hexenal in the secretion (50% in 

male one, 25% in female one) and 13% of esters (trans-2-hexenyl acetate and trans-2-octenyl 

acetate) in female secretion (Farine et al. 1993), probably of an epigamic function. 

 

3.3.4 Lygaeoidea 

 

3.3.4.1 Lygaeidae 

 

    As the seed bugs usually obtain defensive chemicals from food (especially from 

Asclepiadaceae, "milkweed"), their MTG secretion is often used in intraspecific 

communication (Aldrich 1988). In Lygaeidae it is males who produce attractive pheromones, 

trans-2-alkenyl and trans-2,n-alkadienyl acetates in this case (Games and Staddon 1973, 
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Aldrich 1999). As in Miridae, the composition of the pheromone is usually species-specific, 

with characteristic proportion of the chemicals, yet sometimes mistaken by related species 

(Aldrich 1997b) or even mirids (Zhang and Aldrich 2003a). In addition, C6 and C8 trans-2-

alkenals and trans-2,4-alkadienals occur in both sexes (Staddon 1985, Aldrich 1997b), 

probably partly effective in defence against predators. 

 

    Pheromones are crucial in colonisation of new host plants in Lygaeidae as they serve as 

long-range attractant pheromones for adults of both sexes as well as larvae. Males of 

Oncopeltus fasciatus, who are also the main colonisators, excrete pheromones when finding a 

host plant, attracting more individuals, who, if males, also excrete the pheromone, 

strenghtening the attraction effect (Aldrich 1999). 

 

3.3.4.2 Oxycarenidae 

 

    MTG in Oxycarenidae are quite large, of about 1% of body weight, with large lateral 

reservoirs. In Oxycarenus hyalinipennis, the MTG secretion of freshly moulted adults 

composes of characteristic heteropteran C6 and C8 chemicals. However, in three days from the 

moult, its lateral reservoirs fill with mono- and sesquiterpenoids (α-farnesene with α-pinene, 

limonene, cineole and various unidentified terpenoids), composing 80% of the whole 

secretion in the end. Remaining 20% of the secretion, in which trans-2-octenal and trans-2-

octenyl acetate are most abundant, is stored in median reservoir (Olagbemiro and Staddon 

1983, Knight 1984). 

    This phenomenon, reported only in this species but probably much more frequent, is 

probably caused by gradual obtaining of terpenoids from the host plant (cotton and other 

Malvaceae) and their storage in MTG. As α-farnesene and limonene serve as ant alarm 

pheromones along with other terpenoids (Blum 1985), the function of MTG secretion as a 

mimic of these pheromones is likely in Oxycarenidae. 

 

3.3.4.3 Geocoridae 

 

    In secretion of various glandular origin of undisturbed individuals of Geocoris punctipes, 

tridecane was the most abundant chemical, with minor fractions of trans-2-hexenyl acetate, 

trans-2-octenal and C11-C17 alkanes. In addition, female secretion contained much more trans-

2-octenal and a significant amount of trans-2-octenyl acetate. This chemical and the whole 
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female secretion had attractive effect on males, proving sexual function of volatiles of G. 

punctipes (Marques et al. 2000). 

 

3.3.4.4 Blissidae 

 

    Although these bugs are important pests in some regions, their chemical ecology is poorly 

understood. The sexually monomorphic secretion of various glandular origin of 

Macchiademus diplopterus consists of tridecane, trans-2-octenal and trans-2-hexenal 

(together 90% of the secretion) with minor components of trans-2-octenyl acetate, trans-2-

hexenyl acetate and 4-oxo-trans-2-octenal (Oliver et al. 1996). The function of the secretion 

seems to be primarily defensive as the aldehydes are frequently used in defence in other 

families, yet pheromonal function should be investigated as numerous aggregations occur in 

some Blissidae (Kerr 1966). 

 

4 FUNCTIONS 

 

4.1 DEFENCE: 

 

    Carayon (1971) defined two groups of defensive chemicals: liquid poisons, applicated by 

contact or spraying, and vapor poisons, mostly affecting respiratory system. Although this 

classification is relevant, because both mechanisms are present in heteropteran defence (e.g. 

Muir 1907, Hamilton 1985, Farine 1988), more exact classification was given by Brower 

(1984), who distinguished two new types of chemicals with respect to their function in 

antipredatory defence: type I, including toxic chemicals themselves, and type II, volatile, 

often repulsive chemicals signalling the toxicity of the bug. The type II chemicals are 

important on several levels- they can express the bug’s unpalatability at long-range, protecting 

the bug from being attacked; they can be distasteful, causing the predator to drop the bug 

without killing it, and they can possibly enhance avoidance learning of predators.  

    So-called warning odour is only one way of expressing unpalatability (aposematism); 

mechanisms of this signalisation, often multimodal (including visual, chemical and acoustic 

signals), are a highly complex issue (e.g. Ruxton et al. 2004) and are not discussed in this 

work. It should be noted that aposematic species generally have smaller MTG than cryptic 
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ones (Staddon 1987) – the warning coloration possibly replaces semiochemicals in signaling 

unpalatability of the bug to visually orientating predators, especially birds and lizards. 

 

    The control of the defensive excretion is strikingly sophisticated. During detailed 

observation on Cosmopepla bimaculata (Pentatomidae), the secretion was excreted only on 

the side of body where the bug was disturbed. Also, the amount of the secretion corresponded 

to the intensity of disturbation. A drop of the secretion remained on evaporatorium and was 

pulled back into the gland when the threat passed (Krall 1999). Also, when a threat is close to 

the bug (Coptosoma sp. in this case), it can aim its spray to it (Remold 1963). 

 

4.1.1 Vertebrates: 

 

    The chemicals used in defence against vertebrates are usually the same as that used against 

invertebrates- for example, tessaratomid secretion with characteristic anti-arthropod alkane 

and aldehyde composition causes severe damage of human skin (Falkenstein 1931). However, 

the mechanism of their functioning is different- as heteropteran defensive secretions are often 

lethal to other arthropods (e.g. Remold 1963, Prudic 2008), the effects on vertebrates are 

much weaker, causing nausea in worst cases (Staples 2002), being rather obnoxious to the 

predator, possibly enhancing avoidance learning. 

 

    Birds are the most frequent subjects in tests of heteropteran defence againts predators. The 

unpalatability and/or toxicity of the secretion usually reflects clearly in bird’s behaviour. 

When attacking the first bug offered, naive bird often dropped the bugs out of its bill, shook 

its head, wiped its bill, or even vomited, showing the bugs‘ unpalatability. After one or 

several more trials (depending on the predator species), the birds usually ignored the bugs but 

still consumed control insects (Krall 1997, 1999, Staples 2002, Exnerová et al. 2007, Svádová 

et al. 2009). As seen in comparison of wild-caught and naive birds, the birds remember 

unpalatability of the bug and its signals for a long time (Exnerová et al. 2007). 

 

    The reaction of birds to the unpalatable bugs differ greatly in various species. For example, 

when tested on pentatomid Cosmopepla bimaculata, starling (Sturnus vulgaris) and killdeer 

(Charadrius vociferus) both did not kill more than one bug while robin (Turdus migratorius) 

demonstrated only mild aversion (Krall 1999). Thus, the reactions of the birds depend both on 
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the bird’s species and bug’s species. Species-specific reaction of bird predators are discussed 

in detail by Exnerová et al. (2003, 2006, 2007). 

 

    In tests on aposematic C. bimaculata (with alkane and aldehyde-based defence) and a lizard 

predator Anolis carolinensis, each anolis consumed the first bug offered, then became hesitant 

in two or three bugs, eventually ingoring the fourth; alonis‘ aversive behaviour included 

spitting the bug out, backing away from the bug, wiping the head and mouth upon substrate, 

excessive mouthing before swallowing, and ignoring the bugs upon their introduction (Krall 

1999). After few days, anoles refused to attack the bug either immediately or after 

consumation of the first bug (Krall 1999). Similar, even more striking results were reported in 

cryptic cydnid Sehirus cinctus cinctus (with terpenoid-based defence) and the same predator 

(Krall 1997). 

 

    A few taste tests on humans provided some information on the effects on vertebrate 

predators. For example, Piezodorus teretipes (Pentatomidae) tasted "unpleasantly peppery and 

oily," which was caused by trans-2-hexenal-based secretion (Gilchrist 1966). Another 

pentatomid bug, Cosmopepla bimaculata, with the secretion composed of alkanes with 

aldehydes and esters, caused "instantaneous burning sensation and chemical taste," which 

lasted for about 20 minutes and was followed by slight numbness of the tongue, lasting 1-2 

hours (Krall 1999). 

 

4.1.2 Arthropods: 

 

    Ants are an important threat especially to larvae and adults of small species. Undecane 

(Regnier 1968), trans-2-hexenal, hexanal, hexanol, hexanoic acid, 2-butyl-2-octenal, β-

pinene, limonene and farnesenes are ant alarm or trail pheromones present in MTG secretion 

(Blum 1985, Aldrich 1988). However, this phenomenon has not been sufficiently investigated 

experimentally. 

    As alkanes help pentatomid secretion to penetrate the cuticle, it is no surprise that it showed 

to be both toxic and repellent against ants (Remold 1963, Surender 1990). However, the 

secretions of the other families proved to be effective as well. Secretion of Dysdercus 

cingulatus (Pyrrhocoridae) acts as a contact poison to ants (Farine 1988), being based on 

trans-2-hexenal (88%) with minor ingredients of trans-2-hexenyl acetate, trans-2-octenal and 

linalool (Farine et al. 1993). 
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    When tested on other arthropods, pure trans-2-hexenal did not have any effect on 

Stagmomantis californica (Mantodea: Mantidae); however, mixture of trans-2-hexenal and 4-

oxo-trans-2-hexenal and pure 4-oxo-trans-2-hexenal had a lethal effect on these predators 

(Prudic 2008). Also, the secretion of Piezodorus teretipes (Pentatomidae), dominated by 

trans-2-hexenal, repelled Leiurus quinquestriatus (Arachnida: Scorpiones) and Galeodes 

granti (Arachnida: Solifugae) predators (Gilchrist 1966). Blend of C6-C10 aldehydes had toxic 

effect on larvae of Calliphora sp. (Diptera) (Remold 1963). As trans-2-alkenals occur more 

frequently in larval secretion than in adults‘, it is likely that they primarily function in defence 

against small arthropods. 

    The significant difference of effectiveness between "almost pure" and pure trans-2-hexenal 

is striking in defence against arthropod predators. This phenomenon awaits explanation, yet 

suggestion can be made that trans-2-hexenal itself may be unable to penetrate the strong 

cuticle of a predator, requiring other chemicals (such as oxo-aldehydes and alkanes) to 

distrupt the cuticle first. On the other hand, the cuticle of a dipteran larva may not be resistant 

enough to prevent the aldehydes themselves to penetrate it. 

 

4.2 PHEROMONES 

 

4.2.1 Alarm function: 

 

    Alarm pheromones are developed very often in Heteroptera, especially in gregarious 

species (Blatt 1998). They usually cause the bugs to disperse from the source of the signal, 

with intensity correlating with concentration of the pheromone (Levinson and Bar Ilan 1971). 

    Many components of alarm pheromones are also effective in defence against predators- 

trans-2-hexenal and trans-2-octenal are the most evident examples of this double function 

(Levinson and Bar Ilan 1971, Ishiwatari 1974, 1976, Farine 1988, Blum 1996, Blatt 1998, 

Prudic 2008).  

    In Cimex lectularius, trans-2-hexenal was shown to affect the bugs immediately as an 

alarm pheromone while trans-2-octenal was slower (because of poorer evaporation), but more 

effective, showing bimodality of the signalisation (Levinson et al. 1974). 

 

    As MTG of many groups (Coreidae, for example) secrete chemicals different from the 

larval ones, they also have developed stage-specific system of warning. Due to different 
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predators and defensive behaviour of larvae and adults, the alarm pheromones have 

significant effects only on particular stage- larval alarm pheromones do not work on adults 

and vice versa (Blatt 1998, Prudic 2008). Esters are generally present in adult alarm 

pheromones, often supported by various, primarily defensive chemicals (MacLeod 1975, Kou 

1989, Blatt 1998, Krall 1999, Prudic 2008). 

 

4.2.2 Non-epigamic attraction: 

 

    Attractant pheromones are often mistaken for epigamic pheromones, especially because 

their secretion is often sexually dimorphic. These functions are often connected indeed, but 

have some major differences- for example, larvae are usually attracted to attractive 

pheromones as well as adults; attractant pheromones also do not necessarily trigger mating 

behaviour, as seen in some epigamic pheromones (Millar 2005). 

    As in all pheromonal functions, esters are the most important mediators of attractive (both 

non-epigamic and epigamic) communication. Their original position of highly volatile 

precursors of defensive chemicals was probably crucial for evolution of pheromonal function 

of MTG.  

    However, alarm pheromones have been repeatedly proved to serve as attractants as well- 

high concentration of a pheromone triggered dispersal behaviour while lower concentration 

were attractive to the bugs instead. This phenomenon has been reported in various families of 

Heteroptera, e.g. Cimicidae (Levinson and Bar Ilan 1971), Reduviidae- Triatominae (Rossiter 

and Staddon 1983), Pentatomidae (Ishiwatari 1974) and Pyrrhocoridae (Farine 1993). 

    Attractive behaviour is used in defence of aposematic species, such as many Pyrrhocoridae, 

and in advertising a food source (Triatominae) or a hideout (Cimicidae). Moreover, some 

functions have beed modified to serve in migration and hibernation behaviour. 

 

    As reported in systematic part, Lygaeidae use males as colonisators who, if successful, 

signalize proper conditions by pheromones. This mechanism is based on long-range effect of 

attractive pheromones and as such they attract adults and larvae of both sexes (Aldrich et al. 

1997b, 1999). This phenomenon is known in Lygaeidae but probably occurs in many other 

groups such as pyrrhocorid Dysdercus spp. and mirid Harpocera thoracica, where one sex is 

always capable of flight, lives longer than other sex, and migrates to new hosts (Aldrich 1988, 

1999). 
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    Functioning of hibernation pheromones is similar to that of migration as they are basically 

long-range attractant pheromones effective on both sexes. However, the pheromones are 

usually not specific to hibernation; instead, the reaction to pheromones of various functions 

shifts as the bugs are about to hibernate (McBrien 1999). For example, individuals of 

Leptoglossus occidentalis (Coreidae) collected in autumn did not disperse when exposed to 

the alarm pheromone, being rather attracted to it instead (Blatt 1998). Not surprisingly, 

aggregation pheromones are effective in hibernation behaviour as well (Toyama 2006). 

 

4.2.3 Epigamic function: 

 

    As in other insect orders, pheromones play a crucial role in mating of true bugs. In most 

terrestrial Heteroptera males excrete sexual pheromones, with significant exception of 

Miridae (McBrien 1999). Attractiveness of males rather than females corresponds with 

exposure to parasitoids (Aldrich 1988)- if a female attracted parasitoids, her eggs could be 

parasitised as well. Field tests support this theory, since males of Nezara viridula are more 

parasitised than females (Salles 1991). 

    Sexual pheromones, as defined, trigger mating behaviour, thereby they differ from non-

epigamic attractant pheromones. This fact could be seen in field tests- mirid males were even 

observed trying to copulate with pheromone lures (Millar 2005). 

 

    The epigamic function of MTG is of minor importance, with respect to occurrence of 

various sexually specific glands in Heteroptera (Staddon 1979). Moreover, when  

dorsoabdominal glands persist in adults, they are often connected with sexual functions 

(Aldrich 1988). However, in groups where defensive function of MTG has been reduced (e.g. 

Lygaeidae and Miridae), MTG secretion has acquired a significant role in pheromonal 

signalisation (Aldrich 1988). 

    Unlike the secretion of dorsoabdominal and other glands, sexually active secretion of MTG 

is quite uniform in Heteroptera. It usually consists of even-numbered esters of C4-C10 

saturated and unsaturated alcohols and C2- C6 acids. Because of this, the pheromone blends 

cannot be fully species-specific, causing misunderstandings in communication (Zhang and 

Aldrich 2003a). Characteristic pheromone blends for individual families, as well as specifics 

of their function are discussed sufficiently in the systematic part. 
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    On the other hand, secretion of mirid MTG may effectively disrupt sexual communication. 

The function of this secretion may be defensive, such as when attacked female inhibits 

attractant secretion in other females (Groot et al. 2001), or purely competitive, such as when 

males inhibit pheromone receptors of other males (Zhang and Aldrich 2003b). 

 

4.3 OTHER FUNCTIONS 

 

4.3.1 Antimicrobial and fungistatic functions: 

 

    Of chemicals isolated from MTG secretion, trans-2-heptenal was the most effective in 

killing fungal spores. More interestingly, frequently occuring chemicals – hexanol, trans-2-

hexenal, trans-2-octenal, trans-2-hexenyl acetate and undecane proved to be quite effective as 

well, hexyl acetate were mediumly effective and tridecane, pentadecane, octyl acetate, butyl 

butyrate and trans-2-hexenyl butyrate had poor effect on the spores; dodecane was not 

effective at all (Surender 1987, Ravinder 1992). As the most effective antifungal agent occurs 

rarely in Heteroptera and undecane as the most effective alkane is much less abundant than 

tridecane in the secretion, antifungal function probably plays a very small role in scent gland 

biology. 

 

    In similar research, trans-2-hexenyl acetate, trans-2-hexenal a trans-2-heptenal had lethal 

effect on both gram-positive and gram-negative bacterial cultures, trans-2-octenal had effect 

only on gram negative bacteria and other chemicals, such as C11-C13 alkanes and trans-2-

hexenyl butyrate were ineffective on bacteria; octyl acetate even stimulated growth of the 

cultures (Surender 1988). Antimicrobial function also seems to be of lesser importance in 

terrestrial Heteroptera. 

    As antimicrobial function is one of the most important function of MTG secretion in water 

bugs (Maschwitz 1971, Staddon 1979), its significance in terrestrial Heteroptera is only 

secondary. 

 

4.3.2 Kairomonal function: 

 

    As a side effect of pheromone-baited traps, dipteran and hymenopteran parasitoids of 

Heteroptera are sometimes attracted to the pheromones, showing their kairomonal effect. 
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Lygaeid pheromones, conservative in composition, proved to be especially attractive to the 

parasitoid Leucostoma gravipes (Diptera: Tachinidae) (Aldrich 1999). 

    Parasitoid specialisation is well reflected in fact that some parasitoids are even more 

sensitive to pheromone quality than the bugs themselves- for example, Podisus maculiventris 

(Pentatomidae) was attracted to synthetic isomere of its pheromone while two of four tachinid 

parasitoids did not respond at all (Aldrich 1984). 

    Some defensive chemicals may have kairomonal function as well – for example, trans-2-

decenal, a toxine from defensive secretion of Nezara viridula, attracted parasitoid Trissolcus 

basalis (Hymenoptera: Scelionidae) (Mattiacci 1993). 

 

    Components of defensive MTG secretion of Miridae also showed to be attractive to females 

of kleptoparasitic flies (Diptera: Chloropidae, Milichiidae). The benefit of the attraction for a 

fly is evident- when the bug is attacked, it might be killed, giving an opportunity of feeding to 

the scavenging fly (Zhang and Aldrich 2004).  

 

5 SEQUESTRATION: 

 

    The most frequently used context of sequestration is that "some phytophages, unscathed, 

imbue their bodies with foreign 'toxins' as basis of chemical defence against foes" (Duffey 

1980). However, sequestered chemicals often function in an intraspecific communication, 

mostly in the context of colonisation or epigamic behaviour. The term "sequestration" is also 

used for obtaining various substances functioning in metabolism such as ions, amino acids, 

sugars, lipids etc. (Duffey 1980), which I would prefer to call sequestration sensu lato. 

    Duffey (1980) also reports a phenomenon of so-called Potentiator Sequestration. This term 

characterizes a situation in which a sequestered chemical serves as an initiator or a precursor 

of biosynthetic reactions. A typical example is a diet-dependent synthesis of lactone in Jareda 

genus (Aldrich 1990a). However, in most heteropteran researches this phenomenon is missed 

out. 

 

    In Heteroptera, sequestration mostly occurs in families Miridae, Lygaeidae, Rhopalidae and 

Pentatomidae. The evolution of the sequestraion is linked either with a reduction of MTG (as 

seen in Serinethinae, and in minor degree in all sequestering species) or with a change of their 

function (such as the pheromonal function in Lygaeidae (Aldrich 1988)). 
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    Most common defensive chemicals sequestered by Heteroptera are cyanolipids (Aldrich 

1990a), glycosides (Aldrich 1990b, Aliabadi 2002) and cardiac glycosides (e.g. Scudder and 

Duffey 1972, Evans 1986, Aldrich 1999), and pyrrolizidine alkaloids (McLain 1984, Aldrich 

1999, Klitzke 2000). Types of sequestered chemicals are often taxonomically specific both in 

sequestrators (e.g. sequestration of cardiac glycosides characteristic for subfamily Lygaeinae 

(Aldrich 1988)) and in host plants (e.g. Senecio spp. as a source plant of most sequestrated 

pyrrolizidine alkaloids (Duffey 1980, McLain 1984, Aldrich 1999, Klitzke 2000)). 

 

    Sequestered defensive chemicals, as reported in Oncopeltus fasciatus, are stored mostly a 

vacuolated epidermal cell layer, located in integument of thorax and abdomen (fig. 7), with 

minor fraction in MTG and haemolymph (Duffey and Scudder 1974). External pressure 

causes a rupture of the epidermal layer in restricted areas and a passive excretion of a toxic 

fluid onto the surface of the bug (Scudder and Meredith 1982, Scudder et al. 1986). However, 

the mechanisms of storage are much less known in other bugs. 

    Semiochemistry of sequestering bugs is sometimes based on excretion of 

alkylmethoxypyrazines (Aldrich 1996, 1997b, Aliabadi 2002). These chemicals have not been 

proven to be sequestered; instead, they seem to carry out the function of a secondary warning 

odour as MTG are often reduced in sequestrating Heteroptera (Aldrich 1988) and 

alkylmethoxypyrazines are common defensive chemicals in various insect orders (Moore 

1990). These chemicals, occuring in many insect orders, have not been proven to be 

sequestered, probably acquiring their function rather due to their high effectivity in deterring 

vertebrate predators (Moore 1990).  

Moreover, Murgantia histrionica and Eurydema spp. (Pentatomidae) possess unique 

excretory glands, allowing them to excrete a fluid containing alkylmethoxypyrazines from 

prothorax (fig. 8); the mechanism of this excretion is unknown, possibly connected with the 

tracheal system as bubbles occur in the secretion (Aldrich 1996). 

        As shown in Coturnix coturnix coturnix predator, cardiac glycosides stored by 

Caenocoris nerii (Lygaeidae) are highly effective against bird predators as the bugs fed 

cardiac glycoside-rich seeds were much more likely to survive the quail’s attack (Evans 

1986). Similar results were reported in other chemicals. Sturnus vulgaris and Passer 

domesticus consumed only 5% of individuals of Murgantia histrionica, a species sequestering 

glycosides and excreting pyrazine-rich fluid from prothorax (Aliabadi 2002). Also, 

Neacoryphus bicrucis (Lygaeidae) and Lopidea instabile (Miridae), both sequestrating 

pyrrolizidine alkaloids, were distasteful to Anolis carolinensis (McLain 1974). 
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Fig. 7. A diagram of O. Fasciatus adult indicating points at which glycoside-rich fluid droplets form (solid 
arrows) as well as location and extent of glycoside compartment (stripped areas) (after Scudder and Meredith 
1982). 
 
 

 

 
Fig. 8. Dorsal view of a Murgantia histrionica adult showing the position of fluid froth emitted from the left 
prothoracic margin when the bug was squeezed with foreceps (Aldrich 1996). 
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    Effects of sequestrated chemicals on arthropod predators have been studied extensivelly. 

When fed seeds containing cardiac glycosides, Oncopeltus fasciatus was toxic to Tenodera 

aridifolia (Mantodea: Mantidae), which even refused to eat the bugs after several trials 

(Berenbaum and Miliczky 1984). In studies of Lepidoptera, pyrrolizidine alkaloids have 

shown to be effective against spider predator Nephila clavipes, causing the spider to cut out a 

field-caught ithomiine buttefly from its net but eating a freshly emerged one (Brown 1984). 

Also, DHPB phorbol ester in Pachycoris klugii (Scutteleridae), one of the less common 

chemicals sequestered, is highly toxic to both invertebrates and vertebrates (Wink et al. 

2000). Thus, sequestration seems to be a potent mechanism of defence against both vertebrate 

and arthropod predators.  

 

    Terpenoids obtained from host plants are often present in MTG secretion. This trend is 

especially frequent in secretion of bugs feeding on Malvaceae, e.g. Lygaeidae, Alydidae, 

Pyrrhocoridae and Scutelleridae (Gough 1985). However, the terpenoids found in 

heteropteran exocrine secretion often differ from those found in host plants (Olagbemiro and 

Staddon 1983, Gough 1985, Aldrich 1990b, Krall 1997), reflecting high complexity of their 

synthesis. 

    These chemicals, often involved in intraspecific communication (e.g. Aldrich 1997a), may 

also work in defence as their toxicity has been proved on beetles (Phillips et al. 1995). 

 

6 CONCLUSIONS: 

 

    Alkanes, aldehydes, esters, alcohols and terpenoids are the most common chemicals found 

in MTG secretion. Less common chemicals are lactones, ketones, alkenes and miscellaneous 

compounds (Farine 1993). Proteins seem to occur frequently in MTG reservoirs, possibly 

helping in secretion metabolism (Nagnan et al. 1994); however, they still await chemical and 

functional analysis.  

    Steroids have been also found in MTG secretion (Durak and Kalender 2007a, 2007b, 

2009); however, these findings are so much inconsistent with findings of other authors that 

they should be further inspected. 

    C6, C8 and C10 aldehydes, alcohols and esters are much more abundant in heteropteran 

secretion than other chemicals of these types, reflecting connected syntheses of these 

chemicals (Aldrich 1978). These chemicals also mostly occur as trans isomeres (Staddon 
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1979); as cis isomeres are usually very unstable, they are rarely found in more than trace 

amounts in MTG secretion, with exceptions found in Miridae (Staples 2002) and Alydidae 

(Leal 1995). 

 

    Alkanes and aldehydes are commonly used in defence against all kinds of predators, 

however, they have acquired pheromonal function in some cases. Esters have proven to 

generally serve as MTG pheromones of various functions. Significance of alcohols in the 

MTG secretion is less clear, probably effective as long-range allomones, especially in 

Coreidae (Blatt 1998), along with function of precursor of the final secretion. 

 

    Among heteropteran exocrine glands, MTG are of greatest importance in defence. 

Pheromonal functions, on the other hand, are more frequently provided by other glands, often 

present only in one sex. As seen in text, many chemicals found in the MTG secretion have 

more than one function. A duality of defensive and alarm functions or alarm and attractant 

functions of the secretion is very common in terrestrial Heteroptera. 

 

    The functions of MTG are unknown in many families, often including important pests 

(Aradidae, Blissidae) or pest predators (Anthocoridae, Geocoridae). Many studies also ignore 

the origin of the secretion, preventing their use in analyses of functions of MTG. Thus, the 

future research should focus on secretion in less investigated groups, with respect to its 

functions in ecology and ethology, chemistry and glandular origin. 
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Appendix: Classification of species named in text* 

 

Heteroptera: 

Alydus eurinus (Say 1825) Alydidae: Alydinae 

Campylomma verbasci (Meier-Dür 1843) Miridae: Phylinae 

Cimex lectularius (L. 1758) Cimicidae: Cimicinae 

Cosmopepla bimaculata (Thomas 1865) Pentatomidae: Pentatominae 

Dipetalogaster maximus (Uhler 1894) Reduviidae: Triatominae 

Dysdercus cingulatus (Fabricius 1775) Pyrrhocoridae 

Dysdercus fasciatus (Signoret 1860) Pyrrhocoridae 

Eurydema oleacrum (L. 1758) Pentatomidae: Pentatominae 

Eurydema ventrale (Kolenati 1846) Pentatomidae: Pentatominae 

Geocoris punctipes (Say 1832) Geocoridae 

Harpocera thoracica (Fallén 1807) Miridae: Phylinae 

Hotea gambiae (Westwood 1837) Scutelleridae 

Leptoglossus occidentalis (Heidemann 1910) Coreidae: Coreinae 

Lopidea robiniae (Uhler 1861) Miridae: Orthotylinae 

Lygocoris pabulinus (L. 1761) Miridae: Mirinae 

Lygus rugulipennis (Poppius 1911) Miridae: Mirinae 

Macchiademus diplopterus (Distant 1904) Blissidae 

Megalotomus quinquespinosus (Say 1825) Alydidae: Alydinae 

Melanacanthus scutellaris (Dallas 1852) Alydidae: Alydinae 

Murgantia histrionica (Hahn 1834) Pentatomidae: Pentatominae 

Nezara viridula (L. 1758) Pentatomidae: Pentatominae 

Niestheria louisianica (Sailer 1961) Rhopalidae: Rhopalinae 

Oncopeltus fasciatus (Dallas 1852) Lygaeidae: Lygaeinae 

Oxycarenus hyalinipennis (A. Costa 1843) Oxycarenidae 

Pachycoris klugii (Burmeister 1835) Scutelleridae 

Pachycoris stalii (Uhler 1863) Scutelleridae 

Phytocoris breviusculus (Reuter 1876) Miridae: Mirinae 

Phytocoris calii (Knight 1934) Miridae: Mirinae 

Phytocoris difficilis (Knight 1927) Miridae: Mirinae 

Phytocoris relativus (Knight 1968) Miridae: Mirinae 

Piezodorus teretipes (Stål 1865) Pentatomidae: Pentatominae 

Podisus maculiventris (Say 1832) Pentatomidae: Asopinae 

Pyrrhocoris apterus (L. 1758) Pyrrhocoridae 

Riptortus clavatus (Thunberg 1783) Alydidae: Alydinae 

Riptortus serripes (Fabricius 1775) Alydidae: Alydinae 

 

* the brackets are used incorrectly in this chapter due to the author’s mistake 
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Sehirus cinctus cinctus (Palisot 1811) Cydnidae: Sehirinae 

Tectocoris diophthalmus (Thunberg 1783) Scutelleridae 

Tessaratoma aethiops (Distant 1877) Tessaratomidae 

Tessaratoma javanica (Thunberg 1783) Tessaratomidae 

Tessaratoma pappilosa (Drury 1770) Tessaratomidae 

Thasus neocalifornicus (Brailovsky & Barrera 1995) Coreidae: Coreinae 

Triatoma infestans (Klug 1834) Reduviidae: Triatominae 

 

 

Other:   

Anolis carolinensis (Voigt 1832) Reptilia: Squamata: Polychrotidae 

Charadrius vociferus (L. 1758) Aves: Charadriiformes: Charadriidae 

Coturnix coturnix coturnix (L. 1758) Aves: Galliformes: Phasianidae 

Galeodes granti (Pocock 1903) Sulifugae: Galeodidae 

Leiurus quinquestriatus (Ehrenberg, 1828) Scorpionida: Buthidae 

Leucostoma gravipes (Wulp 1890) Diptera: Tachinidae: Phasiinae 

Nephila clavipes (L. 1767) Araneae: Araneidae 

Passer domesticus (L. 1758) Aves: Passeriformes: Passeridae 

Stagmomantis californica (Rehn and Hebard 1909) Mantodea: Mantidae: Mantinae 

Sturnus vulgaris (L. 1758) Aves: Passeriformes: Sturnidae 

Tenodera aridifolia (Stoll 1813) Mantodea: Mantidae: Mantinae 

Trissolcus basalis (Wollaston 1858) Hymenoptera: Scelionidae: Teleonominae 

Turdus migratorius (L. 1766) Aves: Passeriformes: Turdidae 

 


