

ibm.com/redbooks

Extending Sametime 7.5
Building Plug-ins for Sametime

David Attardo
John Barrow

Robert Brooks
John Cummins

Paul Godby
Katinka Kantor

Jon Martens
Elyzabeth Smiles

Travis Womack

Overview of the Sametime Architecture

Building custom plug-ins

Data manipulation and
system integration

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Extending Sametime 7.5: Building Plug-ins for
Sametime

January 2007

International Technical Support Organization

SG24-7346-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (January 2007)

This edition applies to IBM Lotus Sametime, Release 7.5.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Thanks to the following people for their contributions to this project: xiv
Become a published author . xv
Comments welcome. xv

Part 1. Product overview and architecture . 1

Chapter 1. Introduction to Sametime 7.5. 3
1.1 About Lotus Sametime 7.5 . 5

1.1.1 New in Sametime 7.5 . 5
1.1.2 New Sametime Connect client . 6
1.1.3 Improved Web conferencing . 7
1.1.4 Real-Time Collaboration (RTC) Gateway . 7
1.1.5 Extendable platform . 8

1.2 Extending the Sametime Connect Client. 8
1.2.1 Benefits of extending client functionality . 8
1.2.2 Eclipse platform for extending functionality . 8

1.3 Sametime toolkits . 9
1.3.1 Sametime Connect toolkit (Sametime Connect SDK). 9

1.4 Using plug-ins . 10
1.4.1 About plug-ins . 10
1.4.2 Manually install a plug-in. 10
1.4.3 Managing plug-in updates. 11
1.4.4 Manually remove a plug-in . 12

1.5 Sample plug-ins included in the Sametime SDK. 12
1.5.1 BuddyNote . 12
1.5.2 Recent buddies . 13
1.5.3 Acronym Expander . 15
1.5.4 Quick Response . 16
1.5.5 Snippets . 17
1.5.6 Branding . 18

1.6 Plug-in integration points. 18
1.7 Overview of the samples provided in this IBM Redbook 20

Chapter 2. Overview of Lotus Sametime 7.5 architecture 23
© Copyright IBM Corp. 2007. All rights reserved. iii

2.1 Brief overview of Eclipse . 24
2.2 Lotus Sametime platform . 25

2.2.1 Rich Client Platform . 27
2.2.2 Eclipse platform components . 28
2.2.3 Platform run time. 28

2.3 Overview of the Sametime architecture . 29
2.4 Overview of the Lotus Sametime Connect architecture 29
2.5 Component layers . 31

2.5.1 WebSphere Everyplace Deployment . 31
2.5.2 Real-Time Collaboration (RTC) API . 32
2.5.3 Lotus Sametime Java Toolkit . 32

2.6 J9 JCL Desktop . 32
2.7 Lotus Sametime Server architecture . 33

Part 2. Preparing the development environment and understanding extension points . 35

Chapter 3. Setting up the Integrated Development Environment 37
3.1 About the Integrated Development Environment 38

3.1.1 Sametime Software Development Kit (SDK). 38
3.1.2 SDK toolkits. 38
3.1.3 The Sametime Connect Toolkit . 39
3.1.4 Lotus Expeditor toolkit . 39

3.2 Sametime Connect IDE requirements. 40
3.3 Installing the Sametime IDE . 40

3.3.1 Task 1: Install the IBM Lotus Sametime 7.5 SDK 41
3.3.2 Task 2: Install Eclipse V3.2 SDK. 41
3.3.3 .Task 3: Install the J9 JDT launching plug-in for Eclipse (Windows and

Linux platforms) . 42
3.3.4 Task 4: Configure the run time environment 43
3.3.5 Task 5: Configure the target platform . 48
3.3.6 Task 6: Create a launch configuration . 53

3.4 Installing sample plug-ins . 55
3.4.1 About sample plug-ins. 55
3.4.2 Sample plug-in extensions . 56
3.4.3 Procedure to install sample plug-ins . 56

3.5 Terminology for working in Eclipse . 58

Chapter 4. Extension points . 61
4.1 Introduction . 63

4.1.1 Creating a plug-in project and plug-in . 64
4.2 User interface extension points . 67
4.3 Adding to the contact list window . 69

4.3.1 Adding an action to the Menu bar . 70
4.3.2 Adding an action to the Tool Bar. 82
iv Extending Sametime 7.5: Building Plug-ins for Sametime

4.3.3 Adding an action to the system tray menu . 88
4.3.4 Adding to the context (right-click) menu . 90

4.4 Adding to the chat window . 100
4.4.1 Adding an action to the Menu bar . 101
4.4.2 Adding an action to the Tool bar . 105
4.4.3 Adding an action to both Menu and Tool bars 109
4.4.4 Adding an action to the Format bar. 110
4.4.5 Adding a chat area extension . 112
4.4.6 Adding a pop-up message area . 116

4.5 Adding to the nway chat (multi person chat) window 120
4.5.1 Add extra column and new function . 125
4.5.2 Create a second column for new functionality 134
4.5.3 Create a toolView . 138

4.6 Adding a preference page . 143
4.7 Adding a mini application . 151
4.8 Message Event Notification extension point . 154

4.8.1 The MessageHandlerListener extension point 155

Part 3. Example plug-ins . 159

Chapter 5. Introduction to building a plug-in: modifying the UI 161
5.1 Introduction . 162
5.2 A preview of what you will build in this chapter . 162

5.2.1 Introduction to the scenario. 162
5.2.2 Preview of custom branding results . 163

5.3 Preparing to build a branding plug-in . 166
5.3.1 Preparing your development environment 167
5.3.2 A look at the com.ibm.collaboration.realtime.ui package 168
5.3.3 Extensions for the com.ibm.collaboration.realtime.ui package 168

5.4 Building a branding plug-in . 169
5.4.1 Creating a branded login window . 178
5.4.2 Creating a chat window branding plug-in . 186
5.4.3 Creating a hub branding plug-in . 199

5.5 How to test your branding plug-in . 210

Chapter 6. Leveraging Web services and building a calendar lookup plug-in
for Sametime Connect . 215

6.1 Overview of the plug-in . 217
6.1.1 Using the calendar lookup plug-in. 217
6.1.2 Value to the user . 218
6.1.3 Value to the developer . 218

6.2 Using Eclipse tooling to create a Web service client 218
6.2.1 Installing the Web Tools Platform . 218
6.2.2 Creating a Web service client . 222
 Contents v

6.3 Using a Web service client in a plug-in . 230
6.3.1 Creating the plug-in project and plug-in . 232
6.3.2 Importing the Web service client JAR . 233
6.3.3 Calling the Web service from the plug-in . 234

6.4 Creating the calendar lookup plug-in. 239
6.4.1 The calendar lookup Web service. 240
6.4.2 The calendar lookup plug-in . 240

6.5 Extending this plug-in . 248

Chapter 7. Advanced plug-in example: The Sametime Server Statistics
Plug-in . 249

7.1 Overview of the Sametime Server Statistics plug-in 251
7.1.1 Downloading and deploying the application 252
7.1.2 Using the plug-in . 254
7.1.3 Value to the user . 257
7.1.4 Value to the developer . 257

7.2 Building the application . 257
7.2.1 Create the Servlet . 258
7.2.2 The stlogserv servlet code . 258
7.2.3 Set up the stlogserv Servlet on your Sametime server 265

7.3 Create the plug-in . 265
7.3.1 Prepare your development environment . 265
7.3.2 Create a Base64 encoding/decoding class. 266
7.3.3 Create a Sametime server information object class 270
7.3.4 Implement a properties file . 279
7.3.5 Create a preferences page . 283
7.3.6 Create a Sametime statistics dialog window. 286
7.3.7 Add a Sametime Server Statistics menu item. 292

7.4 Extension Ideas. 294

Chapter 8. Advanced plug-in example: SAP integration 297
8.1 Plug-in overview . 299

8.1.1 Value to the user . 304
8.1.2 Value to the developer . 304
8.1.3 Downloading and deploying the plug-in . 305
8.1.4 Using the plug-in . 305
8.1.5 Planning . 311

8.2 Building the sample application. 312
8.2.1 Create project and base objects . 313
8.2.2 SAP Java Connector installation. 338
8.2.3 Configure the plug-in to run without SAP . 341
8.2.4 Create the SAP and test classes . 341
8.2.5 HR example . 348
vi Extending Sametime 7.5: Building Plug-ins for Sametime

8.2.6 Order status example . 360
8.2.7 Inventory example. 371

8.3 SAP tips. 387
8.4 Extending this plug-in . 387

Part 4. Advanced example: building a framework for structured content 389

Chapter 9. Introducing My Lotus Learning Education framework plug-in for
Sametime Connect . 391

9.1 Overview of My Lotus Learning plug-in . 393
9.2 Thinking about this plug-in as a sample for structured content delivery . 394

9.2.1 Sametime specific value add . 394
9.2.2 Embedded learning with IBM Lotus Sametime 7.5 394

9.3 Design overview of My Lotus Learning plug-in . 399
9.4 Creating the MyLearning plug-in project . 401

Chapter 10. Building the education framework plug-in 405
10.1 Plug-in data . 406

10.1.1 Data model class diagram. 406
10.1.2 Implementing the class model diagram. 407
10.1.3 Create the Catalog class. 414

10.2 Plug-in user interface . 420
10.2.1 Create the MyLearingMiniApp class . 420
10.2.2 Create basic user interface widgets . 422
10.2.3 Create JFace viewers . 425

10.3 Plug-in controller . 437
10.3.1 Define the actions . 439
10.3.2 Create the context menu for the TreeViewer viewer. 443
10.3.3 Create actions . 446

Chapter 11. Refining and implementing the education framework plug-in for
Sametime Connect . 485

11.1 Refining the catalog. 487
11.1.1 Course definition XML. 487
11.1.2 Creating the Description Extension Point 489
11.1.3 Creating the course catalog . 493
11.1.4 Building a course from the XML definition. 498
11.1.5 SAX parser and helper classes. 505

11.2 Including Content in a Course Plug-in. 510
11.2.1 Creating the content extension point. 511
11.2.2 Enhancing the BrowserComposite class. 513

11.3 Creating a course plug-in . 517
11.4 Additional examples: using the Lotus Education plug-in for for other content

delivery . 521
 Contents vii

Chapter 12. Deploying plug-ins for Sametime 7.5 525
12.1 Deploying custom plug-ins to IBM Lotus Sametime Connect users . . . 526
12.2 Deploying plug-ins automatically. 526

12.2.1 Task 1: Prepare your plug-in for deployment 526
12.2.2 Task 2: Create a feature . 529
12.2.3 Task 3: Create an Eclipse deployment Web site 536
12.2.4 Task 4: Configure the Sametime server . 545

12.3 Deploying plug-ins manually through Sametime Connect. 546
12.4 Deploying a plug-in through copying files . 550
12.5 Configuring plug-ins . 550
12.6 Setting automatic plug-in update preferences. 551
12.7 Installing plug-ins through the preferences.ini file 552
12.8 Disabling manual plug-in installs through the Connect Client 552

Part 5. Appendixes . 555

Appendix A. Additional material . 557
Locating the Web material . 557
Using the Web material . 558

Details of how to use the Web material. 558

Glossary . 563

Related publications . 565
IBM Redbooks . 565
Other publications . 565
Online resources . 565

Eclipse. 566
Java. 566

How to get IBM Redbooks . 566
Help from IBM . 567

Index . 569
viii Extending Sametime 7.5: Building Plug-ins for Sametime

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
developerWorks®
Domino®
Everyplace®
IBM®
ibm.com®

Lotus Notes®
Lotus®
Notes®
OS/2®
QuickPlace®
Rational®

Redbooks™
Redbooks (logo) ™
Sametime®
WebSphere®
Workplace™
Workplace Managed Client™

The following terms are trademarks of other companies:

BAPI, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several
other countries.

Java, Javadoc, JavaScript, JDK, JRE, JVM, J2EE, J2SE, Solaris, Sun, Sun Microsystems, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Microsoft, Outlook, Windows, Win32, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x Extending Sametime 7.5: Building Plug-ins for Sametime

Preface

With the release of IBM® Lotus® Sametime® Connect 7.5, IBM provides an
application platform upon which enhancements and application plug-ins can be
built to best meet your organization's needs. Sametime Connect 7.5 is the first
release of new instant messaging technology built on the Eclipse-based IBM
WebSphere® Everyplace® Deployment platform. This new release leverages the
Eclipse plug-in framework to provide developers with extensibility features that go
far beyond those available in previous releases.

Lotus Sametime Connect 7.5 offers more than simple instant messaging and
presence features. Because it is built on Eclipse, a variety of plug-ins that expand
the functionality of Lotus Sametime Connect are shipped with the product, and
third parties can build additional plug-ins.

The objective of this IBM Redbook is to show you how to develop Eclipse based
plug-ins to customize and personalize the real-time, collaborative capabilities of
Sametime within your organization. The book serves as a thorough guide on how
to build plug-ins, beginning with how to install the Eclipse development
environment, and then leading the reader through numerous examples ranging
from a basic introduction on branding your Sametime environment, to showing
how to integrate with a back-end system, retrieve information, and then
manipulate the data presentation within the context of a Sametime window. For
each example, we provide the audience with a step-by-step guide on how to build
the plug-in.

Finally, this capability for custom development represents a primary value point
for Sametime 7.5. The ability to create plug-ins allows organizations to meet the
growing needs of the instant messaging community. This flexibility, combined
with Sametime’s already proven security model and numerous user interface
enhancements, makes Lotus Sametime Connect a powerful tool to help
companies harness the potential of their employees.

The team that wrote this redbook
This IBM Redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Cambridge, MA,
USA Center.
© Copyright IBM Corp. 2007. All rights reserved. xi

David Attardo works as a IBM Strategic Premium Services
Manager in North America. He recommends products,
platforms, upgrades, and solutions with all Lotus products to
meet his client's business requirements. He is a client advocate
for all issues for IBM Workplace™, Portal and Collaboration
Software. Prior to being a Premium Services Manager he was
a Technology Architect at IBM leading Domino®, Sametime,
Integration, and Infrastructure engagements throughout the

country. He has 15 years of experience managing technology projects and
providing consulting services.

John Barrow is a senior developer with
PricewaterhouseCoopers (PwC) in London, UK. He specializes in
collaborative technologies and social software. His areas of
expertise include Domino, Sametime, Quickplace, J2EE™,
Eclipse, Portal and Workplace. He was a co-author of the IBM
Redbook, Lotus Instant Messaging/Web Conferencing
(Sametime): Building Sametime Enabled Applications,

SG24-7037. John holds an Honours degree in Geology from the University of
Edinburgh.

Robert Brooks works as a Lotus Premium Support Service
Manager based in the Toronto Lab, Canada. He joined Lotus in
1998 and has developed several applications for the World
Wide Customer Advocacy Organization.

John Cummins is a member of the Lotus Competitive SWAT
Team in Germany where he provides competitive strategic
consulting to clients and business partners in Germany and
Europe on products in the portal, messaging and collaboration
areas. John studied business at the Wharton School of the
University of Pennsylvania and was a J2EE and EAI (Enterprise
Application Integration) consultant for five years at PwC

Consulting and then IBM Business Consulting Services before joining Lotus in
early 2004.
xii Extending Sametime 7.5: Building Plug-ins for Sametime

Paul Godby works as an IT Specialist on the Lotus Worldwide
Technical Sales team. He provides pre-sales technical support
to the Lotus sales community and is also involved in the
creation of training activities for IBM employees. Paul joined
IBM in 2000 and has expertise in Sametime, Quick Place,
Domino, and the Workplace products.

Katinka Cantor works as an IT Specialist on the Lotus
Worldwide Technical Sales team in the WPLC brand. She
provides pre-sales technical support to the Lotus sales
community and is also involved in the creation of training
activities and ennoblement assets for IBM employees. Katinka
joined IBM in 2000 and has filled numerous roles from
consultant to support specialist and has extensive expertise in
Sametime, QuickPlace®, Domino, and the Workplace

products.

Jon Martens is an education specialist on the Lotus Education
development team. He joined IBM in 1982 and has worked as a
system programmer, system tester, application programmer,
and IT architect in a number of business areas within IBM,
including product development, marketing support, services,
and education. J2EE middleware has been Jon's area of focus
for the past several years, so working with Sametime has been

the first significant client-side programming he has done since working with
OS/2® Presentation Manager!

Elyzabeth Smiles is a Senior Instructional Designer in Lotus
Education. She designs and develops technical and user
courseware for WPLC products. Lyz joined IBM in 1995 and
has developed training for Lotus e-learning products, Lotus
Sametime, IBM Workplace, and Workplace business
applications. She holds a Masters degree from Harvard
University in Interactive Technology in Education.

Travis Womack works as a Senior IT Specialist for the
Worldwide Technical Sales team in the WPLC brand. He has
worked hands on with Sametime, QuickPlace, and Domino for
the last seven years. He has extensive background in Java™
programming with respect to the WPLC brand products. He
has also written over fifty custom Java servlets and
applications for the QuickPlace product.
 Preface xiii

John Bergland is a project leader at the ITSO, Cambridge
Center. He manages projects that produce IBM Redbooks™
about IBM and Lotus Software products. Before joining the
ITSO in 2003, John worked as an Advisory IT Specialist with
IBM Software Services for Lotus (ISSL), specializing in Notes
and Domino messaging and collaborative solutions.

Thanks to the following people for their contributions to
this project:

David Schlesinger, Architect, IBM Software Group, WPLC, Sametime Client
Team
IBM, Westford, MA

Jessica Ramirez, IT Specialist, IBM Software Group, WPLC, IBM Collaboration
Tools
IBM, Southberry, CT

Daniel Kehn, Senior IT Specialist, Lotus Workplace ISV Technical Enablement
IBM, Durham, NC

Lori Ott, ISV & Business Partner Technical Enablement Specialist, IBM Software
Group, WPLC
IBM, Honolulu, HI

Peter Orbeton, Manager, Lotus Education Development, IBM Software Group,
WPLC
IBM, Westford, MA

Craig Reichenbach, Software Engineer, Sametime Client, IBM Software Group,
WPLC
IBM, Westford, MA

Konrad Lagarde, Software Engineer, IBM Software Group, WPLC, Lotus
Realtime Collaboration
IBM, Southberry, CT

Carl Tyler, Chief Technology Officer, Instant Technologies
http://www.instant-tech.com/
xiv Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.instant-tech.com/

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and client satisfaction. As a
bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi Extending Sametime 7.5: Building Plug-ins for Sametime

Part 1 Product
overview and
architecture

Part 1
© Copyright IBM Corp. 2007. All rights reserved. 1

2 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 1. Introduction to Sametime 7.5

With the release of IBM Lotus Sametime Connect 7.5, IBM provides an
application platform upon which enhancements and application plug-ins can be
built to best meet your organization's needs. Sametime Connect 7.5 is the first
release of new instant messaging technology built on the Eclipse-based IBM
WebSphere Everyplace Deployment platform. This new release leverages the
Eclipse plug-in framework to provide developers with extensibility features that go
far beyond those available in previous releases.

Lotus Sametime Connect 7.5 offers more than simple instant messaging and
presence features. Because it is built on Eclipse, a variety of plug-ins that expand
the functionality of Lotus Sametime Connect are shipped with the product, and
third parties can build additional plug-ins.

The objective of this IBM Redbook is to show you how to develop Eclipse based
plug-ins to customize and personalize the real-time, collaborative capabilities of
Sametime within your organization. This IBM Redbook serves as a thorough
guide on how to build plug-ins, beginning with how to install the Eclipse
development environment, and then leading the reader through numerous
examples ranging from an introduction on branding your Sametime environment,
to eventually showing how to integrate with a back-end system, retrieve
information, and then manipulate the data presentation within the context of a
Sametime window. For each example, we provide the audience with a step by
step guide on how to build the plug-in.

1

© Copyright IBM Corp. 2007. All rights reserved. 3

In this chapter, we introduce the new features of Lotus Sametime 7.5. You will
learn about the advantages of extending the Sametime Connect client and
review some of the sample plug-ins that are included in the SDK. You can deploy
these plug-ins to your own Lotus Sametime environment. You can also reuse the
code in these samples to create your own extended functionality.

The following topics are presented in this chapter:

� About Lotus Sametime 7.5

� Extending the Sametime Connect Client

� Sametime toolkits

� Using plug-ins

� Sample plug-ins included in the Sametime SDK

� Plug-in integration points
4 Extending Sametime 7.5: Building Plug-ins for Sametime

1.1 About Lotus Sametime 7.5

Millions of people worldwide use IBM Lotus Sametime 7.5 capabilities every day
to gain instant access to people and information, bring together geographically
dispersed teams, and improve individual and team productivity. Lotus Sametime
7.5 provides instant, anytime access to people and information through three on
demand concepts:

� Presence awareness

� Business instant messaging

� Web conferencing

Lotus Sametime now uses audio integration from leading teleconferencing and
telecommunications providers to offer a single interface to both audio and Web
conferencing, as well as click-to-call functionality directly from the Lotus
Sametime Connect Client.

Additionally, Lotus Sametime 7.5:

� Provides easy-to-use, intuitive technology that provides a rapid way to resolve
problems and settle questions through clear, high quality communications.

� Allows quick access global teams.

� Provides a cost-effective, consistent approach to real-time collaboration within
an encrypted, authenticated, and managed environment.

� Offers integration with Microsoft® Office and Microsoft Outlook® applications.

� Includes a mobile client that can be deployed on multiple mobile platforms
and devices.

1.1.1 New in Sametime 7.5

Lotus Sametime 7.5 includes over 150 new features, including rich text, chat
history, integrated Voice over IP (VoIP), managed interoperability with public IM
networks, and new options for telephony and video integration.

With Lotus Sametime 7.5, users get:

� Improved instant message features, such as spell check, automatic time
stamps, integrated chat histories, built-in Voice over IP (VoIP), and more.

� Streamlined Web conferences that are easier to schedule and join and offer
higher quality, bandwidth efficient presentation sharing and automatic
reconnection.
 Chapter 1. Introduction to Sametime 7.5 5

� Managed interoperability options with public IM networks, such as AOL and
Yahoo.

� Ability to create and embed applications into the real-time environment via
Sametime 7.5's Eclipse-based framework.

� Integration with applications such as Microsoft Office and Outlook.

� Ability for mobile clients to run on multiple operating systems and devices.

1.1.2 New Sametime Connect client

Lotus Sametime 7.5 runs on Microsoft Windows® 2000 and XP, Linux®, and
Apple's Mac OS X Version 10.4 and also serves as the instant messaging client
for a future release of IBM Workplace Collaboration Services. It provides an
extensive list of new out-of-the-box functionality that ultimately leads to a much
richer user experience. Some of these features include:

� New status settings

� Click to call

� Click to dial

� Location awareness

� Rich text

� Ability to send links, graphics, and screen captures to chat partners

� Time stamps

� Emoticons

� Spell-check

� Type-ahead name searching

� Area for virtual business cards

� Corporate branding

� Tools to maintain and view Chat history

� Support for multiple Sametime communities

For more information about the new client features, read Taking a tour of the new
features and technology in IBM Lotus Sametime 7.5 on developerWorks® at:

http://www-128.ibm.com/developerworks/lotus/library/sametime75/
6 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www-128.ibm.com/developerworks/lotus/library/sametime75/

1.1.3 Improved Web conferencing

Improvements to Sametime 7.5 Web conferencing include:

� Streamlined meeting creation

� Improved error and information messages when joining a Web meeting

� Improved connectivity to meeting server and client

� New meeting room client designed for easier navigation and preference
selections

� Improved UI for easier hand off between moderators

� Third party integrated telephony and video solutions

� Lotus Sametime policy engine that allows administrators to regulate specific
functionality that people are allowed to use.

1.1.4 Real-Time Collaboration (RTC) Gateway

With previous releases of Lotus Sametime, the challenge was to provide secure
presence and instant messaging to a company’s internal users, while also
providing that same functionality to external private and public IM networks. In
addition, interoperability was suppose to occur in an environment that lacked
standards and where IM providers used proprietary protocols.

The Real-time Collaboration (RTC) Gateway provides conversion services for
various protocols, thus allowing full interoperability across domain boundaries.

The RTC Gateway is a next generation product that is designed to provide
server-side aggregation, thus allowing server-to-server awareness between
multiple communities. This is a fundamental difference from prior Lotus
Sametime functionality and provides much greater administrative control through
policy-managed access to public and other company IM networks.

Note: The initial release of the RTC Gateway is scheduled for Q3 2006 and
will be free of charge with a Lotus Sametime server. This Gateway also
provides free integration with public IM communities. IBM will release four
protocol connectors with the initial ship of the RTC Gateway. These protocol
connectors include translators for Lotus Sametime (VP protocol), SIP (100%
IETF), and the dialects of SIP used for the Sametime SIP Gateway and AOL.
The initial release will allow connectivity with other RTC Gateways, existing
Sametime SIP Gateways, AOL, and Yahoo.
 Chapter 1. Introduction to Sametime 7.5 7

1.1.5 Extendable platform

The new unified Sametime Connect client is built on the Eclipse open source
platform. By building Lotus Sametime on top of Eclipse, it becomes easier for
third-party tool providers to build plug-ins, applications, or extensions that
integrate seamlessly into Lotus Sametime.

1.2 Extending the Sametime Connect Client

Previous releases of the Lotus Sametime instant messaging client did not allow
for extensions. Release 7.0 of the Lotus Sametime Java Toolkit allowed for reuse
of Sametime-aware widgets and gave API access to server data, but today’s
Lotus Sametime Connect goes further, providing a platform on which third-party
developers can build plug-ins, applications, and extensions and integrate them
into the Sametime Connect client.

1.2.1 Benefits of extending client functionality

The Sametime extensible client is more flexible than traditional applications.
Administrators can provide automatic upgrades to clients and plug-ins. For
example, your company may begin by using Lotus Sametime’s out-of-the-box
click-to-voice-chat function. At some future point, however, you can integrate
Lotus Sametime with your company’s internal PBX phone system for click-to-call
functionality, using a plug-in that you develop or purchase from a third-party
vendor. The new functionality can be quickly deployed to users automatically or
users can install the new functionality as needed.

In addition, and perhaps most importantly, the instant messaging and presence
components in Lotus Sametime Connect 7.5 can be used by other IBM managed
client products, including the next release of IBM Lotus Notes®, code-named
Hannover, and future releases of the IBM Workplace Managed Client™.

1.2.2 Eclipse platform for extending functionality

IBM Lotus Sametime Connect 7.5 is based on the Eclipse platform.
Consequently, if you are familiar with Java and Eclipse plug-in development, you
can extend the Lotus Sametime client. Because these plug-ins are integrated
into the Sametime Connect client UI via extension points, users will not be able to
easily distinguish the plug-in features from features that are native to the product.

Eclipse is an open source, Java-based, and extensible development platform. By
itself, it is simply a framework and a set of services for building a development
8 Extending Sametime 7.5: Building Plug-ins for Sametime

environment from plug-in components. Eclipse comes with a standard set of
plug-ins, including the Java Development Tools (JDT).

In addition to providing a Java Integrated Development Environment (IDE),
Eclipse also includes the Plug-in Development Environment (PDE), which is
mainly of interest to software developers who want to extend Eclipse, since it
allows them to build tools that integrate seamlessly with the Eclipse environment.
Because everything in Eclipse is a plug-in, all tool developers have a level playing
field for offering extensions to Eclipse and providing a consistent, unified
integrated development environment for users.

For more information, read Getting started with the Eclipse Platform at:

http://www-128.ibm.com/developerworks/opensource/library/os-ecov/

1.3 Sametime toolkits

Lotus Sametime includes comprehensive application development toolkits. You
can use the toolkits to embed real-time capabilities, such as chat and real-time
help features, into e-business applications. The toolkits can also be used to
expand Sametime’s native functionality, for example, building plug-ins to
incorporate your company’s internal directory with Lotus Sametime. You can use
one or a combination of the toolkits to develop customized real-time applications.

The Lotus Sametime SDK includes both the Connect client and server toolkits.
The client toolkits are intended to be used by client or browser-based
applications and include the Lotus Sametime Connect toolkit, the Lotus
Sametime Links toolkit, and the Lotus Sametime Java toolkit. See Chapter 3,
“Setting up the Integrated Development Environment” on page 37 for a complete
list of Lotus Sametime 7.5 SDK toolkits.

1.3.1 Sametime Connect toolkit (Sametime Connect SDK)

The Lotus Sametime Connect toolkit (sometimes referred to as the Lotus
Sametime Connect SDK) is a collection of APIs built on top of WebSphere
Everyplace Deployment and Eclipse and can be used to build plug-ins to
enhance the usability of Lotus Sametime Connect.

The Lotus Sametime Connect toolkit provides an integration guide, Javadoc™,
J9 Java Class Libraries (JCL) Desktop run time, and sample plug-ins.

You can use the Lotus Sametime Connect toolkit to develop plug-ins that
customize the Lotus Sametime Connect client. Sample plug-ins are shipped with
the toolkit and provide some key functionality within Lotus Sametime Connect.
 Chapter 1. Introduction to Sametime 7.5 9

http://www-128.ibm.com/developerworks/opensource/library/os-ecov/
http://www-128.ibm.com/developerworks/opensource/library/os-ecov/

For more information about the sample plug-ins that ship with Lotus Sametime
Connect 7.5, see the developerWorks Lotus article, “Extending IBM Lotus
Sametime Connect 7.5.”

For more information about the Sametime toolkits, read A tour of the IBM Lotus
Sametime 7.5 toolkits, available at:

http://www-128.ibm.com/developerworks/lotus/library/sametime75-toolkits
/

Downloading the SDK and setting up the IDE
The SDK is a new feature in Sametime 7.5 and is downloaded from IBM
developerWorks at http://www.ibm.com/developerworks/. For instructions on
downloading the toolkit and setting up the development environment, see
Chapter 3, “Setting up the Integrated Development Environment” on page 37.

1.4 Using plug-ins

A plug-in is a computer program that provides a feature or an extension to a
feature in an existing application.

1.4.1 About plug-ins

Users can manually add plug-ins to their Sametime Connect client. These
plug-ins may be accessed from an Eclipse update site or from a local source,
e-mail, file server, and so on and then manually enabled.

Plug-ins can be automatically provisioned to users’ clients through administrative
controls. See Chapter 12, “Deploying plug-ins for Sametime 7.5” on page 525 for
more information about deploying plug-ins.

1.4.2 Manually install a plug-in

Users can install new plug-ins and updates to existing ones. Follow these
instructions to manually install a plug-in.

1. Select File → Manage updates → Download plug-ins.

2. Click Search for new features to install and then click Next.

Note: The system administrator determines whether plug-ins are available to
users. The system administrator may also automatically update or provision
plug-ins to the users’ Lotus Sametime Connect client.
10 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www-128.ibm.com/developerworks/lotus/library/sametime75-toolkits/
http://www.ibm.com/developerworks/

3. Click New Remote Site....

4. Enter the name and address for the new site, and then click OK.

5. Click the Ignore features not applicable to this environment check box.

6. Click Finish.

The Updates window displays, and includes the plug-ins available for
downloading. Expand the lists to view all plug-ins available from the site.

7. Expand the list and click the check box next to each plug-in you wish to
download, and then click Next.

8. Click I accept the terms of the license agreement, and then click Next.

9. Click Finish to start downloading the plug-in(s).

10.Restart the Sametime Connect client, if prompted to do so.

1.4.3 Managing plug-in updates

The system administrator determines whether plug-ins are available to users and
whether new plug-in updates are automatically installed to the users’ Sametime
Connect client. If automatic updates are available, users can specify an update
schedule and download options.

Specify automatic updates
Follow these instructions to modify the preference settings so that the plug-ins
are automatically updated.

1. Select File → Preferences.

2. Expand Install/Update in the navigator and select Automatic Updates.

3. Select Automatically find new updates and notify me to automatically
install updates to plug-ins.

4. Select how often you want to look for updates and download options for new
updates.

5. Click Apply.

Note: The plug-in site can be a local or a remote Eclipse update site.

Note: The directions here are intended to provide an introduction for
managing updates of plug-ins. For detailed information about deploying
plug-ins throughout the enterprise, please refer to Chapter 12, “Deploying
plug-ins for Sametime 7.5” on page 525.
 Chapter 1. Introduction to Sametime 7.5 11

6. Click OK.

1.4.4 Manually remove a plug-in

Administrators can automatically update, add, and remove plug-ins from the
Sametime Connect client. Users can also manually uninstall some plug-in
features. Follow these instruction to remove a plug-in from the Sametime
Connect client.

1. Start the Sametime Connect client.

2. Select File → Properties → Manage Updates → Configure....

3. In the Product Configuration dialog box, expand the list of Sametime features.

4. Select and right-click the plug-in you wish to remove.

5. Select Uninstall from the context menu.

6. Respond Yes when you are prompted to restart Sametime Connect client.

1.5 Sample plug-ins included in the Sametime SDK

The IBM Lotus Sametime Software Developers Kit (SDK) includes the following
sample plug-ins:

� BuddyNote

� Recent Buddies

� Acronym Expander

� Quick Response

� Snippets

� Branding

You can deploy and use these plug-ins and reuse the extensions and code to
create new plug-ins.

1.5.1 BuddyNote

The BuddyNote feature enables you to annotate your buddy list by adding notes
about your contacts.

Note: Some features cannot be uninstalled by the user, the Uninstall option
will be grayed out in those instances.
12 Extending Sametime 7.5: Building Plug-ins for Sametime

Use the Buddy Note to record information about your contact, including:

� The person's work schedule.

� Home address and alternate phone numbers.

� The person's areas of expertise.

� Where you met this person (for example, at a conference, training course,
meeting, and so on).

� Personal information, such as their birthday or spouse's first name.

When you select a contact from your buddy list, the notes area displays, as
shown in Figure 1-1. You can add, modify, and delete notes from this area.

Figure 1-1 BuddyNote plug-in user interface

1.5.2 Recent buddies

Recent Buddies is a buddy list that displays the people you chat with the most.
The list is populated as you use Sametime Connect to chat with others. You use
 Chapter 1. Introduction to Sametime 7.5 13

Recent Buddies to quickly locate those people you have chatted with most
recently. Figure 1-2 shows the user interface for the Recent Buddies plug-in.

Figure 1-2 Recent Buddies plug-in interface

You can sort the Recent Buddies list by clicking the column headers.

Modifying the Recent Buddies list
To modify the Recent Buddies list, right-click a name and select one of the
following:

� Primary: Maintains the name in the list, regardless of how often you chat with
this person.

� Remove: Deletes the name from the list.

� Exclude: Disables the name so it will not be included in the Recent Buddy list,
regardless of how often or how recently you have chatted with this person.
14 Extending Sametime 7.5: Building Plug-ins for Sametime

1.5.3 Acronym Expander

Acronym Expander is a type of private library to which you can add acronyms
and their definitions. When you participate in a chat, and another person sends
you a message that contains the acronym, Acronym Expander detects the use of
acronyms and replaces the text with the expanded definition.

Example 1-1 shows a sample chat transcript that contains the acronym “OTP.”

Example 1-1 Chat message without Acronym Expander

Robin Hi, have you got a minute to chat?
Chris No, OTP.

Example 1-2 shows how the chat would look with Acronym Expander installed. In
place of “OTP”, the plug-in replaces the words “Sorry, I’m on the phone right
now.”

Example 1-2 Chat message with Acronym Expander

Robin Hi, have you got a minute to chat?
Chris No, Sorry I'm on the phone right now.
 Chapter 1. Introduction to Sametime 7.5 15

Users can add their own acronyms using the plug-in interface, which is accessed
through the Preferences menu. Figure 1-3 shows the Acronym Expander
interface.

Figure 1-3 Acronym Expander plug-in user interface

1.5.4 Quick Response

Quick Response is a collection of information and phrases you use most often.
You use this feature to quickly send standard greetings, information, phone
numbers, and other messages.

Some examples of useful Quick Response phrases include:

� I see that you are away. Would you reply to this message upon your return? I
have a question.

� Sorry, I am in a meeting. I will respond to you soon.

� Please ping me when you return.
16 Extending Sametime 7.5: Building Plug-ins for Sametime

� Would you call me? My phone number is 301-555-1212

Send a Quick Response
You send a Quick Response from the chat window. Figure 1-4 shows how to
send a Quick Response using the Quick Response icon on the toolbar.

Figure 1-4 Quick Response plug-in user interface

To enter a Quick Response:

1. Click the Quick Response icon on the tool bar.

2. Select a response from the list.

3. Optionally, you can click <add new response> to add phrases to the Quick
Response list.

1.5.5 Snippets

The Snippets plug-in provides several small code examples. The code can be
used in building new plug-ins, which include user interface extensions such as
menu items, toolbar buttons, and n-way chat.
 Chapter 1. Introduction to Sametime 7.5 17

1.5.6 Branding

The Branding plug-in is installed with the SDK and includes the extensions used
to modify the Sametime Connect client and login dialog interface. Using the
extensions provided in the Branding plug-in, developers can add logos and
graphics, change the color palette, launch a Web page, and enable controls.

For more information about the sample plug-ins that ship with Lotus Sametime
Connect 7.5, see the Lotus developerWorks article, Extending IBM Lotus
Sametime Connect 7.5 at:

http://www-128.ibm.com/developerworks/lotus/library/sametime-sdk/

1.6 Plug-in integration points

Users access plug-in functionality using the same UI features that activate the
standard Lotus Sametime features. These integration points include:

� Adding an action to the Lotus Sametime Connect system tray icon

� Adding right-mouse click actions to a selected person or group

� Adding a toolbar action to the contact list window

� Adding a toolbar action to the chat window

� Drop-down menu choices

� Branding
18 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www-128.ibm.com/developerworks/lotus/library/sametime-sdk/

Figure 1-5 highlights some of the features that can be extended from the Lotus
Sametime Connect client.

Figure 1-5 Lotus Sametime Connect client extension points
 Chapter 1. Introduction to Sametime 7.5 19

Figure 1-6 highlights UI features that can be extended in the chat window.

Figure 1-6 Chat window extension points

While Figure 1-5 on page 19 and Figure 1-6 illustrate the extension points from
an user graphical user interface perspective, Chapter 4, “Extension points” on
page 61 provides and in-depth look at the underlying code framework, explaining
how and where Sametime can be extended.

1.7 Overview of the samples provided in this IBM
Redbook

This IBM Redbook serves as a thorough guide on how to build plug-ins,
beginning with how to install the Eclipse development environment, and then
leading the reader through numerous examples ranging from an introduction on
branding your Sametime environment, to eventually showing how to integrate
with a back-end system, retrieve information, and then manipulate the data
presentation within the context of a Sametime window. The following samples are
provided:

� Chapter 2, “Overview of Lotus Sametime 7.5 architecture” on page 23
describes the IBM Lotus Sametime Connect client architecture, focusing on
how Sametime 7.5 is now built on the Eclipse platform.

� Chapter 3, “Setting up the Integrated Development Environment” on page 37
provides a detailed guide for the tasks that are completed to set up the
integrated development environment (IDE) for IBM Lotus Sametime 7.5. It
shows you how to install and configure the development environment used to
20 Extending Sametime 7.5: Building Plug-ins for Sametime

extend the Sametime connect client. This development environment includes
Eclipse and the software development kit (SDK).

� Chapter 4, “Extension points” on page 61 discusses how the Sametime
Connect client exposes a number of extension points through which a
developer can add new functionality via the creation of custom plug-ins. This
chapter details the available extension points, giving simple examples of the
steps necessary to implement each one.

� Chapter 5, “Introduction to building a plug-in: modifying the UI” on page 161
provides a method and instructions to create a UI plug-in used to brand the
IBM Lotus Sametime 7.5 Connect Client with your own corporate logos or
images. For this example, we use a specific scenario for the RiverBend Tea
and Coffee Company.

� Chapter 6, “Leveraging Web services and building a calendar lookup plug-in
for Sametime Connect” on page 215 discusses the use of Web services
within a plug-in, and shows an example of a calendar lookup Web service
integrated into a IBM Lotus Sametime Connect plug-in, enabling users to look
up the calendar details for someone in their contact list from within the
Sametime Connect client.

� Chapter 7, “Advanced plug-in example: The Sametime Server Statistics
Plug-in” on page 249 examines the development of a Sametime plug-in that
allows a Sametime administrator to monitor several Sametime servers in real
time. The plug-in makes use of the new Sametime Monitoring and Statistics
toolkit and allows the user to view and sort on a variety of useful statistics.
The data is displayed in graph format to showcase the possibilities for
creating a professional and useful user interface for your back-end data.

� Chapter 8, “Advanced plug-in example: SAP integration” on page 297
examines how to create a plug-in that integrates with a back-end system,
such as SAP, to extract data for several different scenarios. There are three
examples within the plug-in. They are:

– Human Resources Integration

– Inventory Status

– Order Status
 Chapter 1. Introduction to Sametime 7.5 21

� Part 4, “Advanced example: building a framework for structured content” on
page 389 provides an in-depth, advanced example of how to build a
framework for structured content. In the case of this example, the content is
specific to online learning. The details of how to build this plug-in are detailed
within the following chapters.

– Chapter 9, “Introducing My Lotus Learning Education framework plug-in
for Sametime Connect” on page 391

– Chapter 10, “Building the education framework plug-in” on page 405

– Chapter 11, “Refining and implementing the education framework plug-in
for Sametime Connect” on page 485

� Chapter 12, “Deploying plug-ins for Sametime 7.5” on page 525 presents how
to deploy IBM Lotus Sametime Connect client plug-ins, including how to
manually install plug-ins, and how to set up administrative provisioning to
automatically distribute plug-ins for a distributed environment.
22 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 2. Overview of Lotus Sametime
7.5 architecture

This chapter describes the IBM Lotus Sametime Connect client architecture.

One of the most dramatic changes to Lotus Sametime Connect 7.5 is that it is
now built on top of Eclipse. In essence, Lotus Sametime Connect is a package of
Eclipse plug-ins. Although some may think of Eclipse as only a Java IDE, it is
also an open platform for rich client development. In this chapter, we provide an
overview of the architecture to reinforce the benefits of having the Sametime 7.5
Connect client now built on the Eclipse platform.

The following topics are presented in this chapter:

� Brief overview of Eclipse

� Overview of the Sametime architecture

– Overview of the Lotus Sametime Connect architecture

– Lotus Sametime Server architecture

2

© Copyright IBM Corp. 2007. All rights reserved. 23

2.1 Brief overview of Eclipse

Eclipse is an open source community whose projects are focused on providing
an extensible development platform and application frameworks for building
software. There is a large consortium of software vendors, solution providers,
corporations, educational and research institutions, and individuals working
cohesively to create an ecosystem that enhances and cultivates the Eclipse
Platform with complementary products, capabilities, and services.

The URL for the Eclipse web site is:

http://www.eclipse.org

Users of Eclipse-based offerings benefit from:

� Access to research and knowledge from the entire Eclipse ecosystem.

� Higher-quality software that comes under scrutiny from the eyes of the open
source community.

� The ability to reuse skills because of the consistent Eclipse interface.

Java technology developers using Eclipse benefit from:

� A world-class Java IDE

� Native look and feel across platform

� Easy extensions to Java tooling

Developers of Eclipse tools benefit from:

� A portable and customizable platform

� Seamless tool integration

� An end-to-end solution

The Eclipse Platform builds confidence and trust by providing the source code for
the platform. Software developers are tired of integrating tools and trying to
deconstruct how to make tools work together in an environment. Making the
Eclipse Platform an open source initiative enables tool developers to do the same
and to not only contribute new plug-ins but to also help improve the existing
platform.

IBM is the originator of the Eclipse Platform. The platform began development by
Object Technology International in 1998 (a subsidiary of IBM purchased in 1996,
now known as the IBM Ottawa Lab) to address the problems raised by clients
that dealt with the cohesiveness of IBM software tooling. Clients complained that
IBM tooling looked like it came from different companies and did not work
together.
24 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.eclipse.org

In 2001, IBM established the Eclipse consortium and gave the gift of Eclipse to
the open source community. The goal was to let the open source community
control the code and let the consortium deal with commercial relations. There
were nine initial members of the consortium, which included IBM partners and
competitors. IBM continued to nurture the evolution of the platform by funding
various programs like Eclipse innovation grants and sponsoring Eclipse code
camps. The platform was developed using an open source model through an
open source license where anyone is welcome to participate.

IBM wanted more serious commitment from vendors, but vendors perceived the
Eclipse consortium as IBM-controlled and were reluctant to make a strategic
commitment while IBM was in control. To resolve these problems, IBM
relinquished control. With the support of many companies, the Eclipse
Foundation was formed in 2004 as a not-for-profit organization with a dedicated
professional staff.

Today, IBM is committed to Eclipse more than ever and takes an active part in the
Eclipse Foundation as a strategic member. Furthermore, IBM has more
developers contributing to Eclipse than any other vendor.

Essential to the success of the Eclipse Platform are three intertwined
communities:

� Committers: An open, active, inclusive community of committers responsible
for developing official Eclipse tooling. An example group of committers is the
Eclipse Web Tools Platform project team.

� Plug-in developers: A community that exists outside the committer community
that extends the platform to create useful tooling. Eclipse Plug-in Central
contains a large sampling of plug-in developers.

� Users: A community composed of people who use the tooling developed by
committers and plug-in developers.

2.2 Lotus Sametime platform

One of the most dramatic changes to Lotus Sametime Connect is that it is now
built on top of Eclipse. In essence, Lotus Sametime Connect is a package of
Eclipse plug-ins.
 Chapter 2. Overview of Lotus Sametime 7.5 architecture 25

Figure 2-1 shows a high-level outline of the Eclipse architecture as Lotus
Sametime Connect uses it.

Figure 2-1 Sametime Connect platform

At its simplest level, Eclipse is an open-source foundation on which you can
develop applications. The building blocks of Eclipse are called plug-ins, which
are the smallest unit of Eclipse functionality.

Eclipse plug-ins are like a power strip: there is a part that plugs into the electricity
source and parts that other plugs can plug-into. An Eclipse plug-in may define:

� Extensions, which are analogous to the plug part of the power strip

� Extension points, which are analogous to the sockets of the power strip

Just as any appliance with a plug can use a power strip, so can any application
with a plug, or extension, that fits can use the extension points of a plug-in. In this

Note: While Figure 2-1 illustrates how Eclipse serves as a foundation for the
Sametime Connect Client, Figure 2-2 on page 30 provides greater detail on
each of the plug-in components that make up the Sametime platform.

Eclipse 3.2 RCP

SWT JFace Workbench Help Preferences

Platform Runtime

Sametime
Platform
26 Extending Sametime 7.5: Building Plug-ins for Sametime

way, extension points can extend the original application in ways that grow with
the needs of the user community.

The Lotus Sametime Connect extension points are documented in the IBM Lotus
Sametime Connect 7.5 Integration Guide (found at
http://www-128.ibm.com/developerworks/lotus/downloads/toolkits.html)
and later in this IBM Redbook. You can extend Lotus Sametime Connect by
creating plug-ins that contribute to, or extend, the Lotus Sametime Connect
plug-in extension points. Your plug-ins can access any of the services that are
exposed by Lotus Sametime or its underlying platforms like IBM WebSphere
Everyplace Deployment.

The interconnections among plug-ins, extensions, and extension points are
defined by the plug-in manifest. The Eclipse IDE includes specialized editors for
creating and modifying plug-in artifacts in its plug-in development environment
(PDE). These editors include wizards that lead the developer through creating a
plug-in, declaring its dependencies, contributing to other plug-ins’ extension
points, and declaring their own extension points.

2.2.1 Rich Client Platform

Eclipse offers the Rich Client Platform (RCP), which is used with applications
that do not require a common resource model or some of the other features of
the platform. The RCP FAQ is a great resource for understanding the capabilities
of RCP and can be found at:

http://wiki.eclipse.org/index.php/RCP_FAQ
 Chapter 2. Overview of Lotus Sametime 7.5 architecture 27

http://www-128.ibm.com/developerworks/lotus/downloads/toolkits.html
http://wiki.eclipse.org/index.php/RCP_FAQ

2.2.2 Eclipse platform components

Table 2-1 lists and describes some of the Eclipse platform components that Lotus
Sametime Connect uses.

Table 2-1 Eclipse platform components

For more information about Eclipse, refer to the following sources:

http://www.eclipse.org

http://www.ibm.com/developerworks/opensource/top-projects/eclipse-start
here.html

2.2.3 Platform run time

The platform runtime handles the life cycle of plug-ins, their creation, declaration
and interaction with other plug-ins. On top of this are the different components
that provide the portable infrastructure for creating a business application.

Component Description

Platform Runtime Provides the foundational support for plug-ins and for the
plug-in registry, a mechanism for declaring extension points,
and for extending objects dynamically. The Eclipse run time
uses the standard OSGi framework to define how plug-ins are
packaged.

Help Help provides a plug-in with HTML-based online help and
search capabilities. Help content is contributed through
plug-ins that are recognized at run time.

JFace UI framework, working in conjunction with the standard widget
toolkit (SWT), for handling many common UI programming
tasks.

Preferences An Eclipse-managed collection of indexed dialog boxes.
Plug-ins can contribute new Preference pages using an
extension.

SWT The Standard Widget Toolkit (SWT) provides access to the
user interface facilities of the operating systems on which it is
implemented. SWT-built applications leverage the UI of the
host system more than do other Java toolkits, such as Swing.

Workbench The Workbench provides a highly scalable, open-ended, and
multi-window environment for managing views, editors,
perspectives (task-oriented layouts), actions, wizards,
preference pages, and more.
28 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.eclipse.org
http://www.ibm.com/developerworks/opensource/top-projects/eclipse-starthere.html

2.3 Overview of the Sametime architecture

Sametime services fall into three areas:

� Community services: These services include awareness, instant messaging,
and chat. A buddy list makes Sametime users aware of users who are
available (and users who are online but unavailable) to receive an instant
message or participate in a chat with one or more people. The instant
messaging traffic is encrypted.

� Online Meeting services: These services include a shared whiteboard and the
ability to share programs and documents online. Sametime also offers a
server-based Meeting Center where users can schedule online meetings in
advance and store agendas and other meeting materials.

� Customization and Integration services: Sametime also provides a
comprehensive API that enables clients to easily integrate real-time
collaborative capabilities into other applications, such as e-commerce sites,
help desks, and training/information delivery applications like Sales Force
Automation.

There are two distinct Sametime architectures a developer might need to work
with; the Connect Client architecture and the Server architecture. The following
sections will cover both.

2.4 Overview of the Lotus Sametime Connect
architecture

The Eclipse Rich Client Platform (RCP) and IBM WebSphere Everyplace
Deployment serve as the foundation of Lotus Sametime Connect. A key benefit
of this choice of platform is that it can integrate seamlessly with other application
components, namely other plug-ins. The contributions of these plug-ins can be
as simple as a new menu choice that displays information in a dialog box or as
complex as a wholly integrated mini-application. The overarching goal of the
Lotus Sametime Connect architecture is to provide three benefits: extensibility,
integration, and reuse.

The benefit of using Eclipse as an integration platform to the user is its ability to
add new functionality into the environment. A flexible yet consistent user
experience is a strong selling point, but the advantage for Eclipse programmers
is the leveraging of their existing skills in developing standard Eclipse RCP
line-of-business applications.

Most of the principles of Eclipse application development are directly applicable
to creating extensions to Lotus Sametime Connect. Even users without previous
 Chapter 2. Overview of Lotus Sametime 7.5 architecture 29

Eclipse application development experience will recognize in these principles the
common object-oriented programming patterns. For example, Eclipse follows the
classic separation of model (Workbench) and view (ViewParts and their
lower-level graphical components in the JFace framework). Thus, the clear
separation of component responsibility reduces the need to learn each individual
piece in order to be productive. The Lotus Sametime architecture embraces this
same principle.

Figure 2-2 shows major Lotus Sametime Connect components. The Java run
time, Eclipse RCP, and WebSphere Everyplace Deployment layers form the
foundation common to IBM managed client products, which include the Lotus
Notes Hannover release and future releases of the IBM Workplace Managed
Client. The components enclosed by the box are specific to Lotus Sametime
Connect and include public and implementation-specific plug-ins.

Figure 2-2 Sametime Connect Architecture

Most of the rectangles shown above the Eclipse 3.2 RCP layer correspond to one
or more plug-ins. Some, like the Sametime Java Toolkit, represent libraries that
may be referred to by plug-ins above them, but are not plug-ins themselves. That
is, not all code is plug-in aware, either because it pre-dated the Eclipse plug-in
model, or because it does not require the extensibility that Eclipse provides. The

Java Runtime environment (J9 JCL Desktop for Sametime 7.5)

Eclipse 3.2 RCP

Credential
Store/SSO

Pre-authenticated
browser

Embedded
browser

Network
sensing Localization Spell checker User interface

components . . .

WED 6.1 (WebSphere Everyplace Deployment)

SIP stack Third-party
protocols Sametime Java API

Messaging
servicesReal-time

sessions Notification Other
toolsLogin Chat Presence

Storage
service

Location
service

Policy
service Capabilities

*SIP and third-party protocols not supported in Sametime 7.5

RTC (Real-time collaboration) API

Services
and plug-in

registry
Quick
find

OS
specific
services

User
info

Alert
storageTelephonyChat

storageRT
session

Buddy list
storage Directory Privacy Policy

Community services

User interface components
30 Extending Sametime 7.5: Building Plug-ins for Sametime

rest of this chapter will introduce some of the key component layers, plug-ins,
extension points, and classes and interfaces that will be part of your extensions
to Lotus Sametime Connect.

2.5 Component layers

This section briefly describes some of the key component layers depicted in
Figure 2-2 on page 30.

2.5.1 WebSphere Everyplace Deployment

The IBM WebSphere Everyplace Deployment (WED) platform provides services
used by Lotus Sametime 7.5. WebSphere Everyplace Deployment will also be
used in IBM Lotus Notes 8 and future releases of the IBM Workplace Managed
Client. WebSphere Everyplace Deployment includes the Eclipse RCP and Java
run time environment (JRE™), as well as additional services used by managed
client products.

WebSphere Everyplace Deployment provides a common services platform on a
variety of devices, ranging from handheld devices to desktop computers. The full
WebSphere Everyplace Deployment platform provides support for Java 2
Enterprise Edition (J2EE) and Web applications. Lotus Sametime Connect
includes a subset of the WebSphere Everyplace Deployment platform for those
services required by Sametime.

WebSphere Everyplace Deployment is available as a stand-alone product and
includes the WebSphere Everyplace Client Toolkit, which facilitates the
development of applications for the WebSphere Everyplace Deployment
platform. The latest shipping release of WebSphere Everyplace Deployment is
6.0. Lotus Sametime Connect 7.5 is based on a pre-release version of
WebSphere Everyplace Deployment V6.1.

WebSphere Everyplace Deployment provides support for a number of different
execution environments. Lotus Sametime Connect 7.5 for Windows and Linux
platforms uses the J9 JCL Desktop custom run time environment, which provides
a wide set of features from the Java 2 Platform API core libraries. Lotus
Sametime Connect 7.5 for Mac OS X uses the native Java run time environment.

When WebSphere Everyplace Deployment V6.1 is released in late 2006, you will
have access to the complete set of WebSphere Everyplace Deployment APIs
and services, and you will be able to use the WebSphere Everyplace Client
Toolkit to build plug-ins for Lotus Sametime Connect.
 Chapter 2. Overview of Lotus Sametime 7.5 architecture 31

2.5.2 Real-Time Collaboration (RTC) API

The Real-Time Collaboration (RTC) platform provides synchronous collaboration
services used by Lotus Sametime Connect 7.5 and other IBM offerings. Some of
the services provided by the RTC platform include:

� Login services
� Real-time session management
� Presence features
� Event notification
� Instant messaging and file transfer meeting tools

The major release of Lotus Sametime after version 7.5 will provide an RTC API
that you can use to leverage these services in your own applications. The RTC
API is a protocol-agnostic API, so that applications do not need information about
the transport protocol being used to deliver messages. The RTC API will support
both the Sametime Virtual Places (VP) protocol and SIP. Third parties can extend
the RTC API to support additional protocols and add meeting tools.

2.5.3 Lotus Sametime Java Toolkit

The Sametime Java Toolkit provides Java APIs to access many of the services
provided by the Lotus Sametime client and server products. The Sametime Java
Toolkit is a widely-used API that has been available for many years. The
Sametime Java Toolkit is used by the RTC platform to access Sametime-specific
services. When you build plug-ins for Lotus Sametime Connect 7.5, you can use
the Sametime Java Toolkit to access Sametime services that are not provided by
other Lotus Sametime Connect APIs.

The Sametime Java Toolkit has been updated to provide access to new features
in the Lotus Sametime 7.5 release, and is included in the Sametime SDK. See
the readme.txt file in the st75sdk directory of the Lotus Sametime 7.5 SDK for
more information.

2.6 J9 JCL Desktop

Lotus Sametime Connect 7.5 for Windows and Linux platforms uses a
compacted, custom Java Runtime Environment known as the J9 Java Class
Libraries (JCL) Desktop. While this pared down J9 Java Runtime Environment
enables a smaller footprint for the Sametime Connect Client, the J9 does not
contain the full number of Java classes included in the standard 1.4.2 or 1.5
Sun™ JVM™. For example, some of the classes not contained in the J9 JVM are
AWT and Swing classes, which are used for graphical user interface (GUI)
objects in Java applications. These packages are not part of the J9 JVM because
32 Extending Sametime 7.5: Building Plug-ins for Sametime

SWT is the default Eclipse platform GUI, SWT uses the operating system to
create native graphics, and SWT is lighter (that is, less resource intensive) than
either AWT or Swing. Accordingly, developers may encounter issues when
utilizing a toolkit that references a class or package (such as AWT or Swing) that
is not included in the J9 VM.

Considerations around possible limitations for the J9 JCL
Desktop
Although the J9 JCL Desktop custom run time environment provides access to
most core API features of the J2SE™ 1.4.2 Java Runtime Environment, it does
not support all of those features. For the purposes of this IBM Redbook, the
instructions to set up the development environment, and the examples provided,
focus primarily on creating plug-ins that use core Java classes supported by the
J9 JCL Desktop. However, if your plug-in uses Java code that was not developed
using the J9 JCL Desktop run time environment, that code may not run with J9
JCL Desktop. Accordingly, when using Java code that was not created in a
development environment configured for the J9 JCL Desktop, be sure to test your
plug-in thoroughly to catch any run time errors caused by incompatible code.
This means that compiled code will not necessarily show errors when you
develop your plug-in, but will not execute or not execute properly when it runs.

For more information about the Java APIs supported by J9 JCL Desktop, see the
J9 JCL Desktop Javadoc in the st75sdk\client\connect\javadoc\j9 directory of the
Sametime SDK.

Finally, when WebSphere Everyplace Deployment V6.1 (Lotus Expeditor) is
released (scheduled for late 2006), developers will have access to the complete
set of WebSphere Everyplace Deployment APIs and services, and will be able to
use additional JREs provided with Expeditor.

2.7 Lotus Sametime Server architecture

Lotus Sametime includes many server applications, which collectively provide
the capabilities of the Sametime server. All client-to-client communication, such
as instant messaging, passes through the Sametime server.

Users who log onto the Sametime server from different clients can communicate,
as long as the users use clients that support Sametime's functionality. For
example, a user who logs on through a Sametime-enabled word processed
document can chat with a user who logs on through Sametime Connect, or
through the company portal.
 Chapter 2. Overview of Lotus Sametime 7.5 architecture 33

Once the client is logged into the Sametime server, it has access to all Lotus
Sametime services and can communicate with any other Sametime client logged
in to the Sametime server, based on the:

� Capabilities of the various clients

� Privacy rules that the users defined

� Policy rules defined by the administrator and enforced by some of the server
applications

The Sametime server consists of three servers that interact with one another:

� Community server: Provides all Sametime community services, such as login,
instant messaging, and awareness.

� Meeting server: Provides all Sametime meeting services, such as screen
sharing and IP audio and video. Note that IP audio and video require
installation of the Sametime Multimedia Services package.

� Domino DNA: Provides core Sametime services, such as directory access,
authentication, and the HTTP server.
34 Extending Sametime 7.5: Building Plug-ins for Sametime

Part 2 Preparing the
development
environment and
understanding
extension points

Part 2
© Copyright IBM Corp. 2007. All rights reserved. 35

36 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 3. Setting up the Integrated
Development Environment

This chapter presents the tasks that are completed to set up the Integrated
Development Environment (IDE) for IBM Lotus Sametime 7.5.

In this chapter, we show you how to install and configure the development
environment used to extend the Sametime connect client. This development
environment includes Eclipse and the software development kit (SDK), which
includes sample plug-ins.

The following topics are presented in this chapter:

� About the Integrated Development Environment

� Sametime Connect IDE requirements

� Installing the Sametime IDE

� Installing sample plug-ins

3

© Copyright IBM Corp. 2007. All rights reserved. 37

3.1 About the Integrated Development Environment

One of the key values of IBM Lotus Sametime Connect 7.5 is the ability for
third-party developers to use Eclipse-based plug-ins to extend the product’s
functionality.

Developers install and configure the Sametime Integrated Development
Environment (IDE), which includes the tools and platforms needed to create and
modify plug-ins.

3.1.1 Sametime Software Development Kit (SDK)

Lotus Sametime includes comprehensive application development toolkits. You
can use the toolkits to embed real-time capabilities, such as chat and real-time
help features, into e-business applications. The toolkits can also be used to
expand Sametime’s native functionality, for example, building plug-ins to
incorporate your company’s internal directory with Lotus Sametime. You can use
one or a combination of the toolkits to develop customized, real-time
applications.

The SDK is a new feature in Sametime 7.5 and is downloaded from IBM
developerWorks at:

http://www.ibm.com/developerworks/

3.1.2 SDK toolkits

The IBM Lotus Sametime 7.5 SDK includes the following toolkits:

� Sametime Connect Toolkit (new for 7.5): Used to build Eclipse plug-ins that
integrate with or extend the Sametime Connect client.

� Sametime Java Toolkit: Used to add Sametime features to Java applications.

� Sametime Links Toolkit: Used to add Sametime features to Web pages using
JavaScript™ and HTML.

� Sametime Community Server Toolkit: Used to build Java components that
add or extend services on the Sametime server.

� Sametime Directory and Database Access Toolkit: Used to build C++ or Java
components for the Sametime server that provide directory integration, chat
logging, or virus scanning services.

� Sametime Online Meeting Toolkit (new for 7.5): Used to schedule and
manage Web conferences via HTTP.
38 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.ibm.com/developerworks/

� Sametime Monitoring and Statistics Toolkit (new for 7.5): Used to access
Sametime server statistics in XML format via HTTP.

� Sametime Telephony Conferencing Service Provider Interface (TCSPI)
Toolkit: Used to provide click-to-call telephony services for Sametime
Connect, Sametime Web conferencing, and Lotus Notes.

For more information about the Lotus Sametime toolkits, see A tour of the IBM
Lotus Sametime 7.5 toolkits, at:

http://www-128.ibm.com/developerworks/lotus/library/sametime75-toolkits

3.1.3 The Sametime Connect Toolkit

The Sametime Connect Toolkit is a collection of APIs built on top of IBM
WebSphere Everyplace Deployment and Eclipse that can be used to build
plug-ins that enhance the usability of the Sametime Connect client.

The Sametime Connect Toolkit contains the following components:

� Integration Guide: This guide documents the APIs needed to extend the client
and explains the implementation of several sample plug-ins, which can serve
as starting points for creating more complex plug-ins.

� Javadoc: These documents provide information about the plug in samples,
the J9 JCL Desktop Custom Runtime Environment, and toolkits.

� J9 JCL Desktop run time environment: A scaled-down run time environment
used with the SDK.

� Sample plug-ins: Developers can examine and modify the source code of
these plug-ins, using a basic Integrated Development Environment (IDE) like
Eclipse or a more sophisticated IDE, such as IBM Rational® Application
Developer.

3.1.4 Lotus Expeditor toolkit

In 2006, IBM plans to release the Lotus Expeditor Toolkit V6.1. This IDE, formerly
the WebSphere Everyplace Client Toolkit, is used to develop plug-ins for several
Eclipse-based platforms, including Lotus Sametime, IBM Lotus Notes, and
Workplace Managed Client for WebSphere.

The Expeditor toolkit automatically configures the IDE and uses product profiles
to define the target components that can be modified or extended.
 Chapter 3. Setting up the Integrated Development Environment 39

http://www-128.ibm.com/developerworks/lotus/library/sametime75-toolkits

3.2 Sametime Connect IDE requirements

In order create your own plug-ins for Lotus Sametime Connect 7.5, you will install
and configure the following:

� Sametime SDK.

� Eclipse IDE Version 3.2.

� The J9 JCL Desktop custom run time environment provided with the Lotus
Sametime 7.5 SDK for Windows and Linux platforms. Note that the samples
in the SDK will not run with the J2SE 1.4.2 JRE from Sun Microsystems™.
For Mac OS X, Lotus Sametime Connect uses the native JRE.

� The Eclipse J9 JDT launching plug-in for the Windows and Linux platforms.
This plug-in enables you to use the J9 JCL Desktop custom run time
environment to develop your plug-ins. This plug-in is not needed for Mac OS
X.

� A standard JRE, 1.4.2 or higher, to run the Eclipse IDE. Eclipse does not
include its own JRE, and will not run on the J9 JCL Desktop custom run time
environment included with the SDK. Note that the JRE used to run the Eclipse
IDE is not the same one you will use to compile and run your plug-ins; Eclipse
allows you to specify a different run time environment to use for compiling and
running your code. We recommend that you use a J2SE 5.0 JRE to run the
Eclipse IDE. For information about downloading the IBM J2SE 5.0 JRE, see
the following site:

http://www.ibm.com/developerworks/java/jdk

� A Microsoft Windows XP, Linux, or Mac OS X platform supported by the Lotus
Sametime Connect 7.5 release. See the release notes on your Lotus
Sametime 7.5 server for a list of supported client platforms.

3.3 Installing the Sametime IDE

To install the Sametime IDE, complete the following tasks. Detailed instructions
for each task are included on the following pages:

Task 1: Install the IBM Lotus Sametime 7.5 SDK.

Task 2: Install Eclipse V3.2 SDK.

Task 3: Install the J9 JDT launching plug-in for Eclipse.

Task 4: Configure the run time environment.

Note: The samples documented in this guide were only tested with
Microsoft Windows XP.
40 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.ibm.com/developerworks/java/jdk

Task 5: Configure the target platform.

Task 6: Create a launch configuration.

3.3.1 Task 1: Install the IBM Lotus Sametime 7.5 SDK

The Software Development Kit (SDK) is a collection of all Lotus Sametime 7.5
client and server toolkits in one consolidated package. The kit replaces the
separate toolkits available for previous Sametime releases. The kit includes
documentation.

Follow these instructions to install the Lotus Sametime SDK:

1. Download the SDK from the IBM developerWorks Lotus toolkit download site
at the following URL:

http://www.ibm.com/developerworks/lotus/downloads/toolkits.html

2. Extract the contents of the downloaded zip file to c:\st75sdk.

3.3.2 Task 2: Install Eclipse V3.2 SDK

Eclipse is an open platform for rich client development. Although Eclipse is a
Java-based platform, it can be used to build tools for other programming
languages.

To create plug-ins, or work with some existing ones, you need Eclipse Version
3.2. You can have multiple versions of Eclipse installed on your system.

Follow these instructions to download and install Eclipse IDE Version 3.2:

1. Open this Web page:

http://www.eclipse.org/

2. Select the Downloads tab.

3. Click the download or mirror site closest to you.

Note: You must have an IBM Registration ID to download materials from IBM
developerWorks. You can create the ID from the download site or use your
existing ID to sign in.

Important: Configuration instructions in this chapter assume that you have
installed the SDK to c:/st75sdk. If you choose to extract the SDK to a different
location, you must adapt these instructions to account for the different
location.
 Chapter 3. Setting up the Integrated Development Environment 41

http://www.ibm.com/developerworks/lotus/downloads/toolkits.html
http://www.eclipse.org/
http://www.ibm.com/developerworks/lotus/downloads/toolkits.html

4. Click Save.

5. Extract the contents of the downloaded eclipse-SDK .zip file to a directory, for
example, c:\eclipse32.

Eclipse installs to c:\eclipse32\eclipse.

3.3.3 .Task 3: Install the J9 JDT launching plug-in for Eclipse
(Windows and Linux platforms)

The J9 JDT (Java Development Tools) launching plug-in enables you to use the
J9 JCL Desktop custom run time environment to compile, run, and test your
plug-ins. This plug-in is required by Eclipse to recognize and launch the J9 JCL
Desktop run time environment used by Sametime.

Follow these instructions to install the J9 JDT plug-in:

1. If Eclipse is running, exit it.

2. Download the J9 JDT launching plug-in .zip file from the following URL:

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ercp/org.eclips
e.jdt.launching.j9/org.eclipse.jdt.launching.j9-plugin.zip?cvsroot=D
SDP_Project

Tip: Download the Eclipse 3.2 documentation from
http://www.eclipse.org/documentation/. This file contains useful
information, tutorials, and samples for using Eclipse, including:

� Workbench User Guide

� Java Development User Guide

� Plug-in Development Environment Guide

Important: Without this plug-in, you cannot use J9 JCL Desktop to compile,
run, or debug your code. Even with the J9 JDT launching plug-in, you must
use the J9 JCL Desktop run time environment on the Sametime SDK to
develop plug-ins, rather than the J9 DCL Desktop run time environment
included with Lotus Sametime Connect 7.5.
42 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.eclipse.org/documentation/
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ercp/org.eclipse.jdt.launching.j9/org.eclipse.jdt.launching.j9-plugin.zip?cvsroot=DSDP_Project
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ercp/org.eclipse.jdt.launching.j9/org.eclipse.jdt.launching.j9-plugin.zip?cvsroot=DSDP_Project
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ercp/org.eclipse.jdt.launching.j9/org.eclipse.jdt.launching.j9-plugin.zip?cvsroot=DSDP_Project

3. Extract the contents of the downloaded J9 JDT launching plug-in .zip file to
the Eclipse subdirectory in the directory where you installed Eclipse, for
example, c:\eclipse32\eclipse.

About the J9 JCL desktop custom run time environment
Although the J9 JCL Desktop custom run time environment provides access to
most core API features of the J2SE 1.4.2 Java Runtime Environment, it does not
support all of those features. After configuring the development environment as
instructed in this chapter, you will not be able to create plug-in code that is not
supported by J9 JCL Desktop. This means that you will not be able to
unintentionally use Java APIs that will not work with Lotus Sametime Connect.
However, if your plug-in uses Java code that was not developed using the J9 JCL
Desktop run time environment, that code may not run with J9 JCL Desktop.

When using Java code that was not created in a development environment
configured for J9 JCL Desktop, be sure to test your plug-in thoroughly to find and
fix any run time errors caused by incompatible code.

For more information about the Java APIs supported by J9 JCL Desktop, see the
J9 JCL Desktop Javadoc in the st75sdk\client\connect\javadoc\j9 directory of the
Sametime SDK.

3.3.4 Task 4: Configure the run time environment

The run time environment contains specific information for running and testing
your Eclipse application with a specific JRE. The Sametime Connect client uses
the J9 JCL Desktop JRE from WebSphere Everyplace Deployment. However,
this JRE does not have debugging enabled, which is useful when developing
applications. The Sametime SDK contains the same JRE with debugging
enabled. So, you will need to configure Eclipse to point to the JRE included with
the SDK.

Note: The J9 JDT plug-in is updated from time to time. You should check the
URL above to see if a newer version is available, and if so, install the newest
version. (At press time, the version available was Revision 1.6.) If you have
started Eclipse previously, you must specify the -clean command-line option
one time so the new plug-in will be recognized. We recommend that you
remove any existing version of the J9 JDT launcher plug-in when installing a
new version

Note: You need to re-install the J9 JDT plug-in if you re-install the Eclipse IDE.
 Chapter 3. Setting up the Integrated Development Environment 43

Creating the Workspace
In a Windows or Linux environment, after you have installed Eclipse and the J9
JDT launching plug-in, you will need to create a workspace for your plug-in
development and configure it to use the J9 JCL Desktop run time environment
included with the Lotus Sametime 7.5 SDK.

You can associate development profiles, called workspaces, to run inside the
workbench. In this section, you will create a new workspace configured for
Sametime 7.5 Connect Client plug-in development. This new workspace can be
reused in the future for any Sametime plug-in projects.

Follow these instructions to configure the run time environment:

1. Start Eclipse by launching the eclipse.exe executable located in your Eclipse
installation directory. Assuming that you followed the example directory
structure for installing Eclipse, you would find this in C:\eclipse32\eclipse.

2. After you have launched Eclipse, you are prompted to type a workspace
directory. Create a new workspace called
c:\eclipse32\eclipse\sametime_workspace.

If the directory you specify does not exist, Eclipse creates a new workspace
directory with that name.

Add Installed JRE
3. Select Window → Preferences to display the Preferences dialog box.

4. Expand Java and select Installed JREs, and then click Add.

Note: If you have not yet installed a JRE (Java Runtime Environment), you will
be notified that Eclipse is not finding an installed JRE.

You will first need to download and install the Java Runtime Environment
(JRE). This can be downloaded from the following URL:

http://www.java.com/en/download/index.jsp
44 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.java.com/en/download/index.jsp

5. Click the JRE type list and select J9 VM.

6. In the JRE name field, enter a name, for example, JCL Desktop.

7. Next to the JRE home directory field, click Browse and select the j9-runtime
subdirectory for either Win32® or Linux, for example,
c:\st75sdk\client\connect\j9-runtime\win32, and then click OK.

8. In the Default VM Arguments field, enter -jcl:max.

9. Verify that the Add JRE dialog box looks like Figure 3-1, and then click OK to
save the new configuration.

Figure 3-1 Add JRE dialog box

Add additional libraries to the JRE
Sametime Connect uses additional libraries not included in the core J9 JCL
Desktop JRE. Follow these instructions to add the ext and endorsed libraries to
the JRE.

10.In the Installed JREs dialog box, click JCL Desktop and click Edit….

11.Click Add External JARs… and browse to
C:\st75sdk\client\connect\j9-runtime\win32\lib\jclmax\ext.

Note: If you do not see the J9 VM in the JRE type list, restart Eclipse.
 Chapter 3. Setting up the Integrated Development Environment 45

12.Select all the files, and then click Open.

13.In the Edit JRE dialog box, click Add External JARs….

14.Browse to C:\st75sdk\client\connect\j9-runtime\win32\lib\endorsed.

15.Select all JAR files listed in the dialog, and then click Open.

16.In the JRE system libraries list, Ctrl-click to select the files string.jar,
harmony_regex.jar, nio.jar, and sound.jar, (these are the files that you
added in step 11), and click Up until those files are at the top of the list.

Tip: If you make a mistake, click Restore Default to remove JAR files and
return the JRE to the state it is in after you completed step 8.
46 Extending Sametime 7.5: Building Plug-ins for Sametime

17.Verify that the Add JRE dialog box looks like Figure 3-2, then click OK to save
the new run time environment.

Figure 3-2 Adding JAR files to the JRE

Set the default run time environment
18.In the Installed JREs dialog box, click the check box next to the new JCL

Desktop run time environment to make it the default, as shown in Figure 3-3.

Figure 3-3 Selecting the default JRE
 Chapter 3. Setting up the Integrated Development Environment 47

Define compiler settings
19.In the Preferences navigator, select Java → Compiler.

20.Uncheck Use default compliance settings. The compliance settings should
look like Figure 3-4.

Figure 3-4 Java Compiler Preference settings

21.Click OK to close the Preferences dialog box.

22.If prompted to perform a rebuild, select Yes.

3.3.5 Task 5: Configure the target platform

The target platform is the application that will launch during testing and will
contain your plug-in. The target platform also gives you access to the available
extension points contained in the target platform. When searching the target
location for plug-ins, Eclipse assumes plug-ins are in a /plugins subdirectory of
the target location (for example, c:\Program Files\IBM\Sametime Connect
7.5\plugins).
48 Extending Sametime 7.5: Building Plug-ins for Sametime

Configure target platform to Sametime Connect
By default, Eclipse configures the target platform to Eclipse. You modify the
target platform to gain access to the plug-ins associated with Sametime Connect.
This will cause Lotus Sametime Connect to start whenever you run or debug
plug-ins in the Eclipse IDE. This will also expose the available Sametime
extension points that you will later extend with code.

Follow these instructions to configure the target platform:

1. Start Eclipse. When prompted to select a workplace, choose the workplace
directory you created in 3.3.4, “Task 4: Configure the run time environment”
on page 43.

2. Select Window → Preferences to display the Preferences dialog box.

3. Expand Plug-in Development and select Target Platform.

4. Click the Browse button next to the Location field, and navigate to the
Sametime subdirectory where you installed Lotus Sametime Connect 7.5, for
example, c:\Program Files\IBM\Sametime Connect 7.5, and then click OK.

Note: Do not select the plugins subdirectory.
 Chapter 3. Setting up the Integrated Development Environment 49

The target platform preferences page now contains a list of the plug-ins
associated with the Sametime 7.5 Connect application, as shown in Figure 3-5.

5. Verify that the Preferences dialog box looks similar to Figure 3-5.

.

Figure 3-5 Specifying plug-in target location

Optional: Copy the development-time plug-in to the Sametime
Connect plug-ins directory
The com.ibm.collaboration.realtime.doc.isv folder contains a development-time
plug-in that will be read by the Eclipse IDE to provide context assist. It must be
located in the same directory as the target platform (for example, c:\Program
Files\IBM\Sametime Connect 75\plugins).

1. Copy the
C:\st75sdk\client\connect\javadoc-plugin\com.ibm.collaboration.realtime.doc.i
sv folder, to the \Sametime Connect 7.5\plugins directory (for example,
50 Extending Sametime 7.5: Building Plug-ins for Sametime

c:\Program Files\IBM\Sametime Connect 7.5\plugins), as shown in
Figure 3-6.

Figure 3-6 Copying com.ibm.collaboration.realtime.doc.isv folder

Optional: Associate Eclipse source code to plug-ins
The Eclipse plug-ins included in the Lotus Sametime Connect installation do not
include source code. Having the source code available is useful for when you
want to debug plug-ins that use this code (skipping this task will result in “source
code not found” being shown in the editor when stepping through your plug-in
using the Eclipse debugger).

Follow these instructions to associate source code with these plug-ins:

1. Select Window → Preferences → Plug-in Development → Target
Platform.

2. Select the Source Code Locations tab.

3. Click Add… .

4. Browse to the plugins directory of the Eclipse 3.2 IDE installation and expand
org.eclipse.platform.source.win32.win32.x86_3.2.0.v20060609m-AgOex
n6hlEUsvBO.

5. Select the \src subdirectory and click OK.
 Chapter 3. Setting up the Integrated Development Environment 51

6. Repeat steps 8 through 10 to select the \src directories shown in Figure 3-7.

Figure 3-7 Selecting source code locations

After selecting each of the src directories, the target platform preferences window
should look like Figure 3-8.

Figure 3-8 Target platform preferences selected
52 Extending Sametime 7.5: Building Plug-ins for Sametime

7. Click OK to save your changes.

3.3.6 Task 6: Create a launch configuration

The launch configuration is used to run or debug the plug-ins using the Lotus
Sametime Connect target platform you created in 3.3.5, “Task 5: Configure the
target platform” on page 48.

The launch configuration contains configuration information for launching your
application. By creating a new launch configuration, you can control different
things, such as the JRE to use, VM arguments, projects to include, tracing,
environment variables, and so on.

Follow these instructions to create a new launch configuration.

1. Start Eclipse. Select the workspace.

2. In the plug-in perspective, select Run → Run… in order to configure the run
time environment.

3. Double-click Eclipse Application on the navigator list.

The new configuration window displays.

4. In the Name field, enter the launch configuration name, for example, ST 7.5.

5. In the Location field, enter the name of the workplace, for example,
C:\sametime75Dev\workspace.

6. Use the Clear workspace data before launching check box to determine
whether or not the application starts new each time or with previous
configuration changes. Checking the check box will clear your Sametime

Important: Choose the same workplace directory you created in 3.3.4, “Task
4: Configure the run time environment” on page 43.

Note: The workspace you specify here is the one that Lotus Sametime
Connect will use to store product settings when you launch it from Eclipse.
This is not the same workspace that Lotus Sametime Connect uses when
you launch it outside of the Eclipse IDE.

Restriction: You should not select the same workspace directory that you
are using for Eclipse configuration settings (the one you selected in
previous steps).
 Chapter 3. Setting up the Integrated Development Environment 53

Connect and plug-in preferences each time you start the application from
Eclipse.

7. In the Program to Run section, click Run an Application.

8. If necessary, in the Run an Application field, click the drop-down arrow and
select com.ibm.collaboration.realtime.application.RTCApplication.

9. If necessary, click the drop-down arrow next to the Runtime JRE field and
select the J9 JCL Desktop runtime configuration (JCL Desktop) you created
in “.Task 3: Install the J9 JDT launching plug-in for Eclipse (Windows and
Linux platforms)” on page 42.

Your window should look like the window shown in Figure 3-9.

Figure 3-9 Create a new launch configuration

10.Select the Arguments tab and enter the following in the VM arguments field:

-Xint -Xtrace:none -Xgcpolicy:gencon -Djava.home=<JRE_HOME>
-Dcom.ibm.pvc.webcontainer.port=7777
54 Extending Sametime 7.5: Building Plug-ins for Sametime

11.Click the Plug-ins tab and make sure Launch with all workspace and
enabled external plug-ins is selected.

12.Click Apply to save your changes.

13.Click Run to launch the configuration.

Lotus Sametime Connect is launched from the plug-in development environment
of Eclipse.

3.4 Installing sample plug-ins

Here we discuss installing some sample plug-ins.

3.4.1 About sample plug-ins

The IBM Lotus Sametime Software Development Kit includes sample plug-ins.
You can view and reuse some the extensions used to create these plug-ins, or
you may choose to modify a sample-plug-in to add your own functionality. For
more information about the sample plug-ins, see Chapter 1, “Introduction to
Sametime 7.5” on page 3.

Note: <JRE_HOME> is the location of the J9 JCL Desktop run time
environment on the Lotus Sametime 7.5 SDK. This is the environment where
you configured the JRE in 3.3.4, “Task 4: Configure the run time environment”
on page 43.

If you installed the SDK to c:/st75sdk in a windows environment, then you
would enter the following (with no spaces or linebreaks):

-Xint -Xtrace:none -Xgcpolicy:gencon
-Djava.home=C:\st75sdk\client\connect\j9-runtime\win32
-Dcom.ibm.pvc.webcontainer.port=7777

Linux only: Select the Environment tab and create a new environment
variable called MOZILLA_FIVE_HOME. The value of the variable should be
the path where Mozilla is installed on your machine, for example,
/usr/lib/mozilla-1.7.13.
 Chapter 3. Setting up the Integrated Development Environment 55

3.4.2 Sample plug-in extensions

Table 3-1 lists the sample plug ins that are included in the Sametime SDK; the
table also lists the extensions used in each.

Table 3-1 Sametime SDK Plug-in extensions

3.4.3 Procedure to install sample plug-ins

Follow these instructions to install the Sametime SDK sample plug-ins.

1. Start Eclipse and select the workspace.

Plug-in Extensions used:
com.ibm.realtime.collaboration...

Recent Buddies � *imhub.miniApps

� *messages.MessageHandlerListener

� org.eclipse.ui.popupMenus (object
contributions)

BuddyNote � *imhub.miniApps

� *messages.MessageHandlerListener

Quick Response � *chatwindow.popupAddOn

� *chatwindow.chatAction

� org.eclipse.ui.preferencePages

Acronym Expander � *messages.MessageHandlerListener

� org.eclipse.ui.preferencePages

St Branding � *.ui.stbranding

Snippets � *chatwindow.chatAction

� *chatWindow.chatArea

� *chatwindow.nwayListExtension

� *chatwindow.popupAddOn

� *messages.MessageHandlerListener

� org.eclipse.ui.popupMenus (object
contributions)

� org.eclipse.ui.actionSets

Important: Choose the same workplace directory you created in 3.3.4, “Task
4: Configure the run time environment” on page 43.
56 Extending Sametime 7.5: Building Plug-ins for Sametime

2. Select Window → Open Perspective → Other → Plug-in Development to
open the plug-in development perspective.

3. Select File → Import... → Plug-in Development > Plug-ins and Fragments
to import the sample plug-ins from the Lotus Sametime 7.5 SDK to your
development environment.

4. Click Next.

5. In the Import From section, deselect The target platform (as specified in
the Preferences).

6. Click Browse... and search for the samples subdirectory of the st75sdk
directory, for example, C:\st75sdk\client\connect\samples, and then click OK.

7. In the Import As section, select Projects with source folders, as shown in
Figure 3-10.

.

Figure 3-10 Import Plug-in and Fragments

8. Click Next.

9. In the Selection dialog box, click Add All.

10.Click Finish.
 Chapter 3. Setting up the Integrated Development Environment 57

The Lotus Sametime SDK plug-ins are added to your Package Explorer, as
shown in Figure 3-11.

Figure 3-11 Sametime SDK plug-ins added to Eclipse environment.

To run the plug-ins in debug mode, select Run → Debug… to launch the
configuration from the Eclipse main menu.

To run the plug-in in a Sametime Connect client:

1. Select Run → Run... and select the name of the plug-in.

Congratulations, you are now ready to start creating plug-ins for your Sametime
Connect client.

For additional information, see the IBM Lotus Sametime Connect 7.5 Integration
Guide, found at:

http://www-128.ibm.com/developerworks/lotus/downloads/toolkits.html

3.5 Terminology for working in Eclipse

An explanation of the following terms will be useful as you begin working in the
Eclipse development environment.

� Workbench

� Workspace

� Perspective
58 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www-128.ibm.com/developerworks/lotus/downloads/toolkits.html

The Eclipse development environment (and Eclipse applications) runs inside an
environment called a workbench. The workbench is a collection of toolbars,
menus, and one or more perspectives. Essentially, you can think of the
workbench as the Eclipse IDE. When starting a new project, you can create a
specific profile for a development project, known as a workspace.

In the Eclipse IDE, you can associate development profiles (workspaces) to run
inside the workbench. In the process of configuring the IDE, we have already
created a new workspace configured for Sametime 7.5 Connect Client plug-in
development. (See “Creating the Workspace” on page 44.) This new workspace
can be reused in the future for any Sametime plug-in projects.

Note: Please refer to Figure 3-12 on page 60 for a visual explanation of these
terms.
 Chapter 3. Setting up the Integrated Development Environment 59

Figure 3-12 illustrates these terms within the context of the Eclipse IDE.

Figure 3-12 Eclipse Workbench - explaining the terminology of perspectives within a project

Workbench is essentially the entire IDE, including toolbars and menus

A perspective represents different views into the project, including
a list of packages, a class editor and an outline view of the classes in the
plug-in.
60 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 4. Extension points

The ability to extend the IBM Lotus Sametime 7.5 Connect Client is a virtue of its
Eclipse-based architecture. The Connect Client exposes a number of extension
points through which a developer can add new functionality via the creation of
custom plug-ins.

The majority of these extension points affect the client’s user interface, allowing
the creation of new visual enhancements. For example, you can create a new
action menu item in the Tools menu, or add a new choice to the context menu
that appears when you right-click a buddy in your contact list. The branding of the
Sametime Connect Client is also accomplished via extension points (see
Chapter 5, “Introduction to building a plug-in: modifying the UI” on page 161 for a
full description of branding the client).

Other extension points permit interaction with the Sametime Connect client’s
internal messaging system, letting you react to important events, such as
incoming or outgoing chats.

This chapter details the available extension points, giving simple examples of the
steps necessary to implement each one:

� User interface extension points

� Adding to the contact list window

� Adding to the chat window

� Adding to the nway chat (multi person chat) window

4

© Copyright IBM Corp. 2007. All rights reserved. 61

� Adding a preference page

� Adding a mini application

� Message Event Notification extension point

Attention: Much of the sample code used within this chapter’s examples can
be downloaded from the IBM Redbooks FTP site. Please refer to Appendix A,
“Additional material” on page 557 for detailed instructions on how to download
and deploy the code sample:

ftp://www.redbooks.ibm.com/redbooks/SG247346
62 Extending Sametime 7.5: Building Plug-ins for Sametime

ftp://www.redbooks.ibm.com/redbooks/SG247346

4.1 Introduction

Eclipse plug-ins can define extension points using an extension point schema.
The schema defines how a plug-in, called an extender plug-in, can modify the
host plug-in by declaring an extension. Extension points are defined on the host
plug-ins, while extensions are declared by the extender plug-ins.

One way to think about this is to imagine a power-strip: the power strip is an
extension point. The plugs that connect to the sockets are extensions. Sametime
Connect consists of a base set of plug-ins that expose certain extension points.
You can extend the functionality of Sametime Connect by creating plug-ins that
contribute to (extend) these extension points. The interconnections among
plug-ins, extensions, and extension points are defined by the plug-in’s manifest
file.

In order to extend Sametime Connect, you need to perform the following tasks:

1. Create a plug-in and a plug-in project to house it during development.

2. Add any required dependencies.

3. Declare the extension point(s) you will be extending.

4. Create your extension(s).

5. Install, test, and deploy your plug-in (covered fully in Chapter 12, “Deploying
plug-ins for Sametime 7.5” on page 525).
 Chapter 4. Extension points 63

4.1.1 Creating a plug-in project and plug-in

To extend the Sametime 7.5 Connect user interface, we first need to create a
plug-in and a containing plug-in project.

1. Select File → New → Project, as shown in Figure 4-1.

Figure 4-1 Eclipse New Project wizard

2. In the New Project dialog, select Plug-in Project and click Next.

3. Enter a project Name and accept the rest of the defaults, as shown in
Figure 4-1, and then click Next.
64 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-2 New Plug-in Project wizard

The Plug-in Content dialog displays, as shown in Figure 4-3 on page 66.

4. Optionally, change the Plug-in Name and Plug-in Provider settings.

5. In the Plug-in Options section, leave the defaults.

The Activator class specifies the plug-in’s life cycle on your behalf. There is
one Activator instance per plug-in. The This plug-in will make contributions
to the UI option is left checked as in one of our examples, we will be adding a
preference page that counts as a direct contribution to the Eclipse UI. The
Sametime Connect API provides a means of extending the Connect UI. If we
were just extending the Connect UI, making a contribution to the Eclipse UI
would not be necessary. In our case, we are creating an Eclipse preference
page that extends the Eclipse UI. By leaving this option checked, the wizard
will make our Activator class extend org.eclipse.ui.plugin.AbstractUIPlugin.

If we had deselected this option, the wizard would make our Activator class
extend org.eclipse.core.runtime.Plugin. The AbstractUIPlugin class itself
extends Plugin, but provides a few extra methods and gives direct access to
the Eclipse UI.

6. Click Finish.
 Chapter 4. Extension points 65

Figure 4-3 Plug-in Project details

Note that the org.eclipse.ui and org.eclipse.core.runtime plug-ins were added as
dependencies by the wizard (Figure 4-4), and that an Activator.java file was
created (Figure 4-5 on page 67).

Figure 4-4 Plug-ins added as dependencies by the Plug-in Project wizard
66 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-5 Activator class created by the Plug-in Project wizard

4.2 User interface extension points

There are a number of extension points that allow you to integrate your
functionality seamlessly into the user interface of the Sametime Connect client.
These include:

� Adding new capabilities into the chat window

� Adding an icon to the tool action bar

� Adding menu items to different views and objects, such as the n-way multi
chat participant list
 Chapter 4. Extension points 67

Figure 4-6 highlights some of the features that can be extended from the Lotus
Sametime Connect client.

Figure 4-6 Lotus Sametime Connect client extension points
68 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-7 highlights UI features that can be extended in the chat window.

Figure 4-7 Chat window extension points

4.3 Adding to the contact list window

There are a number of extension points that allow you to integrate your
functionality seamlessly into the user interface of the Sametime Connect client.
These include:

� Adding an action to the Menu bar

� Adding an action to the Tool Bar

� Adding an action to the system tray menu

� Adding to the context (right-click) menu
 Chapter 4. Extension points 69

4.3.1 Adding an action to the Menu bar

Figure 4-8 shows a custom action that was added to the Connect client’s menu
bar.

Figure 4-8 A custom action added to the Connect client’s menu bar

To add an action to the contact list’s Menu bar, we start by specifying the
extension point that we are going to be extending. In this case, it is one of the
core Eclipse extension points, org.eclipse.ui.actionSets.

1. Open the plug-in’s manifest file (if it is not already open) by double-clicking the
MANIFEST.MF file.
70 Extending Sametime 7.5: Building Plug-ins for Sametime

2. Select the Extensions tab and click Add... (Figure 4-9).

Figure 4-9 The Extensions tab of the plug-in’s manifest file
 Chapter 4. Extension points 71

3. Select the org.eclipse.ui.actionSets extension point, and then click Finish
(see Figure 4-10).

Figure 4-10 Extension point selection wizard

Note that a plugin.xml tab is created as soon as new extension is defined
(Figure 4-11), and that XML is added to this plugin.xml file by the wizard
(Figure 4-12 on page 73).

Figure 4-11 plugin.xml tab added by the wizard
72 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-12 plugin.xml file after extension point specified

4. Right-click the extension point and select New → actionSet to create a new
actionSet extension element (see Figure 4-13).

Figure 4-13 Adding a new actionSet extension element

5. In the label field, enter a value that is more meaningful (see Figure 4-14).

Figure 4-14 actionSet extension element details
 Chapter 4. Extension points 73

Figure 4-15 shows the XML added to the plugin.xml page by the wizard.

Figure 4-15 plugin.xml after addition of actionSet element

6. Right-click the actionSet extension element and select New → action to add
a new action extension element (see Figure 4-16).

Figure 4-16 Adding a new action extension element

7. Confirm that the id field contains a unique value.

8. Add a value for the label property.

9. In the menubarPath property, enter tools/toolsEnd (see Figure 4-17).

Figure 4-17 action extension element details
74 Extending Sametime 7.5: Building Plug-ins for Sametime

The menubarPath property controls where the action appears in the Menu Bar.
The value tools/toolsEnd puts it at the bottom of the Tools menu.

Add the action item to the Menu Bar
In order to get the action item into the Connect client’s Menu Bar, we need to
extend another core extension point, org.eclipse.ui.actionSetPartAssociations.
This extension point is used to define an action set that should be added to a
particular Eclipse view or editor. In our case, we are trying the action set we
created earlier to the Connect client’s Menu Bar via its id property,
com.ibm.collaboration.realtime.imhub.

1. Add the org.eclipse.ui.actionSetPartAssociations extension point (see
Figure 4-18).

Figure 4-18 Extension Point Selection dialog
 Chapter 4. Extension points 75

2. Right-click the extension point and select New → actionSetPartAssociation
to create a new extension element (Figure 4-19).

Figure 4-19 Adding a new actionSetPartAssociation extension element

3. In the targetID property field (see Figure 4-20), enter the same actionSet ID
that was set earlier (see Figure 4-14 on page 73).

Figure 4-20 targetID property for the actionSetPartAssociation element

4. Right-click the actionSetPartAssociation element and select New → part
(see Figure 4-21).

Figure 4-21 Creating a new part extension element

5. Change the id property to com.ibm.collaboration.realtime.imhub. This makes
it display in the Menu Bar (see Figure 4-22 on page 77).

Note: The id property must be com.ibm.collaboration.realtime.imhub or the
action will not appear in the Menu Bar.
76 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-22 The ID of the part must be com.ibm.collaboration.realtime.imhub

Figure 4-23 shows the XML added to the plugin.xml file by the wizard.

Figure 4-23 plugin.xml after addition of part element

This is enough to get the new option to appear in the menu.

Test the Menu Bar action item
1. Select Run → Run... from the menu.

2. Click No if prompted to clear run time workspace data. The clear workspace
data option determines whether or not the application starts new each time or
with previous configuration changes. For example, enabling this option clears
the Connect preferences each time you start it from Eclipse. To be given the
choice of whether to delete the workspace data for a given launch of this
configuration, select Ask for confirmation before clearing and a
confirmation dialog box will be displayed for each run of this configuration.

3. Login to the Sametime server when prompted to do so.
 Chapter 4. Extension points 77

4. Click the Tools menu to see a new menu option at the bottom of the list, as
shown in Figure 4-24.

Figure 4-24 Custom action in the Tools menu

5. Click the menu item to launch a dialog box, which displays “The chosen
option is not currently available.” (Figure 4-25) This is an example of Eclipse’s
lazy-loading architecture. There is enough information in the plugin.xml file to
add the menu option to the Tools menu without Eclipse actually having to load
any code.

Figure 4-25 Error generated when clicking the action
78 Extending Sametime 7.5: Building Plug-ins for Sametime

Create the action’s code
Now we need to create a class file and write some code to actually get
something to happen when a menu option is clicked.

1. Display the Extensions tab.

2. Select the action element and click the class link to create the extension class
file (Figure 4-26).

Figure 4-26 Class link that launches New Class wizard

3. In the New Class dialog, click the Browse button to select the correct
package.

Figure 4-27 Package selection dialog
 Chapter 4. Extension points 79

4. Enter a class Name, and confirm that it implements the
org.eclipse.ui.IWorkbenchWindowActionDelegate interface (Figure 4-28).

5. Accept the rest of the defaults and click Finish.

Figure 4-28 New Java Class wizard

6. We need to implement the interface’s run() method, which is the method
called when the menu item is actually clicked. We will use a JFace
MessageDialog object, so we need to import the
org.eclipse.jface.dialogs.MessageDialog class. Example 4-1 on page 81
shows the code to launch a dialog box and display a simple text message.
80 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 4-1 MenuBarAction’s run() method

public void run(IAction arg0) {
MessageDialog.openInformation(null, "Redbook Extension Points",

"Menu Bar action");

}

7. If required, save the class file and the plugin.xml file.

Figure 4-29 shows the XML code added to the plugin.xml file by the wizard that
generated the class file.

Figure 4-29 plugin.xml after class generation

8. Click Run → Run... to launch the run time workspace so we can see the
plug-in in action.

9. When the Connect client has launched and you have logged in, click the new
menu item. The run() method of the MenuBarAction class is called, and the
dialog box displays (Figure 4-30).

Figure 4-30 Clicking the menu action displays the dialog box
 Chapter 4. Extension points 81

Table 4-1 summarizes the extension points we have extended in this example,
and the dependency required by our plug-in.

Table 4-1 Summary of extension points and dependencies

4.3.2 Adding an action to the Tool Bar

Figure 4-31 shows a custom action added to the Tool Bar.

Figure 4-31 Custom action added to the Tool Bar

As in the previous example, we start by specifying the extension point we are
going to extend. In this case, it is another of the core Eclipse extension points,
org.eclipse.ui.viewActions.

1. After adding the viewActions extension point, add a new viewContribution
extension element by right-clicking the extension point and selecting New →
viewContribution.

Extension point(s) extended Required plug-in(s)

org.eclipse.ui.actionSets
org.eclipse.ui.actionSetPartAssociations

org.eclipse.ui
82 Extending Sametime 7.5: Building Plug-ins for Sametime

2. Set the targetID property to com.ibm.collaboration.realtime.imhub as shown
in Figure 4-32.

Figure 4-32 viewContribution extension element details

3. Right-click the viewContribution element and select New → action to add a
new action extension element.

4. Confirm that the id is a unique value, and enter the label and toolbarPath
properties. The location of the action in the Tool bar is controlled by the
toolbarPath property. Figure 4-33 shows the valid values for the toolbarPath
property.

Figure 4-33 Locations for adding an action to the Tool Bar.

The enablesFor property is a numerical value indicating the selection count that
must be met to enable the action. If this attribute is specified and the condition is
met, the action is enabled. If the condition is not met, the action is disabled. If no
attribute is specified, the action is enabled for any number of items selected.

5. We also need to add an icon to the Tool bar, for the user to click. To add an
icon image, we need to first add an image folder to the plug-in.

Note: The targetID must be set to com.ibm.collaboration.realtime.imhub for
the action to appear in the Tool Bar.
 Chapter 4. Extension points 83

Right-click the top-level project and select New → Folder (Figure 4-34).

Figure 4-34 Adding a new folder to the plug-in project

6. In the Folder name field, enter the folder name (images is a standard name).
84 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-35 Specify the folder name

7. Right-click the folder and select File → Import to import the image you wish
to copy into the image folder.

8. After you have imported your image from the plug-in manifest’s Extensions
tab, click the Browse... button next to the icon field, and select your image.

9. Repeat step 8 for the disabledIcon field if you want to show a different image
while the action is not enabled.

10.Our class needs to extend the
com.ibm.collaboration.realtime.imhub.actions.BuddyListAction class, so we
need to add the com.ibm.collaboration.realtime.imhub plug-in as a
dependency.
 Chapter 4. Extension points 85

Select the Dependencies tab and click Add. Find the
com.ibm.collaboration.realtime.imhub plug-in and click OK. (see Figure 4-36

Figure 4-36 Adding the com.ibm.collaboration.realtime.imhub plug-in as a dependency

11.Click the class link to create the class file.

The New Java Class dialog displays (see Figure 4-37 on page 87).

12.Select the correct package.

13.Enter the class Name.

14.Remove the default interface and add the Superclass
com.ibm.collaboration.realtime.imhub.actions.BuddyListAction.

15.Deselect the option to implement Inherited abstract methods; we only need to
override the superclass’ run() method (Figure 4-37 on page 87).
86 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-37 Creating the action class

16.We use a JFace MessageDialog to open a pop-up window when the Tool Bar
icon is clicked.

Example 4-2 JFace MessageDialog

public void run() {
MessageDialog.openInformation(null, "Redbook Extension Points",

"Tool Bar action");

}

 Chapter 4. Extension points 87

Table 4-2 summarizes the extension point we have extended in this example, and
the plug-in dependencies we needed.

Table 4-2 Summary of extension points and dependencies

4.3.3 Adding an action to the system tray menu

When the Sametime Connect client is minimized to the system tray, users can
right-click the Sametime icon to launch a menu (see Figure 4-38). It is possible to
add a custom action to this menu.

Figure 4-38 Custom action added to the system tray menu

1. On the Extensions tab, add the extension point org.eclipse.ui.actionSets.

2. Right-click the extension point and select New → actionSet to add a new
actionSet extension element.

3. Set the id property to be something starting with
com.ibm.collaboration.realtime, and add a label property, as shown in
Figure 4-39.

Figure 4-39 actionSet extension element details

Extension point(s) extended Required plug-in(s)

org.eclipse.ui.viewActions org.eclipse.ui
com.ibm.collaboration.realtime.imhub
88 Extending Sametime 7.5: Building Plug-ins for Sametime

4. Add a new action extension element by right-clicking the actionSet element
and selecting New → action.

5. Enter values for the id, label, and menubarPath properties.

The label property controls the menu action’s text label, while the
menubarPath property controls its location within the menu. Figure 4-40
shows valid values for the menubarPath property.

Figure 4-40 menubarPath property values for the system tray menu

6. Click the class link to create the action’s class.

The class needs to implement the IWorkbenchWindowActionDelegate
interface. The interface’s run(IAction) method is called when the user clicks on
the menu item. Again, we use a JFace MessageDialog object to open a dialog
box (see Example 4-3).

Example 4-3 SystemTrayAction’s run() method

public void run(IAction arg0) {
MessageDialog.openInformation(null, "Redbook Extension Points",

"System Tray action");

}

Note: The id property must begin with com.ibm.collaboration.realtime;
otherwise, the action will not show up in the system tray.
 Chapter 4. Extension points 89

Table 4-3 summarizes the extension point we have extended in this example, and
the plug-in dependency we needed.

Table 4-3 Summary of extension points and dependencies

4.3.4 Adding to the context (right-click) menu

The org.eclipse.ui plug-in provides the org.eclipse.ui.popupMenus extension
point, which allows custom plug-ins to add new actions to the context menus
owned by other plug-ins. Such action contributions can be made against a
specific object type by using the objectContribution element.

When using the objectContribution element, the action will appear in all context
menus where objects of the specified type are selected. The Sametime Connect
API exposes two interfaces in the com.ibm.collaboration.realtime.livenames
package (PersonSelection and GroupSelection) in the
com.ibm.collaboration.realtime.people plug-in to represent Person and Group
objects whose context menus you can contribute.

Add an action to a person selection
Figure 4-41 on page 91 shows a custom action added to the person context
menu.

Extension point(s) extended Required plug-in(s)

org.eclipse.ui.actionSets org.eclipse.ui
90 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-41 Custom action added to person context menu

1. Add the plug-in dependency com.ibm.collaboration.realtime.people.

2. Add the required extension point, org.eclipse.ui.popupMenus.

Right-click the extension point and select New → objectContribution.

3. Ensure the id is a unique value.
 Chapter 4. Extension points 91

4. For the objectClass, click Browse and select
com.ibm.collaboration.realtime.livenames.PersonSelection
(Figure 4-42).

Figure 4-42 Select the PersonSelection interface

This is how we specify that we want to apply the context menu of a selected
person. Menu actions added via object contributions are added wherever an
object fulfilling the specified objectClass interface appears (in this case,
PersonSelection).

5. Right-click the objectContribution element and select New → action.

6. Keep or modify the id, label, and class name.

The label is the text that will appear in the context menu. Its position in the
context menu is controlled by the menubarPath property. Figure 4-43 on
page 93 shows the valid values for the menubarPath property.
92 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-43 Valid values for the menubarPath property

The enablesFor property is a numerical value indicating the selection count
which must be met to enable the action.

As defined in the schema for the org.eclipse.ui.popupMenus extension point,
our class must implement the org.eclipse.ui.IObjectActionDelegate interface.
We do this by extending the
com.ibm.collaboration.realtime.livenames.LiveNameActionDelegate helper
class, which implements the required interface. To do this, we first need to
add another plug-in dependency.
 Chapter 4. Extension points 93

7. Click the Dependencies tab in the plug-in manifest and add the
com.ibm.rcp.realtime.livenames plug-in to the list of required plug-ins
(Figure 4-44).

Figure 4-44 Adding the com.ibm.rcp.realtime.livenames plug-in as a dependency

8. Click the class link to create the class file.

9. To extend the correct class, click the Browse... button next to the Superclass
field and select LiveNameActionDelegate (Figure 4-45).

Figure 4-45 Extend the LiveNameActionDelegate class

10.Accept the defaults and click Finish.
94 Extending Sametime 7.5: Building Plug-ins for Sametime

You will see that the wizard has created a run() method that takes an IAction
object as a parameter. The run() method is invoked when the context menu
item is clicked, with Eclipse passing in the IAction object.

To show that this works, add our familiar JFace MessageDialog code to the
run() method (Example 4-4).

Example 4-4 Opening a MessageDialog when the menu item is clicked

public void run(IAction arg0) {
MessageDialog.openInformation(null, "Redbook: Context menu

action", "Context menu bar action");

}

If we launch the run time workspace now (Run → Run...), we will see the action
in the context menu when we right-click a name in the contact list. Clicking the
menu item opens the dialog box shown in Figure 4-46.

Figure 4-46 Custom action in the person selection context menu
 Chapter 4. Extension points 95

A dialog box with a static message is enough to show that our code is working,
but is not particularly useful. In the real world, it is more practical for our context
menu action to want to work with the name of the person you have just clicked.
We can find that information by using the getSelectedPersons() method inherited
from the LiveNameActionDelegate class. This returns an array of Person objects.
If we have clicked only one name, that will be the first and only name in the array
(Example 4-5). For multiple selections, you would need to access each element
of the array in turn.

Example 4-5 Accessing the display name of the selected contact

public void run(IAction arg0) {
Person[] persons = getSelectedPersons();
Person person = persons[0];

MessageDialog.openInformation(null, "Redbook: Context menu
action", person.getDisplayName());

}

The enablement criteria for an action extension is initially defined by the
enablesFor attribute, as discussed earlier. However, once the action class has
been instantiated, it may control the action enablement state directly within its
selectionChanged() method (inherited from LiveNameActionDelegate).

Table 4-4 summarizes the extension point we have extended in this example, and
the plug-in dependencies for this plug-in.

Table 4-4 Summary of extension points and dependencies

Adding an action to a group selection
This is very similar to creating the person action, except this time we only want
our action to be applicable to group objects. We do this by defining our object
contribution to be GroupSelection rather than PersonSelection (see Figure 4-47
on page 97).

Extension point(s) extended Required plug-in(s)

org.eclipse.ui.popupMenus org.eclipse.ui
com.ibm.collaboration.realtime.people
com.ibm.rcp.realtime.livenames
96 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-47 Adding an action to a group selection

1. Add the extension point org.eclipse.ui.popupMenus.

2. Create an objectContribution extension element by right-clicking the
extension point.
 Chapter 4. Extension points 97

3. For the objectClass, click Browse... and select the
com.ibm.collaboration.realtime.livenames.GroupSelection interface, as
shown in Figure 4-48.

Figure 4-48 Select the GroupSelection interface as the object contribution

The position of the action in the menu is again controlled by the menubarPath
variable. Figure 4-49 shows the valid values for the property.

Figure 4-49 Valid menubarPath property values

4. When creating our class, we also want to extend the
com.ibm.collaboration.realtime.livenames.GroupActionDelegate helper class.
98 Extending Sametime 7.5: Building Plug-ins for Sametime

In the Superclass field, click Browse... and select GroupActionDelegate, as
shown in Figure 4-50.

Figure 4-50 Extend the GroupActionDelegate class

Again, we could just implement a static message dialog, but that is not
particularly useful. We would probably like to know the group name, the group
type, who is in the group, and how many of them are online. The code for this
is shown in Example 4-6.

Example 4-6 Obtaining the group name and contents from the menu action

public void run(IAction arg0) {
Group[] myGroups = getSelectedGroups();
Group myGroup = myGroups[0];

String groupName = myGroup.getName();
String groupType = myGroup.getType();
int i = myGroup.getNumberOnlineChildren();

Person[] groupMembers = myGroup.getPersons();
int j;
StringBuffer sb = new StringBuffer();
for (j=0; j<groupMembers.length; j++)
{

Person groupMember = (Person) groupMembers[j];
sb.append(groupMember.getDisplayName() + "\n");

}

MessageDialog.openInformation(null, "Redbook: Context menu
action", "You clicked on the " +
 Chapter 4. Extension points 99

groupName + " group, which is a " + groupType + " group,
with " + i + " online member(s)..." +

"\n\nThe members of the group are: \n\n" + sb.toString());
}

Clicking the context menu item will result in a dialog similar to the one shown in
Figure 4-51.

Figure 4-51 Dialog generated by clicking the group context menu action

If we need to handle multiple group selections, we could iterate through the array
returned by the getSelectedGroups() method and handle each Group object in
turn.

Table 4-5 summarizes the extension point we have extended in this example, and
the plug-in dependencies for this plug-in.

Table 4-5 Summary of extension points and dependencies

4.4 Adding to the chat window

There are a number of ways of contributing to the UI of the chat window:

� Adding an action to the Menu Bar

� Adding an action to the Tool Bar

� Adding an action to both the Menu and Tool Bars

� Adding an action to the Format Bar

Extension point(s) extended Required plug-in(s)

org.eclipse.ui.popupMenus org.eclipse.ui
com.ibm.collaboration.realtime.people
com.ibm.rcp.realtime.livenames
100 Extending Sametime 7.5: Building Plug-ins for Sametime

� Adding a chat area extension

� Adding a pop-up message area

4.4.1 Adding an action to the Menu bar

Figure 4-52 shows a custom action added to the Menu bar of the chat window.

Figure 4-52 Custom action added to Menu bar of chat window

1. Adding an action to the menu bar of the chat window involves adding the
required extension point,
com.ibm.collaboration.realtime.chatwindow.chatAction. If you try to add this
extension point, it does not appear in the list of available extension points,
which means that it must depend on a plug-in that we have not yet added as a
dependency.
 Chapter 4. Extension points 101

2. Deselect the option Show only the extension points for the required
plug-ins

You should now be able to locate the chatAction extension point, as shown in
Figure 4-53.

Figure 4-53 Deselect the required plug-ins option to find the required extension point

3. Click Finish.

Eclipse prompts you to add the plug-in
com.ibm.collaboration.realtime.chatwindow to the list of plug-in
dependencies, as shown in Figure 4-54 on page 103.
102 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-54 Prompt to add to the list of plug-in dependencies

4. Click Yes.

If you select the Dependencies tab, you will see that the wizard has added
the com.ibm.collaboration.realtime.chatwindow plug-in to the list, as shown in
Figure 4-55.

Figure 4-55 Updated list of plug-in dependencies

5. Select the Extensions tab and right-click the newly added extension. Select
New → chatAction.

Figure 4-56 Add a new chatAction extension element
 Chapter 4. Extension points 103

6. Modify or keep the plug-in and class name.

7. Change the Type to be menu. This adds the action to the Menu bar of the
chat window.

8. Add the text for the menu item label in the displayName field.

9. The menubarPath property controls the location of the action in the Menu Bar.
Table 4-6 lists valid values for the menubarPath property.

Table 4-6 Valid values for the menubarPath property

10.The showsFor attribute specifies whether the action is enabled for a 1-1 chat
(single), multi-party chat (multi), or both.

11.Click the class link to create the class file for this extension.

12.We want our class to extend the ChatWindowAction class.

Remove the interface suggested by the wizard and add
com.ibm.collaboration.realtime.chat.actions.ChatWindowAction as the
Superclass.

13.Deselect the Inherited abstract methods option. We only need to implement
one method for our example.

14.Add a public run() method to call the JFace MessageDialog window, as shown
in Example 4-7.

Example 4-7 ChatWindowMenuBarAction’s run() method

public void run(){
MessageDialog.openInformation(null, "Redbook: Chat Window Menu

Bar action", "Chat window menu bar action");
}

Table 4-7 on page 105 summarizes the extension point we have extended in this
example, and the plug-in dependency for this plug-in.

File Edit View Tools Help

file/open
file/save
file/print.group
file/preferences
file/additions
file/fileEnd

edit/editStart
edit/additions
edit/editEnd

view/viewStart
view/additions
view/viewEnd

tools/additionsTop
tools/additionsMiddle
tools/additions
tools/actions
tools/send/additions
tools/insertMenu
tools/insertTop
tools/insert/top
tools/toolsEnd

help/helpStart
help/helpEnd
104 Extending Sametime 7.5: Building Plug-ins for Sametime

Table 4-7 Summary of extension points and dependencies

4.4.2 Adding an action to the Tool bar

Figure 4-57 shows adding an action to the Tool bar.

Figure 4-57 Adding an action to the Tool bar

We can add an action to the Tool bar in a very similar way to how we created the
Menu bar action.

1. Right-click the chatAction extension point and select New → chatAction.

The important difference is the value of the type property, when set to buddy,
the action appears in the Tool bar instead.

2. Create the class file by clicking the class link; as with the Menu bar action,
deselect the suggested interface class and instead extend the
ChatWindowAction class.

3. Implement the exact same run() method as you did in the
ChatWindowMenuBarAction class, so a dialog box will be shown when a user
clicks the action.

Extension point(s) extended Required plug-in(s)

com.ibm.collaboration.realtime.chatwindo
w.chatAction

com.ibm.collaboration.realtime.chatwindo
w

 Chapter 4. Extension points 105

If you do nothing more and run the sample, your action will display as a nice
little red square on the chat window tool bar, as shown in Figure 4-58. This is
the default behavior when Eclipse cannot load an image, when it is either
missing or incorrectly defined.

Figure 4-58 Tool bar action without an image defined

4. Click the action to launch a dialog box as expected. If you want to use a text
label for the action, add it to the displayName property, as shown in
Figure 4-59.

Figure 4-59 Example displayName property

Figure 4-60 on page 107 shows the tool bar action with the text label produced
by the displayName property.
106 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-60 Tool bar action with text label produced by displayName property

5. If you want to use an image instead of text, you can use the image property.
You can optionally add tool tip help in the tooltipText property (see Figure 4-61
and Figure 4-62 on page 108).

Figure 4-61 Example tooltipText and image properties
 Chapter 4. Extension points 107

Figure 4-62 Tool bar action represented by image with tool tip

6. The position of the text or image in the Tool bar is controlled by the path
property. Figure 4-63 shows the valid values for the path property.

Figure 4-63 Valid values for the path property

Table 4-8 on page 109 summarizes the extension point we have extended in this
example, and the plug-in dependency for this plug-in.

Note: If you have an image and a displayName specified, the image takes
precedence and the text will not be displayed.
108 Extending Sametime 7.5: Building Plug-ins for Sametime

Table 4-8 Summary of extension points and dependencies

4.4.3 Adding an action to both Menu and Tool bars

You can add your action to both the Menu bar and the Tool bar by setting the
type to be buddy and including values for both the path and menubarPath
properties, as shown in Figure 4-64 and Figure 4-65 on page 110.

Figure 4-64 Sample properties to add action to both Menu and Tool bars

Extension point(s) extended Required plug-in(s)

com.ibm.collaboration.realtime.chatwindo
w.chatAction

com.ibm.collaboration.realtime.chatwindo
w

 Chapter 4. Extension points 109

Figure 4-65 Chat window showing custom action in both Menu and Tool bars

4.4.4 Adding an action to the Format bar

Figure 4-66 shows a custom action added to the chat window Format bar.

Figure 4-66 Custom action added to chat window Format bar

The Format bar is the icon strip above the chat send area field. Adding an action
to it is done in exactly the same way as the previous two, except the type value is
set to format. Again, you can use text or an image by setting values for the
displayName or image properties respectively.
110 Extending Sametime 7.5: Building Plug-ins for Sametime

1. Create the class file in exactly the same way as before, implementing the
run() method to launch the dialog window.

The location of the action text or image is again controlled by the path
property. Figure 4-67 shows the valid values for the path property.

Figure 4-67 Valid path property values

Figure 4-68 shows sample values for the chatAction extension element.

Figure 4-68 Sample values for the chatAction extension element
 Chapter 4. Extension points 111

4.4.5 Adding a chat area extension

Figure 4-69 shows a chat window with the chat area extension.

Figure 4-69 Chat window with chat area extension

The chatArea is an optional UI expansion area that provides a tab folder in place
of where the chat transcript widget displays, so you can add additional UI
controls that rely on larger screen real estate.

1. We first need to add the required extension point,
com.ibm.collaboration.realtime.chatwindow.chatArea.

Right-click the extension point and select New → chatArea to create a new
chatArea extension element. Keep or modify the id (ensuring that it is unique),
and label, as shown in Figure 4-70 on page 113.
112 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-70 Sample properties for chatArea extension element

2. Click the class link to create the class file. Keep the defaults and click Finish,
as shown in Figure 4-71.

Figure 4-71 Creating the chatArea class

3. We implement the createPartControl() method from the
com.ibm.collaboration.realtime.chatwindow.addon.ChatWindowExtension
interface to produce the UI for the chatArea. In this example, we use an SWT
 Chapter 4. Extension points 113

Browser object and set its URL to be the developerWorks Lotus web site, as
shown in Example 4-8.

Example 4-8 ChatArea’s createPartControl() method

public void createPartControl(Composite arg0) {
Browser browser = new Browser(arg0, SWT.NONE);
browser.setUrl("http://www-128.ibm.com/developerworks/lotus");

}

4. Now that we have created the chatArea, we need to create an action to
display it.

Create a new tool bar action (or modify the existing one) and add code to the
run() method to open the chatArea we just created. The chatArea is opened
by calling the enableChatArea() method of the ChatWindowHandler class,
passing in the id of the chatArea, as shown in Example 4-9.

Example 4-9 ChatWindowOpenChatArea’s run() method

public void run()
{

getChatWindowHandler().enableChatArea("com.ibm.redbooks.extensionpoints
.chatarea");

}

When this code is invoked, a second, tabbed area opens within the chat window.
The original chat transcript area gains a tab with the heading Transcript, while the
new chat area opens with a tab heading with the value of the label property from
the chatArea extension, as shown in Figure 4-72 on page 115.
114 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-72 Chat window showing newly opened chat area

5. The chat area can be closed from an action by calling the disableChatArea()
method of the ChatWindowHandler class, again passing in the id of the
chatArea, as shown in Example 4-10.

Example 4-10 Sample action code to close chat area

public void run()
{

getChatWindowHandler().disableChatArea("com.ibm.redbooks.extensionpoint
s.chatarea");

}

 Chapter 4. Extension points 115

Figure 4-73 Chat transcript area retains tabbed heading after closure of chat area

4.4.6 Adding a pop-up message area

Figure 4-74 on page 117 shows a chat window with a pop-up message area
displayed.

Note: While this closes the new chatArea, it leaves the chat transcript area
with its tab heading of Transcript, as shown in Figure 4-73
116 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-74 Chat window with pop-up message area displayed

Adding a pop-up message area creates a pop-up area at the bottom of the chat
window. It is created by extending the extension point
com.ibm.collaboration.realtime.chatwindow.popupAddOn.

1. Add the extension point and create a new popupAddOn extension element

Right-click and select New → popupAddOn. Enter values for the element id,
name, and class name.
 Chapter 4. Extension points 117

2. Click the class link to create a new class. Add the interface
com.ibm.collaboration.realtime.chatwindow.addon.PopupAddOn, as shown in
Figure 4-75.

Figure 4-75 ChatWindowPopupAddOn class details

3. We need to implement the three methods from this interface (see
Example 4-11 on page 119):

� createControl() produces the actual UI element.

� getInitialSize() returns the initial height (in pixels) of the popup.

� getName() returns the display name of the popup, which appears in the tab if
there is more than one popup.
118 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 4-11 Sample implementations of createControl(), getInitialSize(), and
getName()

public Composite createControl(ChatWindowHandler handler, Composite
parent) {

Composite comp = new Composite(parent, SWT.BORDER);
comp.setLayout(new FillLayout());

Label label = new Label(comp, SWT.CENTER);
label.setText("Redbook: Chat window popupAddOn");

comp.layout();
return comp;

}

public int getInitialSize() {
return 100;

}

public String getName() {
return "Redbook: popupAddOn";

}

4. As with the chatArea, we need to create an action to launch our
popupAddOn. Again, create a new Format bar action (or modify the existing
one) and add code to the run() method to open the popupAddOn.

The popupAddOn is opened by calling the createPopupMessageArea()
method of the ChatWindowHandler class, passing in the id of the
popupAddOn and a value (in pixels) for its initial height, as shown in
Example 4-12.

Example 4-12 Sample action code to open the popupAddOn

public void run(){

getChatWindowHandler().createPopupMessageArea("com.ibm.redbooks.extensi
onpoints.chatwindowpopupaddon", 100);

}

 Chapter 4. Extension points 119

5. It is possible to determine if the pop-up message area is currently visible by
using ChatWindowHandler.isPopupVisible(), and to close the message area
with ChatWindowHandler.hidePopupMessageArea(), as shown in
Example 4-13.

Example 4-13 Sample action code to toggle the popupAddOn

public void run(){
if (getChatWindowHandler().isPopupVisible())
{

getChatWindowHandler().hidePopupMessageArea();
}
else

getChatWindowHandler().createPopupMessageArea("com.ibm.redbooks.extensi
onpoints.chatwindowpopupaddon", 100);

}

4.5 Adding to the nway chat (multi person chat) window

The com.ibm.collaboration.realtime.chatwindow plug-in provides the
com.ibm.collaboration.realtime.chatwindow.nwayListExtension extension point
the ability to allow for nway (multi person) chat window customization.
Contributions can made through the elements labelProvider, extraColumns,
cellListener, and toolView (see Figure 4-76 on page 121).
120 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-76 nway chat window

Set dependencies
For this example, several dependencies are required (although this may vary
depending on choices you make for functionality). For the purposes of this
example, add the following plug-in dependencies:

� com.ibm.collaboration.realtime.chatwindow (This dependency is required for
any nway chat customization.)

� com.ibm.collaboration.realtime.ui

� com.ibm.collaboration.realtime.people

� com.ibm.collaboration.realtime.core

� com.ibm.rcp.realtime.livenames
 Chapter 4. Extension points 121

Figure 4-77 shows the dependencies for the example plug-in.

Figure 4-77 Dependencies for example plug-in

Import images
In addition to these dependencies, the example calls for three images (although
this may vary, depending on the choices you make for functionality) to import
images follow these steps.

1. Highlight the project (see Figure 4-78).

Figure 4-78 Highlight the project in the Package Explorer perspective

2. Select File → New → Folder.

3. Enter a Folder name for the folder (“images” was used in our example) (see
Figure 4-79 on page 123).
122 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-79 Create new folder called images

4. Highlight the images folder (or the name you gave the folder) in the Package
Explorer perspective.

5. Select File → Import to launch the import wizard.

6. In the General folder, highlight File System and click Next.

7. Click the Browse button next to the From directory field and navigate to the
folder where your images are located and click OK.

8. Select the images you require, and then click Finish.

Images will be imported to the images folder.

Set extensions
1. Click the Extensions tab in the manifest editor.

2. Add the required extension point
com.ibm.collaboration.realtime.chatwindow.nwayListExtension.
 Chapter 4. Extension points 123

3. Right-click the newly created extension in the all extensions window and
select New → nwayListExtension (see Figure 4-80).

Figure 4-80 Added nwayListExtension

4. Once it is created, the nwayListExtension properties will appear on the right
side of the editor. Keep or change the id.

5. In the Enabled field, select true as a default (see Figure 4-81). Selecting false
will disable all elements below the extension point in the directory structure.

Figure 4-81 Adding an nwayListExtension
124 Extending Sametime 7.5: Building Plug-ins for Sametime

4.5.1 Add extra column and new function

The extraColumns and cellListeners elements of nwayListExtension provide a
way to add additional columns to the participant list table of the nway chat
window. labelProvider allows for those columns to have graphics or text that can
have additional functionality.

1. Right-click the newly added nwayListExtension in the All Extensions
window.

2. Select New → labelProvider. This will create a new entry titled labelProvider
(you will come back to this in step 5).

Figure 4-82 Newly created labelProvider

3. Right-click the nwayListExtension in the All Extensions window. Select
New → extraColumns.

4. Right-click the newly added extraColumns in the All Extensions window.
Select New → column. Leave the default columnIndex and set the
initialWidth value to 30.
 Chapter 4. Extension points 125

Figure 4-83 New column creation

5. Right-click nwayListExtension in the All Extensions window. Select New →
cellListeners.

6. Right-click the newly added cellListeners in the All Extensions window.
Select New → cellListener. Leave the default value in the columnIndex field.

Figure 4-84 Create New cellListener.

7. Highlight the labelProvider entry in the All Extensions window (see
Figure 4-85 on page 127).
126 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-85 Highlight the labelProvider entry

8. Under the Extension Element Details for the new labelProvider, click the
class hyperlink to create a new class for this labelProvider.

Figure 4-86 Click Class to create new labelProvider Class
 Chapter 4. Extension points 127

9. Set the Create Java Class window to match the Figure 4-87, then click OK.

Figure 4-87 Create first labelProvider Class

10.The labelProvider class code will now display in the class editor. Make
additions to the code to identify the image. In Example 4-14, the image is
defined in the Activator.java, which will be examined in the next step.

Example 4-14 Column Image code in the labelProvider class

package com.ibm.riverbend.enway;

import org.eclipse.jface.viewers.ILabelProviderListener;
import org.eclipse.swt.graphics.Image;

import
com.ibm.collaboration.realtime.tableextension.NwayTableLabelProvider;

/**
 * Demonstrate column additions to the n-way chat participant
 * list.
128 Extending Sametime 7.5: Building Plug-ins for Sametime

 *
 */

public class NwayListImageLabelProvider extends NwayTableLabelProvider
{

public Image getColumnImage(Object element, int columnIndex) {
if (columnIndex == 0)

return Activator.NWAY_LIST_COLUMN_IMAGE;
else

return null;
}

public String getColumnText(Object element, int columnIndex) {
return null;

}

public void addListener(ILabelProviderListener listener) {
}

public void dispose() {
}

public boolean isLabelProperty(Object element, String property) {
return false;

}

public void removeListener(ILabelProviderListener listener) {
}

}

11.From the Package Explorer perspective, double-click to open the
Activator.java file.

12.Verify your Activator.java code is structured, as in Example 4-15.

Example 4-15 Example Activator.java

package com.ibm.riverbend.enwaychat;

import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.swt.graphics.Image;
import org.eclipse.ui.plugin.AbstractUIPlugin;
import org.osgi.framework.BundleContext;

/**
 Chapter 4. Extension points 129

 * The main plugin class to be used in the desktop.
 */
public class Activator extends AbstractUIPlugin {

private static Activator plugin;
public static Image NWAY_LIST_COLUMN_IMAGE;

/**
 * The constructor.
 */
public Activator() {

plugin = this;
}

public static Activator getDefault() {
return plugin;
}

/*
 * (non-Javadoc)
 * @see

org.osgi.framework.BundleActivator#start(org.osgi.framework.BundleConte
xt)

 */
public void start(BundleContext context) throws Exception {
NWAY_LIST_COLUMN_IMAGE =

getImageDescriptor("images/biggrin.gif").createImage();
super.start(context);
}

/*
 * (non-Javadoc)
 * @see

org.osgi.framework.BundleActivator#stop(org.osgi.framework.BundleContex
t)

 */
public void stop(BundleContext context) throws Exception {
NWAY_LIST_COLUMN_IMAGE.dispose();
plugin = null;
super.stop(context);
}

/**
 * Returns an image descriptor for the image file at the given
130 Extending Sametime 7.5: Building Plug-ins for Sametime

 * plug-in relative path. Note that we dispose of the image
 * as Garbage Collector will not collect an img
 * @param path the path
 * @return the image descriptor
 */
public static ImageDescriptor getImageDescriptor(String path) {
return

AbstractUIPlugin.imageDescriptorFromPlugin("com.ibm.riverbend.enwaychat
", path);

}
}

13.Highlight the cellListener entry in the All extensions window (see
Figure 4-88).

Figure 4-88 Highlight the cellListener entry

14.Right-click the nwayListExtension in the All Extensions window. Select
New → cellListeners.

15.Click the class hyperlink to create a new cellListener class. (see Figure 4-89)

Figure 4-89 Click class to create a new cellListener class
 Chapter 4. Extension points 131

16.Complete the New Java Class wizard so that it looks like Figure 4-90

Figure 4-90 Create a new cellListener Class

17.The cellListener class code will now display in the class editor.

Make additions to the code to customize the function for the first column. In
Example 4-16, the column is set to identify the chat partner, create a
messagebox when the column is clicked next to the person’s name, and
create a new chat window if the user answers yes to the messagebox.

Example 4-16 Example cellListener code

package com.ibm.riverbend.enway;

import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.swt.widgets.Event;

import com.ibm.collaboration.realtime.chatwindow.ChatWindowPartner;
import com.ibm.collaboration.realtime.people.PeopleService;
import com.ibm.collaboration.realtime.people.Person;
import com.ibm.collaboration.realtime.servicehub.ServiceException;
132 Extending Sametime 7.5: Building Plug-ins for Sametime

import com.ibm.collaboration.realtime.servicehub.ServiceHub;
import
com.ibm.collaboration.realtime.tableextension.NwayTableCellSelectionLis
tener;

/**
 * Contribute "Hello" action to column of a n-way chat participant
list.
 *
 * @see com.ibm.collaboration.realtime.chatwindow.nwayListExtension
extension point
 */

public class NwayListCellListener extends
NwayTableCellSelectionListener {

public void handleEvent(Event event) {
ChatWindowPartner cwp = (ChatWindowPartner) event.data;
final Person person = cwp.getPerson();
if (person != null) {

boolean yn = MessageDialog.openQuestion(null,
"NwayListCellListener Example Area",
"Say Hi to this person" + person.getContactId() + "?");

if (yn){
try {

PeopleService peopleSvc = (PeopleService)
ServiceHub.getService(PeopleService.SERVICE_TYPE);

peopleSvc.createConversation(person);
}
catch (ServiceException e) {

e.printStackTrace();
}

}
}

}
}

 Chapter 4. Extension points 133

4.5.2 Create a second column for new functionality

1. Right-click the
com.ibm.collaboration.realtime.chatwindow.nwayListExtension
extension in the All Extensions window and select New →
nwayListExtension (see Figure 4-91).

a. Change or keep the ID value.

Figure 4-91 Create a second nwayListExtension from
com.ibm.collaboration.realtime.chatwindow.nwayListExtension

2. Right-click the second nwayListExtension in the All Extensions window.
Select New → labelProvider to add a second column named labelProvider
(see Figure 4-92). We will come back to this element in step 4.

Figure 4-92 Second labelProvider.

3. Right-click the second nwayListExtension in the All Extensions window.
Select New → extraColumns to create the second column.

a. Right-click the second extraColumns in the All extensions window. Select
New → column. Set the default columnIndex value to 0 and, the
initialWidth value to 30 (see Figure 4-93 on page 135).
134 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-93 Set values for second column.

4. Highlight the second nwayListExtension labelProvider to display the
element properties.

5. Click the class hyperlink to create a new (second) labelProvider class. This
class will be used to define the display and function of the second column in
the n-way participants list.

6. Complete the New Java Class wizard so that it looks like Figure 4-94.

Figure 4-94 Class wizard the for the second labelProvider class
 Chapter 4. Extension points 135

7. The second labelProvider class code will now show in the class editor.

Make additions to the code to customize the function for the second column.
In Example 4-17, the column is set to identify the chat partner, obtain the chat
partner status, and display a numeric representation of their status in the
second column beside the participant’s name in the nway chat window.

Example 4-17 Second labelProvider Class code example

package com.ibm.riverbend.enway;

import org.eclipse.jface.viewers.ILabelProviderListener;
import org.eclipse.swt.graphics.Image;

import com.ibm.collaboration.realtime.chatwindow.ChatWindowPartner;
import com.ibm.collaboration.realtime.people.Person;
import
com.ibm.collaboration.realtime.tableextension.NwayTableLabelProvider;

/**
 * Column additions to the n-way chat participant
 * list.
 *
 * @see com.ibm.collaboration.realtime.chatwindow.nwayListExtension
extension point.
 */

public class NwayListStatusLabelProvider extends NwayTableLabelProvider
{

public Image getColumnImage(Object element, int columnIndex) {
return null;

}

public String getColumnText(Object element, int columnIndex) {
if (element instanceof ChatWindowPartner) {

Person person = ((ChatWindowPartner) element).getPerson();
if (person != null) {

return "[" + person.getStatus() + "]";
}

}
return "col" + columnIndex;

}

public void addListener(ILabelProviderListener listener) {
}

136 Extending Sametime 7.5: Building Plug-ins for Sametime

public void dispose() {
}

public boolean isLabelProperty(Object element, String property) {
return false;

}

public void removeListener(ILabelProviderListener listener) {
}

}

The second column of the example displays a numeric representation of the
participant’s status. Although it is not done in this example, this function can be
further extended to display icons or colored symbols to show the participants
status. To accomplish this, you will need to understand the meaning of each
numeric representation. Table 4-9 demonstrates the possible values. For more
information and options, see Constant Field Values in the
com.ibm.rcp.realtime.livenames.LiveName.getStatus() method in the Sametime
7.5 SDK.

Table 4-9 com.ibm.rcp.realtime.livenames.LiveName.getStatus() field values

At this point, you have created two columns in the participants list of the Nway
chat window. The first column displays an image that, when clicked, will open a
messagebox asking if the user wants to say “Hi” to the participant selected. If the
answer is “yes,” then a new chat window, directly to the participant, will open. The
second column will display a numeric representation of the selected participants’
online status.

public static final int STATUS_AWAY 2

public static final int STATUS_AWAY_MOBILE 7

public static final int STATUS_DND 3

public static final int STATUS_DND_MOBILE 8

public static final int STATUS_IN_MEETING 5

public static final int STATUS_IN_MEETING_MOBILE 10

public static final int STATUS_NOT_USING 4

public static final int STATUS_OFFLINE 0

public static final int STATUS_ONLINE 1

public static final int STATUS_ONLINE_MOBILE 6
 Chapter 4. Extension points 137

4.5.3 Create a toolView

The toolView element ofnwayListExtension defines the location of additional
views within the nway chat window. The view com.ibm.riverbend.enway.toolview
will set the additional view in the participants list. In the case of our example, a
company brand logo will be inserted; however, mini apps or other functionality
can also be added to this area.

1. Right-click the
com.ibm.collaboration.realtime.chatwindow.nwayListExtension
extension in the All Extensions window and select New →
nwayListExtension.

2. Right-click the third nwayListExtension in the All Extensions window. Select
New → toolView.

a. In the toolView Element details, keep or change the id value.

b. Add or change the view to com.ibm.riverbend.enway.toolview (see
Figure 4-95).

Figure 4-95 toolView element details

3. Add the org.eclipse.ui.views dependency, which is used to define additional
views for the workbench.

4. Right-click the newly created extension org.eclipse.ui.views and select
New → view (see Figure 4-96 on page 139).
138 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-96 Create a new view from org.eclipse.ui.views.

5. In the newly created View Element Details window, change the id value to
match the view name you provided the toolView view (in the case of this
example, com.ibm.riverbend.enway.toolview) (see Figure 4-97).

a. Provide a name that will appear at the top of your new view.

b. An icon can also be added if you have imported an image.

Figure 4-97 View Properties for new org.eclipse.ui.views, view entry
 Chapter 4. Extension points 139

6. Click the class hyperlink to create a new view class. Set the fields of the new
class wizard to match Figure 4-98, and then click Finish.

Figure 4-98 New class wizard

7. The new view class will open in the class editor.

Modify the code to add an image or control or both to the view area. In the
case of the example, the image will be created in the Activator.java code and
called from the view class code to insure proper disposal of the image.

Example 4-18 View class code used in the example

package com.ibm.riverbend.enway;

import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.ui.part.ViewPart;

/**
140 Extending Sametime 7.5: Building Plug-ins for Sametime

 * Contributed view to the chat window for n-way chats.
 */

public class NwayListToolView extends ViewPart {
Image img = Activator.NWAY_BRAND;

public NwayListToolView() {
super();

}

public void createPartControl(Composite parent) {
Label lbl = new Label(parent, SWT.SHADOW_IN);
lbl.setImage(img);

 }

public void setFocus() {
}

}

8. The updated Activator.java code in our example looks like Example 4-19.

Example 4-19 Updated Activator.java code used in the example

package com.ibm.riverbend.enway;

import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.swt.graphics.Image;
import org.eclipse.ui.plugin.AbstractUIPlugin;
import org.osgi.framework.BundleContext;

/**
 * The main plugin class to be used in the desktop.
 */
public class Activator extends AbstractUIPlugin {

private static Activator plugin;
public static Image NWAY_LIST_COLUMN_IMAGE;
public static Image NWAY_BRAND;

/**
 * The constructor.
 */
public Activator() {

plugin = this;
 Chapter 4. Extension points 141

}

public static Activator getDefault() {
return plugin;

}

/*
 * (non-Javadoc)
 * @see

org.osgi.framework.BundleActivator#start(org.osgi.framework.BundleConte
xt)

 */
public void start(BundleContext context) throws Exception {

NWAY_LIST_COLUMN_IMAGE =
getImageDescriptor("images/biggrin.gif").createImage();

NWAY_BRAND =
getImageDescriptor("images/rb_logo_192px.gif").createImage();

super.start(context);
}

/*
 * (non-Javadoc)
 * @see

org.osgi.framework.BundleActivator#stop(org.osgi.framework.BundleContex
t)

 */
public void stop(BundleContext context) throws Exception {

NWAY_LIST_COLUMN_IMAGE.dispose();
NWAY_BRAND.dispose();
plugin = null;
super.stop(context);

}

/**
 * Returns an image descriptor for the image file at the given
 * plug-in relative path.
 *
 * @param path the path
 * @return the image descriptor
 */
public static ImageDescriptor getImageDescriptor(String path) {

return
AbstractUIPlugin.imageDescriptorFromPlugin("com.ibm.riverbend.enway",
path);

}

142 Extending Sametime 7.5: Building Plug-ins for Sametime

}

4.6 Adding a preference page

Figure 4-99 shows a sample custom preference page.

Figure 4-99 Sample custom preference page

Eclipse-based applications provide an extension point that allows you to add a
preference page to the preferences of the application (in our case, Sametime
Connect).

We can use the built-in Eclipse PDE extension wizard to create a preference
page.

1. Open the Extensions tab in the plug-in manifest and click Add.
 Chapter 4. Extension points 143

2. Click the Extension Wizards tab, select the Preference Page extension
template, and click Next, as shown in Figure 4-100.

Figure 4-100 Preference Page extension wizard

A template for a preference page is created that we can modify as required.

3. Change or leave as is the Java Package Name, Page Class Name, and
Page Name, as shown in Figure 4-101 on page 145.
144 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-101 Preference page properties

The page name will display as the preference page title. and in the list of
preference pages when the user selects File → Preferences.
 Chapter 4. Extension points 145

If we look again at the Extensions tab, we can see that the wizard has added two
new extension points to our plug-in: org.eclipse.ui.preferencePages and
org.eclipse.core.runtime.preferences, as shown in Figure 4-102.

Figure 4-102 Extension points added to the Extensions list

The org.eclipse.ui.preferencePages extension point is used to add the actual
Preference page to the Eclipse UI. The org.eclipse.core.runtime.preferences
extension point is used to initialize default values for any fields in the Preference
page.

The wizard also creates an extension element for each of the extension points. A
page extension element is created under the preferencePages extension point,
and an initializer element is created under the preferences extension point, as
shown in Figure 4-103.

Figure 4-103 Page and initializer extension elements added by the wizard

Each extension element has an associated Java class as well that the wizard
also created. The class associated with the page element defines the layout for
our preference page. It extends the FieldEditorPreferencePage class and
implements the IWorkbenchPreferencePage interface. The constructor of its
parent class takes one argument, an integer representing the layout to be used.
146 Extending Sametime 7.5: Building Plug-ins for Sametime

The wizard chooses a GRID layout, which by default has one column. In the
createFieldEditors() method (overridden from the parent
FieldEditorPreferencePage), four fields of different types are added to the
preference page, as shown in Example 4-20.

Example 4-20 RedbookPreferencePage class created by the wizard

public class RedbookPreferencePage
extends FieldEditorPreferencePage
implements IWorkbenchPreferencePage {

public RedbookPreferencePage() {
super(GRID);
setPreferenceStore(Activator.getDefault().getPreferenceStore());
setDescription("A demonstration of a preference page

implementation");
}

/**
 * Creates the field editors. Field editors are abstractions of
 * the common GUI blocks needed to manipulate various types
 * of preferences. Each field editor knows how to save and
 * restore itself.
 */
public void createFieldEditors() {

addField(new DirectoryFieldEditor(PreferenceConstants.P_PATH,
"&Directory preference:", getFieldEditorParent()));

addField(
new BooleanFieldEditor(

PreferenceConstants.P_BOOLEAN,
"&An example of a boolean preference",
getFieldEditorParent()));

addField(new RadioGroupFieldEditor(
PreferenceConstants.P_CHOICE,

"An example of a multiple-choice preference",
1,
new String[][] { { "&Choice 1", "choice1" }, {

"C&hoice 2", "choice2" }
}, getFieldEditorParent()));
addField(

new StringFieldEditor(PreferenceConstants.P_STRING, "A &text
preference:", getFieldEditorParent()));

}

 Chapter 4. Extension points 147

The wizard created a third class, PreferenceConstants.java. This is a
convenience class that can be used to store constant values used by the
preference page, as shown in Example 4-21.

Example 4-21 PreferenceConstants class created by the wizard

public class PreferenceConstants {

public static final String P_PATH = "pathPreference";

public static final String P_BOOLEAN = "booleanPreference";

public static final String P_CHOICE = "choicePreference";

public static final String P_STRING = "stringPreference";

}

The autogenerated class associated with the initializer element extends the
AbstractPreferenceInitializer class. In its initializeDefaultPreferences() method, it
populates default values for the preference fields. It uses the constants defined in
the PreferenceConstants class, as shown in Example 4-22.

Example 4-22 PreferenceInitializer class created by the wizard

public class PreferenceInitializer extends
AbstractPreferenceInitializer {

/*
 * (non-Javadoc)
 *
 * @see

org.eclipse.core.runtime.preferences.AbstractPreferenceInitializer#init
ializeDefaultPreferences()

 */
public void initializeDefaultPreferences() {

IPreferenceStore store = Activator.getDefault()
.getPreferenceStore();

store.setDefault(PreferenceConstants.P_BOOLEAN, true);
store.setDefault(PreferenceConstants.P_CHOICE, "choice2");
store.setDefault(PreferenceConstants.P_STRING,

"Default value");

}

148 Extending Sametime 7.5: Building Plug-ins for Sametime

}

Eclipse preferences represent a set of name-value pairs. Each name has two
values, a default value and a user-specified value. If no user-specified value
exists, the default value is used.

By nature of the fact that our plug-in subclassifies AbstractUIPlugin (see 4.1.1,
“Creating a plug-in project and plug-in” on page 64), plug-in preferences are
automatically saved when the plug-in shuts down. There are two APIs for
accessing the preferences stored in our preference page:

� org.eclipse.core.runtime.Preferences

� org.eclipse.jface.preference.IPreferenceStore

The IPreferenceStore interface predates Eclipse 3.1 and the Preferences
interface, and exists only for backwards compatibility. Therefore, to access our
preferences from the plug-in, we use the Preferences interface and the code
shown in Example 4-23.

Example 4-23 Code to retrieve preference values

Activator.getDefault().getPluginPreferences().getXXX(preferenceName)

If our plug-in extended Plugin rather than AbstractUIPlugin, there are some extra
steps involved. The stop() method would need to be modified to always call
savePluginPreferences() and saveDialogSettings() so that the preferences
persisted across sessions.

The preference pages are displayed in the preference dialog alphabetically. A
new preference page can be nested under an existing one using the category
property of the page extension element. If we set the category to be the same
value as the id of an existing preference page (as shown in Figure 4-104), the
preference page will appear nested beneath it, as shown in Figure 4-105 on
page 150.

Figure 4-104 Setting the category to an existing preference page id
 Chapter 4. Extension points 149

Figure 4-105 Preference page nested beneath existing one

Table 4-10 summarizes the extension points we have extended in this example,
and the plug-in dependencies for this plug-in.

Table 4-10 Summary of extension points and dependencies

Extension point(s) extended Required plug-in(s)

org.eclipse.ui.preferencePages
org.eclipse.core.runtime.preferences

org.eclipse.ui org.eclipse.core.runtime
150 Extending Sametime 7.5: Building Plug-ins for Sametime

4.7 Adding a mini application

Figure 4-106 shows a custom mini application added to the contacts list.

Figure 4-106 Custom mini application added to the contacts list

The mini-app area is the area at the bottom of the contacts list that plug-ins can
take advantage of to display data.

We will be extending the extension point
com.ibm.collaboration.realtime.imhub.miniApps. Using this extension point
means we are dependent on the com.ibm.collaboration.realtime.imhub plug-in.

Note: We already added this plug-in as a dependency in 4.3.2, “Adding an
action to the Tool Bar” on page 82, so we do not need to do it again now, but
you would need to add it if you had not already done so.
 Chapter 4. Extension points 151

1. Right-click the extension point and select New → miniApp to add a new
miniApp extension element, as shown in Figure 4-107.

Figure 4-107 Adding a new miniApp extension element

2. Modify (if required) the id, displayName, and class properties.

The value of the displayName property will appear in the menu bar of the
miniApp. Add a value for the maxHeight property, otherwise we will not be
able to see the miniApp even though it is there. Setting an icon property will
cause the image to be displayed in the menu bar alongside the text from the
displayName property.

3. Click the class link to create the class file for the miniApp. We want our class
to extend the Sametime miniApp class, so we select the
com.ibm.collaboration.realtime.miniapp.AbstractMiniApp class as the
Superclass, as shown in Figure 4-108 on page 153.
152 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 4-108 Creating the miniApp class

4. Accept the rest of the defaults and click Finish.

This is enough to get the miniApp to display in the Connect client, but is, of
course, not very useful without any functionality.

5. Two methods are inherited from AbstractMiniApp, init() and createControl().
The createControl() method builds the user interface for the miniApp. To
illustrate this, we will add a simple SWT Label that displays a text string, as
shown in Example 4-24.

Example 4-24 RedbookMiniApp’s createControl() method

public Control createControl(Composite parent) {

Composite comp = new Composite(parent, SWT.BORDER);
comp.setLayout(new FillLayout());

Label label = new Label(comp, SWT.CENTER);
label.setText("Redbook miniApp");
 Chapter 4. Extension points 153

comp.layout();
return comp;

}

When we launch the run time workspace, the miniApp appears at the bottom of
the contact list.

The miniApp can initially be hidden from display by overriding the
isInitiallyVisible() method from the AbstractMiniApp class. The default is true, so
the miniApp is initially visible.

Table 4-11 summarizes the extension point we have extended in this example,
and the plug-in dependency for this plug-in.

Table 4-11 Summary of extension points and dependencies

4.8 Message Event Notification extension point

Sametime Connect components communicate key events through a common
messaging bus. The components that use this messaging framework are termed
participants. As in a traditional publish - subscribe system, the sender of a
system message does not need to know anything about the component
responsible for processing that message; it deals only with the messaging bus.
Tapping in to this messaging framework allows you to react to important events
within the Sametime Connect client, for example, you can intercept an incoming
chat message before it is displayed by the client, or modify an outgoing chat
message before it is delivered to its intended recipient.

The com.ibm.collaboration.realtime.messages.Message class provides the base
class that all the specific message types subclass. For each message type, there
is a specific subclass of the base Message class that is specific to that type of
message. For example, the

Note: If this method returns false, the miniApp is hidden; the init() and
createControl() methods are not called. This could be used to hide the
miniApp if there was some problem with the generation of its content, or to
show it again if some event has taken place since the last time it was
displayed.

Extension point extended Required plug-in

com.ibm.collaboration.realtime.imhub.min
iApps

com.ibm.collaboration.realtime.imhub
154 Extending Sametime 7.5: Building Plug-ins for Sametime

com.ibm.collaboration.realtime.messages.im.ImTextReceivedMessage
represents the system message that is broadcast by the messaging bus when
the user receives an incoming 1-to-1 chat message. Likewise, the
ImTextSendMessage is broadcast by the bus as a 1-to-1 instant message is sent.
We can use the class’ getText() method to get the actual content of the message.

The Message class and it’s subclasses are contained in the
com.ibm.collaboration.realtime.messages plug-in, and comprise the
com.ibm.collaboration.realtime.messages,
com.ibm.collaboration.realtime.messages.im, and
com.ibm.collaboration.realtime.messages.search packages.

4.8.1 The MessageHandlerListener extension point

In order to receive the various messages from the messaging bus, we need to
follow this general pattern:

� Extend the
com.ibm.collaboration.realtime.messages.MessageHandlerListener
extension point and add either a messageHandler or
messageHandlerCallback extension element.

� Create a subclass of the DefaultMessageHandler class and override the
handleMessage() method for the specific message types we are interested in

� Create a subclass of either MessageHandlerAdapter or one of the
MessageHandlerCallback subclasses. In its constructor, pass a new instance
of the DefaultMessageHandler subclass into the constructor of the
MessageHandlerAdapter or MessageHandlerCallback

1. Add the com.ibm.collaboration.realtime.messages.MessageHandlerListener
extension point to the plug-in.

2. We create a new messageHandler or messageHandlerCallback extension
element, depending on whether or not we want to interact with the message
before or after it is processed. Callback handlers can process message
events before or after they are delivered to the registered message handlers,
and can optionally stop the continued processing of a message event.

3. The class associated with the extension point subscribes to messages from
the message bus. If we are using the messageHandler extension element,
our class must be a subclass of the MessageHandlerAdapter class. If we use
the messageHandlerCallback element, we have the choice of
MessageHandlerPreCallback or MessageHandlerPostCallback. In either
case, we pass a new instance of our DefaultMessageHandler subclass into
the constructor of the Superclass.
 Chapter 4. Extension points 155

Example 4-25 shows a sample implementation that extends
MessageHandlerAdapter.

Example 4-25 Sample MessageHandlerAdapter subclass

public class MessageHandlerAdapterSample extends MessageHandlerAdapter
{

public MessageHandlerAdapterSample(MessageHandler handler)
{

super(handler);
}

public MessageHandlerAdapterSample()
{

super(new MessageHandlerSample());
}

}

Example 4-26 shows a sample implementation that extends
MessageHandlerPreCallback.

Example 4-26 Sample MessageHandlerPreCallback subclass

public class MessageHandlerPreCallbackSample extends
MessageHandlerPreCallback
{

public MessageHandlerPreCallbackSample(MessageHandler handler)
{

super(handler);
}

public MessageHandlerPreCallbackSample()
{

super(new MessageHandlerSample());
}

}

4. The final step is to subclassify
com.ibm.collaboration.realtime.messages.DefaultMessageHandler and
override the appropriate handleMessage() methods for the specific message
types we are interested in intercepting. Methods that are not explicitly
overridden are handled by the handleDefaultMessage() method.
Example 4-27 on page 157 shows a sample implementation.
156 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 4-27 Sample DefaultMessageHandler subclass

public class MessageHandlerSampleImplementation extends
DefaultMessageHandler
{

public MessageHandlerSampleImplementation()
{
}

public void handleDefaultMessage(Message message)
{

// Do default something here...

}

public void handleMessage(ImTextReceivedMessage arg0)
{

System.out.println("Redbook: ImTextReceivedMessage");
//Output the message text
System.out.println("Redbook: " + arg0.getText());

}

}

 Chapter 4. Extension points 157

158 Extending Sametime 7.5: Building Plug-ins for Sametime

Part 3 Example
plug-ins

Part 3
© Copyright IBM Corp. 2007. All rights reserved. 159

160 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 5. Introduction to building a
plug-in: modifying the UI

This chapter provides methods and instructions to create a UI plug-in used to
brand the IBM Lotus Sametime 7.5 Connect Client with your own corporate logos
and images. In addition, one of these branded areas will be extended to include
basic business funtionality. While the functionality in this example is basic, it is by
no means a limit on what can be done.

5

Attention: All sample code used within this chapter can be downloaded from
the IBM Redbooks FTP site. Please refer to Appendix A, “Additional material”
on page 557 for detailed instructions on how to download and deploy the code
sample:

ftp://www.redbooks.ibm.com/redbooks/SG247346
© Copyright IBM Corp. 2007. All rights reserved. 161

ftp://www.redbooks.ibm.com/redbooks/SG247346

5.1 Introduction

A branding application provides a method to specify logos and related branding
information in Lotus Sametime Connect in the login dialog, contact list, and chat
window. The branding UI defines for a simple image that can appear any of these
locations and can appear as a static image, display a Web page, or call another
program.

There are three locations that can be branded:

� The Sametime Login Window

� The Sametime Hub (Buddy List)

� The Chat Windows

It is important to note that the plug-in we will create in this chapter applies to
branding the Sametime 7.5 Connect client only. If you wish to brand the Java
connect client you should refer to the Sametime Java Toolkit Guide and the
Sametime Java Toolkit Tutorial, which are located in the (client\stjava\doc)
directory of the Sametime 7.5 SDK.

5.2 A preview of what you will build in this chapter

The following section describes the scenario that we use as a context for the
branding plug-in. It also illustrates a preview of the plug-in you will create.

5.2.1 Introduction to the scenario

For the purpose of providing a realistic business context to this chapter, we use
the River Bend Coffee and Tea Company as the basis for the development
scenario. River Bend Coffee and Tea Company, a subsidiary of WWCorp, is a
fictitious company that uses Sametime 7.5 for its real-time collaborative
application needs. It operates a chain of 20 retail stores in 12 cities worldwide. In
addition, the company runs an Internet-based retail operation, offers small-scale
catering services, and has launched a certification program for employees and
clients who wish to become skilled roast masters.

Note: Any changes you make to the Chat window will also be reflected in
Group Chat Windows.
162 Extending Sametime 7.5: Building Plug-ins for Sametime

Currently, the company uses Sametime 7.5 to:

� Provide real-time collaboration and instant messaging services to its
employees.

� Facilitate collaboration and communication among its geographically
dispersed work force.

� Communicate and coordinate relationships with its vendors and clients.

� Manage, deliver, and track training to employees and clients.

� Support enterprise-wide document management, including regulatory
compliance, corporate accountability, and information flow.

� Communicate with a sibling subsidiary, a retail organization that specializes in
recorded music products.

5.2.2 Preview of custom branding results

When creating or making changes to the UI, visualizing the end result is a good
place to start. Visualizing the end result will help you save time. With that in mind,
let us have a look at what a finished branding plug-in will look like once deployed
to the enterprise.

Note: The sample screen captures and tasks that we present throughout the
chapter are intended to support the development scenario. The fictitious user
names, documents, titles, and store locations are used solely to simulate the
IBM Workplace environment and to demonstrate functions and features. They
are not intended to depict real people, content, or company policies. Any
likeness to real persons, content, or companies is coincidental and
unintended.
 Chapter 5. Introduction to building a plug-in: modifying the UI 163

A branded login window
Figure 5-1 shows an example of a image branded Login window.

Figure 5-1 Logon window with branding

In Figure 5-1, an image file was chosen for the Login window. There is no
underlying functionality. Other options will be explored in other branding areas
later in this chapter; however, it should be noted that the branding examples
option shown later in this chapter can be applied to this branding area.

A branded chat window
Figure 5-2 on page 165 shows an example of a branded chat window.

Note: An image 393x32 pixels worked best for the style of image we chose for
this branding area. The maximum size for this space is 393x42 pixels.

Custom Branding
164 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 5-2 Chat window with branding

In Figure 5-2, an image is shown in the top right portion of the Chat window. If the
image is hovered over with the cursor, a “tip box” appears with the text “click to
visit the Web site.” Once clicked, the image will open a URL to the designated
Web site, which could be used to direct users to an FAQ or help Web site.
 Chapter 5. Introduction to building a plug-in: modifying the UI 165

A branded hub window (Buddy List)
In our final example, Figure 5-3, an image is presented that, when clicked, will
create a new memo addressed to the Sametime Help group. This is a simple
example of extending functionality; however, this type of functionality can be
extended beyond this basic example to call to any program.

Figure 5-3 Hub window with branding

5.3 Preparing to build a branding plug-in

Attention: All sample code used within this chapter example can be
downloaded from the Redbooks FTP site. Please refer to Appendix A,
“Additional material” on page 557 for detailed instructions on how to download
and deploy the code sample:

ftp://www.redbooks.ibm.com/redbooks/SG247346
166 Extending Sametime 7.5: Building Plug-ins for Sametime

ftp://www.redbooks.ibm.com/redbooks/SG247346

One of the first things we should ask ourselves is “What do we need to create this
plug-in?”. Before you jump into the process of creating a branding plug-in, there
are a few items that will need to be set up or reviewed.

5.3.1 Preparing your development environment

Preparing your Eclipse 3.2 environment to develop Sametime 7.5 plug-ins is
explained in Chapter 3, “Setting up the Integrated Development Environment” on
page 37.

What you will need:

� Eclipse 3.2 configured to develop plug-ins for Sametime 7.5 (refer to
Chapter 3, “Setting up the Integrated Development Environment” on page 37)

� Sametime 7.5 SDK

� Understanding of the only package dependency which is the
com.ibm.collaboration.realtime.ui package (refer to the Sametime SDK)

� A photo editor application or existing logo in the appropriate sizes for the area
you are branding.

– Hub Window (Buddy List) Top: A maximum of 256 w x 26 h pixels

– Hub Window (Buddy List) Bottom: A maximum of 256 w x 32 h pixels

– Login Window: A maximum of 393 w x 42 h pixels

Important: If you are creating a series of branding plug in styles (perhaps
different departments in your organization will have different images or
functions), we recommend that you start with a new Eclipse Workspace for
each branding plug-in. As stated in Chapter 3, “Setting up the Integrated
Development Environment” on page 37, each new workspace will require new
preparation.

Caution: Eclipse 3.2 seems to cache previous branding plug-in data when
testing. This occurs even if you uncheck the previous plug-in from being run
when testing the newer one. This can result in branding data/settings from a
previous branding plug-in appearing in the current plug-in, which can make it
very difficult during testing.

Note: Note that this area may become wider if users expand the
window. Therefore code the layout for this possibility.
 Chapter 5. Introduction to building a plug-in: modifying the UI 167

– Chat Window: A maximum of 92 w x 64 h Pixels

� Sametime 7.5 Connect Client installed on the same machine as Eclipse 3.2
for testing

5.3.2 A look at the com.ibm.collaboration.realtime.ui package

There is only one Class in the com.ibm.collaboration.realtime.ui package. It is the
STBrandingArea Class. STBrandingArea defines branding areas for the login
dialog, Contact List, and chat window. Areas can be a static image, URL, or
application-defined composite.

There is only one Method for the STBrandingArea Class. It is the createControl
Method, which is called to create a branding area control.

� Parameters:

– parent: Composite where the control will be laid out

� Returns:

– Your Control

5.3.3 Extensions for the com.ibm.collaboration.realtime.ui package

Here we discuss extensions for the com.ibm.collaboration.realtime.ui package.

Client locations available to branding
There are three locations available to branding within the Sametime 7.5 Connect
Client. They are Login, Chat, and Hub. You will also need to know how each is
referenced for display in the targetView, as shown in Table 5-1 (this will also be
reviewed in each example created in this chapter).

Table 5-1 Client location targetViews

Note: Note that this area may become wider on different operating
systems. Therefore, code the layout for this possibility.

Location targetView

Login com.ibm.collaboration.realtime.login

Hub com.ibm.collaboration.realtime.imhub

Chat com.ibm.collaboration.realtime.chatwindow
168 Extending Sametime 7.5: Building Plug-ins for Sametime

The Stbranding extension
There is only one extension for the com.ibm.collaboration.realtime.ui package.
The Stbranding extension has three elements that can be used for different styles
of branding for your Sametime 7.5 Connect Client. The three elements are
Image, Control, and Website. Table 5-2 describes the function of each element.
As you will see in our plug-in example, you can create an extension element for
each of the designated branding areas.

Table 5-2 Stbranding extension elements

5.4 Building a branding plug-in

Open Eclipse 3.2 to the workspace that has already been configured to create
Sametime 7.5 plug-ins. If you have not already configured your Eclipse
environment, please refer to Chapter 3, “Setting up the Integrated Development
Environment” on page 37 before continuing.

All branding plug-ins begin the same
You may wish to create a branding for all three brandable areas, or you may wish
to create a branding for one or two only. All three brandable areas have certain
plug-in characteristics in common. For that reason, we will first create the plug-in
commonalities and then create a separate section for each of the branding areas.

The commonalities we will now create are shown in Table 5-3.

Table 5-3 Common elements

Extension element Does this

Image Displays an image.

Website Retrieves and displays a Web page.

Control Creates a custom control that can access other
programs. Can be set to display a clickable image
that will launch the control function.

Common to all elements of the branding plug-in

Create the Plug-in Project.

Create the Plug-in Dependencies.

Create the stbranding Extension.
 Chapter 5. Introduction to building a plug-in: modifying the UI 169

Task overview
The following tasks are used for building the branding plug-in. Detailed
instructions for each task are included on the following pages.

Task 1: Create the plug-in project.

Task 2: Create the plug-in dependencies.

Task 3: Create the plug-in extension.

Task 1: Create the plug-in project
1. In your Eclipse Environment, select File → New → Project....

2. Select Plug-in Project, as shown in Figure 5-4, and then click Next.

Figure 5-4 Select Plug-in Project
170 Extending Sametime 7.5: Building Plug-ins for Sametime

3. In the Plug-in Project window, enter the plug-in Project name, as shown in
Figure 5-5. Leave all other options as default. Click Next.

Figure 5-5 Plug-in Project window

4. In the Plug-in Content window, select or enter the properties shown in
Figure 5-6 on page 172.

– Plug-in Properties

• A version number is provided. Change this if you have created previous
versions of the same plug-in.

• In the Plug-in Name field, provide a descriptive name (especially if you
are creating several versions).

• Leave the other properties as their defaults.

– Plug-in options

• Select Generate an activator, a Java class that controls the
plug-in’s life cycle.

• Select This plug-in will make contributions to the UI.

– Rich Client Application

• Choose No for Creating a Rich Client Application.

5. Click Finish to create the plug-in framework.
 Chapter 5. Introduction to building a plug-in: modifying the UI 171

Figure 5-6 Plug-in Content window

You will now be in the Plug-in Development perspective. In the center of your
window, you see a window with your plug-in overview properties. Figure 5-7 on
page 173 shows the Plug-in Development Overview window.
172 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 5-7 Plug-in Development Overview window
 Chapter 5. Introduction to building a plug-in: modifying the UI 173

Task 2: Create the Plug-in Dependencies
You now need to declare your plug-in dependencies.

1. At the bottom of the window, you will see a series of tabs. Click the
Dependencies tab, as highlighted in Figure 5-8.

2. In the required plug-ins section, you will see the existing plug-in
dependencies:

– org.eclipse.ui

– org.eclipse.core.runtime

3. Click the Add button under Required Plug-ins.

Figure 5-8 Dependencies tab

4. Scroll through the list of available plug-ins and select
com.collaboration.realtime.ui, as shown in Figure 5-9 on page 175.
174 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 5-9 Select com.collaboration.realtime.ui

5. Click OK and verify that your Dependencies window looks like Figure 5-10.

Figure 5-10 Dependency tab with com.collaboration.realtime.ui dependency added
 Chapter 5. Introduction to building a plug-in: modifying the UI 175

Task 3: Create the plug-in extension
1. After you have selected the Dependencies, click the Extensions tab.

2. The All Extensions pane will be empty, as shown in Figure 5-11. Click the
Add button to add the stbranding extension.

Figure 5-11 Extensions window
176 Extending Sametime 7.5: Building Plug-ins for Sametime

3. Select the com.ibm.collaboration.reatime.ui.stbranding extension, as
shown in Figure 5-12, and then click Finish.

Figure 5-12 Selecting com.ibm.collaboration.reatime.ui.stbranding extension
 Chapter 5. Introduction to building a plug-in: modifying the UI 177

Your Extensions tab should now show the stbranding extension and look like
Figure 5-13.

Figure 5-13 Extensions tab with com.ibm.collaboration.reatime.ui.stbranding extension
added

5.4.1 Creating a branded login window

Now that the plug-in basics have been set up, you need to set up your extension
element. The extension element determines the type of brand and in which
branding area it will appears.

1. In the All Extensions pane, right-click the
com.ibm.collaboration.reatime.ui.stbranding extension.
178 Extending Sametime 7.5: Building Plug-ins for Sametime

2. Select New → stbranding, as shown in Figure 5-14.

Figure 5-14 Selecting stbranding

The Extensions tab will now show the stbranding extension, as shown in
Figure 5-15. On the right side of the window are the properties for this extension.

Figure 5-15 Displaying the stbranding extension
 Chapter 5. Introduction to building a plug-in: modifying the UI 179

3. Set the Properties, as shown in Figure 5-16.

a. In the id field, enter com.riverbend.sametime.branding.login.

b. Change the name to something more easily read. In our example, it is
renamed to Login Branding.

c. Change the targetView to com.ibm.collaboration.realtime.login (this is how
the plug image knows where to display.

d. Height and width are not necessary to set in this instance, as we have set
the height in the image file.

e. Set valign to Top.

Figure 5-16 Defining the properties of the stbranding extension element

Task 2: Associate an image to the element
Next, we need an image to associate with this element.

Tip: Resizing the All Extensions editor window will provide better viewing
for the fields you need to fill in.

Note: If you plan to brand the chat and hub windows and already have the
images, you can import all required images in this step.
180 Extending Sametime 7.5: Building Plug-ins for Sametime

1. First, you will need a folder where you will import the image(s). Select File →
New → Folder.

2. Name the new folder images, as shown in Figure 5-17, and then click Finish.

Figure 5-17 Creating the images folder

You will now see a folder called images in the Package Explorer frame, as shown
in Figure 5-18.

Figure 5-18 New images folder

3. Now you need to import the image file(s). Select File → Import.
 Chapter 5. Introduction to building a plug-in: modifying the UI 181

4. In the import window, highlight File System, as shown in Figure 5-19, and
then click Next. This launches the File System Wizard.

Figure 5-19 Selecting File System where images folder is located

5. On the top right corner of the File System Wizard window, click the Browse...
button.

6. Navigate to the folder with you image files, and then click OK.

7. In the next File System Wizard window, click the check box beside your folder.
This will display all images in that folder in the right side pane. Figure 5-20 on
page 183 shows the image files contained in the Pics folder.
182 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 5-20 Select image files

8. Click the check box next to the file name to select all images required for this
plug-in.

9. Click Finish to import the files.

Note: Remember that there are three branding areas and you could need
up to three images
 Chapter 5. Introduction to building a plug-in: modifying the UI 183

10.Verify the images are listed under the images folder, as shown in Figure 5-21.

Figure 5-21 Image files moved to images folder

11.Next, click the Extensions tab to display the All Extensions pane and
right-click the element you created for login (in this example, called Login
Branding).

12.Choose New → image, as shown in Figure 5-22.

Figure 5-22 Selecting new image

An Image entry will display under your login branding element property
details.

Note: In this example, an image is shown. The other options to display are
Website and Control. Selecting Website simply displays a Web page in the
designated area. Selecting Control will be demonstrated in the next two
examples in this chapter.
184 Extending Sametime 7.5: Building Plug-ins for Sametime

13.Highlight the image it to see the properties in the right pane, as shown in
Figure 5-23.

Figure 5-23 Displaying the image property details

14.Click the Browse button

15.Expand your plug-in.

16.Expand the images folder.
 Chapter 5. Introduction to building a plug-in: modifying the UI 185

17.Select the image you want to appear in the login window, as shown in
Figure 5-24, and then click OK.

Figure 5-24 Selecting the image

18.Click File → Save.

That’s it! You have just created a plug in that will brand the Login window.

5.4.2 Creating a chat window branding plug-in

In this section, you will see how to create a chat window branding that, when
clicked, will open a browser to a designated Web site. While this example is
simple in that it will only open the Web page, you can extend it further to pass on
the user’s credentials and direct them to the Sametime Meeting Center or any
other password protected Web site. There are a few possibilities here that you
can explore.

Note: You will only be able to see this change in your own Sametime client
as you test through Eclipse. You have only created the plug-in. You must
now deploy it for users to see it. How to test this plug in is shown later in
5.5, “How to test your branding plug-in” on page 210. If you want to test this
before creating the Chat window plug-in and the Hub (buddy list) window
plug-in, skip ahead to that section.

For information about how to deploy plug-ins, see Chapter 12, “Deploying
plug-ins for Sametime 7.5” on page 525.
186 Extending Sametime 7.5: Building Plug-ins for Sametime

1. If your Eclipse Workspace is not open with your plug in commonalities or your
login brand, do so now (see “All branding plug-ins begin the same” on
page 169).

2. Select the Extensions tab (see Figure 5-25).

Figure 5-25 Displaying the Extensions tab

3. In the All Extensions pane, right-click the
com.ibm.collaboration.reatime.ui.stbranding extension.

Hint: If you cannot find the Extension tab (it is not where it was last
displayed), double-click the Manifest file in the Package Explorer
perspective to display it.
 Chapter 5. Introduction to building a plug-in: modifying the UI 187

4. Select New → stbranding, as shown in Figure 5-26.

Figure 5-26 Selecting stbranding

This will place a new extension element under your Extension
(com.ibm.collaboration.realtime.ui.stbranding).

5. Define in the element property details, as shown in Figure 5-27 on page 189.

a. Change the id to com.riverbend.sametime.branding.chat.

b. Change the name to Chat Branding.

c. Change the targetView to com.ibm.collaboration.realtime.chatwindow.

d. In our example we changed the height to 64 (set yours accordingly).

e. In our example we changed the width to 64 (set yours accordingly).

f. Choose to align to the top or bottom of the window.

Note: The maximum for this brandable space is 92x 64 pixels.
188 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 5-27 Chat branding element property details

6. In the All Extensions pane, right-click the element you created for login (in this
example, Chat Branding).

7. Select New → Control, as shown in Figure 5-28.

Figure 5-28 Choosing new control for chat branding element
 Chapter 5. Introduction to building a plug-in: modifying the UI 189

8. You will see a new properties entry under the Chat Branding element. Click
the new entry.

9. On the right side of the editor frame, you will now see the Extension Element
Details pane. Click the word Class, as shown in Figure 5-29. This will create a
new class for your plug-in control.

Figure 5-29 Create a new class
190 Extending Sametime 7.5: Building Plug-ins for Sametime

10.In the Create a new Java class window that opens, give the class a name.
The example uses ChatBrandingArea, as shown in Figure 5-30.

11.Leave all the other fields as the default and click OK.

Figure 5-30 Naming the new Java class

You have just created a class (in the example case called ChatBrandingArea).
Note that the to do’s are placed in the class code, as shown in Figure 5-31 on
page 192. These are intended to remind you to add your functionality here.

Note: Be sure you are not naming this class with a protected name, for
example, ...Stbranding,
 Chapter 5. Introduction to building a plug-in: modifying the UI 191

Figure 5-31 To do’s added to the class code

Further modifications for the Chat Window Branding plug-in
For those of you who like to write your own Java/Eclipse code, this is where it
gets added to the new class you just created. If you create your own code, and it
tests fine, skip ahead to the next section when ready. To see how to test your own
code, refer to 5.5, “How to test your branding plug-in” on page 210.

For those of you that would prefer to have the Java/Eclipse code provided,
continue on from this point.

Considerations for additional code
There are a few things you need to consider before creating your Java/class
code, as well as a few things you need to create for required functionality.

1. Required tasks

a. Create the control.

b. Properties of the control.

c. Which image will be used.

2. Optional tasks/features

a. Will there be tool tips or help when the cursor hovers over the branding
area?

b. Should the cursor change to prompt users?

c. What will the control do? This one is important to evaluate. The purpose of
using the control element is to have the branded area “do something”
when the user clicks it. What that something is entirely up to you and your
imagination. In this example, the click will perform the simple task of
opening a browser to a pre-determined Web site. The next example in this
192 Extending Sametime 7.5: Building Plug-ins for Sametime

chapter is similar in that it will open a new memo in the user’s mail client
and address it to the Sametime Helpdesk. Beyond that, the sky is the limit.
A Control can do virtually anything your capable of coding. There are a few
examples/ideas in chapters later in this IBM Redbook, for example, have
the control call to a Web service.

Modifications including an image, cursor change, and tool tip
Now that we have given some thought to what we want the control to do, let us
have a look at some finished code that will:

� Display the image “rb_logo_64x64px.gif” that will be used in the control area

� Change the cursor to a hand when over the control area

� Display the tool tip “Click to go to the website” when the cursor hovers over
the control area

Classes used in the creation of additional code
The following classes are used in the creation of this code. For more information
about these classes and their methods, please refer to http://www.eclipse.org.

� org.eclipse.swt.events.MouseEvent

� org.eclipse.swt.layout.GridData

� org.eclipse.swt.layout.GridLayout

� org.eclipse.swt.program.Program

� org.eclipse.swt.widgets.Composite

� org.eclipse.swt.widgets.Control

� org.eclipse.swt.widgets.Label

Example 5-1 Example code for creating ChatBrandingArea class

package Change.to.your.package.name;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.MouseAdapter;
import org.eclipse.swt.events.MouseEvent;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.program.Program;
import org.eclipse.swt.widgets.Composite;

Note: This code can be pasted directly into your class code; however you will
need to change some text to match your naming schema. These items will
appear in BOLD.
 Chapter 5. Introduction to building a plug-in: modifying the UI 193

http://www.eclipse.org

import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Label;

import com.ibm.collaboration.realtime.ui.STBrandingArea;

public class Chatwindowbrand extends STBrandingArea {
public Control createControl(Composite parent) {

 Composite comp = new Composite(parent, SWT.NONE);
 comp.setBackground(parent.getBackground());
 GridLayout gl = new GridLayout();
 gl.marginHeight = 0;
 gl.marginWidth = 0;
 comp.setLayout(gl);
 Label label = new Label(comp, SWT.NONE);
 label.setLayoutData(new
GridData(GridData.HORIZONTAL_ALIGN_CENTER |
GridData.VERTICAL_ALIGN_CENTER));
label.setImage(Activator.getCHAT_WINDOW_IMAGE());
 label.setToolTipText("What text you want to appear when cursor
hovers");

label.setCursor(label.getDisplay().getSystemCursor(SWT.CURSOR_HAND));
 label.addMouseListener(new MouseAdapter() {
 public void mouseUp(MouseEvent e) {
 Program.launch("http://The Website you want to
open in the browser/");

 }
 });
 return comp;
}

}

Table 5-4 is a listing of all the changes you should have made to your
ChatBrandingArea class code.

Table 5-4 ChatBrandingArea.java code changes.

Replace this
code

With Located on line

Change.to.your.
package.name

The name of your package. In our example,
that would be com.riverbend.chat.branding.

1

194 Extending Sametime 7.5: Building Plug-ins for Sametime

Lightbulb - identifying exceptions in the Eclipse editor
If you are new to Eclipse, you are probably wondering why there is a little light
bulb and red X box on the left hand side of this code, as shown in Figure 5-33.
Click the light bulb.

Figure 5-32 Lightbulb Icon in Eclipse 3.2 class editor

This will display two boxes that show there is an issue with the code, and offers
possible solutions to correct it. In this case, you are being told that
getImageDescriptor is not defined in the activator file.

Figure 5-33 getImage descriptor undefined - use the light bulb for possible solutions

"What text you
want to appear
when cursor
hovers"

Replace with the text you want to appear when
the cursor hovers over the control. In our
example, the text is “Go to the Website”.

27

"http://The
Website you
want to open in
the browser/"

Replace with the URL of the Web site you
want to open when the user clicks the control.

31

Replace this
code

With Located on line
 Chapter 5. Introduction to building a plug-in: modifying the UI 195

To correct this issue, do the following:

1. Look in the Package Explorer frame on the left.

2. Expand the src folder.

3. Expand the plug-in package (under the src folder).

4. Double-click the activator.java file, as shown in Figure 5-34.

Figure 5-34 Selecting activator.java file

This will open the activator.java code.

5. Replace the code that is there with the code shown in Example 5-2.

Example 5-2 Activator.java code

package Change.to.your.package.name;

import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.swt.graphics.Image;
import org.eclipse.ui.plugin.AbstractUIPlugin;
import org.osgi.framework.BundleContext;

/**
 * The activator class controls the plug-in life cycle
 */
public class Activator extends AbstractUIPlugin {

// The plug-in ID
public static final String PLUGIN_ID =

"com.riverbend.chat.branding";
public static Image CHAT_WINDOW_IMAGE;

Note: Again, items bolded in the provided code will need to be changed to
match your plug-in’s naming schema
196 Extending Sametime 7.5: Building Plug-ins for Sametime

// The shared instance
private static Activator plugin;

/**
 * The constructor
 */
public Activator() {

plugin = this;
}

/*
 * (non-Javadoc)
 * @see

org.eclipse.ui.plugin.AbstractUIPlugin#start(org.osgi.framework.BundleC
ontext)

 */
public void start(BundleContext context) throws Exception {

CHAT_WINDOW_IMAGE =
getImageDescriptor("Chat_window_image.gif").createImage();

super.start(context);
}

/*
 * (non-Javadoc)
 * @see

org.eclipse.ui.plugin.AbstractUIPlugin#stop(org.osgi.framework.BundleCo
ntext)

 */
public void stop(BundleContext context) throws Exception {

CHAT_WINDOW_IMAGE.dispose();
plugin = null;
super.stop(context);

}

/**
 * Returns the shared instance
 *
 * @return the shared instance
 */
public static Activator getDefault() {

return plugin;
}

 /**
 Chapter 5. Introduction to building a plug-in: modifying the UI 197

 * Returns an image descriptor for the image file at the given
 * plug-in relative path.
 *
 * @param path the path
 * @return the image descriptor
 */
 public static ImageDescriptor getImageDescriptor(String path) {
 return
AbstractUIPlugin.imageDescriptorFromPlugin("com.riverbend.chat.branding
", path);
 }

public static Image getCHAT_WINDOW_IMAGE() {
return CHAT_WINDOW_IMAGE;

}

Table 5-5 is a listing of all the changes you should have made to your
Activator.java code.

Table 5-5 Activator.java code changes needed.

6. Select File → Save.

7. Close the Activator.java and ChatBrandingArea.java tabs.

That’s it! You are now ready to test your plug-in. You can either test it now by
skipping ahead to 5.5, “How to test your branding plug-in” on page 210 or you
can add the Hub Branding Plug-in first.

Replace this code With Located on line

Change.to.your.package.
name

The name of your package.
In our example, that would
be
com.riverbend.chat.brandi
ng.

1

Chat_window_image.gif The name of your chat
window image.

33

Hub_window_image.jpg The name of your hub
window image.

34
198 Extending Sametime 7.5: Building Plug-ins for Sametime

5.4.3 Creating a hub branding plug-in

In this section, you will see how to create a hub window branding that, when
clicked, will open the user’s e-mail client, create a new memo with a subject, a
Body portion, and an address to mail it to. You can extend it further to pass on the
user’s credentials and direct them to any program on the desktop or any
back-end system. There are a many possibilities here that you can explore.

1. If your Eclipse Workspace is not open to your Sametime Plug-in Development
environment, open that now.

2. Select the Extensions tab, as shown in Figure 5-35.

Figure 5-35 Displaying the Extensions tab

Note: You will only be able to see this change in your own Sametime client as
you test through Eclipse. You have only created the plug-in. You must now
deploy it for users to see it. For information about how to deploy plug-ins, see
Chapter 12, “Deploying plug-ins for Sametime 7.5” on page 525.

Hint: If you cannot find the Extension tab (it is not where it was last
displayed), double-click the Manifest file in the Package Explorer
perspective to display it.
 Chapter 5. Introduction to building a plug-in: modifying the UI 199

� In the All Extensions pane, right-click the
com.ibm.collaboration.reatime.ui.stbranding extension.

� Choose New → stbranding, as shown in Figure 5-36.

Figure 5-36 Selecting stbranding element

This will place a new extension element under your Extension.

3. Define the element property details, as shown in Figure 5-37 on page 201:

a. Change the id to com.riverbend.sametime.branding.hub.

b. Change the name to Hub Branding.

c. Change the targetView to com.ibm.collaboration.realtime.imhub.

• Hub Window (Buddy List) Top: A maximum of 256 w x 26 h Pixels

• Hub Window (Buddy List) Bottom: A maximum of 256 w x 32 h Pixels

d. Choose to align to the top or bottom of the window.

4. Select File → Save.
200 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 5-37 New extension element

5. Display the All Extensions pane and right-click the element you created for
hub (in this example called Hub Branding).

6. Select New → Control, as shown in Figure 5-38.

Figure 5-38 Creating a new control
 Chapter 5. Introduction to building a plug-in: modifying the UI 201

7. You will see a new properties entry under the Hub Branding element. Click the
new entry.

8. On the right side of the frame, you will now see the Extension Element Details
pane. Click the word Class (Figure 5-39). This will create a new class for your
plug-in control.

Figure 5-39 Creating a new class
202 Extending Sametime 7.5: Building Plug-ins for Sametime

9. In the Create Class window that opens, give the class a name. The example
uses HubBrandingArea, as shown in Figure 5-40.

Figure 5-40 Naming the HubBrandingArea class

Important: Be sure you are not naming this class with a protected name,
for example, Stbranding.
 Chapter 5. Introduction to building a plug-in: modifying the UI 203

10.Leave all other fields as the default and click Finish.

You have just created a class (in the example case called HubBrandingArea).
Note the to do’s are placed in the Class code, as shown in Figure 5-41. These
are intended to remind you to add your functionality here.

Figure 5-41 To do’s added to the class code

Further modifications for the hub window plug-in
For those of you who like to write your own Java/Eclipse code, this is where it
gets added to the new class you just created. To see how to test your code, refer
to 5.5, “How to test your branding plug-in” on page 210”.

For those of you that would prefer to have the Java/Eclipse code provided,
continue on from this point.

Considerations for the modifications
There are a few things you need to consider before creating your Java/class
code, as well as a few things you need to create for required functionality.

� Required

– Create the control.

– Properties of the control.

– Which image will be used.

� Optional

– Will there be tool tips or help when the cursor hovers over the branding
area?

– Should the cursor change to prompt users?
204 Extending Sametime 7.5: Building Plug-ins for Sametime

– What will the control do? This one is important to evaluate. The purpose of
using the control element is to have the branded area “do something”
when the user clicks it. What that something is entirely up to you and your
imagination. In this example, the click will perform the simple task of
creating a new memo with a subject, a Body portion, and an address to
mail it to. A Control can do virtually anything your capable of coding. There
are a few examples/ideas in chapters later in this book, for example, have
the control call to a Web service.

Now that we have given some thought to what we want the control to do, let us
have a look at some finished code that will:

� Display the image “Large_Banner_Get_help.gif” that will be used in the
control area.

� Change the cursor to a hand when over the control area.

� Display the tool tip “Get Sametime Help” when the cursor hovers over the
control area.

The following classes are used in the creation of this code. For more information
about these classes and their methods, please refer to http://www.eclipse.org.

� org.eclipse.swt.events.MouseEvent

� org.eclipse.swt.layout.GridData

� org.eclipse.swt.layout.GridLayout

� org.eclipse.swt.program.Program

� org.eclipse.swt.widgets.Composite

� org.eclipse.swt.widgets.Control

� org.eclipse.swt.widgets.Label

Example 5-3 Example code for creating HubBrandingArea class

package Change.to.your.project.name;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.MouseAdapter;
import org.eclipse.swt.events.MouseEvent;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.program.Program;

Note: The code in Example 5-3 on page 205 can be pasted directly into
your class code; however, you will need to change some text to match your
naming schema. These items will appear in BOLD.
 Chapter 5. Introduction to building a plug-in: modifying the UI 205

http://www.eclipse.org

import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Label;

import com.ibm.collaboration.realtime.ui.STBrandingArea;

public class HubBrand extends STBrandingArea {
public Control createControl(Composite parent) {

 Composite comp = new Composite(parent, SWT.NONE);
 comp.setBackground(parent.getBackground());
 GridLayout gl = new GridLayout();
 gl.marginHeight = 0;
 gl.marginWidth = 0;
 comp.setLayout(gl);
 Label label = new Label(comp, SWT.NONE);
 label.setLayoutData(new
GridData(GridData.HORIZONTAL_ALIGN_CENTER |
GridData.VERTICAL_ALIGN_CENTER));

 label.setImage(Activator.HUB_WINDOW_IMAGE);
 label.setToolTipText("Get Sametime Help");

label.setCursor(label.getDisplay().getSystemCursor(SWT.CURSOR_HAND));
 label.addMouseListener(new MouseAdapter() {
 public void mouseUp(MouseEvent e) {
 Program.launch(
 "mailto:Sametime.Helpdesk@riverbend.com" +
 "?Subject=I am having an issue with...." +
 "?Body=Hello. I am having problems with the ______
area of Sametime.");
 }
 });
 return comp;
}

}

Table 5-6 on page 207 is a listing of all the changes you should have made to
your HubBrandingArea class code.
206 Extending Sametime 7.5: Building Plug-ins for Sametime

Table 5-6 HubBrandingArea class code changes

If you created the Chat Brand from the previous section and already changed the
Activator.java code, you are finished. Select File → Save, and then skip to 5.5,
“How to test your branding plug-in” on page 210. If you did not create the Chat
Brand from the previous section, continue on from this point.

If you are new to Eclipse, you are probably wondering why there is a little light
bulb and red X box on the left hand side of this code. Click the light bulb and
leave the cursor still (do not move it after the click). This will display two boxes
that show there is an issue with the code, and offers possible solutions to correct
it. In this case, you are being told that getImageDescriptor is not defined in the
activator file.

To correct this issue, do the following:

1. Look in the Package Explorer frame on the left.

2. Expand the src folder.

3. Expand the plug-in package (under the src folder).

Replace this code With Located on
line

Change.to.your.pro
ject.name

The name of your package. In our example
that would be com.riverbend.chat.branding.

1

“Get Sametime
Help”

The text you want to appear when the cursor
hovers over the control area.

27

Sametime.Helpdesk@
riverbend.com

The e-mail address you want to send the
note to.

32

“I am having an
issue with....”

The Subject you want to place in the e-mail
Subject field.

33

“Hello. I am
having problems
with the ______
area of Sametime."

Any predetermined text you want to appear
in the body of the e-mail.

34
 Chapter 5. Introduction to building a plug-in: modifying the UI 207

4. Double-click the activator.java file, as shown in Figure 5-42.

Figure 5-42 Selecting activator.java

This will open the activator.java code.

5. Replace the code that is there with the code shown in Example 5-4.

Example 5-4 com.riverbend.sametime.branding package

package com.riverbend.sametime.branding;

import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.swt.graphics.Image;
import org.eclipse.ui.plugin.AbstractUIPlugin;
import org.osgi.framework.BundleContext;

/**
 * The activator class controls the plug-in life cycle
 */
public class Activator extends AbstractUIPlugin {

// The plug-in ID
public static final String PLUGIN_ID =

"com.riverbend.chat.branding";
public static Image CHAT_WINDOW_IMAGE;
public static Image HUB_WINDOW_IMAGE;

// The shared instance

Note: If you did not do the chat window branding section prior to this, you
will need to remove the lines in Bold from your code. If you did do the prior
step you will only need to change the name of the two image files to match
the name of your images
208 Extending Sametime 7.5: Building Plug-ins for Sametime

private static Activator plugin;

/**
 * The constructor
 */
public Activator() {

plugin = this;
}

/*
 * (non-Javadoc)
 * @see

org.eclipse.ui.plugin.AbstractUIPlugin#start(org.osgi.framework.BundleC
ontext)

 */
public void start(BundleContext context) throws Exception {

CHAT_WINDOW_IMAGE =
getImageDescriptor("Images/rb_logo_64x64px.gif").createImage();

HUB_WINDOW_IMAGE =
getImageDescriptor("Images/Large_Banner_Get_help.jpg").createImage();

super.start(context);
}

/*
 * (non-Javadoc)
 * @see

org.eclipse.ui.plugin.AbstractUIPlugin#stop(org.osgi.framework.BundleCo
ntext)

 */
public void stop(BundleContext context) throws Exception {

CHAT_WINDOW_IMAGE.dispose();
HUB_WINDOW_IMAGE.dispose();
plugin = null;
super.stop(context);

}

/**
 * Returns the shared instance
 *
 * @return the shared instance
 */
public static Activator getDefault() {

return plugin;
}
 Chapter 5. Introduction to building a plug-in: modifying the UI 209

 /**
 * Returns an image descriptor for the image file at the given
 * plug-in relative path.
 *
 * @param path the path
 * @return the image descriptor
 */
 public static ImageDescriptor getImageDescriptor(String path) {
 return
AbstractUIPlugin.imageDescriptorFromPlugin("com.riverbend.chat.branding
", path);
 }

public static Image getCHAT_WINDOW_IMAGE() {
return CHAT_WINDOW_IMAGE;

}

6. Select File → Save.

That’s it! Your finished creating the Hub Branding portion of your plug-in.

Now you need to test.

5.5 How to test your branding plug-in

Now that you have created a Sametime 7.5 plug-in, you will want to test it before
deploying it. Testing is done through your Eclipse 3.2 environment, but to do this,
you will need to create a launch configuration. The launch configuration is used
to run or debug the plug-ins using the Lotus Sametime Connect target platform
you created when you set up the IDE.

Follow the steps below to create a launch configuration.

1. If Eclipse is not already running, start Eclipse. Be sure to choose the same
workplace directory you created and configured for Sametime plug-ins.

2. In the Plug-in Development perspective, select Run → Run… in order to
configure the runtime environment.

3. Select Eclipse Application from the configuration list.

Note: You will only be able to see this change in your own Sametime client as
you test through Eclipse. You have only created the plug-in. You must now
deploy it for users to see it. For information about how to deploy plug-ins, see
Chapter 12, “Deploying plug-ins for Sametime 7.5” on page 525.
210 Extending Sametime 7.5: Building Plug-ins for Sametime

4. Click the New icon (the leftmost icon above the configuration list). You can
also just double-click Eclipse Application from the configuration list.

5. In the Name field replace, the default configuration name with a new one, for
example, ST Branding, or ST 7.5.

6. In the Location field, replace the default location with a new workspace, for
example, ${workspace_loc}/../STconfiguration.

7. In the Program to Run section, click the Run an Application radio button.

8. If necessary, click the drop-down arrow and select
com.ibm.collaboration.realtime.application.RTCApplication.

9. If necessary, click the drop-down arrow next to the Runtime JRE field and
select the J9 JCL Desktop run time configuration you created earlier (JCL
Desktop or what you named it).

Note: The workspace you specify here is the one that Lotus Sametime
Connect will use to store product settings when you launch it from Eclipse.
This is not the same workspace that Lotus Sametime Connect uses when you
launch it outside of the Eclipse IDE.

You should not select the same workspace directory that you are using for
Eclipse configuration settings (the one you selected in previous steps). If you
select the Clear workspace data before launching option, all IM client
settings stored in the Lotus Sametime Connect workspace you specify above
(C:\eclipse32\eclipse\runtime-workspace) will be discarded whenever you
launch this configuration.
 Chapter 5. Introduction to building a plug-in: modifying the UI 211

Figure 5-43 shows the Main tab of the new configuration window.

Figure 5-43 Creating a new launch configuration

10.Select the Arguments tab and enter the following in the VM arguments field
(not the Program arguments field):

-Xint -Xtrace:none -Xgcpolicy:gencon -Djava.home=<JRE_HOME>
-Dcom.ibm.pvc.webcontainer.port=7777

<JRE_HOME> is the location of the J9 JCL Desktop run time environment on the
Lotus Sametime 7.5 SDK.

Note: This is one continuous line of text
212 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 5-44 Example of VM arguments

For example: If the SDK (for Windows) is installed in c:\st75sdk, the VM
arguments field should contain the following (which is one continuous line
of text):

-Xint -Xtrace:none -Xgcpolicy:gencon
-Djava.home=C:\st75sdk\client\connect\j9-runtime\win32
-Dcom.ibm.pvc.webcontainer.port=7777

Figure 5-44 shows this code entered into the VM arguments field.

Linux only:

� Select the Environment tab and create a new environment variable called
MOZILLA_FIVE_HOME.

� The value of the variable should be the path where Mozilla is installed on
your machine, for example, /usr/lib/mozilla-1.7.13.
 Chapter 5. Introduction to building a plug-in: modifying the UI 213

11.Select the Plug-ins tab.

12.Click the radio button beside Choose fragments and plug-ins to run from
the list.

13.Make sure all plug-ins you wish to test are selected under the Workspace
Plug-ins section. You may or may not want to test all plug-ins simultaneously.

The tab should look like Figure 5-45.

14.Click Apply to save your changes, and then click Run to launch the
configuration.

Figure 5-45 Selecting plug-ins to test

This should cause your Sametime Connect client to launch from the development
environment with the plug-ins you chose to include/test.

To run the plug-ins in debug mode, use Run → Debug… to launch the
configuration.
214 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 6. Leveraging Web services
and building a calendar
lookup plug-in for Sametime
Connect

In this chapter, we discuss the use of Web services within a plug-in, and show an
example of a calendar lookup Web service integrated into a IBM Lotus Sametime
Connect plug-in, enabling users to look up the calendar details for someone in
their contact list from within the Sametime Connect client.

We cover the following topics:

� Using Eclipse tooling to create a Web service client

� Using a Web service client in a plug-in

� Creating the calendar lookup plug-in

� Extending this plug-in

6

© Copyright IBM Corp. 2007. All rights reserved. 215

Attention: The sample code used within this chapter can be downloaded from
the Redbooks FTP site. Please refer to Appendix A, “Additional material” on
page 557 for detailed instructions on how to download and deploy the code
sample:

ftp://www.redbooks.ibm.com/redbooks/SG247346

Important: While the sample code for this example is provided for download,
keep in mind that there are specific parameters - unique to your organization -
that need to be used in order to test this functionality in your environment. If
you wish to deploy this plug-in for use in your organization, you will most likely
need to work with your server administration team to review specific
parameters and security requirements.

We recommend using this example as a baseline and framework on how to
develop a useful plug-in that utilizes Web services. Once you understand the
key concepts and the approach, you can leverage many additional Web
services that may be particularly useful to your organization.
216 Extending Sametime 7.5: Building Plug-ins for Sametime

ftp://www.redbooks.ibm.com/redbooks/SG247346

6.1 Overview of the plug-in

In the current push towards Service Oriented Architectures (SOA), the ability to
make use of Web services within plug-ins becomes more important. In this
chapter, we show how to leverage Web services within the Sametime Connect
client. In particular, we leverage a custom Web service to perform calendar
lookups from within the Sametime Connect client.

6.1.1 Using the calendar lookup plug-in

Figure 6-1 shows the calendar lookup plug-in.

Figure 6-1 Using the calendar lookup plug-in

The calendar lookup plug-in enables a user to retrieve the calendar details for
someone in their contact list without leaving the Sametime Connect client. It
works for both online and offline contacts, giving additional clues as to the
contact’s whereabouts and availability. A user can right-click the contact’s name
in their buddy list and is presented with a pop-up window containing details of
that user’s calendar entries for the current day. Details include the calendar entry
type, start time, end time, and subject.
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 217

6.1.2 Value to the user

The ability to use Web services within a plug-in opens up a myriad of
possibilities. The current buzz around Web services-based Service Oriented
Architectures means more and more enterprise functionality will be exposed
through a Web services interface.

6.1.3 Value to the developer

The value to the developer here is the “how-to” of integrating with Web services.
We use free, standards-based Eclipse tooling to generate a Web service client,
then show how to call it from within a Sametime Connect plug-in. We also show
how to create an Eclipse-based user interface to display the calendar lookup
results.

6.2 Using Eclipse tooling to create a Web service client

The Eclipse Web Tools Platform (WTP) project
(http://www.eclipse.org/webtools/) extends the Eclipse platform with tools for
developing Java Enterprise Edition and Web applications. Of special interest to
us are tools to develop Java Web services and Web service clients. These tools
come from the Apache Axis project, an open-source Java Web services toolkit
(read more about it at http://ws.apache.org/axis/).

The Eclipse WTP project was one of ten projects involved in the Callisto
Simultaneous Release in June 2006 (http://www.eclipse.org/callisto/).

6.2.1 Installing the Web Tools Platform

Follow these instructions to install the WTP using the Eclipse Update Manager.

1. Select Help → Software Updates → Find and Install....

2. Select the Search for new features to install radio button, then click Next.
218 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.eclipse.org/webtools/
http://ws.apache.org/axis/
http://www.eclipse.org/callisto/

3. You should see the Callisto Discovery Site in the list of update sites to visit, as
shown in Figure 6-2. Select it, and then click Finish.

Figure 6-2 Eclipse Update Manager

Eclipse queries the Callisto Discovery Site to discover which features are
available for you to install.

Note: For most distributions of Eclipse, there should already be a Callisto
Discovery Site defined in its Update Manager. If you do not see it you can try
adding the URL (http://download.eclipse.org/callisto/releases/) as a
remote update site in your Update Manager.
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 219

http://download.eclipse.org/callisto/releases/

4. When the search results display, expand the Callisto Discovery Site item
and select the Web and J2EE Development feature, as shown in Figure 6-3.

Figure 6-3 Installable features from Callisto Discovery Site

Note the warning at the top of the dialog (Figure 6-3) that the Web and J2EE
Development feature is dependent on a number of other features.

5. Click the Select Required button to select the other features we need, and
then click Next.

6. Accept the license agreement, and then click Next.

7. An information dialog displays which lists the features that are about to be
installed. Click Finish.

The Update Manager will now download the requisite plug-ins and install
them into Eclipse. This is a fairly large download, so it will take a few minutes.

8. After the download has completed, the installation will begin. You may be
prompted by Eclipse about feature verification to confirm that the feature you
are about to install has not been digitally signed. Figure 6-4 on page 221
shows the Verification window.
220 Extending Sametime 7.5: Building Plug-ins for Sametime

You can ignore this prompt and click Install All.

Figure 6-4 Feature Verification

9. Click Yes when prompted to restart the workbench.

10.After Eclipse has restarted, select Window → Preferences... to open the
Preferences dialog.
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 221

You will see that a number of new entries have been created, including one for
Web Services as shown in Figure 6-5.

Figure 6-5 Eclipse Preferences

6.2.2 Creating a Web service client

We are going to use the WTP tooling to create a client for a currency converter
Web service hosted by XMethods (http://www.xmethods.net), a site that lists
publicly available Web services. The WTP tooling allows us to specify the URL of
a Web Services Definition Language (WSDL) file, and it will generate the Java
classes for the Web services client.

We start by creating a new Java project to house our Web service client.

1. From the menu bar, select File → New → Project → Java Project, and then
click Next.

2. Give the project a meaningful name and click Finish.

3. If prompted to change perspectives, click No, as we can do all we need to do
from the PDE perspective.
222 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.xmethods.net

4. To create our Web service client, right-click the project name and select
New → Other... → Web Services → Web Service Client and click Next, as
shown in Figure 6-6.

Figure 6-6 Creating a new Web Service Client

5. In the Enter a URL to a WSDL, WSIL or HTML document field, click
Browse....
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 223

6. Enter the URL for the Web services’ WSDL file in the top field, as shown in
Figure 6-7. In our case, we can find this from the XMethods site.

Figure 6-7 Add the URL of the Web service’s WSDL file

7. Since there is only one WSDL available to select, click OK.
224 Extending Sametime 7.5: Building Plug-ins for Sametime

8. Make sure the Client type is set to Java Proxy, and the slider is set to the
lowest value, Develop client, as shown in Figure 6-8.

Figure 6-8 Web service client details

9. Click Finish.

The wizard interrogates the Web services’ WSDL file and generates Java
classes to act as a client. You may see some warnings in the Java files generated
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 225

by the wizard. It is safe to let Eclipse’s Quick Fix mechanism take care of these,
as shown in Figure 6-9.

Figure 6-9 Eclipse’s Quick Fix mechanism

We can now write a simple Java class that makes use of the code created by the
wizard to interact with the Web service.

1. Right-click the package name in the project and select New → Class.

2. Enter the class name

3. In the Which method stubs would you like to create? section, select

� public static void main(String[] args)

� Inherited abstract methods

as shown in Figure 6-10 on page 227.
226 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 6-10 Create a class to test the Web service client

This particular Web service takes two parameters:

� The country of the currency to convert from

� The country of the currency to convert to

The Web service calculates the equivalent of one unit of currency A in currency
B. Example 6-1 shows the code to do this.

Example 6-1 The WebServiceClient class that calls the Web service

package net.xmethods.www.sd.CurrencyExchangeService_wsdl;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

public class WebServiceClient
{

 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 227

/**
 * @param args
 */
public static void main(String[] args)
{

try
{

CurrencyExchangeServiceLocator locator = new
CurrencyExchangeServiceLocator();

CurrencyExchangePortType service =
locator.getCurrencyExchangePort();

String country1 = "uk";
String country2 = "us";
System.out.println(service.getRate(country1, country2));

}
catch (ServiceException se)
{

se.printStackTrace();
}
catch (RemoteException re)
{

re.printStackTrace();
}

}

}

We need to change the default JRE before we can test our client.

1. Select Window → Preferences... → Java → Installed JREs.
228 Extending Sametime 7.5: Building Plug-ins for Sametime

2. Deselect the JCL Desktop and select the full JRE, as shown in Figure 6-11,
and then click OK.

Figure 6-11 Add the full JRE to the project’s build path
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 229

3. Right-click the test class and select Run As → Java Application.

You will see the result of the call to the Web service in the Console view, as
shown in Figure 6-12.

You can also see in Figure 6-12 that at this particular moment, one Pound
Sterling was worth 1.8652 US dollars.

Figure 6-12 The output from running the WebServiceClient class

When the Web service client is successfully calling the Web service, we can
switch the default JRE back to the JCL Desktop.

6.3 Using a Web service client in a plug-in

We will now take the classes created by the Web service client wizard and use
them within a Sametime Connect plug-in. To do this, we need to export the
classes as a jar file and then import the jar file into the plug-in.

1. Right-click the package and select Export... → Java → JAR file.
230 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 6-13 Select JAR file as the Export type

2. Select just the top-level package, and make sure the Export generated class
files and resources option is checked.
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 231

3. Specify an export destination, for example, c:\webserviceclient.jar, and then
click Finish (see Figure 6-14).

Figure 6-14 JAR file specification

We now have a JAR file containing classes that can be used to communicate
with the Web service. The next step is to incorporate these classes into a
Sametime Connect plug-in.

6.3.1 Creating the plug-in project and plug-in

We need to create a new plug-in project to house our new plug-in, and a new
folder within the plug-in project to hold the Web service client jar file.

1. Select File → New → Project → Plug-in Project.

2. Enter a meaningful project name (for example, Web Service Client Plug-in),
and then click Next.
232 Extending Sametime 7.5: Building Plug-ins for Sametime

3. We are not going to make any contributions to the core Eclipse UI, so we can
deselect the This plug-in will make contributions to the UI option, and then
click Finish.

Figure 6-15 Plug-in project details

6.3.2 Importing the Web service client JAR

In order to use the Web service client JAR in our plug-in, we need to import it into
our project.

1. Right-click the project and select New → Folder.

2. For convenience, call the folder lib.

3. To add the JAR file, right-click the new folder and select Import... → File
System.

4. Find the JAR file you exported in the last section and click Finish.

Figure 6-16 on page 234 shows the project after the JAR file has been
imported.
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 233

Figure 6-16 Plug-in project following import of JAR file

6.3.3 Calling the Web service from the plug-in

In order to use the classes within the Web service client JAR file in our plug-in,
we need to add the JAR file to the plug-in’s build path.

1. Open the Runtime tab in the plug-in manifest and locate the Classpath area
in the bottom right corner.

2. Click Add... and select the Web service client JAR file from the previous step.

3. Make sure the Update the build path option is checked, so the JAR file gets
added to the plug-in’s build path as well.

Figure 6-17 Adding the Web service client JAR file to the plug-in’s classpath

Figure 6-18 on page 235 shows the Classpath list after the client JAR file has
been added.
234 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 6-18 Plug-in’s Classpath settings

Now that the JAR file is on the plug-in’s build path, we can use the classes within
it to call the Web service from our plug-in. We will add a button to the Sametime
Connect client’s toolbar that calls the Web service and displays the result in a
dialog box.

We start by adding an extension to the Connect toolbar.

1. In the plug-in’s manifest file, click the Extensions tab and add the
org.eclipse.ui.viewActions extension point.

2. Our plug-in does not already have the org.eclipse.ui plug-in set as a
dependency. Click Yes when prompted to add it to the list, as shown in
Figure 6-19.

Figure 6-19 New plug-in dependency prompt

3. Add a new viewContribution extension element, and make sure to set the
targetID property to be com.ibm.collaboration.realtime.imhub, otherwise the
action will not appear in the toolbar.

4. Add a new action extension element, set the toolbarPath property to an
appropriate value (see 4.3.2, “Adding an action to the Tool Bar” on page 82
for more details), and choose an icon to display in the toolbar. You may need
to import one into the project if you have not already done so.

Note: The following section assumes you have read and are familiar with
4.3.2, “Adding an action to the Tool Bar” on page 82.
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 235

5. Our class needs to extend the
com.ibm.collaboration.realtime.imhub.actions.BuddyListAction class, so we
need to add the com.ibm.collaboration.realtime.imhub plug-in as a
dependency.

Go to the Dependencies tab and add the imhub plug-in to the list.

While we are adding plug-in dependencies, now is a good time to add the
classes that the Web service client JAR file needs in order to function.

We noted earlier that Eclipse WTP uses the Apache Axis toolkit to help it create
the Web service client classes. The Web service client classes that were created
rely on parts of the Apache Axis toolkit to handle the communication with the
Web service. Fortunately for us, Sametime Connect includes the Apache Axis
classes we need in a plug-in that is shipped with the client, org.apache.axis.
Adding this plug-in to our dependencies list is all that is needed to utilize the Web
service client classes within our plug-in.

Figure 6-20 shows the plug-in dependencies list after we have added the
com.ibm.collaboration.realtime.imhub and org.apache.axis plug-ins.

Figure 6-20 Updated list of plug-in dependencies

1. Click the class link to create the action’s class file.

2. Select the correct package.

3. Enter the class name.

4. Remove the default interface.

5. Add the Superclass
com.ibm.collaboration.realtime.imhub.actions.BuddyListAction.
236 Extending Sametime 7.5: Building Plug-ins for Sametime

6. Deselect the option to implement Inherited abstract methods; we only need to
override the superclass’ run() method.

In the run() method, we use the Web service client classes in the JAR file to
call the Web service, and display the results in a JFace dialog box, as shown
in Example 6-2.

Example 6-2 WebServiceActionDelegate’s run() method

public void run()
{

try
{

CurrencyExchangeServiceLocator locator = new
CurrencyExchangeServiceLocator();

CurrencyExchangePortType service =
locator.getCurrencyExchangePort();

String country1 = "uk";
String country2 = "us";

String exchangeRate = new Float(service.getRate(country1,
country2)).toString();

MessageDialog.openInformation(null, "XMethods Web service
plugin", "The exchange rate for US to UK is currently\n" +
exchangeRate);

}
catch (RemoteException e)
{

e.printStackTrace();
}
catch (ServiceException e)
{

e.printStackTrace();
}

}

 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 237

7. Select Run → Run to launch the run time workspace.

A new icon is added to the toolbar, as shown in Figure 6-21.

Figure 6-21 Sametime Connect client showing new toolbar item

8. Click the icon to invoke our action’s run() method, which calls the Web service
and displays the results in a dialog box, as shown in Figure 6-22.

Figure 6-22 Result of invoking the Web service
238 Extending Sametime 7.5: Building Plug-ins for Sametime

6.4 Creating the calendar lookup plug-in

This next section describes the construction of a calendar lookup plug-in. When
a user right-clicks a buddy’s name in their contact list, a pop-up window displays
the user’s calendar entries for the current day, as shown in Figure 6-23.

Figure 6-23 Calendar lookup plug-in showing buddy’s calendar details

Why is this useful? Maybe you would like to make sure that someone is not in a
meeting before you send them a message. Or, you may have already sent them a
message, and are wondering why they have not replied. If your contact is offline,
you may be wondering where they are and if are they likely to be available at
some point later in the day.

A calendar lookup plug-in could help in all of these scenarios.
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 239

6.4.1 The calendar lookup Web service

For the purposes of this sample, we developed a calendar lookup Web service,
using the built-in Web service capabilities of IBM Lotus Domino 7. We created a
native Web service design element that takes a user’s name as a parameter and
does the following:

1. Looks up the user in the Domino NAB and ascertains their mail file location

2. Retrieves the user’s calendar entries for the current day

3. For each entry, creates a CalendarEntry object containing the entry type,
duration, and title

4. Returns an array of CalendarEntry objects inside a CalendarLookup object

The WSDL of the calendar lookup Web service is used in the creation of a Web
service client, which in turn is used by a custom plug-in.

6.4.2 The calendar lookup plug-in

The calendar lookup plug-in follows the example shown in 4.3.4, “Adding to the
context (right-click) menu” on page 90. To do this, we:

1. Create a plug-in project and a plug-in, and contribute to the
org.eclipse.ui.popupMenus extension point.

2. Specify the com.ibm.collaboration.realtime.livenames.PersonSelection
interface as our object contribution, so our custom action will apply to the
context menu of a person in our contact list.

3. Create our Web service client classes in exactly the same way as we did for
the XMethods currency converter Web service.

4. Give the Eclipse WTP Web service client wizard the URL of our Domino Web
service’s WSDL file, and let it take care of constructing the Web service client
classes for us.

5. Export the client classes as a JAR file, and then import them in to our plug-in
project. We need to add the JAR file to the classpath of the plug-in, and add
the org.apache.axis plug-in to the list of our plug-in’s dependencies, just as
we did in the currency converter example.

After these pieces are in place, we can begin building the functionality behind our
plug-in. The plug-in consists of the following classes, each of which is described
in the following pages:

� Activator: Created during the plug-in project creation, and controls the life
cycle of the plug-in.
240 Extending Sametime 7.5: Building Plug-ins for Sametime

� CalendarLookupAction: Extends LiveNameActionDelegate, Its run() method
is called when the menu action is clicked.

� CalendarDetailsWindow: A subclass of SWT Window, it provides the pop-up
window that holds the Business Card and the table of calendar results.

� CalendarEntryWebServiceLookup: Uses the Web service client code to call
the calendar lookup Web service.

� CalendarEntryResult: A class to hold individual calendar entries returned
from the Web service.

� CalendarEntriesContentProvider: The content provider for the JFace
TableViewer used to display the calendar entries.

� CalendarEntriesLabelProvider: The label provider for the TableViewer.

Activator.java
We modify the Activator class created by the plug-in project wizard to set up an
image cache to help with the creation and disposal of the images we use in our
plug-in.

We set up a java.util.HashMap to hold the SWT Image objects created by the
plug-in, keyed on an ImageDescriptor.

In the getImage() method, shown in Example 6-3, we take an ImageDescriptor
as a parameter and check the HashMap for the corresponding Image object. If
the Image exists, we return it. If it does not, we create it and put it into the
HashMap before returning it.

Example 6-3 Activator’s getImage() method

/**
 * Check cache for existing Image object, create new Image
 * if none exists already for key
 *
*/
public Image getImage(ImageDescriptor imageDescriptor)
{

if(imageDescriptor == null)
return null;

A note about SWT Image objects: An Image is a Java object that wraps a
native OS resource and thus must be properly managed. The rule is that if you
create it, you must dispose of it to prevent memory leaks. Such objects will not
be automatically managed and disposed of by the Java garbage collector.
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 241

Image image = (Image) imageMap.get(imageDescriptor);
if (image == null)
{

image = imageDescriptor.createImage();
imageMap.put(imageDescriptor, image);

}
return image;

}

The stop() method calls the clearImageCache() method before the plug-in shuts
down. The clearImageCache() method, shown in Example 6-4, iterates through
the HashMap, calling the dispose() method of each Image object in the cache.

Example 6-4 Activator’s clearImageCache() method

/**
 * Call dispose() on any Image objects in the cache
 *
*/
public void clearImageCache()
{

Iterator iter = imageMap.values().iterator();
while (iter.hasNext())

((Image) iter.next()).dispose();
imageMap.clear();

}

CalendarLookupAction.java
It is the run() method within this class that is called when the context menu action
is clicked. We retrieve the com.ibm.collaboration.realtime.people.Person object
that represents the contact that was selected, and pass it to a new instance of
the CalendarDetailsWindow class. As shown in Example 6-5 on page 243, we
then call the open() method of the CalendarDetailsWindow class to launch the
pop-up window.
242 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 6-5 CalendarLookupAction’s run() method

public void run(IAction arg0)
{

Person persons[] = getSelectedPersons();
Person person = persons[0];
CalendarDetailsWindow detailsWindow = new

CalendarDetailsWindow(null, person);
detailsWindow.open();

}

CalendarDetailsWindow.java
This class creates the pop-up window that is launched when the menu action is
clicked, and populates the window with the selected individual’s Business Card
object and a table containing their calendar entries for the current day.

The createContents() method is used to return an org.eclipseswt.widgets.Control
object that makes up the user interface of the window. Example 6-6 shows how
we create the Shell object that holds the user interface, and how we set its size
and title. We call the image cache managed by the Activator class to return the
image for the window.

Example 6-6 createContents() method creates the window’s Shell object

final Shell shell = parent.getShell();
shell.setLayout(new FillLayout());
shell.setSize(WIDTH, HEIGHT);
shell.setText("Calendar details for " + person.getDisplayName());
shell.setImage(Activator.getDefault().getImage(Activator.getImageDescri
ptor("images/calendar.gif")));

We then create a new org.eclipse.swt.widgets.Composite object, split it in half
using an org.eclipse.swt.layout.FillLayout, add the Business Card object to the
top half, and the table for the calendar entries to the bottom half (see
Example 6-7).

Example 6-7 Setting up the contents of the window

final Composite comp = new Composite(parent, SWT.NONE);
comp.setLayout(new FillLayout(SWT.VERTICAL));

bizCard = new MyBusinessCard(comp, MyBusinessCard.DIRECTORY_INFO |
MyBusinessCard.IMAGE | MyBusinessCard.LIVENAME);
bizCard.setPerson(person);

final Table table = new Table(comp, SWT.MULTI | SWT.READ_ONLY);
 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 243

final TableLayout layout = new TableLayout();
table.setLayout(layout);
table.setLinesVisible(true);
table.setHeaderVisible(true);

We add columns to the table, setting their title, width, and alignment, as shown in
Example 6-8.

Example 6-8 Creating the table columns

String[] columnNames = new String[] { "", "Time", "Description" };
int[] columnWidths = new int[] { 18, 90, 302 };
int[] columnAlignments = new int[] { SWT.LEFT, SWT.CENTER, SWT.LEFT };

for (int i=0; i<columnNames.length; i++)
{

TableColumn tableColumn = new TableColumn(table,
columnAlignments[i]);

tableColumn.setText(columnNames[i]);
tableColumn.setWidth(columnWidths[i]);

}

Finally, we create a new JFace TableViewer object to help with the display of the
table’s contents. We assign the content provider and label provider to the
TableViewer before calling its setInput() method with the results from the call to
the calendar lookup Web service (Example 6-9).

Example 6-9 Creating the JFace TableViewer

final TableViewer calendarTableViewer = new TableViewer(table);
calendarTableViewer.setContentProvider(new
CalendarEntriesContentProvider());
calendarTableViewer.setLabelProvider(new
CalendarEntriesLabelProvider());
calendarTableViewer.setInput(new
CalendarEntryWebServiceLookup(person));

CalendarEntryWebServiceLookup.java
This is the class that handles the communication with the Web service. Its
constructor is called from the CalendarDetailsWindow class, which passes in the
Person object whose calendar details we are interested in. We retrieve the String
representation of the user’s name and call the Web service, as shown in
Example 6-10 on page 245.
244 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 6-10 Calling the Web service

CalendarLookupServiceElementLocator locator = new
CalendarLookupServiceElementLocator();
CalendarLookupServicePortType service =
locator.getCalendarLookupServicePort();

CalendarLookup request =
service.performCalendarLookup(person.getDisplayName());

From the CalendarLookup object we get back from the Web service, we extract
the array of CalendarEntry objects that represent individual calendar entries. For
each calendar entry, we create a CalendarEntryResult object, and then add each
one to an array, as shown in Example 6-11.

Example 6-11 Unpacking the results from the Web service

CalendarEntry[] resultsArray = request.getCalendarEntries();

if(resultsArray.length == 0)
{

CalendarEntryResult noEntry = new CalendarEntryResult();
noEntry.setTitle("No calendar entries for today");
noEntry.setEntryType("NoDetails");
noEntry.setDuration("");
CalendarEntryResult[] noEntriesArray = { noEntry };
setCalendarEntries(noEntriesArray);

}
else
{

CalendarEntryResult[] lookupResultsArray = new
CalendarEntryResult[resultsArray.length];

for (int i=0; i<resultsArray.length; i++)
{

CalendarEntry calendarResult =
(CalendarEntry)resultsArray[i];

CalendarEntryResult proxyResult = new
CalendarEntryResult();

proxyResult.setTitle(calendarResult.getTitle());
proxyResult.setEntryType(calendarResult.getEntryType());
proxyResult.setDuration(calendarResult.getDuration());
lookupResultsArray[i] = proxyResult;

}
setCalendarEntries(lookupResultsArray);

}

 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 245

As mentioned in the previous section, this CalendarEntryWebServiceLookup
object forms the input for the CalendarDetailsWindow’s TableViewer.

CalendarEntryResult.java
This is a simple class used to hold the values of an individual calendar entry as
returned from the Web service; it contains the title, duration, and the entry type.

CalendarEntriesContentProvider.java
This class acts as the content provider for the CalendarDetailsWindow’s
TableViewer object. In the getElements() method it inherits from the
org.eclipse.jface.viewers.IStructuredContentProvider interface, it returns an array
of CalendarEntryResult objects from the CalendarEntryWebServiceLookup
object returned from the Web service (Example 6-12).

Example 6-12 Content provider’s getElements() object

public Object[] getElements(Object inputElement)
{

return ((CalendarEntryWebServiceLookup)
inputElement).getCalendarEntries();

}

CalendarEntriesLabelProvider.java
This class acts as the label provider for the CalendarDetailsWindow’s
TableViewer object. It implements two methods from the
org.eclipse.jface.viewers.ITableLabelProvider interface, getColumnImage() and
getColumnText().

In getColumnImage(), the entry type of the CalendarEntryResult is used to
determine which icon is used in the table’s first column (whose column index is
0), to depict what kind of calendar entry it is. The image is pulled from the image
cache in the Activator class by calling its getImage(ImageDescriptor) method
(see Example 6-13).

Example 6-13 CalendarEntriesLabelProvider’s getColumnImage() method

public Image getColumnImage(Object element, int columnIndex)
{

switch (columnIndex)
{

case 0:
if(((CalendarEntryResult)

element).getEntryType().equalsIgnoreCase("NoDetails"))
246 Extending Sametime 7.5: Building Plug-ins for Sametime

return
Activator.getDefault().getImage(Activator.getImageDescriptor("images/no
details.gif"));

if(((CalendarEntryResult)
element).getEntryType().equalsIgnoreCase("Appointment"))

return
Activator.getDefault().getImage(Activator.getImageDescriptor("images/ap
pointment.gif"));

if(((CalendarEntryResult)
element).getEntryType().equalsIgnoreCase("Anniversary"))

return
Activator.getDefault().getImage(Activator.getImageDescriptor("images/an
niversary.gif"));

if(((CalendarEntryResult)
element).getEntryType().equalsIgnoreCase("AllDayEvent"))

return
Activator.getDefault().getImage(Activator.getImageDescriptor("images/al
ldayevent.gif"));

if(((CalendarEntryResult)
element).getEntryType().equalsIgnoreCase("Meeting"))

return
Activator.getDefault().getImage(Activator.getImageDescriptor("images/me
eting.gif"));

if(((CalendarEntryResult)
element).getEntryType().equalsIgnoreCase("Reminder"))

return
Activator.getDefault().getImage(Activator.getImageDescriptor("images/re
minder.gif"));

else
return null;

}
return null;

}

 Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect 247

In getColumnText(), the text values for the calendar entry’s duration and title are
pulled from the CalendarEntryResult object (see Example 6-14).

Example 6-14 CalendarEntriesLabelProvider’s getColumnText() method

public String getColumnText(Object element, int columnIndex)
{

switch (columnIndex)
{

case 1:
return (((CalendarEntryResult) element).getDuration());

case 2:
return ((CalendarEntryResult) element).getTitle();

}
return "";

}

6.5 Extending this plug-in

There are a number of ways that this calendar lookup plug-in could be extended:

� Calendar details for multiple contacts: The Web service could be improved to
accept multiple contact names, and could return multiple
CalendarEntryWebServiceLookup objects. We would need to change the
CalendarLookupAction class to retrieve the names of all those contacts
selected, not just the first.

� Free time lookup for one or multiple contacts: Functionality could be added to
the Web service to do a free time lookup for contacts in the contact list. In a
Domino environment, this could be done by utilizing the freeTimeSearch()
method of the Session class in Java, or the FreeTimeSearch method in the
LotusScript NotesSession class.

� Creating calendar entries: An extension of this idea is to modify the Web
service to actually create calendar entries in a contact’s mail file, perhaps
using free time search results as a starting point.

� Scheduling an online meeting: The Sametime Online Meeting Toolkit is a new
feature of Sametime 7.5, and provides Web service-like functionality that can
be used to create, update, delete, and search for meetings on a Sametime 7.5
server. Again, the meeting parameters could be determined based on the
contact’s retrieved calendar availability.
248 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 7. Advanced plug-in example:
The Sametime Server
Statistics Plug-in

This chapter examines the development of a Sametime plug-in that allows a
Sametime administrator to monitor several Sametime servers in real time. The
plug-in makes use of the new Sametime Monitoring and Statistics toolkit and
allows the user to view and sort on a variety of useful statistics. The data is
displayed in graph format to showcase the possibilities for creating a professional
and useful user interface for your back-end data.

The chapter is broken down into the following topics:

� Plug-in overview

� Create the servlet

� Create the plug-in

� Extension Ideas

7

© Copyright IBM Corp. 2007. All rights reserved. 249

Attention: All sample code used within this chapter can be downloaded from
the IBM Redbooks FTP site. Please refer to Appendix A, “Additional material”
on page 557 for detailed instructions on how to download and deploy the code
sample:

ftp://www.redbooks.ibm.com/redbooks/SG247346
250 Extending Sametime 7.5: Building Plug-ins for Sametime

ftp://www.redbooks.ibm.com/redbooks/SG247346

7.1 Overview of the Sametime Server Statistics plug-in

As described in the chapter introduction, the Sametime Server Statistics plug-in
will allow the user to monitor multiple Sametime servers. An example of the UI is
shown in Figure 7-1.

Figure 7-1 An overview of the Sametime Server Statistics plug-in to be developed in this
example

Users will configure their plug-in by accessing it from the Sametime connect
client’s File → Preferences menu. They will then enter their server’s fully
qualified DNS name, along with a Sametime administrator username/password
pair. This information will be stored on the user's machine in a properties file. The
username/password will be Base64 encoded in the properties file to help provide
a measure of security.
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 251

The user can monitor their server with a plug-in by accessing statistics made
available on the Sametime server via servlets. The Sametime statistics servlet is
a new addition in Sametime 7.5 and allows a user to programmatically access
and retrieve statistical information in XML format. The plug-in will query this
servlet and then parse the returned XML using the Document Object Model
(DOM). The Sametime stlogserv servlet is a custom servlet created as a part of
this exercise. This servlet gathers the statistical history from the Sametime log
database (stlog.nsf) and converts the data into JFreeCharts for display inside the
plug-in.

The plug-in demonstrates not only how extension points in the Sametime
connect client can be utilized, but gives an interesting view into what can be done
with any system that can output information in XML format.

7.1.1 Downloading and deploying the application

To get a more detailed look at the overall architecture of this example application,
including the source code for the custom servlet and Sametime Connect plug-in,
please review Appendix A, “Additional material” on page 557. Deploy the custom
stlogserv servlet on your Sametime Server. This servlet will gather statistics from
the Sametime log database and create JFreeChart graphs from the results.

Deploy the servlet on your Sametime Server:

1. Ensure that your Domino server is stopped.

2. The stlogserv.class is the compiled version of the stlogserv.java file (more
information about this later). You will need to place stlogserv.class in your
<Sametime Install directory>\Data\Domino\Servlet directory, for example,
C:\Lotus\Domino\Data\Domino\Servlet.

Attention: The J9 virtual machine (J9 VM) is a slimmed down version of the
1.4.2 Java runtime environment (JRE) so you may encounter issues when
utilizing a toolkit that references classes not fully supported by the J9 JVM. For
example, the JFreeChart API requires AWT classes not included in the J9 VM.
The Sametime Server Statistics plug-in works around this issue by performing
the necessary JFreeChart functions in a custom servlet located on the
Sametime server itself, which can run with the full 1.4.2 JRE. The resulting
graphs are then accessed and displayed by the client side plug-in. Refer to
2.6, “J9 JCL Desktop” on page 32 for more information about the J9 VM.

Attention: The code provided and discussed in this example is available for
download. Please refer to Appendix A, “Additional material” on page 557 for
detailed instructions on how to download the sample code.
252 Extending Sametime 7.5: Building Plug-ins for Sametime

3. Unzip jcommon-1.0.5.jar and jfreechart-1.0.2.jar to your Sametime server’s
Domino servlet directory, for example, C:\Lotus\Domino\Data\Domino\Servlet.

4. Domino looks at a file called servlet.properties when its HTTP process starts
up to see if it needs to load any servlets into memory. Locate
servlet.properties and open it with Notepad. The properties file can be found
in your Domino data directory, for example, C:\Lotus\Domino\Data.

5. Search for the line that begins with servlets.startup=. Change it to the
following:

servlets.startup= stlogserv

6. Save and close the servlets.properties file.

7. Locate notes.ini and open it with Notepad. The notes.ini file can be found in
your Domino directory, for example, C:\Lotus\Domino.

8. Search for the line that begins with JavaUserClasses= and change it to match
the following:

JavaUserClasses=C:\Lotus\Domino\Data\Domino\Servlet\jcommon-1.0.5.ja
r;C:\Lotus\Domino\Data\Domino\Servlet\jfreechart-1.0.2.jar

Change the directory paths to match your particular installation path.

9. Save and close the notes.ini file.

10.Start your Domino server. When the servlet manager starts, you should see
the stlogserv servlet initiate on your Domino server console soon after you
see messages about HTTP starting up.

Deploy the plug-in to your plug-in directory for your installed Sametime 7.5
connect client:

1. Drop the com.ibm.redbook.sametime.statistics_1.0.0.jar file in your plug-in
directory, for example, C:\Program Files\IBM\Sametime Connect 7.5
Blue\plugins.

2. Restart your Sametime connect client.

Attention: You can also download these two jar files directly from
http://www.jfree.org. The JFree API is used to create the graphs for the
plug-in.

Attention: Once the servlets are deployed, you can go to http://<Your
Sametime Server Name>/servlet/stlogserv in your Web browser. It should tell
you how many graphs your stlogserv servlet has put together. The graphs,
which are stored as PNG files, are located in your Domino html directory, for
example, C:\Lotus\Domino\Data\Domino\html directory.
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 253

http://www.jfree.org

You are now ready to use the Sametime server statistics plug-in!

7.1.2 Using the plug-in

Many of the sample plug-ins use the mini-app plug-in screen real estate at the
bottom of your connect client. While this is a common way to display information
in Sametime Connect, the Sametime Server Statistics plug-in must display large
graphs as well as statistical information. If this information were displayed in a
mini-app, an administrator would continuously have to scroll in this limited space
to see updated information. For usability purposes, the Sametime Server
Statistics plug-in will display the statistical data in a new window that can be
accessed from the Sametime Connect file menu in the system tray. To get
started, launch your Sametime connect client and configure the Sametime server
statistics plug-in:

1. From the connect client’s File menu, select Preferences.

2. You will notice that one of the selections you can now make is ‘Sametime
Server Statistics. Select it.
254 Extending Sametime 7.5: Building Plug-ins for Sametime

3. Click Add Server and enter the fully qualified server name, the administrator
ID, and password of the Sametime server you want to administer (ensure that
the server has the servlet deployed on it before you get to this step) (see
Figure 7-2).

Figure 7-2 Configuring the Sametime Server Statistics Plug-in
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 255

4. Click OK.

To access the plug-in, right-click your Sametime icon in the system tray and
select Sametime Server Statistics from the menu that pops up.The monitoring
UI will load up (see Figure 7-3).

Figure 7-3 Launching the Sametime monitoring plug-in UI

1. Select the server you want to monitor from the Sametime Server’s drop- down
menu and the period of time you would like to monitor. The monitoring
choices are either day, week, or month.

2. Click Update Statistics to view the graph and user information.

The first tab shows statistics for community users. Community users refers to the
people logged into the Sametime connect client as well as users logged into the
meeting center, since meetings also provide instant messaging and awareness
capabilities.
256 Extending Sametime 7.5: Building Plug-ins for Sametime

The second tab provides meeting center statistics for people utilizing Web
conferencing, and the third tab provides details on each meeting active on the
server. The user can click the meeting link to open a Web browser and bring up
the Sametime Attend a meeting details page.

7.1.3 Value to the user

Developing and deploying plug-ins is a fun experience. Developing and deploying
a plug-in with great business value is even better. The authors decided to use this
particular example because two valuable and interesting features provided by
Sametime could be tied together.

A Sametime administrator will often find it necessary to send system wide
messages to their Sametime community for any number of purposes. The
monitoring tool seamlessly ties in with the ability to send these alerts by allowing
the administrator to quickly analyze their Sametime servers.

An administrator who needs to perform maintenance could use her monitoring
plug-in to see a history of the server’s usage and select a time of day, week, or
month that reflects the lowest usage. On the day of maintenance, she can again
quickly check to see how many meetings are currently active, who is moderating
them, and then send her community wide message about server maintenance.

7.1.4 Value to the developer

The Sametime monitoring plug-in showcases an additional Sametime toolkit and
illustrates a framework of how to integrate a useful application and output data in
a pleasing graphical format. It also provides an awareness to the more common
areas and issues a plug-in developer is likely to encounter when attempting a
similar project.

7.2 Building the application

The next section is broken down into a couple of parts. The first section will focus
on creating the servlet. The second section will focus on creating the plug-in
itself.

Ensure that Eclipse is installed and configured for developing Sametime plug-ins.

Attention: For more information about installing and configuring Eclipse, refer
to Chapter 3, “Setting up the Integrated Development Environment” on
page 37.
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 257

7.2.1 Create the Servlet

As mentioned previously the Sametime Connect 7.5 client uses a compacted
Java Virtual Machine (JVM) called J9 to run on. This JVM does not contain the
full number of Java classes included in the standard 1.4.2 or 1.5 Sun JVM. Some
of the classes not contained in the J9 JVM are AWT classes. These are usually
used for graphical user interface (GUI) objects in Java applications. It is likely that
the AWT classes were pared down in the J9 JVM because the Eclipse platform
usually makes use of SWT or Swing objects to display GUIs to users. To really
show off the Sametime statistics data, the authors wanted to use the AWT based
JFree API to generate the graphs.

The solution we present for this issue is to place the workload on the server. The
servlet we create for the Sametime server will not only gather statistics from the
server, but also create the graphs from the information in stlog.nsf instead of
having the plug-in do it. The servlet will then export the graphs out as PNG
graphic files and store them in the Sametime server's Domino HTML directory.
The plug-in will then access the graph pictures via a HTTP connection to the
server and then display them for the user.

7.2.2 The stlogserv servlet code

The next section covers the code that makes up the stlogserv servlet. This code
is not specific to the Sametime Connect client API, but it does show us how to get
data out of back-end systems and into a usable format.

So let us look at the various components of the stlogserv.java file.

The first part is the class declaration for our servlet and the beginning of the
doGet function (see Example 7-1).

Example 7-1 The class declaration for the servlet

public class stlogserv extends HttpServlet{

Database stlog = null;
PrintWriter out = null;
boolean debug = false;
boolean xml_out = false;
int numCharts = 0;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException{
258 Extending Sametime 7.5: Building Plug-ins for Sametime

Notice the class stlogserv extends the HttpServlet class. This allows us to use
the servlet functionality in our program. Then we declare some variables that will
be handy for us in the program. One is the Notes Database object, stlog, that will
eventually point to the stlog.nsf database. Notice there are two Boolean variables
listed here as well. If you want, you can change the debug variable to true to get
debug statements sent to the Domino console when the servlet is executed. The
variable, xml_out, can be set to true if you want a XML document sent to the user
with the statistics we use to create the graphs. After the variable declarations for
the class we have our first function, which is doGet. This function is called when
a user calls a doGet with the servlet. Notice that it takes in the
HttpServletRequest and response objects. This is the main function of our
program that will kick off the rest of the functions.

The next bit of important code in this function is shown in Example 7-2.

Example 7-2 Open the Notes Database

try{
NotesThread.sinitThread();
Session session = NotesFactory.createSession();
stlog = session.getDatabase("", "stlog.nsf");
if(stlog.isOpen() == true){

debugOut("stlog DB was Open");

}else{
debugOut("stlog DB not Open");
stlog.open();

}

The Notes API requires that all functionality be encapsulated in try and catch
statements. So we start our try and then instantiate a Notes API session object.
Since this servlet runs on the Domino/Sametime server, it does not require any
authentication information to create a Domino session. Next, we try to find the
stlog.nsf database. We then need to test if the database is open. It may seem
odd to do this, but the Notes API will sometimes give errors when you try to
access elements of a closed database.
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 259

Now that we have opened our database we implement the code shown in
Example 7-3.

Example 7-3 create a vector object for field data

Vector vec1 = new Vector();
vec1.addElement("TotalLogins");
vec1.addElement("TotalUsers");
processSTLOGView("Notes Community Users and Logins by Day", vec1);
processSTLOGView("Notes Community Users and Logins by Week", vec1);
processSTLOGView("Notes Community Users and Logins by Month", vec1);

We create a Java Vector object to store the field data we want to access. The
data will come from fields in documents we access through specific views. This is
where we call the processSTLOGView function. This function takes the name of
the Notes view we want to look for documents in (remember that the database
we are searching is stlog.nsf) and it also takes the Vector of fields we want to
look for in those documents. Then the function creates a graph using the fields as
lines on the graph. Let us take a more in depth look at this function in
Example 7-4.

Example 7-4 The STLOGView function

public void processSTLOGView(String view_name, Vector stats){
debugOut("Function: processSTLOGView running");
debugOut("View name Desired in stlog.nsf: " + view_name);

int date_count =0;

try{
View curr_view = stlog.getView(view_name);

if(curr_view == null){
debugOut("There is no view by that name");
debugOut("Exiting out of the function");
return;

}else{
debugOut("The View was found");

}

We initialize a variable called date_count to 0, and we are going use this variable
to limit the number of documents we get. Limiting this variable should help us get
a certain number of values to show on our graph, therefore allowing us to show
points on the graph with proper labeling. Next, we try to find a view in the
stlog.nsf database called whatever we gave the function as a view name
260 Extending Sametime 7.5: Building Plug-ins for Sametime

parameter. If the view is not found, a debug statement is made and the function
returns.

The next part of the code is shown in Example 7-5.

Example 7-5 Create a JFree object to store graph data

DefaultCategoryDataset dataset = new DefaultCategoryDataset();

ViewEntryCollection entry_colec = curr_view.getAllEntries();

if(entry_colec == null){
debugOut("There are no entries in the ViewEntryCollection");
debugOut("Exiting function.");
return;

}else{
debugOut("There are " + entry_colec.getCount() + " entries

collection found");
}

Our first line displayed here creates a new DefaultCategoryDataset object. This
is the JFree object that we will use to store our data to create a graph.

After that line, we create a Notes API ViewEntryCollection object. This object will
help us go through all of the documents in the view in which we are interested.
Again, we check to make sure that the object is not null and there is something in
the collection we can use.

Now we sort through the documents that contain the statistics we want in
Example 7-6.

Example 7-6 Sort through the Domino documents

//Get the first entry in the entry collection
ViewEntry entry = entry_colec.getFirstEntry();

//A while loop to go thru the entries in our entry collection
//We check to see if the entry object is null or if we have less than
12 stats
while ((entry != null)&&(date_count < 12)) {

Attention: For more information about this object and other JFree objects, go
to http://www.jfree.org.
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 261

http://www.jfree.org

 //Grab the Notes API document object from the entry
object
Document doc = entry.getDocument();

 //Get the first Notes API Item object called DateTime
 Item date_item = doc.getFirstItem("DateTime");
 //Convert the date_item Item object into a String
 String date =date_item.getDateTimeValue().getLocalTime();
 //Get rid of the year part of the date
 date = date.substring(0,5);
 debugOut("Entry's date is:" + date);
 //Recycle the Notes API Item object
 date_item.recycle();

 //This for loop goes thru the document looking for fields
 //given to the function in the vector
 for (int i = 0;i < stats.size(); i++){
 //Grab the first instance in this document of an Item

//with a stat name we want
 Item item = doc.getFirstItem((String)stats.elementAt(i));

 if (item == null){
 debugOut("There is not a field like that");
 }else{
 debugOut("Found field:" + item.getName());
 debugOut("Value:" + item.getValueInteger());

 //Here is where we add the stat's name,

//value, and date to our dataset for the graph
 dataset.addValue(item.getValueInteger(), item.getName(),

date);

 //We need to recycle the Notes Item object
 item.recycle();
 }

 }
 //Here we increment our date_count to keep

// our documents retrieved limited
 date_count++;

 //Go to the next entry in the entry collection
 entry = entry_colec.getNextEntry();

 //Recycle the Notes API document object
262 Extending Sametime 7.5: Building Plug-ins for Sametime

 doc.recycle();
 }

This code searches through the entry collection object and tries to find the values
for the items we wanted in this function. The date of the item is also added to the
dataset.

The next section creates the graph object with our dataset and exports it into a
file to be saved in the Sametime server's HTML directory, as shown in
Example 7-7.

Example 7-7 Create the graph

//Here is where we create the graph from the dataset just created above
//For more information go to www.jfree.org
JFreeChart chart = ChartFactory.createLineChart(
view_name, // chart title
"Date", // domain axis label
"Number", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
true, // include legend
true, // tooltips
false); // urls

//Add a subtitle to our graph
chart.addSubtitle(new TextTitle("Values arranged by date"));

debugOut("Chart created");

//Here we need to figure out what file name to give our view
//we are working with. These names are expected by the plug-in.
String file_name = "default.png";

if(view_name.equalsIgnoreCase("Notes Community Users and Logins by

Day")){
file_name = "Community_Day.png";

}
if(view_name.equalsIgnoreCase("Notes Community Users and Logins by

Week")){
file_name = "Community_Week.png";

}
if(view_name.equalsIgnoreCase("Notes Community Users and Logins by

Month")){
file_name = "Community_Month.png";
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 263

}
if(view_name.equalsIgnoreCase("Notes Meeting Statistics by Day")){

file_name = "Meeting_Day.png";
}
if(view_name.equalsIgnoreCase("Notes Meeting Statistics by Week")){

file_name = "Meeting_Week.png";
}
if(view_name.equalsIgnoreCase("Notes Meeting Statistics by Month")){

file_name = "Meeting_Month.png";
}

//Get the working directory. Since this servlet is running from
Domino

//the working directory should be <Drive>:\Lotus\Domino
String cur_dir = System.getProperty("user.dir");
debugOut("Current Working Dir is:" + cur_dir);

//We need to place the graphic file in the HTML directory of Domino
//So we take the working directory and append the rest of the

filepath we need
String new_dir = cur_dir + "\\Data\\Domino\\html";
//Create a new file with our dir and file name
File imgFile = new File(new_dir , file_name);

try
{

//Export the graph into a graphic file
ChartUtilities.saveChartAsPNG(imgFile, chart, 600, 400);

debugOut("File written:" + new_dir + file_name);
numCharts++;

}
catch (Exception e)
{

e.printStackTrace();
}
//Recycle our Domino objects
entry_colec.recycle();
curr_view.recycle();
}catch (NotesException n){

out.println("Notes Execption:" + n);
264 Extending Sametime 7.5: Building Plug-ins for Sametime

This wraps up the processSTLOGView function. Notice that the doGet function
calls the above section of code several times to get graphs created for the
Community and Meeting statistics with respect to day, month, and year. Feel free
to modify the servlet to create graphs of additional information and to use the
XML mode to get the information in an easy to use format.

7.2.3 Set up the stlogserv Servlet on your Sametime server

To deploy the servlet to your Sametime server, you need to move the JFree API
files and the compiled stlogserv class file to your Sametime server. For the
complete directions, refer to 7.1.1, “Downloading and deploying the application”
on page 252. Congratulations! Your first task is complete.

7.3 Create the plug-in

In the previous section, the servlet was pulled together. In the next section, we
cover creating the actual Sametime plug-in.

7.3.1 Prepare your development environment

The first thing you will need to do is create a new project for your Sametime
Server Statistics plug-in.

1. In your Eclipse workspace configured for Sametime development, select
File → Project to display the New Project wizard.

2. In the window that appears, select Plug-in Development ' Plug-in Project
and click Next.

3. Name your new project com.ibm.redbook.sametime.statistics and click Next.

4. Modify the Plug-in Properties as appropriate for your environment.

5. In the Plug-in Options section, make sure that Generate an Activator is
selected. This will instruct the New Project wizard to automatically create a

Important: Building an Eclipse plug-in user interface (UI) is a lengthy topic
covered in a number of articles, online tutorials, and books. For the sake of
brevity, the authors decided to assume that you have some experience
creating and modifying SWT and JFace widgets to build an Eclipse plug-in UI.
The following sections focus on the methods for retrieving statistical
information for display, rather than the display code itself. Please download the
code for the Sametime Server Statistics plug-in to see how we built the UI or to
modify it according to your own style. A good reference book is the second
edition of Eclipse: Building Commercial-Quality Plug-ins by Clayberg, et al.
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 265

class for you that extends a standard Eclipse plug-in. Using this class, you
can control the functionality of your plug-in based off the standard life cycle of
an Eclipse plug-in.

6. Name your Activator class
com.ibm.redbook.sametime.statistics.STStatsPlugin.

7. Click Finish. Your new project will now appear in the Eclipse Package
Explorer view.

7.3.2 Create a Base64 encoding/decoding class

Sametime 7.5 introduced a new statistics service. According to the Sametime
Monitoring and Statistics Toolkit Guide (located in the SDK at location
\st75sdk\server\stats\), the service can be called programmatically and will return
a snapshot of current statistics on the server in XML format. The service is called
using a standard HTTP GET request. However, as a security measure, it also
requires that the authorization header of the HTTP GET request be set with a
Base64 encoded value.

The Sametime Monitoring and Statistics Toolkit Guide gives an example of how
to call the Sametime statistics service using the Sun JDK™, as shown in
Example 7-8.

Example 7-8 The Sametime Monitoring and Statistics Toolkit example

String auth = new String (username + ":" + password);
String encoding = new sun.misc.BASE64Encoder().encode(auth.getBytes());
connection.setRequestProperty("Authorization", "Basic " + encoding);

Unfortunately, the example code will not work in the Sametime Connect Eclipse
environment. The code fails because Sametime is using the J9 JCL Desktop JRE
that does not support this particular method provided by Sun. The end result is
that we will have to implement our own Base64 encoder class so that our plug-in
can call the Sametime statistics service.

Add a new class to your project named Base64Coder. Add the code in
Example 7-9 on page 267 to complete the implementation of this class. Now, our
plug-in will be able to encode/decode Strings using Base64 algorithms and
programmatically access the Sametime statistics service. In addition, this class
will also be used when you implement code for saving and retrieving server
information from a properties file.
266 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 7-9 Implement your own Base64 encoder class

public class Base64Coder
{

// Mapping table from 6-bit nibbles to Base64 characters.
private static char[] map1 = new char[64];
static {

int i = 0;
for (char c = 'A'; c <= 'Z'; c++)

map1[i++] = c;
for (char c = 'a'; c <= 'z'; c++)

map1[i++] = c;
for (char c = '0'; c <= '9'; c++)

map1[i++] = c;
map1[i++] = '+';
map1[i++] = '/';

}

// Mapping table from Base64 characters to 6-bit nibbles.
private static byte[] map2 = new byte[128];
static {

for (int i = 0; i < map2.length; i++)
map2[i] = -1;

for (int i = 0; i < 64; i++)
map2[map1[i]] = (byte) i;

}

/**
 * Encodes a string into Base64 format.
 *
 * @param sa String to be encoded.
 * @return A String with the Base64 encoded data.
 */
public static String encode(String s) {

return new String(encode(s.getBytes()));
}

/**
 * Encodes a byte array into Base64 format.
 *
 * @param inan array containing the data bytes
 * @return A character array with the Base64 encoded data.
 */
public static char[] encode(byte[] in) {

int iLen = in.length;
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 267

int oDataLen = (iLen * 4 + 2) / 3; // output length without
padding

int oLen = ((iLen + 2) / 3) * 4; // output length including
padding

char[] out = new char[oLen];
int ip = 0;
int op = 0;
while (ip < iLen) {

int i0 = in[ip++] & 0xff;
int i1 = ip < iLen ? in[ip++] & 0xff : 0;
int i2 = ip < iLen ? in[ip++] & 0xff : 0;
int o0 = i0 >>> 2;
int o1 = ((i0 & 3) << 4) | (i1 >>> 4);
int o2 = ((i1 & 0xf) << 2) | (i2 >>> 6);
int o3 = i2 & 0x3F;
out[op++] = map1[o0];
out[op++] = map1[o1];
out[op] = op < oDataLen ? map1[o2] : '=';
op++;
out[op] = op < oDataLen ? map1[o3] : '=';
op++;

}
return out;

}

/**
 * Decodes a Base64 string.
 *
 * @param sa Base64 String to be decoded.
 * @return A String containing the decoded data.
 * @throws IllegalArgumentException
 * if the input is not valid Base64 encoded data.
 */
public static String decode(String s) {

return new String(decode(s.toCharArray()));
}

/**
 * Decodes Base64 data.
 *
 * @param ina character array containing the encoded data.
 * @return An array containing the decoded data bytes.
 * @throws IllegalArgumentException
 * if the input is not valid Base64 encoded data.
 */
268 Extending Sametime 7.5: Building Plug-ins for Sametime

public static byte[] decode(char[] in) {
int iLen = in.length;
if (iLen % 4 != 0)

throw new IllegalArgumentException(
"Length of Base64 encoded string is not a multiple of

4.");
while (iLen > 0 && in[iLen - 1] == '=')

iLen--;
int oLen = (iLen * 3) / 4;
byte[] out = new byte[oLen];
int ip = 0;
int op = 0;
while (ip < iLen) {

int i0 = in[ip++];
int i1 = in[ip++];
int i2 = ip < iLen ? in[ip++] : 'A';
int i3 = ip < iLen ? in[ip++] : 'A';
if (i0 > 127 || i1 > 127 || i2 > 127 || i3 > 127)

throw new IllegalArgumentException(
"Illegal character in Base64 encoded data.");

int b0 = map2[i0];
int b1 = map2[i1];
int b2 = map2[i2];
int b3 = map2[i3];
if (b0 < 0 || b1 < 0 || b2 < 0 || b3 < 0)

throw new IllegalArgumentException(
"Illegal character in Base64 encoded data.");

int o0 = (b0 << 2) | (b1 >>> 4);
int o1 = ((b1 & 0xf) << 4) | (b2 >>> 2);
int o2 = ((b2 & 3) << 6) | b3;
out[op++] = (byte) o0;
if (op < oLen)

out[op++] = (byte) o1;
if (op < oLen)

out[op++] = (byte) o2;
}
return out;

}

}

 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 269

7.3.3 Create a Sametime server information object class

The Sametime Server Statistics plug-in will allow the user to monitor multiple
Sametime servers at a time. Since each server will need to store many pieces of
information pertinent to its environment, you will implement a new STServerInfo
object class to accommodate the storage of this information.

Add a new class to your project named STServerInfo. This class will be
responsible for storing information, such as the fully qualified DNS name of the
Sametime server, a user name and password for servlet authentication, the stats
returned from the server to be displayed by the plug-in, and a list of currently
active meetings on the server. The class will also contain the methods for
contacting the statistics servlets and for parsing the returned XML data.

Add the global variables in Example 7-10 to the STServerInfo class. These
variables will contain information that will be retrieved and modified later by other
pieces of the plug-in.

Example 7-10 Variables for the STServerInfo Class

String serverName = "";
String userName = "";
String password = "";

int ConcurrentLogins = 0;
int ConcurrentLoggedInUsers = 0;
int ConcurrentImCnls = 0;
int InstantMeetingClients = 0;
int InstantMeetings = 0;
int ScheduledMeetingClients = 0;
int ScheduledMeetings = 0;
int AverageMeetingStartupDuration = 0;

Vector meetingList = new Vector();

Add the constructor in Example 7-11 on page 271 to the STServerInfo class. The
object will be instantiated with a string containing the fully qualified DNS name of
the Sametime server, the user name for authentication, and a password for
authentication. This data will be stored for later retrieval by the plug-in.
270 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 7-11 Adding a constructor to the STServerInfo Class

public STServerInfo(String server, String name, String pwd)
{

this.serverName = server;
this.userName = name;
this.password = pwd;

}

The Sametime Server Statistics plug-in gathers data by querying two servlets
that reside on the Sametime server. The first servlet is the Sametime statistics
servlet located at http://<Your Sametime Server Name>/servlet/statistics. This
servlet requires authentication with a Base64 encoded username/password pair.
The servlet returns a snapshot of current statistics on the server as well as a list
of the currently active meetings. However, the servlet will only return statistics
obtained since the last time it was queried. Since we are interested in a deeper
statistical history, in an earlier exercise we created our own custom servlet called
stlogserv that is located at http://<Your Sametime Server
Name>/servlet/stlogserv. As we discussed previously, this custom servlet will
generate JFreeChart graphs based off the Sametime server's statistics history
located in stlog.nsf. The plug-in will then download and display the charts to the
user.

Add the function in Example 7-12 to the STServerInfo class. This function will be
used to query the Sametime Statistics servlet that is shipped with Sametime 7.5.
The function will initiate an HTTP GET connection to the servlet and set the
authorization header to contain the Base64 encoded username/password pair.
After the connection has been made, the function will catch the XML data
returned from the servlet and place it in a String variable. The function will return
this XML string.

Example 7-12 Query the Sametime statistics servlet

// query the Sametime statistics servlet and return the results
public String getServerStatistics(String server, String username,
String password)
{

String xmlResults = "";

try
{

URL url = new URL("http://" + server + "/servlet/statistics");

// initiate an HTTP GET to the statistics servlet
HttpURLConnection conn = (HttpURLConnection)

url.openConnection();
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 271

conn.setRequestMethod("GET");
conn.setUseCaches(false);

// encode the username and password
String auth = new String(username + ":" + password);
String encoding = Base64Coder.encode(auth);

// modify HTTP headers to add our authorization
conn.setRequestProperty("Authorization", "Basic " + encoding);

// catch the servlet response
BufferedReader in = new BufferedReader(new

InputStreamReader(conn.getInputStream()));
String line = "";
while ((line = in.readLine()) != null)
{

xmlResults += line;
}

// close connections, buffers
in.close();
conn.disconnect();

}
catch (Exception e)
{

e.printStackTrace();
}

// The first time the Statistics servlet is called, it will return
blank XML.

// If blank XML is returned, connect to the servlet again for the
stats.

if (xmlResults.equalsIgnoreCase("<?xml version=\"1.0\"
encoding=\"UTF-8\" ?><SametimeStatistics></SametimeStatistics>"))

xmlResults = getServerStatistics(server, username, password);

return xmlResults;
}

The class now contains a function for querying the Sametime statistics servlet.
Now, you will create an additional function for querying the custom stlogserv
servlet. The code is similar to the previous function. However, there is no need to
272 Extending Sametime 7.5: Building Plug-ins for Sametime

authenticate to this servlet or to check to see if blank XML has been returned.
Add the function in Example 7-13 to the STServerInfo class.

Example 7-13 Query our custom servlet stlogserv

// query the "stlogserv" servlet to gather information from STLog.nsf
and generate the charts
public String getSTlogStatistics(String server)
{

String xmlResults = "";

try
{

URL url = new URL("http://" + server + "/servlet/stlogserv");

// initiate an HTTP GET to the stLog servlet
HttpURLConnection conn = (HttpURLConnection)

url.openConnection();
conn.setRequestMethod("GET");
conn.setUseCaches(false);

// catch the servlet response
BufferedReader in = new BufferedReader(new

InputStreamReader(conn.getInputStream()));
String line = "";
while ((line = in.readLine()) != null)
{

xmlResults += line;
}

// close connections, buffers
in.close();
conn.disconnect();

}
catch (Exception e)
{

e.printStackTrace();
}

return xmlResults;
}

The Sametime statistics servlet will return a snapshot of the current statistics on
the server. In addition, it will return a list of the currently active meetings on the
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 273

Sametime server. To make this data accessible to the rest of the plug-in, create a
MeetingInfo helper class. Add the code in Example 7-14 to the STServerInfo
object class. As you can see, the MeetingInfo helper class will contain
information about a currently active meeting.

Example 7-14 Make the returned statistics available to the rest of the plug-in

public class MeetingInfo
{

String name ="";
String manager = "";
String uid = "";
int numClients = 0;
String managerFullName = "";
String meetingURL = "";

}

As the XML data returned from the Sametime statistics servlet is parsed, and
active meeting elements are encountered, a new MeetingInfo object should be
created and added to the global meetingList Vector. Add the function in
Example 7-15 to the STServerInfo class to accomplish this task.

Example 7-15 Create a list of active meetings

public void addMeeting(String name, String manager, String uid, int
numClients, String managerFullName)
{

MeetingInfo meeting = new MeetingInfo();

meeting.name = name;
meeting.manager = manager;
meeting.uid = uid;
meeting.numClients = numClients;
meeting.managerFullName = managerFullName;
meeting.meetingURL = "http://" + serverName + "/stconf.nsf/meeting/"

+ uid;

meetingList.add(meeting);
}

274 Extending Sametime 7.5: Building Plug-ins for Sametime

Add the function in Example 7-16 to the STServerInfo class to return the Vector
list of stored meetings.

Example 7-16 Return the Vector list of stored meetings

public Vector getMeetings()
{

return meetingList;
}

The STServerInfo object class now contains variables for general server
information as well as the statistics for the server. In addition, a MeetingInfo
helper class was added to contain information about the currently active
meetings on the Sametime server. In order to complete the implementation of the
STServerInfo class, you will need to add one more method. This method will be
responsible for parsing the XML data returned by the Sametime statistics servlet
and storing the statistics that the plug-in is interested in displaying.

The XML will be parsed using the Document Object Model (DOM). By using this
method, we can gain direct access to any XML node as well as the child nodes
underneath the tag. You will then be able to access the names, values, and
attributes of a given XML node.

A statistic node in the XML takes the form in Example 7-17. It consists of a node
named "Statistic" with an attribute called "name". The name attribute will contain
the name of the current statistic. The statistic node has one child node named
"Value". The value node will contain the current value of the current statistic.

Example 7-17 A statistic node

<Statistic name="InstantMeetings">
<Value>0</Value>

 </Statistic>
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 275

A meeting node in the XML takes the form in Example 7-18. It consists of a node
named "Meeting". The meeting node has several child nodes named
"MeetingId", "Name", "ConnectionCount", "Chair", and "ChairDisplayName".
These nodes will contain the current values for the current meeting.

Example 7-18 A meeting node

<Meeting>
<MeetingId>B31D0E52C7DA6E49852571F60053D943</MeetingId>
<Name>Test Meeting</Name>
<ConnectionCount>25</ConnectionCount>
<Chair>Anonymous</Chair>
<ChairDisplayName>Anonymous</ChairDisplayName>

</Meeting>

Add the method in Example 7-19 to the STServerInfo object class to parse the
XML and store the statistics.

Example 7-19 Parsing the XML and storing statistics

public void crunch_st_stat_xml(String xmlString)throws Exception
{

// clear stored active meetings for this server
meetingList.removeAllElements();

// create an input source from the XML string to be used by DOM
Reader xmlReader = new StringReader(xmlString);
InputSource xmlInput = new InputSource(xmlReader);

try
{

// create a new DOM Document from the returned XML
DocumentBuilderFactory docBuilderFactory =

DocumentBuilderFactory.newInstance();
docBuilderFactory.setIgnoringElementContentWhitespace(true);
DocumentBuilder docBuilder =

docBuilderFactory.newDocumentBuilder();
Document doc = docBuilder.parse(xmlInput);
doc.getDocumentElement().normalize();

// get the XML top-level node
Element rootNode = doc.getDocumentElement();

// get all the "Statistic" XML nodes
NodeList statNodes = rootNode.getElementsByTagName("Statistic");
for (int x=0; x < statNodes.getLength(); x++)
276 Extending Sametime 7.5: Building Plug-ins for Sametime

{
// get the current "Statistic" node
Node curNode = statNodes.item(x);
Element curElem = (Element) curNode;

// get the current stat name
String statName = curElem.getAttribute("name");

// get the "Value" node for the current statistic
NodeList valueList = curElem.getElementsByTagName("Value");
Element valueElement = (Element) valueList.item(0);

// get the value of the current statistic
String statValue =

valueElement.getFirstChild().getNodeValue();

// store only the returned statistics we are interested in
if(statName.equals("ConcurrentLogins"))

ConcurrentLogins = Integer.parseInt(statValue);
if(statName.equals("ConcurrentLoggedInUsers"))

ConcurrentLoggedInUsers = Integer.parseInt(statValue);
if(statName.equals("ConcurrentImCnls"))
 ConcurrentImCnls = Integer.parseInt(statValue);
if(statName.equals("InstantMeetingClients"))

InstantMeetingClients = Integer.parseInt(statValue);
if(statName.equals("InstantMeetings"))
 InstantMeetings = Integer.parseInt(statValue);
if(statName.equals("ScheduledMeetingClients"))
 ScheduledMeetingClients = Integer.parseInt(statValue);
if(statName.equals("ScheduledMeetings"))
 ScheduledMeetings = Integer.parseInt(statValue);
if(statName.equals("AverageMeetingStartupDuration"))
{

double d = Double.parseDouble(statValue);
 AverageMeetingStartupDuration = (int) d;
}

}

// get all the "Meeting" XML nodes
NodeList meetingNodes = rootNode.getElementsByTagName("Meeting");
for (int z=0; z < meetingNodes.getLength(); z++)
{

// get the current "Meeting" node
Node curMeetingNode = meetingNodes.item(z);
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 277

// "Meeting" detail information
String meetingName = "", meetingChair = "", meetingUID = "",

meetingConnections = "", meetingChairFull = "";

// get the detail nodes for the current "Meeting"
NodeList curMeetingDetails = curMeetingNode.getChildNodes();
for (int i=0; i < curMeetingDetails.getLength(); i++)
{

// get the current "Meeting" detail information
Element meetingDetail = (Element)

curMeetingDetails.item(i);
String meetingDetailName = meetingDetail.getNodeName();
String meetingDetailValue =

meetingDetail.getFirstChild().getNodeValue();

// assign the current detail information
if (meetingDetailName.equals("Name"))

meetingName = meetingDetailValue;
if (meetingDetailName.equals("Chair"))

meetingChairFull = meetingDetailValue;
if (meetingDetailName.equals("MeetingId"))

meetingUID = meetingDetailValue;
if (meetingDetailName.equals("ConnectionCount"))

meetingConnections = meetingDetailValue;
if (meetingDetailName.equals("ChairDisplayName"))

meetingChair = meetingDetailValue;

}

// store the "Meeting" information
addMeeting(meetingName, meetingChair,

meetingUID,Integer.parseInt(meetingConnections), meetingChairFull);
}

}
catch (Exception e)
{

e.printStackTrace();
}

}

278 Extending Sametime 7.5: Building Plug-ins for Sametime

7.3.4 Implement a properties file

The Sametime Server Statistics plug-in allows the user to query multiple
Sametime servers for statistics information. The information required for these
queries are the Sametime server name, a user name, and a password for
authentication to the servlet. You will implement a standard properties file for
storage of this information about the user's machine. This will ensure that the
user will only have to enter the information aboute time and not every time the
plug-in is started.

Remember the Activator class you created named STStatsPlugin? The
STStatsPlugin class extends a standard Eclipse plug-in and contains methods
for the life cycle of the plug-in. When your plug-in is finished, the user will be able
to modify information in the Sametime preferences or access the Sametime
Server Statistics dialog window. To ensure that the stored Sametime servers are
loaded and ready when either of these actions takes place, you will want to add
the code for saving/loading information from the properties file in your
STStatsPlugin class.

The plug-in will need to keep a global list of Sametime servers that the user
wishes to monitor. Since we already have a STServerInfo object that contains all
the information for a given server, you will need to implement a new Vector list
that can be used to store these objects. Add the following global variable to your
STStatsPlugin class:

public Vector sametimeServers = new Vector();

Add the methods in Example 7-20 that will allow you to modify the Vector list of
STServerInfo objects in the future after different UI events occur.

Example 7-20 Modifying the Vector list of the STServerInfo objects

// return the list of stored Sametime servers
public Vector getServers()
{

return sametimeServers;
}

// add a new server to the Sametime server list
public void addServer(String server, String username, String password)
{

STServerInfo info = new STServerInfo(server, username, password);
sametimeServers.add(info);

}

// remove a server from the Sametime server list
public void removeServer(int x)
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 279

{
sametimeServers.removeElementAt(x);

}

// remove all servers from the Sametime server list
public void removeAllServers()
{

sametimeServers.removeAllElements();
}

Now that we have a Vector list that can be used to store our Sametime server
objects, the next step is to implement a function that populates this list from a
previously saved properties file. Before you can implement this functionality, you
must decide how to store the data. The Sametime Server Statistics plug-in will
store the fully qualified DNS name of a Sametime server and the associated
username/password pair in the properties file. It is never a good idea to store a
password in clear text on a user's machine. To get around this potential security
hole, the Sametime Server Statistics plug-in will Base64 encode the
username/password pair in the properties file. When the properties file is read
when the plug-in starts, it will Base64 decode this string. As you will recall, you
already implemented the Base64 algorithms for authentication to the Sametime
statistics servlet. We will reuse the Base64Coder class for reading/writing the
properties file.

You will store a new property in the properties file for each server to be
monitored. The name of each property will simply be the name of the server. The
value for each property will be the Base64 encoded username/password pair.
For example, assume an administrator wants to monitor a server named
server.company.com with a user named Administrator and a password of
password. The resulting entry stored in the properties file on the user's machine
would be:

server.company.com=QWRtaW5pc3RyYXRvcjpwYXNzd29yZA==

Add the function in Example 7-21 on page 281 to the STStatsPlugin class. This
function will load the list of stored Sametime servers from a properties file named
ststats.properties, decode the username/password pairs, and create new
STServerInfo objects accordingly.
280 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 7-21 Load the stored values from the properties file

// load config information from the properties file
public void loadSettings()
{

removeAllServers();

Properties props = new Properties();
String path =

STStatsPlugin.getDefault().getStateLocation().toString();
File propfile = new File(path, "ststats.properties");
try
{

props.load(new FileInputStream(propfile));

// for each stored property in the file
Enumeration elem = props.propertyNames();
while (elem.hasMoreElements())
{

// get the server & authorization key-value pair
String server = (String) elem.nextElement();
String auth = props.getProperty(server);

// decode the authorization that was stored
auth = Base64Coder.decode(auth);
// separate the username and password
String[] nameAndPassword = auth.split(":");

// add the server info to the list of Sametime servers
addServer(server, nameAndPassword[0], nameAndPassword[1]);

}
}
catch (IOException e)
{

e.printStackTrace();
}

}
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 281

The next step is to implement a function that saves the current Vector list of
STServerInfo objects to the properties file. Add the code in Example 7-22 to the
STStatsPlugin class.

Example 7-22 Save values to the properties file

// save config information to the properties file
public void saveSettings()
{

try
{

// open a new properties file
String path =

STStatsPlugin.getDefault().getStateLocation().toString() +
File.separator + "ststats.properties";

FileWriter fw = new FileWriter(path);
BufferedWriter bw = new BufferedWriter(fw);
PrintWriter pw = new PrintWriter(bw);

// for each stored Sametime server
for (int x=0; x < sametimeServers.size(); x++)
{

// get the Sametime server's information
STServerInfo info = (STServerInfo)

sametimeServers.elementAt(x);
// combine the username and password
String auth = info.userName + ":" + info.password;
// encode the authorization for storage in the properties file
auth = Base64Coder.encode(auth);
// write the server info to the properties file
pw.println(info.serverName + "=" + auth);

}

// close the buffers and writers
pw.close();
bw.close();
fw.close();

}
catch (Exception e)
{

e.printStackTrace();
}

}
282 Extending Sametime 7.5: Building Plug-ins for Sametime

Finally, to complete the STStatsPlugin class, you will want to make sure that the
Sametime servers stored in the properties file are loaded when the plug-in starts.
By doing this, you are ensuring that the data will be immediately accessible to
both the Preferences page and the Sametime Server Statistics dialog window.
Add a call to your loadSettings() function in the standard Eclipse plug-in start
method. When finished, the code should look as in Example 7-23.

Example 7-23 Ensure properties file values are loaded at start up

public void start(BundleContext context) throws Exception
{

super.start(context);
loadSettings();

}

7.3.5 Create a preferences page

The next step is to create a preferences page for the plug-in so that the user can
enter information about Sametime servers that he/she wishes to monitor. You
will do this by extending a standard Eclipse preferences page. Add the extension
in Example 7-24 to plugin.xml.

Example 7-24 Extending a standard Eclipse preferences page

<extension
 point="org.eclipse.ui.preferencePages">
 <page

class="com.ibm.redbook.sametime.statistics.STStatsPreferencePage"

id="com.ibm.redbook.sametime.statistics.STStatsPreferencePage"
 name="Sametime Server Statistics"/>
 </extension>

Notice that it references a class called STStatsPreferencePage. Add a new class
to your project with this name. In order to implement an Eclipse plug-in
preference page, the class will need to extend the appropriate classes. Make the
class an extension of a PreferencePage with the class declaration in
Example 7-25.

Example 7-25 Adding the STStatsPreferencePage class

public class STStatsPreferencePage extends PreferencePage
implements IWorkbenchPreferencePage
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 283

The next step is to implement the createContents() method to contain the UI
code you wish to display in the Sametime Server Statistics plug-in preferences
page. After the UI is complete, you will need to retrieve and store information for
display purposes. Use the methods contained in the STStatsPlugin class for
accessing and modifying the list of stored Sametime servers. You can also
access the methods for loading and saving the properties file. For example, the
code in Example 7-26 will iterate through the list of Sametime servers and place
the server name, user name, and password in String variables. You can then
display these String variables accordingly in your custom preferences page UI.

Example 7-26 Implementing the createContent method

// get the list of stored Sametime servers
Vector sametimeServers = STStatsPlugin.getDefault().getServers();

// for each Sametime server
for (int x=0; x < sametimeServers.size(); x++)
{

// get the Sametime server info
STServerInfo info = (STServerInfo) sametimeServers.elementAt(x);

String server = info.serverName;
String user = info.userName;
String pwd = info.password;

}

In order to finish the preferences page, you will need to override some of the
default methods of the PreferencePage class. For example, if a user clicks the
Restore Defaults button, you will want to clear the current list of stored
Sametime servers and update the properties file. You can implement this
functionality by adding the function in Example 7-27 to your
STStatsPreferencePage class.

Example 7-27 Overriding default methods of the PreferencePageClass

// the "Restore Defaults" button was clicked on the preference page
protected void performDefaults()
{

// remove all the stored servers
STStatsPlugin.getDefault().removeAllServers();
// update the properties file
STStatsPlugin.getDefault().saveSettings();

}

284 Extending Sametime 7.5: Building Plug-ins for Sametime

Next, override the default functionality of the Apply or OK buttons by adding the
function in Example 7-28 to your STStatsPreferencePage class. As you can see,
it simply saves the current list of stored Sametime servers to the properties file.

Example 7-28 Overriding the default functionality of the Apply or OK buttons

// the "Apply" or "OK" button was clicked on the preference page
public boolean performOk()
{

// update the properties file
STStatsPlugin.getDefault().saveSettings();
return super.performOk();

}

 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 285

As noted at the beginning of this section, the author's assume you have
experience building an Eclipse user interface. Using the methods outlined above,
you can create a preferences page to store and retrieve the current list of
Sametime servers to monitor (see Figure 7-4). You can view how the Sametime
Server Statistics plug-in preference page UI was created by examining the
source code.

Figure 7-4 The Plug-in’s preferences page

7.3.6 Create a Sametime statistics dialog window

At this point, the Sametime Server Statistics plug-in can create STServerInfo
objects to contain the information and statistics for a given server. The plug-in
can also contact the custom stlogserv servlet (to generate charts) and the
Sametime statistics servlet that ships with Sametime 7.5 to catch the returned
XML. There is also a method for parsing the returned XML using DOM and
storing the returned statistics. Additionally, the plug-in has the capability to read
and write information from a properties file. In the last section, you were given
examples of how to manipulate and retrieve the stored data from the UI of your
choice. Much like the last section, we will leave the UI portion of code up to your
286 Extending Sametime 7.5: Building Plug-ins for Sametime

imagination. The rest of this section will contain tips on retrieving and storing the
information for display purposes.

The first step is to add a new class to the project named STStatsDialog. This
class will contain your custom UI and display the stored information retrieved
from the Sametime servlets. Extend a standard JFace Dialog with the following
class declaration:

public class STStatsDialog extends Dialog

Add the unimplemented methods to your class. Place your custom UI code into
the createDialogArea() method.

The example code in Example 7-29 assumes you have a SWT button in your UI
named updateButton and a Combo drop-down list containing a list of Sametime
servers named serverList. It also assumes there is a global STServerInfo
variable named currentServer that contains the currently selected Sametime
server object. This code will demonstrate how to call the Sametime statistics
servlets to update the currentServer object.

Example 7-29 Calling the Sametime statistic servlets to perform an update

// the Update button was clicked
updateButton.addSelectionListener(new SelectionListener()
{

public void widgetSelected(SelectionEvent event)
{

// get the currently selected Sametime server
Vector sametimeServers = STStatsPlugin.getDefault().getServers();
currentServer = (STServerInfo)

sametimeServers.elementAt(serverList.getSelectionIndex());

try
{

// gather the statistics for the currently selected server
// connect to the "stlogserv" servlet
String results;
results =

currentServer.getSTlogStatistics(currentServer.serverName);

// do something with the results

// connect to the Sametime statistics servlet
results =

currentServer.getServerStatistics(currentServer.serverName,
currentServer.userName, currentServer.password);
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 287

// parse the returned XML data and store the statistics
currentServer.crunch_st_stat_xml(results);

}
catch (Exception e)
{

e.printStackTrace();
}

// update the UI to reflect statistics changes

}

public void widgetDefaultSelected(SelectionEvent event){}
});

The Sametime Server Statistics plug-in interacts with the stlogserv servlet. As
you will recall, this custom servlet interacts with the stlog.nsf database on the
Sametime server to create a statistics history. It then uses this statistics history to
generate JFreeChart charts. The charts are stored in the base HTML directory of
the server and have specific names. Use Table 7-1 to decide which chart you
wish to download and display.

Table 7-1 The JFreeCharts

After you determine which chart to display in your custom UI, the next step is to
actually download the chart and display it. Use the function in Example 7-30 on
page 289 to create a SWT image from a URL and return the new image.

File name Description

Community_Day.png Community statistics chart by day

Community_Week.png Community statistics chart by week

Community_Month.png Community statistics chart by month

Meeting_Day.png Meeting statistics chart by day

Meeting_Week.png Meeting statistics chart by week

Meeting_Month.png Meeting statistics chart by month
288 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 7-30 Downloading and displaying the chart

// get the Sametime stats chart (generated by the servlet) from a URL
private Image getImageFromURL(String imgName)
{

Image img = null;

try
{

URL url = new URL("http://" + currentServer.serverName + "/" +
imgName);

ImageDescriptor id = ImageDescriptor.createFromURL(url);
img = id.createImage();

}
catch (Exception e) {}

return img;
}

The function returns a SWT Image object. You can add the new Image object to
your UI by placing it on a SWT Label. For example, use the code in
Example 7-31 to download and display a Sametime statistics chart in your UI.

Example 7-31 Adding the new SWT object to your UI

// the chart (generated by the servlet) that should be retrieved
String filename = "Community_Day.png";

// retrieve and display the currently selected stats chart
Label label = new Label(comp, SWT.NONE);
Image img = getImageFromURL(filename);
label.setImage(img);
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 289

The Sametime Server Statistics plug-in downloads and displays the image in a
tabbed user interface (see Figure 7-5). You can review the source code for tips
on creating your own display.

Figure 7-5 The interface

If you wish to display Sametime statistics stored in your currentServer
STServerInfo object, you can do so by creating a new Label and accessing the
data directly. For example, the code in Example 7-32 will add a label to a SWT
Composite named "comp" that displays the current number of active scheduled
meetings on the Sametime server. You can use similar code to quickly display
any of the stored statistics.

Example 7-32 Adding a new Label to the SWT Composite

new Label(comp, SWT.NONE).setText("Current number of active scheduled
meetings: " + currentServer.ScheduledMeetings);

Figure 7-6 shows the resulting UI.

Figure 7-6 The resulting UI
290 Extending Sametime 7.5: Building Plug-ins for Sametime

Finally, the STServerInfo object contains a list of currently active meetings on the
Sametime server. You can access this data and display it in your UI by using the
getMeetings() method you implemented earlier as a part of your STServerInfo
class. For example, the code in Example 7-33 will create a SWT Tree structure
and add the current list of active meetings to the tree. It will add the meeting
name to the tree and then add the meeting details as sub-items.

Example 7-33 Creating a SWT Tree structure and adding active meetings

// the tree to display meeting information
final Tree tree = new Tree(comp, SWT.SINGLE | SWT.BORDER);
tree.setLayoutData(new GridData(GridData.FILL_BOTH));

// get the currently stored Sametime servers
Vector currentMeetings = currentServer.getMeetings();

// for each stored meeting
for (int x=0; x < currentMeetings.size(); x++)
{

MeetingInfo meeting = (MeetingInfo) currentMeetings.elementAt(x);

// add a new meeting node to the tree
TreeItem root = new TreeItem(tree, SWT.NULL);
root.setText(meeting.name);

// add the meeting information to the new meeting node
TreeItem item1 = new TreeItem(root, SWT.NULL);
item1.setText("Meeting manager: " + meeting.manager);
TreeItem item2 = new TreeItem(root, SWT.NULL);
item2.setText("Meeting manager full name: " +

meeting.managerFullName);
TreeItem item3 = new TreeItem(root, SWT.NULL);
item3.setText("Number of connected clients: " +

Integer.toString(meeting.numClients));
TreeItem item4 = new TreeItem(root, SWT.NULL);
item4.setText("Meeting UID: " + meeting.uid);
TreeItem item5 = new TreeItem(root, SWT.NULL);
item5.setText(meeting.meetingURL);

}
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 291

The resulting SWT Tree structure would look like Figure 7-7.

Figure 7-7 The resulting SWT Tree structure

As noted at the beginning of this section, the authors assume you have
experience building an Eclipse user interface. Using the methods outlined above,
you can create SWT widgets populated with data from your STServerInfo
objects. You can then arrange those widgets accordingly in a dialog window. You
can view how the Sametime Server Statistics plug-in dialog window was created
by examining the source code.

7.3.7 Add a Sametime Server Statistics menu item

After you have finished implementing your custom UI in the STStatsDialog class,
you will want to display the dialog window after performing some action in
Sametime Connect. The Sametime Server Statistics plug-in adds a file menu
item to Sametime Connect. When the new file menu item is selected, the
STStatsDialog you created in the last section will be displayed.

Add the extension in Example 7-34 to plugin.xml. Please note that the "id" of your
new actionSet extension must begin with "com.ibm.collaboration.realtime" in
order to be displayed in Sametime Connect.

Example 7-34 Adding an extension to plugin.xml

<extension
 point="org.eclipse.ui.actionSets">
 <actionSet
 description="Sametime Statistics Action Set"

id="com.ibm.collaboration.realtime.statistics.STStatsActionSet"
 label="Sametime Statistics Action Set"
 visible="true">
292 Extending Sametime 7.5: Building Plug-ins for Sametime

 <action

class="com.ibm.redbook.sametime.statistics.STStatsActionSet"

id="com.ibm.redbook.sametime.statistics.STStatsActionSet"
 label="Sametime Server Statistics"
 menubarPath="sametime/plugins"
 tooltip="View Sametime server statistics"/>
 </actionSet>

</extension>

As you can see, the extension references a STStatsActionSet class. Add a new
class to your project named STStatsActionSet. Use the following class
declaration to make your new class execute whenever the file menu item is
clicked:

public class STStatsActionSet implements IWorkbenchWindowActionDelegate

Add the unimplemented methods to your class. Modify the run() method to
instantiate a new STStatsDialog and display it to the user. When finished, the
code will look like Example 7-35.

Example 7-35 Adding unimplemented methods to your class

// The right-click menu was clicked.
public void run(IAction arg0)
{

// Open the Sametime statistics dialog window.
Shell shell = new Shell(Display.getCurrent());
STStatsDialog dialog = new STStatsDialog(shell);
dialog.open();

}

 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 293

The plug-in is complete! Congratulations on creating the Sametime Server
Statistics plug-in for Sametime Connect (see Figure 7-8). Feel free to download
the plug-in and source code and modify it accordingly for deployment in your
infrastructure.

Figure 7-8 The completed Sametime server monitoring plug-in

7.4 Extension Ideas

Utilizing the code provided in Appendix A, “Additional material” on page 557 as a
basis for your project should allow you to extend the Sametime server statistics
plug-in in any number of ways.

Some ideas from the authors include:

� Utilizing the framework to pull data out of other back-end systems, formatting
it and displaying it via a Sametime plug-in
294 Extending Sametime 7.5: Building Plug-ins for Sametime

� Expanding the dataset used in this example and displaying even more
statistics extracted from your stlog.nsf database

However you choose to continue, we hope this chapter provided an informative
tutorial on what can be done with not only Sametime plug-ins but the Eclipse
platform and Eclipse plug-ins themselves.
 Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in 295

296 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 8. Advanced plug-in example:
SAP integration

This chapter examines how to create a plug-in that integrates with a back-end
system, such as SAP®, to extract data for several different scenarios. These
samples are use cases that show the business value of having real-time access
to a back-end system without having to open a separate user interface. There are
three examples within the plug-in. They are:

� Human Resources Integration

� Inventory Status

� Order Status

8

© Copyright IBM Corp. 2007. All rights reserved. 297

Important: The following example is intended to show how a custom
Sametime Plug-in can integrate with a back-end system such as SAP. Please
note the following when working with this example:

� You need knowledge of your SAP System, or at least have access to an
SAP Administrator or Developer who can help with the configuration of the
system

� Each specific client SAP implementation may differ slightly from the
configuration used in this example. Accordingly, you will need to work
closely with an SAP Administrator or Developer to understand the key
configuration parameters and make adjustments to the code examples
where appropriate.

� Please note that due to licensing restrictions, we cannot distribute the SAP
Java Connector and you will need to obtain it from an SAP Administrator or
Developer and install it.
298 Extending Sametime 7.5: Building Plug-ins for Sametime

8.1 Plug-in overview

As described in the chapter introduction, the SAP integration plug-in will allow the
user to access data from an SAP system.

The plug-in will provide three SAP integration use cases, each on a separate tab,
as shown in Figure 8-1 on page 300.

� Human Resources Tab
� Inventory Tab
� Order Status Tab
 Chapter 8. Advanced plug-in example: SAP integration 299

Figure 8-1 Overview of the functional tabs within the plug-in

Tabs for Functionality

HR

Inventory

Order Status
300 Extending Sametime 7.5: Building Plug-ins for Sametime

Human resources use case
The human resources use case pulls organizational information from SAP and
displays it in a filterable tree. An example of the human resources user interface
is shown in Figure 8-2.

Figure 8-2 Example of the human resources user interface
 Chapter 8. Advanced plug-in example: SAP integration 301

Inventory use case
The inventory use case allows the user to select a product from a list and then
check its availability. An example of the inventory user interface is shown in
Figure 8-3.

Figure 8-3 An example of the inventory user interface

Order status use case
The order status use case allows the user to enter an order number and retrieve
the status from SAP. An example of the order status user interface is displayed in
Figure 8-4 on page 303.
302 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 8-4 An example of the order status user interface

This plug-in provides interesting examples that show users the value of real-time
access to any back-end system, not just SAP.

Users will configure their plug-in by accessing it from the Sametime Connect
client’s File → Preferences menu. They will then enter the SAP configuration
information (user name, password, server address, and so on). This information
will be stored on the user's machine in a properties file. Default preferences can
be configured, such as SAP server address. It is also possible to encrypt this
information, as described in 7.3.2, “Create a Base64 encoding/decoding class”
on page 266, and 7.3.5, “Create a preferences page” on page 283.

Attention: A user can also configure the plug-in to use a static dummy test
data system, instead of SAP, by changing a preference. When reading the rest
of this chapter, assume that the words SAP and dummy test data system to be
interchangeable (except when discussing SAP APIs or configuration).
 Chapter 8. Advanced plug-in example: SAP integration 303

8.1.1 Value to the user

This plug-in is designed to show the business value of real-time integration with a
back-end system, such as SAP. Often a user has to access several different
systems through a slow process to perform a task. The following examples show
how Sametime can be used to:

� Integrate a corporate directory with Sametime

� Check current inventory levels

� Check the status of an order

HR (corporate directory) integration
Integration between the corporate directory and Sametime can be quite valuable.
One example is a client that is using an external IM client and wants to look up a
phone number to speak with his sales or support representative. It could also be
that the sales person is not available but it is urgent, so the client uses the
corporate directory to contact the sales person’s manager or someone else from
the sales person’s team.

An internal use case could be checking the status of a workflow, such as
expense reimbursement or vacation approval. The corporate directory allows the
employee to find someone who is online right now that can answer that question.
It could be the manager or a colleague of someone who is unavailable.

Inventory integration
A client wants to place an order, but only if the inventory is in stock. If it is not in
stock, they want to know when it will be available. It is possible for the customer
service representative (CSR) to quickly check this status while talking to the
client. The CSR can now handle more requests and the client is impressed by
the quick answers and accurate information, resulting in more repeat business.

Order status integration
A client or colleague wants to know the status of an order. This provides an easy
way to discover that information without logging into an ERP front end. This could
also be achieved using an instant messaging bot that uses a technical user to
query the system.

8.1.2 Value to the developer

A developer can learn how to integrate Sametime with a back-end system, such
as SAP, to create value for the company’s users. Back-end integration is one of
the most challenging tasks facing a collaboration developer.
304 Extending Sametime 7.5: Building Plug-ins for Sametime

This plug-in uses the following extension points:

� com.ibm.collaboration.realtime.imhub.miniApps

� org.eclipse.ui.runtime.preferences

� org.eclipse.ui.preferencePages

8.1.3 Downloading and deploying the plug-in

To download and deploy the plug-in, the following steps are required:

1. Download the plug-in, as described in Appendix A, “Additional material” on
page 557.

2. Unzip the file com.ibm.redbooks.st75.sap.zip into your Sametime 7.5 Connect
client directory, for example, C:\Program Files\IBM\Sametime Connect
7.5\plugins.

3. Configure the back-end system.

a. If you do not have a back-end system, please set your preferences to not
use SAP, as described in 8.1.4, “Using the plug-in” on page 305.

b. If you will connect to an SAP system and possess a valid SAP license
(check with your SAP department if you are unsure), you need to install
the SAP Java Connector (JCo), as described in 8.2.2, “SAP Java
Connector installation” on page 338.

4. Restart the Sametime Connect client.

You are now ready to use the SAP Integration plug-in.

8.1.4 Using the plug-in

After starting the Sametime Connect client you should see a new MiniApp called
SAP Integration. If you do not see it, please recheck your steps in Ê,
“org.eclipse.ui.preferencePages” on page 305.

Set the SAP integration preferences by selecting File → Preferences. You
should now see a new preference page called SAP Preferences. Click this page.
To use SAP, enter your SAP data and click the check box next to Do you want to
use the SAP system?. To use the test data system, make sure the Do you want
to use the SAP system? option is unchecked and then the SAP specific
information (user name and so on) will be ignored.
 Chapter 8. Advanced plug-in example: SAP integration 305

Human resources example
This example allows you to view organizational information from the SAP system
and filter it. The default is to show the whole corporate hierarchy, as shown in
Figure 8-5.

Figure 8-5 Human resources example showing the complete organizational hierarchy

To filter this selection, there are two steps to follow:

1. Select a manager from the organizational tree. A manager is an employee
that has employees under him or her.

2. In the HR Filter combo box, select Selected Manager.

An example of a filtered organizational tree is shown in Figure 8-6 on page 307.
306 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 8-6 An example of a filtered organizational hierarchy

To undo the filter, in the Org Filter combo box, choose All.

The result should be the same as that in the first HR example shown in
Figure 8-5 on page 306.
 Chapter 8. Advanced plug-in example: SAP integration 307

If you select an employee that is not a manager, then the tree will be empty and
you will see an error message below the tree. An example of this is shown in
Figure 8-7.

Figure 8-7 An example of the error message when the filter is applied on a non-manager

You can undo the filter by following these steps:

1. In the HR Filter combo box, select All.

2. Select an employee who is a manager.

3. In the HR Filter combo box, select Selected Manager.

Inventory example
The inventory use case lets you select a product from a given factory (known as
a plant in SAP). You then enter the desired quantity and click the Search button.
The plug-in checks the availability in the SAP system of the product you selected
for the quantity that you entered. Figure 8-8 on page 309 is an example of how
the results might look.
308 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 8-8 An example of the inventory search results

Order status example
The order status example lets you enter an order number and check the status in
the SAP system. Simply follow these two steps:

1. Enter the order ID.

2. Click the Search button.

Attention: You will need to get a sample order ID from the SAP system before
you can test this.
 Chapter 8. Advanced plug-in example: SAP integration 309

The order status results should look like Figure 8-9.

Figure 8-9 Order status results

If the order ID is not found, you will get an error message, as shown in
Figure 8-10 on page 311.
310 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 8-10 Order status when the order id is not found

8.1.5 Planning

If you would like to connect to an SAP system, you will need to get the
connection data (user, password, and so on) from an SAP administrator. All of
the data you need is on the SAP Preferences page.

For each of the use cases, you will need to get some information from someone
who knows SAP. Below is a list of data you will need for each use case:

� Human resources: Organization ID

� Inventory: Plant ID

� Order Status: Order ID

You will also need to know what the beginning and end dates for your system
data should be. In our example, our SAP system has test data starting in 1999.
Your SAP system may only have data starting from a different year.

Although not necessary for this example, it is also helpful to install an SAP GUI
on the development machine, so that you can find and test SAP functions, known
as BAPIs and RFCs.
 Chapter 8. Advanced plug-in example: SAP integration 311

It is also helpful to use a visual tool to create the user interface code. Eclipse
provides the Visual Editor (VE) tool. The 3.2.0 version of VE was unable to show
the SapMiniApp code (there was only a gray box). There are other GUI tools for
Eclipse that provide more features. Some of them are:

� Cloudgarden’s Jigloo: http://cloudgarden.com/jigloo/index.html

� SWT Designer: http://www.swt-designer.com/

Cloudgarden’s Jigloo was tested with the Sametime 7.5 toolkit and was able to
display, edit, and create a user interface for the AbstractMiniApp extension point.

8.2 Building the sample application

The SAP integration plug-in is a MiniApp with three tabs, each containing a
different integration use case. Below is an overview of the steps required to build
the plug-in:

Create a new plug-in project.

Create the data models and preferences.

Install and configure the SAP Java Connector or configure the plug-in to use
dummy data.

Create the human resources example.

Create the inventory example.

Create the order status example.

Deploy the plug-in.

The plug-in is made up of the packages shown in Table 8-1.

Table 8-1 Package overview

Package Name Description

com.ibm.redbooks.st75.sap This is the default package that contains
the Activator and the SapMgr that
connects to SAP.

com.ibm.redbooks.st75.sap.actions This package contains the plug-in actions.

com.ibm.redbooks.st75.sap.models This package contains the data models.

com.ibm.redbooks.st75.sap.preferences This package stores the preferences for
the SAP connection.

com.ibm.redbooks.st75.sap.ui This package stores the user interface
classes and code.
312 Extending Sametime 7.5: Building Plug-ins for Sametime

http://cloudgarden.com/jigloo/index.html
http://www.swt-designer.com/

8.2.1 Create project and base objects

Create a new plug-in project titled com.ibm.redbooks.st75.sap that will make
visual contributions, but do not use any templates.

Figure 8-11 Create a new plug-in project

Create SapMiniApp
To be able to see the Sametime extension points, you need to add them as
dependencies. Perform the following steps:

1. Open the plugin.xml file by double-clicking it in the Package Explorer.

2. Click the Dependencies tab.

3. Click the Add... button.
 Chapter 8. Advanced plug-in example: SAP integration 313

4. Select the com.ibm.collaboration.realtime.imhub plug-in, as shown in
Figure 8-12.

Figure 8-12 Select the com.ibm.collaboration.realtime.imhub plug-in

5. Click OK.

The dependency tab should look like Figure 8-13 on page 315.
314 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 8-13 Updated dependencies

Now that the extension point can be seen by the plug-in, you need to add it to the
project.

6. Click the Extensions tab.

7. Click the Add... button.
 Chapter 8. Advanced plug-in example: SAP integration 315

8. Select com.ibm.collaboration.realtime.imhub.miniApps, as shown in
Figure 8-14.

Figure 8-14 Select com.ibm.collaboration.realtime.imhub.miniApps

9. Add a new Extension by right-clicking
com.ibm.collaboration.realtime.imhub.miniApps.

10.Select miniApp.

11.Update the fields to look like Figure 8-15 on page 317.
316 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 8-15 Updated SapMiniApp Extension

12.You should now save and close the plugin.xml.

13.Open the newly created SapMiniApp class.
 Chapter 8. Advanced plug-in example: SAP integration 317

14.Edit the createControl method, as shown in Example 8-1 to add a TabFolder
and three tabs, one for each example we will create. The creation of the tabs
will be factored out into separate methods, as shown in Example 8-1. You will
see error messages until you have made all the changes.

Example 8-1 Create the basic user interface

public Control createControl(Composite parent) {
GridLayout parentLayout = new GridLayout();
parentLayout.makeColumnsEqualWidth = true;
parent.setLayout(parentLayout);
parent.setSize(375, 400);

tabFolderSAP = new TabFolder(parent, SWT.NONE);
GridData tabFolderSAPLData = new GridData();
tabFolderSAPLData.heightHint = 374;
tabFolderSAPLData.widthHint = 334;
tabFolderSAP.setLayoutData(tabFolderSAPLData);
tabFolderSAP.setSize(334, 374);

createHRTab();
createInventoryTab();
createOrderStatusTab();

tabFolderSAP.setSelection(0);
return parent;

}// end method

private void createHRTab() {
tabItemHR = new TabItem(tabFolderSAP, SWT.NONE);
tabItemHR.setText("HR");

}// end method

private void createInventoryTab() {

Important: All GUI components were created as member (that is, class level)
variables, but the configuration (layout) objects are local. There are two
common ways of defining layouts:

1. Define new objects for each component. This is the method this example
follows because it is easier to understand the code and debug it later.

2. Create one layout object, for example, GridData gd, that is recreated (for
example, gd = new GridData()) for each object where the layout is different.

If you are new to Eclipse, then we recommend you stick with option 1.
318 Extending Sametime 7.5: Building Plug-ins for Sametime

tabItemHR = new TabItem(tabFolderSAP, SWT.NONE);
tabItemHR.setText("Inventory");

}// end method

private void createOrderStatusTab() {
tabItemHR = new TabItem(tabFolderSAP, SWT.NONE);
tabItemHR.setText("Order Status");

}// end method

If you have not already done so, configure a target run time, as described in
3.3.5, “Task 5: Configure the target platform” on page 48. Make sure that this
plug-in is included.

Run the plug-in. It should look like Figure 8-16.

Figure 8-16 SapMiniApp with the base user interface

Tip: You can also perform the step above in your visual tool for user interfaces.
Remember to factor out the tab creation into separate methods so that it is
easier to read and maintain your code.
 Chapter 8. Advanced plug-in example: SAP integration 319

Update Activator.java
To facilitate logging and debugging, add the two methods Example 8-2 to the
Activator.java file.

Example 8-2 Add logging methods

/**
* Logs to a file
*
*/
public static void log(String title, String message) {

IStatus status = new Status(IStatus.INFO, title, 0, message,
(Throwable) null);

getDefault().getLog().log(status);
} //end method

/**
* Logs errors to a file
*
*/
public static void logError(String title, String message) {

IStatus status = new Status(IStatus.ERROR, title, 0, message,
(Throwable) null);

getDefault().getLog().log(status);
} //end method

Create data objects
We will now create the data objects required for all three examples. Create a new
a package titled com.ibm.redbooks.st75.models. Table 8-2 is an overview of the
classes to create.

Table 8-2 Data object overview

Data object Description

Person Contains all relevant information for
employees and managers.

Organization Contains all the employees in the
organization.

Product Contains all product information, such as
price.

Order Contains all information regarding a given
order, including products, status, and so
on.
320 Extending Sametime 7.5: Building Plug-ins for Sametime

Person.java
This object (Example 8-3) holds all the information about an employee or a
manager. It is mostly a plain old java object (POJO), except for two extra
constructors that allow us to create a new Person with all of the required data in
one method call, instead of multiple ones. The other interesting method is
addEmployee. This is different from setEmployees in that it allows us to add
employees one at a time instead of all at once. This made the reading of
hierarchy information out of SAP much easier.

Example 8-3 Person.java

package com.ibm.redbooks.st75.sap.models;

public class Person {
private String name;
private boolean managerFlag;
private String orgName;
private int orgCode;
private Person [] employees;
private Person manager;
private int id;
private int managerId;

public Person(){
super();

}

public Person(String name, String orgName, int orgCode,
boolean managerFlag, Person[] employees,
Person manager){

super();
this.setName(name);
this.setOrgName(orgName);
this.setOrgCode(orgCode);
this.setManagerFlag(managerFlag);
this.setEmployees(employees);
this.setManager(manager);

}

public Person(String name, int id, String orgName, int orgCode,
boolean managerFlag, Person[] employees,
Person manager){

super();
this.setName(name);
this.setOrgName(orgName);
 Chapter 8. Advanced plug-in example: SAP integration 321

this.setOrgCode(orgCode);
this.setManagerFlag(managerFlag);
this.setEmployees(employees);
this.setManager(manager);
this.setId(id);

}

/*
 * Adds an employee to the manager and automatically sets {@link

#managerFlag}
 * if this is the first employee.
 *
 * @param person The new employee to add
 */
public void addEmployee(Person person){

//minimum size for the array
int iSize = 1;
Person [] newEmployees = null;
//make the array one bigger if there are already employees
if(this.employees != null){

iSize = this.employees.length + 1;
newEmployees = new Person[iSize];
//copy the old employees if there are any
System.arraycopy(this.employees, 0, newEmployees, 0,

this.employees.length);
} else {

newEmployees = new Person[iSize];
}//end if

//add the new employee to the end of the array
newEmployees[iSize-1] = person;

//set the manager flag, if it is not set
if(!hasManagerFlag())

setManagerFlag(true);
}//end method

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

322 Extending Sametime 7.5: Building Plug-ins for Sametime

public boolean hasManagerFlag() {
return managerFlag;

}
public void setManagerFlag(boolean managerFlag) {

this.managerFlag = managerFlag;
}
public String getName() {

return name;
}
public void setName(String name) {

this.name = name;
}
public int getOrgCode() {

return orgCode;
}
public void setOrgCode(int orgCode) {

this.orgCode = orgCode;
}
public String getOrgName() {

return orgName;
}
public void setOrgName(String orgName) {

this.orgName = orgName;
}
public Person[] getEmployees() {

return employees;
}
public void setEmployees(Person[] employees) {

this.employees = employees;
}
public Person getManager() {

return manager;
}
public void setManager(Person manager) {

this.manager = manager;
}

public int getManagerId() {
return managerId;

}

public void setManagerId(int managerId) {
this.managerId = managerId;

}

 Chapter 8. Advanced plug-in example: SAP integration 323

}

Organization.java
The Organization object (Example 8-4) stores the employees in a given
department or organization.

Example 8-4 Organization.java

package com.ibm.redbooks.st75.sap.models;

public class Organization {
private Person[] employees;
private String name;
private int id;

public Person[] getEmployees() {
return employees;

}//end method

public void setEmployees(Person[] employees) {
this.employees = employees;

}//end method

public String getName() {
return name;

}//end method

public void setName(String name) {
this.name = name;

}//end method

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}
}

Product.java
The Product class (Example 8-5 on page 325) stores all information related to a
product, such as price, the plant where it is located, and availability.
324 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 8-5 Product.java

package com.ibm.redbooks.st75.sap.models;

public class Product {
private String productId;
private String name;
private String plant;
private double price;
private String currency;
private int quantity;
private String units;
private String availabilityDate;

public Product(){
super();

}//end constructor

public Product(String productId, String name, String plant, double
price, String currency,

int quantity, String units, String availabilityDate){
super();
setProductId(productId);
setName(name);
setPlant(plant);
setPrice(price);
setCurrency(currency);
setQuantity(quantity);
setUnits(units);
setAvailabilityDate(availabilityDate);

}//end constructor

public String getPlant() {
return plant;

}
public void setPlant(String plant) {

this.plant = plant;
}
public String getName() {

return name;
}
public void setName(String name) {

this.name = name;
}
public String getCurrency() {
 Chapter 8. Advanced plug-in example: SAP integration 325

return currency;
}
public void setCurrency(String currency) {

this.currency = currency;
}
public double getPrice() {

return price;
}
public void setPrice(double price) {

this.price = price;
}
public String getUnits() {

return units;
}
public void setUnits(String units) {

this.units = units;
}

public String getAvailabilityDate() {
return availabilityDate;

}

public void setAvailabilityDate(String availabilityDate) {
this.availabilityDate = availabilityDate;

}

public String getProductId() {
return productId;

}

public void setProductId(String productId) {
this.productId = productId;

}

public int getQuantity() {
return quantity;

}

public void setQuantity(int quantity) {
this.quantity = quantity;

}

}

326 Extending Sametime 7.5: Building Plug-ins for Sametime

Order.java
Example 8-6 shows the order.java object.

Example 8-6 Order.java

package com.ibm.redbooks.st75.sap.models;

public class Order {
private int deliveryId;
private int deliveryQuantity;
private double total;
private int orderId;
private String units;
private String orderDate;
private String deliveryDate;
private String description;
private String status;
private int price;
private String currency;
private int quantity;
private String productId;

public String getDescription() {
return description;

}
public void setDescription(String currentLocation) {

this.description = currentLocation;
}
public String getDeliveryDate() {

return deliveryDate;
}
public void setDeliveryDate(String deliveryDate) {

this.deliveryDate = deliveryDate;
}
public String getOrderDate() {

return orderDate;
}
public void setOrderDate(String orderDate) {

this.orderDate = orderDate;
}
public int getOrderId() {

return orderId;
}
public void setOrderId(int orderNumber) {

this.orderId = orderNumber;
 Chapter 8. Advanced plug-in example: SAP integration 327

}
public String getCurrency() {

return currency;
}
public void setCurrency(String currency) {

this.currency = currency;
}
public int getPrice() {

return price;
}
public void setPrice(int price) {

this.price = price;
}
public String getStatus() {

return status;
}
public void setStatus(String status) {

this.status = status;
}
public int getQuantity() {

return quantity;
}
public void setQuantity(int quantity) {

this.quantity = quantity;
}
public int getDeliveryQuantity() {

return deliveryQuantity;
}
public void setDeliveryQuantity(int deliveryQuantity) {

this.deliveryQuantity = deliveryQuantity;
}
public String getProductId() {

return productId;
}
public void setProductId(String productId) {

this.productId = productId;
}
public double getTotal() {

return total;
}
public void setTotal(double total) {

this.total = total;
}
public String getUnits() {

return units;
328 Extending Sametime 7.5: Building Plug-ins for Sametime

}
public void setUnits(String units) {

this.units = units;
}
public int getDeliveryId() {

return deliveryId;
}
public void setDeliveryId(int deliveryId) {

this.deliveryId = deliveryId;
}

}

Create preferences
The easiest way to create the preferences is by using the standard Eclipse
template.

Open the plugin.xml by double-clicking it in the Package Explorer.
 Chapter 8. Advanced plug-in example: SAP integration 329

Click the Extensions tab. Click the Add... button (see Figure 8-17).

Figure 8-17 Click the Add... button
330 Extending Sametime 7.5: Building Plug-ins for Sametime

Select the org.eclipse.ui.preferencePages Extension (see Figure 8-18).

Figure 8-18 Select the org.eclipse.ui.preferencePages extension
 Chapter 8. Advanced plug-in example: SAP integration 331

Select the default template and click Next (see Figure 8-19)

Figure 8-19 Select the default template and click Next

3. Change the page class name to SapPreferencePage and the page name to
Sap Preferences and then click Finish (see Figure 8-20 on page 333).
332 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 8-20 Change the names of the class and page and then click Finish

4. If you expand your extension points and highlight the new Sap Preferences
Extension, your window should look like Figure 8-21.

Figure 8-21 The extensions tab after adding the preferences extension.
 Chapter 8. Advanced plug-in example: SAP integration 333

The next step is to customize the template preference code to work for the
plug-in. We will add the SAP login parameters and those required for the different
use cases.

PreferenceConstants.java
Change the constants first, as shown in the code in Example 8-7. The constants
are used to define unique IDs for each of the preferences. They are used by the
plug-in to save the preferences and by the PreferenceInitializer to set default
values.

Example 8-7 PreferenceConstants.java

package com.ibm.redbooks.st75.sap.preferences;

/**
 * Constant definitions for plug-in preferences
 */
public class PreferenceConstants {

public static final String P_PATH = "pathPreference";

public static final String TITLE = "title";

public static final String CLIENT_NUMBER = "clientNumber";

public static final String SYSTEM_NUMBER = "systemNumber";

public static final String USER_NAME = "userName";

public static final String PASSWORD = "password";

public static final String USE_SAP = "useSap";

public static final String HOST = "host";

public static final String LANGUAGE = "language";

public static final String PLANT = "plant";

public static final String ORGANIZATION = "organization";
}

Tip: If you do not follow this order when updating the preference classes, you
will have temporary errors because elements are being deleted and changed.
334 Extending Sametime 7.5: Building Plug-ins for Sametime

PreferenceInitializer.java
Set any default values for the SAP connection (see Example 8-8). You do not
have to set default values for all of the fields. If you would prefer not to set any
default values, then just delete all the store.setDefault commands.

Example 8-8 PreferenceInitializer.java

package com.ibm.redbooks.st75.sap.preferences;

import
org.eclipse.core.runtime.preferences.AbstractPreferenceInitializer;
import org.eclipse.jface.preference.IPreferenceStore;

import com.ibm.redbooks.st75.sap.Activator;

/**
 * Class used to initialize default preference values.
 */
public class PreferenceInitializer extends
AbstractPreferenceInitializer {

/*
 * (non-Javadoc)
 *
 * @see

org.eclipse.core.runtime.preferences.AbstractPreferenceInitializer#init
ializeDefaultPreferences()

 */
public void initializeDefaultPreferences() {

IPreferenceStore store = Activator.getDefault()
.getPreferenceStore();

//Set default values
store.setDefault(PreferenceConstants.USE_SAP, false);
store.setDefault(PreferenceConstants.LANGUAGE, "EN");
store.setDefault(PreferenceConstants.SYSTEM_NUMBER, "00");
store.setDefault(PreferenceConstants.CLIENT_NUMBER, "800");

}

}

 Chapter 8. Advanced plug-in example: SAP integration 335

SapPreferencePage.java
Delete or comment out the example preferences and insert the preferences
defined in Example 8-9.

Example 8-9 SapPreferencePage.java

package com.ibm.redbooks.st75.sap.preferences;

import org.eclipse.jface.preference.*;
import org.eclipse.ui.IWorkbenchPreferencePage;
import org.eclipse.ui.IWorkbench;
import com.ibm.redbooks.st75.sap.Activator;

/**
 * This class represents a preference page that
 * is contributed to the Preferences dialog. By
 * subclassing <samp>FieldEditorPreferencePage</samp>, we
 * can use the field support built into JFace that allows
 * us to create a page that is small and knows how to
 * save, restore and apply itself.
 * <p>
 * This page is used to modify preferences only. They
 * are stored in the preference store that belongs to
 * the main plug-in class. That way, preferences can
 * be accessed directly via the preference store.
 */

public class SapPreferencePage
extends FieldEditorPreferencePage
implements IWorkbenchPreferencePage {

public SapPreferencePage() {
super(GRID);
setPreferenceStore(Activator.getDefault().getPreferenceStore());
setDescription("A demonstration of a preference page

implementation");
}

/**
 * Creates the field editors. Field editors are abstractions of
 * the common GUI blocks needed to manipulate various types
 * of preferences. Each field editor knows how to save and
 * restore itself.
 */
public void createFieldEditors() {
336 Extending Sametime 7.5: Building Plug-ins for Sametime

addField(new BooleanFieldEditor(PreferenceConstants.USE_SAP,
"&Do you want use the SAP system? (if not dummy data

will be used)",
, getFieldEditorParent()));

//Add the SAP parameters
addField(

new StringFieldEditor(PreferenceConstants.USER_NAME, "&User
Name:", getFieldEditorParent()));

addField(
new StringFieldEditor(PreferenceConstants.PASSWORD,

"&Password:", getFieldEditorParent()));
addField(

new StringFieldEditor(PreferenceConstants.SYSTEM_NUMBER,
"&System Number:", getFieldEditorParent()));

addField(
new StringFieldEditor(PreferenceConstants.CLIENT_NUMBER,

"&Client Number:", getFieldEditorParent()));
addField(

new StringFieldEditor(PreferenceConstants.HOST, "&Host
Name:", getFieldEditorParent()));

addField(
new StringFieldEditor(PreferenceConstants.LANGUAGE,

"Language (Ex: EN = English):", getFieldEditorParent()));
addField(

new StringFieldEditor(PreferenceConstants.ORGANIZATION,
"Organization ID", getFieldEditorParent()));

addField(
new StringFieldEditor(PreferenceConstants.PLANT, "Plant

ID", getFieldEditorParent()));
}

/* (non-Javadoc)
 * @see

org.eclipse.ui.IWorkbenchPreferencePage#init(org.eclipse.ui.IWorkbench)
 */
public void init(IWorkbench workbench) {
}

}

 Chapter 8. Advanced plug-in example: SAP integration 337

When you have finished, your preference page should look like Figure 8-22.

Figure 8-22 Finished SAP preference page

If you do not have an SAP system to test against, please skip to 8.2.3, “Configure
the plug-in to run without SAP” on page 341.

8.2.2 SAP Java Connector installation

The SAP Java Connector (JCo) allows Java programs to communicate with SAP.
As Eclipse is Java-based, this connector can also be used by a plug-in to
communicate with SAP.

The first step is to download the SAP Java Connector. The latest version can
downloaded from SAPNet (registration required) at
http://service.sap.com/connectors.

The connector is a zip file. After downloading it, you can simply unzip onto your
file system. In this example, we used D:\sapjco.

Tip: Help for installing and using the connector can be found at
http://help.sap.com/saphelp_nw2004s/helpdata/en/47/80f671ee6e4b41b63
c0fe46bd6e4f8/frameset.htm.
338 Extending Sametime 7.5: Building Plug-ins for Sametime

http://service.sap.com/connectors
http://help.sap.com/saphelp_nw2004s/helpdata/en/47/80f671ee6e4b41b63c0fe46bd6e4f8/frameset.htm
http://help.sap.com/saphelp_nw2004s/helpdata/en/47/80f671ee6e4b41b63c0fe46bd6e4f8/frameset.htm

Add the Java Connector to the development environment
After extracting the JCo, you need to add it to your plug-in.

Right-click the com.ibm.redbooks.st75.sap project folder and select Build
Path → Configure Build Path....

Click on the Libraries tab (see Figure 8-23).

Figure 8-23 Navigate to the Libraries tab of the Java Build Path

Click Add External JARs.... Navigate to the folder that contains the unzipped
SAP Java Connector and double-click the sapjco.jar file to add it to the project
(see Figure 8-24 on page 340).
 Chapter 8. Advanced plug-in example: SAP integration 339

Figure 8-24 Java Build Path updated to include the SAP Java Connector

Add the Java Connector to the example plug-in
Perform the following steps:

1. Unzip the com.ibm.redbooks.st75.sap_1.0.0.zip file on to your hard drive.

2. Open the plugins folder to find the file com.ibm.redbooks.st75.sap_1.0.0.jar.

3. Unzip the jar file with either a zip tool, such as WinRar, or using the JVM.

4. Add the JCO files that you unzipped to the folder lib\sapjco.

These files include:

� sapjco.jar

� sapjcorfc.dll

� librfc32.dll

� dev_rfc.trc

� Readme.txt

5. Recreate the jar file and deploy it as described in 8.1.3, “Downloading and
deploying the plug-in” on page 305.
340 Extending Sametime 7.5: Building Plug-ins for Sametime

8.2.3 Configure the plug-in to run without SAP

It is also possible to configure the plug-in to run without an SAP back-end
system. To achieve this, please follow these steps:

1. Set the use SAP system preference to false.

2. Create the TestMgr class to contain your test data as described in 8.2.4,
“Create the SAP and test classes” on page 341.

8.2.4 Create the SAP and test classes

In this section you will create the classes to connect to SAP and a test class in
case you do not have access to an SAP system.

We will create the classes shown in Table 8-3.

Table 8-3 SAP and Test Classes

IERPMgr.java
The IERPMgr class (Example 8-10) is an interface for connecting to back-end
systems. It is used by the SapMiniApp so that the user can switch between test
data and an SAP system without changing the code.

Example 8-10 IERPMgr.java

package com.ibm.redbooks.st75.sap;

import com.ibm.redbooks.st75.sap.models.*;

public interface IERPMgr {

public void createConnection();

public void closeConnection();

public Organization getHRData(int organizationId);

Class Description

IERPMgr Interface for the connection methods for
the back-end system.

SapMgr The SapMgr connects to SAP and
retrieves data.

TestMgr The TestMgr simulates a back-end system
and returns dummy data.
 Chapter 8. Advanced plug-in example: SAP integration 341

public Product checkProductStatus(Product product);

public Product[] getInventory(int plantId);

public Order getOrderStatus(String orderId);

}

SapMgr.java
The SapMgr (Example 8-11) connects to the SAP system and makes the API
calls. It implements the IERPMgr interface. This class will be updated in later
sections.

Example 8-11 SapMgr.java

package com.ibm.redbooks.st75.sap;

import com.ibm.redbooks.st75.sap.models.*;

public class SapMgr implements IERPMgr {
public void closeConnection() {

// TODO Auto-generated method stub
}

public void createConnection() {
// TODO Auto-generated method stub

}

public Organization getHRData(int organizationId) {
// TODO Auto-generated method stub
return null;

}
public Product checkProductStatus(Product product){

// TODO Auto-generated method stub
return null;

public Product[] getInventory(int plantId) {
// TODO Auto-generated method stub
return null;

}
public Order getOrderStatus(String orderId) {

// TODO Auto-generated method stub
return null;
342 Extending Sametime 7.5: Building Plug-ins for Sametime

}
}

Add the following variables and update the open and close connection methods,
as shown in Example 8-12.

Example 8-12 Add variables and update the connection methods

public static final String HR_BAPI_GET_ORG_EMPLOYEES =
"HRCM_ORGUNIT_EMPLOYEE_LIST_GET";

public static final String HR_BAPI_GET_EMPLOYEE_INFO =
"HRCM_EMPLOYEE_INFO_GET";

public static final String INV_BAPI_GET_MATERIAL_AVAILABILITY =
"BAPI_MATERIAL_AVAILABILITY";

public static final String INV_BAPI_GET_MATERIAL_DETAIL =
"BAPI_MATERIAL_GET_DETAIL";

public static final String INV_BAPI_GET_MATERIAL_BY_PLANT =
"BAPI_MATERIAL_GETLIST";

public static final String ORDER_BAPI_GET_ORDER_STATUS =
"BAPI_SALESORDER_GETSTATUS";

private JCO.Client sapConnection;

private JCO.Repository sapRepository;

/*
 * Creates a connection with the SAP System, using the values stored

in the user's
 * preference page. Please @see

com.ibm.redbooks.sap.preferences.SapPreferencePage
 * for more information.
 *
 * @see com.ibm.redbooks.st75.sap.IERPMgr#createConnection()
 */
public void createConnection() {

try {

IPreferenceStore preferenceStore =
Activator.getDefault().getPreferenceStore();

String clientNumber =
preferenceStore.getString(PreferenceConstants.CLIENT_NUMBER);

String systemNumber =
preferenceStore.getString(PreferenceConstants.SYSTEM_NUMBER);

String host =
preferenceStore.getString(PreferenceConstants.HOST);
 Chapter 8. Advanced plug-in example: SAP integration 343

String userName =
preferenceStore.getString(PreferenceConstants.USER_NAME);

String password =
preferenceStore.getString(PreferenceConstants.PASSWORD);

String language =
preferenceStore.getString(PreferenceConstants.LANGUAGE);

//Use the preferences to create the connection
sapConnection = JCO.createClient(clientNumber, userName,

password,
language, host, systemNumber);

sapConnection.connect();
sapRepository = new JCO.Repository("redbooks", sapConnection);

} catch (Exception ex) {
ex.printStackTrace();
Activator.logError("Error creating connection to SAP",

ex.getMessage());
}

}// end method

/*
 * Closes the connection with the SAP system.
 * @see com.ibm.redbooks.st75.sap.IERPMgr#closeConnection()
 */
public void closeConnection(){

sapConnection.disconnect();
}//end method

Add the helper methods in Example 8-13 to make the integration with SAP
easier.

Example 8-13 Helper methods for calling SAP BAPIs

/*
 * Checks the SAP BAPI result for errors.
 *
 * @param returnStructurethe result of the SAP BAPI
 * @return <code>true</code> - if there are erorrs

 * <code>false</code> - if there are no errors
 */
private boolean checkForErrors(JCO.Structure returnStructure){

boolean b = false;
344 Extending Sametime 7.5: Building Plug-ins for Sametime

//make sure there was not an error in the API call
if (!(returnStructure.getString("TYPE").equals("") ||

returnStructure
.getString("TYPE").equals("S"))) {

Activator.logError("BAPI Error",
returnStructure.getString("MESSAGE"));

b = true;
}//end if-else
return b;

}//end method

public JCO.Function createFunction(String name) throws Exception {
try {

//Create the function template, SAP always uses upper case
IFunctionTemplate ft =

sapRepository.getFunctionTemplate(name.toUpperCase());
if (ft == null) {

String s = "The SAP Function " + name +
" was not found in the SAP system. Please verify this

" +
"with your SAP developer and/or administrator.";

Activator.log("SapMgr.createFunction", s);
return null;

} else {
return ft.getFunction();

}// end if-else
} catch (Exception ex) {

ex.printStackTrace();
Activator.logError("SapMgr.createFunction", ex.getMessage());
throw new Exception("Problem retrieving JCO.Function object: "

+ name);
}//end try-catch

}//end method
 Chapter 8. Advanced plug-in example: SAP integration 345

TestMgr.java
The TestMgr (Example 8-14) mimics a back-end system. It provides test data so
that the user interface can be tested independently from a back-end system like
SAP. This class will be updated in later sections.

Example 8-14 TestMgr.java

package com.ibm.redbooks.st75.sap;

import com.ibm.redbooks.st75.sap.models.*;

public class TestMgr implements IERPMgr {

public void closeConnection() {
// TODO Auto-generated method stub

}

public void createConnection() {
// TODO Auto-generated method stub

}

public Organization getHRData(int organizationId) {
// TODO Auto-generated method stub
return null;

}
public Product checkProductStatus(Product product){

// TODO Auto-generated method stub
return null;

public Product[] getInventory(int plantId) {
// TODO Auto-generated method stub
return null;

}
public Order getOrderStatus(String orderId) {

// TODO Auto-generated method stub
return null;

}
}

346 Extending Sametime 7.5: Building Plug-ins for Sametime

SapMiniApp
You now need to update the UI to use the preferences to determine which
back-end system to use, SAP or test data.

Update the init method, as shown in Example 8-15.

Example 8-15 Updated init method

public void init() throws Exception {
// check the preferences to use SAP or the test data
IPreferenceStore preferenceStore = Activator.getDefault()

.getPreferenceStore();
boolean bUseSap = preferenceStore

.getBoolean(PreferenceConstants.USE_SAP);
if (bUseSap) {

sapMgr = new SapMgr();
sapMgr.createConnection();
if (null != sapMgr) {

Activator.log("Back-end System", "Using SapMgr");
} else {

Activator.logError("Back-end System", "Error creating
SapMgr");

}// end if-else

} else {
sapMgr = new TestMgr();
Activator.log("Back-end System", "Using TestMgr");

}// end if-else
}// end method

Constants.java
Create a constants class (see Example 8-16) in the com.ibm.redbooks.st75.sap
package to store some values that you will reuse for the examples.

Example 8-16 Constants

package com.ibm.redbooks.st75.sap;

public interface Constants {

//inventory UI constants

public static final int INVENTORY_PRODUCT_ID_COLUMN = 0;
public static final int INVENTORY_NAME_COLUMN = 1;
public static final int INVENTORY_PRICE_COLUMN = 2;
 Chapter 8. Advanced plug-in example: SAP integration 347

public static final int INVENTORY_CURRENCY_COLUMN = 3;
public static final int INVENTORY_QUANTITY_COLUMN = 4;
public static final int INVENTORY_UNITS_COLUMN = 5;
public static final int INVENTORY_AVAILABILITY_DATE_COLUMN = 6;

public static final int INVENTORY_PLANT_ID = 3200;
public static final String HR_FILTER_ALL = "All";
public static final String HR_FILTER_SELECTED_MANAGER = "Selected

Manager";
public static final int HR_ORGANIZATION_ID = 50000147;

}

You have now created the foundation for the three examples.

8.2.5 HR example

The HR example (see Figure 8-25) reads the organizational hierarchy out of the
SAP system.

Figure 8-25 Organizational hierarchy from the SAP system
348 Extending Sametime 7.5: Building Plug-ins for Sametime

This example also provides a filter that allows you to filter the results to see just
the employes that are managed by the selected employee (see Figure 8-26).

Figure 8-26 Organizational chart filtered to only show the employees of the selected
manager.

The first step in changing the user interface is creating the helper classes. We
will create or update the classes in Table 8-4.

Table 8-4 Overview of the HR classes to create or update

package Class Description

com.ibm.redbooks.st75.ui HRLabelProvider Provides the labels and
images for the HR
organizational tree.

com.ibm.redbooks.st75.ui HRTreeContentProvider Determines the hierarchy
in the HR organizational
tree.

com.ibm.redbooks.st75.ui HRFilter Filters the HR data in the
organizational tree.

com.ibm.redbooks.st75.ui SapMiniApp The user interface.

com.ibm.redbooks.st75.ui SapMgr Performs SAP integration.

com.ibm.redbooks.st75.ui TestMgr Provides test data.
 Chapter 8. Advanced plug-in example: SAP integration 349

First, you will create the UI helper classes.

HRLabelProvider.java
This class (see Example 8-17) is used by the TreeViewer element to display the
organization, managers, and employees.

Example 8-17 HRLabelProvider

public class HRLabelProvider implements ILabelProvider {

public Image getImage(Object element) {
/*
 Image image = null;

if (element instanceof Person) {
if (((Person) element).isManagerFlag()) {

image = Activator.EMPLOYEE_IMAGE;
} else {

image = Activator.MANAGER_IMAGE;
}// end if-else

} else {
// throw error
System.err.println("Not a person");

}// end if-else
return image;

*/
return null;

}

public String getText(Object element) {
String sText = null;
if (element instanceof Person) {

sText = ((Person) element).getName();
}// end if
System.out.println("person name = " + sText);

return sText;
}

public void addListener(ILabelProviderListener arg0) {
}

public void dispose() {
}

public boolean isLabelProperty(Object arg0, String arg1) {
350 Extending Sametime 7.5: Building Plug-ins for Sametime

return true;
}

public void removeListener(ILabelProviderListener arg0) {
}

}

HRTreeContentProvider.java
This class (see Example 8-18) is used by the TreeViewer element to display the
organization, managers, and employees.

Example 8-18 HRTreeContentProvider

public class HRTreeContentProvider implements ITreeContentProvider {

public Object[] getChildren(Object parentElement) {
Object[] oa = new Object[0];
if (parentElement instanceof Person && ((Person)

parentElement).hasManagerFlag()){
oa = ((Person) parentElement).getEmployees();

} else if (parentElement instanceof Organization){
oa = ((Organization) parentElement).getEmployees();

}//end if-else
return oa;

}

public Object getParent(Object element) {
Object oParent = null;
if (element instanceof Person){

oParent = ((Person) element).getManager();
}//end if
return oParent;

}

public boolean hasChildren(Object element) {
boolean b = false;
if (element instanceof Person){

b = ((Person) element).hasManagerFlag();
}else if (element instanceof Organization){

b = true;
}//end if
return b;

}

 Chapter 8. Advanced plug-in example: SAP integration 351

public Object[] getElements(Object element) {
return getChildren(element);

}

public void dispose() {
// TODO Auto-generated method stub

}

public void inputChanged(Viewer viewer, Object oldInput, Object
newInput) {

}

}

HRFilter.java
This class (see Example 8-19) is used by the TreeViewer to filter the organization
to only be the selected manager.

Example 8-19 HRFilter

public class HRFilter extends ViewerFilter {
private boolean showAll = true;
private String managerName;
public boolean select(Viewer viewer, Object parentElement, Object

element) {
boolean b = false;
if(showAll){ //check if anything should be filtered

b = true;
}else if (managerName == null || "".equals(managerName)){

//if the managerName was never set then filter out everything
System.out.println("mgr name is null");
b = false;

}else if (parentElement instanceof Person && parentElement !=
null){

Person p = (Person) parentElement;
System.out.println("employee & not mgr");
if (managerName.equalsIgnoreCase(p.getName())){

System.out.println("dude is ur mgr");
b = true;

}//end if
}else if (element instanceof Person && element != null){

Person p = (Person) element;
352 Extending Sametime 7.5: Building Plug-ins for Sametime

System.out.println("mgr");
if (managerName.equalsIgnoreCase(p.getName())){

System.out.println("you are manager");
b = true;

}//end if
}//end if-else
return b;

}
public boolean isShowAll() {

return showAll;
}
public void setShowAll(boolean showAll) {

this.showAll = showAll;
}
public String getManagerName() {

return managerName;
}
public void setManagerName(String managerName) {

this.managerName = managerName;
}

}

SapMiniApp changes
The code in Example 8-20 was added to the SapMiniApp to create this user
interface.

Example 8-20 HR changes to the SapMiniApp

private void createHRTab() {
//START >> tabItemHRNew
tabItemHRNew = new TabItem(tabFolderSAP, SWT.NONE);
tabItemHRNew.setText("HR");
//START >> compHRNew
compHRNew = new Composite(tabFolderSAP, SWT.NONE);
GridLayout compHRNewLayout = new GridLayout();
compHRNewLayout.marginRight = 5;
compHRNewLayout.marginLeft = 5;
compHRNewLayout.numColumns = 2;
compHRNew.setLayout(compHRNewLayout);
tabItemHRNew.setControl(compHRNew);
//START >> lblHRFilter
lblHRFilter = new Label(compHRNew, SWT.NONE);
GridData lblHRFilterLData = new GridData();
 Chapter 8. Advanced plug-in example: SAP integration 353

lblHRFilterLData.widthHint = 45;
lblHRFilter.setLayoutData(lblHRFilterLData);
lblHRFilter.setText("HR Filter");
//END << lblHRFilter
//START >> cboHRFilter
cboHRFilter = new Combo(compHRNew, SWT.NONE);
GridData cboHRFilterLData = new GridData();
cboHRFilterLData.grabExcessHorizontalSpace = true;
cboHRFilterLData.horizontalAlignment = GridData.FILL;
cboHRFilter.setLayoutData(cboHRFilterLData);
//add filter items to combo box
String[] hrFilters = { Constants.HR_FILTER_ALL,

Constants.HR_FILTER_SELECTED_MANAGER };
cboHRFilter.setItems(hrFilters);
cboHRFilter.setText("Filter");
cboHRFilter.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent evt) {
if (Constants.HR_FILTER_SELECTED_MANAGER.equals(cboHRFilter

.getText())) {
hrFilter.setShowAll(false);
treeViewerHR.addFilter(hrFilter);
treeViewerHR.refresh();
if(treeViewerHR.getSelection().isEmpty()){

lblHRError.setText("The selected employee is not a
manager.");

}//end if
} else {

hrFilter.setShowAll(true);
treeViewerHR.removeFilter(hrFilter);
treeViewerHR.refresh();
lblHRError.setText("");

}// end if-else
}

});
//END << cboHRFilter
//START >> treeViewerHR
GridData treeViewerHRLData = new GridData();
treeViewerHRLData.grabExcessHorizontalSpace = true;
treeViewerHRLData.horizontalAlignment = GridData.FILL;
treeViewerHRLData.verticalAlignment = GridData.BEGINNING;
treeViewerHRLData.horizontalSpan = 2;
treeViewerHRLData.heightHint = 250;
treeViewerHR = new TreeViewer(compHRNew, SWT.BORDER);
treeViewerHR.getControl().setLayoutData(treeViewerHRLData);
//add filter
354 Extending Sametime 7.5: Building Plug-ins for Sametime

hrFilter = new HRFilter();
treeViewerHR.addFilter(hrFilter);
//add providers
treeViewerHR.setContentProvider(new HRTreeContentProvider());
treeViewerHR.setLabelProvider(new HRLabelProvider());
treeViewerHR.getTree().setSize(289, 233);
treeViewerHR.getTree().addSelectionListener(new

SelectionAdapter() {
public void widgetSelected(SelectionEvent se) {

if (se.item != null) {
String s = ((Person) (se.item.getData())).getName();
hrFilter.setManagerName(s);
treeViewerHR.refresh();

}// end if
}

});

treeViewerHR.setInput(sapMgr.getHRData(Constants.HR_ORGANIZATION_ID));

//END << treeViewerHR
//START >> lblHRError
GridData lblHRErrorLData = new GridData();
lblHRErrorLData.grabExcessHorizontalSpace = true;
lblHRErrorLData.horizontalSpan = 2;
lblHRErrorLData.heightHint = 25;
lblHRErrorLData.horizontalAlignment = GridData.FILL;
lblHRErrorLData.verticalAlignment = GridData.BEGINNING;
lblHRError = new Label(compHRNew, SWT.NONE);
lblHRError.setLayoutData(lblHRErrorLData);
Color colorRed = new Color(getSite().getShell().getDisplay(),255,

0, 0);
lblHRError.setForeground(colorRed);
//END << lblHRError
//END << compHRNew
//END << tabItemHRNew

}// end method
 Chapter 8. Advanced plug-in example: SAP integration 355

SapMgr changes
There are two BAPIs that we will use to collect the information from SAP, as
shown in Table 8-5.

Table 8-5 Overview of the SAP BAPIs used in the HR example

The first step is to retrieve the employee IDs, as shown in Example 8-21.

Example 8-21 HR changes to the SapMgr

public Organization getHRData(int organizationId) {
Organization org = null;
JCO.Function functionGetOrgEmployees = null;

JCO.Table tblEmployees = null;

Person[] paEmployees = null;

try {

functionGetOrgEmployees =
this.createFunction(HR_BAPI_GET_ORG_EMPLOYEES);

//set the parameter values, using defaults for some of them.

functionGetOrgEmployees.getImportParameterList().setValue("01",
"PLVAR");

functionGetOrgEmployees.getImportParameterList().setValue("O",
"OTYPE");

functionGetOrgEmployees.getImportParameterList().setValue(""+organizati
onId, "OBJID");

functionGetOrgEmployees.getImportParameterList().setValue("1999-01-01",
"BEGDA");

BAPI® Description Input Output

HRCM_ORGUNIT
_EMPLOYEE_LIS
T_GET

Retrieves a list of
employees for the
given organization
ID.

Organization ID List of employee
IDs

HRCM_EMPLOYE
E_INFO_GET

Retrieves
employee
information for the
given employee ID.

Employee ID Detailed employee
information,
including the
manager’s ID.
356 Extending Sametime 7.5: Building Plug-ins for Sametime

functionGetOrgEmployees.getImportParameterList().setValue("2006-01-01",
"ENDDA");

functionGetOrgEmployees.getImportParameterList().setValue(" ",
"PATH_ID");

//execute the function
sapConnection.execute(functionGetOrgEmployees);
JCO.Structure returnStructure =

functionGetOrgEmployees.getExportParameterList().getStructure("RETURN")
;

checkForErrors(returnStructure);

//get results
tblEmployees =

functionGetOrgEmployees.getTableParameterList().getTable("PERNR_TABLE")
;

//create array to hold results
paEmployees = new Person[tblEmployees.getNumRows()];
//loop through results
for (int i = 0; i < tblEmployees.getNumRows(); i++) {

//move to the next row in the employees table
tblEmployees.setRow(i);
//store the information in the employee array
paEmployees[i] =

getEmployeeInfo(tblEmployees.getInt("PERNR"));
//Activator.log("HR Employee", "Person ID = " +

tblEmployees.getString("PERNR"));
}//end for

} catch (Exception ex) {
ex.printStackTrace();
Activator.logError("Error retireving employee IDs",

ex.getMessage());
}//end try-catch

return org;
}//end method
 Chapter 8. Advanced plug-in example: SAP integration 357

Now you need to retrieve the detailed employee information using the ID, as
shown in Example 8-22.

Example 8-22 Helper methods for calling SAP BAPIs

/*
 * Retrieves information from the SAP system for the given id
 *
 * @param personId
 * @return
 */
private Person getEmployeeInfo(int employeeId){

Person person = null;
JCO.Function functionGetEmployeeDetail = null;

try {

functionGetEmployeeDetail =
this.createFunction(HR_BAPI_GET_EMPLOYEE_INFO);

//set parameters
functionGetEmployeeDetail.getImportParameterList().setValue(

""+employeeId, "EMP_PERNR");
//get current information, not historical
functionGetEmployeeDetail.getImportParameterList().setValue(

"01", "PLVAR");
//begin date for the search is 1999-01-01, so anything after

this will be returned
functionGetEmployeeDetail.getImportParameterList().setValue(

"1999-01-01", "BEGDA");

sapConnection.execute(functionGetEmployeeDetail);

JCO.Structure returnStructure =
functionGetEmployeeDetail.getExportParameterList().getStructure("RETURN
");

checkForErrors(returnStructure);

JCO.Structure structureExportParams =
functionGetEmployeeDetail.getExportParameterList().getStructure("EMP_IN
FO");

person = new Person();
person.setName(structureExportParams.getString("ENAME"));
person.setId(employeeId);
person.setManagerId(structureExportParams.getInt("MPERNR"));
358 Extending Sametime 7.5: Building Plug-ins for Sametime

} catch (Exception ex) {
ex.printStackTrace();
Activator.logError("Error retrieving information for employee

id = " + employeeId, ex.getMessage());
}//end try-catch
return person;

}// end method

TestMgr changes
Update the TestMgr with test data so that you can test the user interface. This is
a good way to separate your user interface and the SAP integration. You are
welcome to change the data in Example 8-23. The key is that you need to have
an organization, one or more managers, and one or more non-managers.

Example 8-23 HR changes to the TestMgr

public Organization getHRData() {
Organization org = new Organization();

Person pJohn;
Person pCole;
Person pChris;
Person pMike;
Person[] paEmployees;

Person[] pa;

org.setName("Riverbend HR");

pJohn = new Person("John C. Cummins", "HR", 123, true, null,
null);

pChris = new Person("Christopher T. Cummins", "HR", 123, false,
null,

pJohn);
pCole = new Person("Cole Avery Cummins", "HR", 123, false, null,

pJohn);
pMike = new Person("Michael J. Cummins", "HR", 123, false, null,

pJohn);

// setup manager test data
 Chapter 8. Advanced plug-in example: SAP integration 359

paEmployees = new Person[3];
paEmployees[0] = pChris;
paEmployees[1] = pCole;
paEmployees[2] = pMike;
pJohn.setEmployees(paEmployees);

Person[] paEmpsOrg = new Person[1];
paEmpsOrg[0] = pJohn;

org.setEmployees(paEmpsOrg);

return org;
}//end method

8.2.6 Order status example

The order status uses an order ID to query the back-end system and get the
current status, as shown in Figure 8-27 and Figure 8-28 on page 361.

Figure 8-27 Order status start screen
360 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 8-28 Order status results page

SapMiniApp changes
The code in Example 8-24 was added to the SapMiniApp to create this user
interface.

Example 8-24 Order status UI code in the SapMiniApp

private void createOrderStatusTab() {
tabItemOrderStatus = new TabItem(tabFolderSAP, SWT.NONE);
tabItemOrderStatus.setText("Order Status");
compOrder = new Composite(tabFolderSAP, SWT.NONE);
tabItemOrderStatus.setControl(compOrder);
GridLayout compOrderLayout = new GridLayout();
compOrderLayout.makeColumnsEqualWidth = true;
compOrder.setLayout(compOrderLayout);
compOrder.setSize(334, 350);

compOrderFilter = new Composite(compOrder, SWT.NONE);
RowLayout compOrderFilterLayout = new RowLayout(

org.eclipse.swt.SWT.HORIZONTAL);
GridData compOrderFilterLData = new GridData();
 Chapter 8. Advanced plug-in example: SAP integration 361

compOrderFilter.setLayoutData(compOrderFilterLData);
compOrderFilter.setLayout(compOrderFilterLayout);

compOrderStatus = new Composite(compOrder, SWT.NONE);
GridLayout compOrderStatusLayout = new GridLayout();
compOrderStatusLayout.numColumns = 2;
compOrderStatusLayout.horizontalSpacing = 8;
GridData compOrderStatusLData = new GridData();
compOrderStatusLData.heightHint = 296;
compOrderStatusLData.horizontalSpan = 2;
compOrderStatusLData.grabExcessHorizontalSpace = true;
compOrderStatusLData.horizontalAlignment = GridData.FILL;
compOrderStatus.setLayoutData(compOrderStatusLData);
compOrderStatus.setLayout(compOrderStatusLayout);

lblOrderId = new Label(compOrderStatus, SWT.NONE);
GridData lblOrderIdLData = new GridData();
lblOrderIdLData.horizontalAlignment = GridData.END;
lblOrderId.setLayoutData(lblOrderIdLData);
lblOrderId.setText("Order ID");

GridData textOrderIdLData = new GridData();
textOrderIdLData.horizontalAlignment = GridData.FILL;
textOrderIdLData.grabExcessHorizontalSpace = true;
textOrderId = new Text(compOrderStatus, SWT.BORDER);
textOrderId.setEnabled(false);
textOrderId.setLayoutData(textOrderIdLData);

lblDescription = new Label(compOrderStatus, SWT.NONE);
GridData lblDescriptionLData = new GridData();
lblDescriptionLData.horizontalAlignment = GridData.END;
lblDescription.setLayoutData(lblDescriptionLData);
lblDescription.setText("Description");

GridData textDescriptionLData = new GridData();
textDescriptionLData.grabExcessHorizontalSpace = true;
textDescriptionLData.horizontalAlignment = GridData.FILL;
textDescription = new Text(compOrderStatus, SWT.BORDER);
textDescription.setEnabled(false);
textDescription.setLayoutData(textDescriptionLData);

lblStatus = new Label(compOrderStatus, SWT.NONE);
GridData lblStatusLData = new GridData();
lblStatusLData.horizontalAlignment = GridData.END;
lblStatus.setLayoutData(lblStatusLData);
362 Extending Sametime 7.5: Building Plug-ins for Sametime

lblStatus.setText("Status");

GridData textStatusLData = new GridData();
textStatusLData.horizontalAlignment = GridData.FILL;
textStatusLData.grabExcessHorizontalSpace = true;
textStatus = new Text(compOrderStatus, SWT.BORDER);
textStatus.setEnabled(false);
textStatus.setLayoutData(textStatusLData);
// START >> lblProductId
lblProductId = new Label(compOrderStatus, SWT.NONE);
GridData lblProductIdLData = new GridData();
lblProductIdLData.horizontalAlignment = GridData.END;
lblProductId.setLayoutData(lblProductIdLData);
lblProductId.setText("Product ID");
// END << lblProductId
// START >> textProductId
GridData textProductIdLData = new GridData();
textProductIdLData.horizontalAlignment = GridData.FILL;
textProductIdLData.grabExcessHorizontalSpace = true;
textProductId = new Text(compOrderStatus, SWT.BORDER);
textProductId.setEnabled(false);
textProductId.setLayoutData(textProductIdLData);
// END << textProductId

lblOrderDate = new Label(compOrderStatus, SWT.NONE);
GridData lblOrderDateLData = new GridData();
lblOrderDateLData.horizontalAlignment = GridData.END;
lblOrderDate.setLayoutData(lblOrderDateLData);
lblOrderDate.setText("Order Date");

GridData textOrderDateLData = new GridData();
textOrderDateLData.grabExcessHorizontalSpace = true;
textOrderDateLData.horizontalAlignment = GridData.FILL;
textOrderDate = new Text(compOrderStatus, SWT.BORDER);
textOrderDate.setEnabled(false);
textOrderDate.setLayoutData(textOrderDateLData);

lblOrderTotal = new Label(compOrderStatus, SWT.NONE);
GridData lblOrderTotalLData = new GridData();
lblOrderTotalLData.horizontalAlignment = GridData.END;
lblOrderTotal.setLayoutData(lblOrderTotalLData);
lblOrderTotal.setText("Order Total");

GridData textOrderTotalLData = new GridData();
textOrderTotalLData.horizontalAlignment = GridData.FILL;
 Chapter 8. Advanced plug-in example: SAP integration 363

textOrderTotalLData.grabExcessHorizontalSpace = true;
textOrderTotal = new Text(compOrderStatus, SWT.BORDER);
textOrderTotal.setEnabled(false);
textOrderTotal.setLayoutData(textOrderTotalLData);

lblOrderQuantity = new Label(compOrderStatus, SWT.NONE);
GridData lblOrderQuantityLData = new GridData();
lblOrderQuantityLData.horizontalAlignment = GridData.END;
lblOrderQuantity.setLayoutData(lblOrderQuantityLData);
lblOrderQuantity.setText("Order Quantity");

GridData textOrderQuantityLData = new GridData();
textOrderQuantityLData.horizontalAlignment = GridData.FILL;
textOrderQuantityLData.grabExcessHorizontalSpace = true;
textOrderQuantity = new Text(compOrderStatus, SWT.BORDER);
textOrderQuantity.setEnabled(false);
textOrderQuantity.setLayoutData(textOrderQuantityLData);
// START >> lblCurrency
lblCurrency = new Label(compOrderStatus, SWT.NONE);
GridData lblCurrencyLData = new GridData();
lblCurrencyLData.horizontalAlignment = GridData.END;
lblCurrency.setLayoutData(lblCurrencyLData);
lblCurrency.setText("Currency");
// END << lblCurrency
// START >> textCurrency
GridData textCurrencyLData = new GridData();
textCurrencyLData.horizontalAlignment = GridData.FILL;
textCurrencyLData.grabExcessHorizontalSpace = true;
textCurrency = new Text(compOrderStatus, SWT.BORDER);
textCurrency.setEnabled(false);
textCurrency.setLayoutData(textCurrencyLData);
// END << textCurrency
// START >> lblPrice
lblPrice = new Label(compOrderStatus, SWT.NONE);
GridData lblPriceLData = new GridData();
lblPriceLData.horizontalAlignment = GridData.END;
lblPrice.setLayoutData(lblPriceLData);
lblPrice.setText("Price");
// END << lblPrice
// START >> textPrice
GridData textPriceLData = new GridData();
textPriceLData.horizontalAlignment = GridData.FILL;
textPriceLData.grabExcessHorizontalSpace = true;
textPrice = new Text(compOrderStatus, SWT.BORDER);
textPrice.setEnabled(false);
364 Extending Sametime 7.5: Building Plug-ins for Sametime

textPrice.setLayoutData(textPriceLData);
// END << textPrice

lblDeliveryDate = new Label(compOrderStatus, SWT.NONE);
GridData lblDeliveryDateLData = new GridData();
lblDeliveryDateLData.horizontalAlignment = GridData.END;
lblDeliveryDate.setLayoutData(lblDeliveryDateLData);
lblDeliveryDate.setText("Delivery Date");

GridData textDeliveryDateLData = new GridData();
textDeliveryDateLData.grabExcessHorizontalSpace = true;
textDeliveryDateLData.horizontalAlignment = GridData.FILL;
textDeliveryDate = new Text(compOrderStatus, SWT.BORDER);
textDeliveryDate.setEnabled(false);
textDeliveryDate.setLayoutData(textDeliveryDateLData);

lblDeliveryQuantity = new Label(compOrderStatus, SWT.NONE);
GridData lblDeliveryQuantityLData = new GridData();
lblDeliveryQuantityLData.horizontalAlignment = GridData.END;
lblDeliveryQuantity.setLayoutData(lblDeliveryQuantityLData);
lblDeliveryQuantity.setText("Delivery Quantity");

textDeliveryQuantity = new Text(compOrderStatus, SWT.BORDER);
GridData textDeliveryQuantityLData = new GridData();
textDeliveryQuantityLData.horizontalAlignment = GridData.FILL;
textDeliveryQuantityLData.grabExcessHorizontalSpace = true;
textDeliveryQuantity.setLayoutData(textDeliveryQuantityLData);
textDeliveryQuantity.setEnabled(false);
// START >> lblDeliveryId
lblDeliveryId = new Label(compOrderStatus, SWT.NONE);
GridData lblDeliveryIdLData = new GridData();
lblDeliveryIdLData.horizontalAlignment = GridData.END;
lblDeliveryId.setLayoutData(lblDeliveryIdLData);
lblDeliveryId.setText("Delivery ID");
// END << lblDeliveryId
// START >> textDeliveryId
GridData textDeliveryNumberLData = new GridData();
textDeliveryNumberLData.horizontalAlignment = GridData.FILL;
textDeliveryNumberLData.grabExcessHorizontalSpace = true;
textDeliveryId = new Text(compOrderStatus, SWT.BORDER);
textDeliveryId.setEnabled(false);
textDeliveryId.setLayoutData(textDeliveryNumberLData);
// END << textDeliveryId
 Chapter 8. Advanced plug-in example: SAP integration 365

lblOrderIdSearch = new Label(compOrderFilter, SWT.NONE);
lblOrderIdSearch.setText("Enter the Order ID");

textOrderIdSearch = new Text(compOrderFilter, SWT.BORDER);

btnSearch = new Button(compOrderFilter, SWT.PUSH | SWT.CENTER);
btnSearch.setText("Search");
btnSearch.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent evt) {
refreshOrderStatus(textOrderIdSearch.getText());

}
});

}// end method

The helper method in Example 8-25 is used to update the UI with the order
status results.

Example 8-25 Order status helper methods

/*
 * Refreshes the order status on the order status tab.
 */
private void refreshOrderStatus(String orderId) {

boolean bOrderIdValid = false;
Order order = null;
if (orderId != null && !("".equals(orderId))) {

order = sapMgr.getOrderStatus(orderId);
// If an order was found, set the flag to true
if (order != null)

bOrderIdValid = true;
}// end if-else

if (bOrderIdValid) {
// update data
textOrderId.setText("" + order.getOrderId());
textDescription.setText(order.getDescription());
textStatus.setText(order.getStatus());
textOrderDate.setText(order.getOrderDate());
textOrderQuantity.setText(order.getQuantity() + "");
textDeliveryDate.setText(order.getDeliveryDate() + "");
textProductId.setText(order.getProductId() + "");
textOrderTotal.setText(order.getTotal() + "");
textCurrency.setText(order.getCurrency() + "");
textPrice.setText(order.getPrice() + "");
366 Extending Sametime 7.5: Building Plug-ins for Sametime

textDeliveryDate.setText(order.getDeliveryDate() + "");
textDeliveryQuantity.setText(order.getDeliveryQuantity() +

"");
textDeliveryId.setText(order.getDeliveryId() + "");

} else {
// reset data to be empty
textOrderId.setText("");
textDescription.setText("");
textStatus.setText("");
textOrderDate.setText("");
textOrderQuantity.setText("");
textDeliveryDate.setText("");
textProductId.setText("");
textOrderTotal.setText("");
textCurrency.setText("");
textPrice.setText("");
textDeliveryDate.setText("");
textDeliveryQuantity.setText("");
textDeliveryId.setText("");
//set the error message with help text.
lblInventoryError.setText("Order ID " + orderId + " was not

found. " +
"Please check the order number. For example, do you need

to " +
"enter leading zeros. Order number 9783 may need to be

entered" +
"as 0000009783.");

}// end if-else
tabFolderSAP.redraw();

}// end method

SapMgr changes
There is only one BAPI required to check the order status in SAP, as shown in
Table 8-6.

Table 8-6 Overview of the SAP BAPIs used in the order status example

BAPI Description Input Output

BAPI_SALESORD
ER_GETSTATUS

Retrieves the order
status and details.

Order ID Order status.
 Chapter 8. Advanced plug-in example: SAP integration 367

Update the getOrderStatus method to call this BAPI, as shown in Example 8-26.

Example 8-26 Order status changes to the SapMgr

public Order getOrderStatus(String orderId){
Order order = null;
JCO.Function functionGetOrderStatus = null;
JCO.Table tblStatusInfo = null;
try {

functionGetOrderStatus =
this.createFunction(ORDER_BAPI_GET_ORDER_STATUS);

//set input parameters

functionGetOrderStatus.getImportParameterList().setValue(orderId,
"SALESDOCUMENT");

//execute the function
sapConnection.execute(functionGetOrderStatus);

JCO.Structure returnStructure =
functionGetOrderStatus.getExportParameterList().getStructure("RETURN");

checkForErrors(returnStructure);

tblStatusInfo =
functionGetOrderStatus.getTableParameterList().getTable("STATUSINFO");

if (tblStatusInfo.getNumRows() > 0){
order = new Order();
Activator.log("Order Status", "The order was found");

}else if(tblStatusInfo.isEmpty()){
Activator.log("Order Status", "The order was not found");

}//end if

//loop through the results, but there should only be one, so
stop at 1

for (int i = 0; i < tblStatusInfo.getNumRows() && i < 1; i++)
{

tblStatusInfo.setRow(i);
order.setCurrency(tblStatusInfo.getString("CURRENCY"));
order.setOrderId(tblStatusInfo.getInt("DOC_NUMBER"));

order.setDeliveryDate(tblStatusInfo.getString("DELIV_DATE"));
order.setOrderDate(tblStatusInfo.getString("REQ_DATE"));
368 Extending Sametime 7.5: Building Plug-ins for Sametime

order.setStatus(tblStatusInfo.getString("DLV_STATE"));
order.setPrice(tblStatusInfo.getDecimals("NET_PRICE"));

order.setDescription(tblStatusInfo.getString("SHORT_TEXT"));

order.setDeliveryQuantity(tblStatusInfo.getDecimals("DLV_QTY"));
order.setOrderDate(tblStatusInfo.getString("REQ_DATE"));
order.setQuantity(tblStatusInfo.getDecimals("REQ_QTY"));

//set delivery state based on logic. This should be
customized to

//meet your needs. Maybe use a different BAPI.
int iDeliveryQuantity =

tblStatusInfo.getDecimals("DLV_QTY");
int iOrderQuantity = tblStatusInfo.getDecimals("REQ_QTY");
if(iDeliveryQuantity == 0){

order.setStatus("ORDERED");
}else if(iOrderQuantity>iDeliveryQuantity){

order.setStatus("INCOMPLETE");
}else{

order.setStatus("COMPLETED");
}//end if

}//end for
} catch (Exception ex) {

ex.printStackTrace();
Activator.logError("Order Status", ex.getMessage());

}//end try-catch

sapConnection.disconnect();

return order;
}//end method
 Chapter 8. Advanced plug-in example: SAP integration 369

TestMgr changes
Example 8-27 shows the order status changes to the TestMgr object.

Example 8-27 Order status changes to the TestMgr

public Order getOrderStatus(String orderId) {
Order order = new Order();

order.setDeliveryDate("09.10.2006");
order.setDeliveryQuantity(86);
order.setDeliveryId(2345679);
order.setOrderDate("15.03.2006");
order.setOrderId(Integer.parseInt(orderId));
order.setQuantity(175);
order.setCurrency("USD");
order.setPrice(500);
order.setTotal(130000);
order.setDescription("PCs");
order.setStatus("delivered");
order.setUnits("PC");
order.setProductId("MC-17");

return order;
}//end method
370 Extending Sametime 7.5: Building Plug-ins for Sametime

8.2.7 Inventory example

The inventory example pulls a list of products from SAP and displays them in a
combo box. The user selects a product and then enters the desired quantity, as
shown in Figure 8-29.

Figure 8-29 Initial window for the Inventory tab
 Chapter 8. Advanced plug-in example: SAP integration 371

The plug-in then queries the SAP system to see if that quantity can be fulfilled, as
shown in Figure 8-30.

Figure 8-30 Positive results from the inventory search

If there is not enough inventory to meet the request, the back-end system
supplies the estimated date at which enough inventory will be available and then
calculates the estimated delivery date for the client, as shown in Figure 8-31 on
page 373. Due to time constraints, the formula for calculating the estimated
delivery date is a dummy formula and not an algorithm from the back-end
system.
372 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 8-31 Results when there is not enough in stock inventory

The first step in changing the user interface is creating the helper classes. We
will create or update the classes shown in Example 8-7 on page 334.

Table 8-7 Overview of the Inventory classes to create or update

package Class Description

com.ibm.redbooks.st75.ui InvComboLabelProvider Provides the labels and
images for the inventory
combo.

com.ibm.redbooks.st75.ui InvComboContentProvider Provides the structure for
the inventory combo.

com.ibm.redbooks.st75.ui InvTableLabelProvider Provides the labels and
images for the inventory
table.

com.ibm.redbooks.st75.ui InvTableContentProvider Provides the structure for
the inventory table.

com.ibm.redbooks.st75.ui SapMiniApp The user interface.
 Chapter 8. Advanced plug-in example: SAP integration 373

InvComboLabelProvider.java
This class (Example 8-28) provides the labels (that is, text that users see) for the
inventory combo.

Example 8-28 InvComboLabelProvider

public class InvComboLabelProvider implements ILabelProvider {

/* (non-Javadoc)
 * @see

org.eclipse.jface.viewers.ILabelProvider#getImage(java.lang.Object)
 */
public Image getImage(Object element) {

// TODO Auto-generated method stub
return null;

}

/* (non-Javadoc)
 * @see

org.eclipse.jface.viewers.ILabelProvider#getText(java.lang.Object)
 */
public String getText(Object element) {

String sText = null;
if (element != null) {

Product product = (Product) element;
sText = product.getName();

}//end if
return sText;

}//end method

/* (non-Javadoc)
 * @see

org.eclipse.jface.viewers.IBaseLabelProvider#addListener(org.eclipse.jf
ace.viewers.ILabelProviderListener)

 */
public void addListener(ILabelProviderListener listener) {

// TODO Auto-generated method stub

}

com.ibm.redbooks.st75.ui SapMgr Performs SAP integration.

com.ibm.redbooks.st75.ui TestMgr Provides test data.

package Class Description
374 Extending Sametime 7.5: Building Plug-ins for Sametime

/* (non-Javadoc)
 * @see org.eclipse.jface.viewers.IBaseLabelProvider#dispose()
 */
public void dispose() {

// TODO Auto-generated method stub

}

/* (non-Javadoc)
 * @see

org.eclipse.jface.viewers.IBaseLabelProvider#isLabelProperty(java.lang.
Object, java.lang.String)

 */
public boolean isLabelProperty(Object element, String property) {

// TODO Auto-generated method stub
return false;

}

/* (non-Javadoc)
 * @see

org.eclipse.jface.viewers.IBaseLabelProvider#removeListener(org.eclipse
.jface.viewers.ILabelProviderListener)

 */
public void removeListener(ILabelProviderListener listener) {

// TODO Auto-generated method stub

}

}

 Chapter 8. Advanced plug-in example: SAP integration 375

InvComboContentProvider.java
This class (Example 8-29) provides the content for the inventory combo. It was
used to provide an easy way to access the seleced item.

Example 8-29 InvComboContentProvider

public class InvComboContentProvider implements
IStructuredContentProvider {

/* (non-Javadoc)
 * @see

org.eclipse.jface.viewers.IStructuredContentProvider#getElements(java.l
ang.Object)

 */
public Object[] getElements(Object inputElement) {

Object[] oa;
if (inputElement == null){

//if there are no elements,
//return an empty array because null is not allowed
oa = new Object[0];

} else {//The input is an array so convert it
oa = (Object []) inputElement;

}//end if-else
return oa;

}//end method

/* (non-Javadoc)
 * @see org.eclipse.jface.viewers.IContentProvider#dispose()
 */
public void dispose() {

// TODO Auto-generated method stub

}

/* (non-Javadoc)
 * @see

org.eclipse.jface.viewers.IContentProvider#inputChanged(org.eclipse.jfa
ce.viewers.Viewer, java.lang.Object, java.lang.Object)

 */
public void inputChanged(Viewer viewer, Object oldInput, Object

newInput) {
// TODO Auto-generated method stub

}

376 Extending Sametime 7.5: Building Plug-ins for Sametime

}

InvTableLabelProvider.java
This class (Example 8-30) provides the label (that is, the text the users see) for
the inventory table.

Example 8-30 InvTableLabelProvider

public class InvTableLabelProvider implements ITableLabelProvider {

public Image getColumnImage(Object element, int columnIndex) {
//No images
return null;

}

public String getColumnText(Object element, int columnIndex) {
String text = "";
Product product = null;
if (element != null) {

product = (Product) element;
}//end if
//check which column it is
if (columnIndex == Constants.INVENTORY_PRODUCT_ID_COLUMN) {

text = "" + product.getProductId();
} else if (columnIndex == Constants.INVENTORY_NAME_COLUMN){

text = product.getName();
} else if (columnIndex == Constants.INVENTORY_QUANTITY_COLUMN){

text = "" + product.getQuantity();
} else if (columnIndex == Constants.INVENTORY_PRICE_COLUMN){

text = "" + product.getPrice();
} else if (columnIndex ==

Constants.INVENTORY_AVAILABILITY_DATE_COLUMN){
text = product.getAvailabilityDate();

} else if (columnIndex == Constants.INVENTORY_CURRENCY_COLUMN){
text = product.getCurrency();

} else if (columnIndex == Constants.INVENTORY_UNITS_COLUMN){
text = product.getUnits();

}//end if-else
return text;

}

public void addListener(ILabelProviderListener listener) {
// TODO Auto-generated method stub
 Chapter 8. Advanced plug-in example: SAP integration 377

}

public void dispose() {
// TODO Auto-generated method stub

}

public boolean isLabelProperty(Object element, String property) {
// TODO Auto-generated method stub
return false;

}

public void removeListener(ILabelProviderListener listener) {
// TODO Auto-generated method stub

}

}

InvTableContentProvider.java
This class (Example 8-31) provides the content for the inventory table.

Example 8-31 InvTableContentProvider

public class InvTableContentProvider implements
IStructuredContentProvider {

public Object[] getElements(Object inputElement) {
Object[] oa;
if (inputElement == null){

//if there are no elements,
//return an empty array because null is not allowed
oa = new Object[0];

} else {//The input is an array so convert it
oa = (Object []) inputElement;

}//end if-else
return oa;

}//end method

public void dispose() {
}//end method
378 Extending Sametime 7.5: Building Plug-ins for Sametime

public void inputChanged(Viewer viewer, Object oldInput, Object
newInput) {

}//end method

}

SapMiniApp changes
The code in Example 8-32 was added to the SapMiniApp to create this user
interface.

Example 8-32 Inventory UI code in the SapMiniApp

private void createInventoryTab() {
tabItemInventory = new TabItem(tabFolderSAP, SWT.NONE);
tabItemInventory.setText("Inventory");
compInventory = new Composite(tabFolderSAP, SWT.NONE);
tabItemInventory.setControl(compInventory);
GridLayout compInventoryLayout = new GridLayout();
compInventoryLayout.numColumns = 4;
compInventoryLayout.marginRight = 5;
compInventory.setLayout(compInventoryLayout);

GridData cboPartLData = new GridData();
cboPartLData.widthHint = 100;
cboPartLData.grabExcessHorizontalSpace = true;
cboViewerPart = new ComboViewer(compInventory, SWT.NONE);
cboViewerPart.getControl().setLayoutData(cboPartLData);
cboViewerPart.setContentProvider(new InvComboContentProvider());
cboViewerPart.setLabelProvider(new InvComboLabelProvider());

lblQuantity = new Label(compInventory, SWT.NONE);
lblQuantity.setText("Quantity");
GridData lblQuantityLData = new GridData();
lblQuantityLData.widthHint = 45;
lblQuantityLData.horizontalAlignment = GridData.END;
lblQuantity.setAlignment(SWT.DOWN);
lblQuantity.setLayoutData(lblQuantityLData);

GridData textQuantityLData = new GridData();
textQuantityLData.widthHint = 30;
textQuantity = new Text(compInventory, SWT.BORDER);
textQuantity.setLayoutData(textQuantityLData);
 Chapter 8. Advanced plug-in example: SAP integration 379

btnSearchInventory = new Button(compInventory, SWT.PUSH |
SWT.CENTER);

btnSearchInventory.setText("Search");
btnSearchInventory.addSelectionListener(new SelectionAdapter() {

public void widgetSelected(SelectionEvent evt) {
//check that something has been selected
if(!cboViewerPart.getSelection().isEmpty()){

IStructuredSelection sel = (IStructuredSelection)
(cboViewerPart.getSelection());

Product p = (Product) sel.getFirstElement();
Product product = sapMgr.checkProductStatus(p);
checkInventory(product);

}//end if
}

});
GridData btnSearchInventoryLData = new GridData();
btnSearchInventoryLData.heightHint = 25;
btnSearchInventoryLData.widthHint = 45;
btnSearchInventory.setLayoutData(btnSearchInventoryLData);

tblViewerInventory = new TableViewer(compInventory, SWT.BORDER);
GridData tblPartsLData = new GridData();
tblPartsLData.heightHint = 94;
tblPartsLData.horizontalSpan = 4;
tblPartsLData.grabExcessHorizontalSpace = true;
tblPartsLData.horizontalAlignment = GridData.FILL;
tblViewerInventory.getControl().setLayoutData(tblPartsLData);

lblInventoryError = new Label(compInventory, SWT.NONE);
GridData lblInventoryErrorLData = new GridData();
lblInventoryErrorLData.heightHint = 25;
lblInventoryErrorLData.horizontalSpan = 4;
lblInventoryErrorLData.grabExcessHorizontalSpace = true;
lblInventoryErrorLData.horizontalAlignment = GridData.FILL;
lblInventoryError.setLayoutData(lblInventoryErrorLData);

}// end method
380 Extending Sametime 7.5: Building Plug-ins for Sametime

The helper methods in Example 8-33 areused to update the UI with the inventory
availability results.

Example 8-33 Inventory UI helper methods

/*
 * Retrieves the products in the inventory from the back-end system.
 */
private void initializeInventory() {

// get items from back-end
Product[] products =

sapMgr.getInventory(Constants.INVENTORY_PLANT_ID);
String[] productNames = new String[products.length];
// fill hashmap and product names for the comboBox
for (int i = 0; i < products.length; i++) {

hashProducts.put(products[i].getProductId() + "",
products[i]);

productNames[i] = products[i].getName();
}// end for

// store product names in the combo box
cboViewerPart.setInput(products);

createInventoryTable();
}// end method

private void createInventoryTable() {
// create columns
String [] colHeaders = {"ID", "Name", "Price", "Currency",

"Quantity", "Units", "Availability Date"};
int[] colWidths = {30, 70, 50, 50, 50, 50, 70};
int[] colAlignments = {SWT.LEFT, SWT.LEFT, SWT.LEFT, SWT.LEFT,

SWT.LEFT, SWT.LEFT, SWT.LEFT};
Table tbl = (Table) tblViewerInventory.getControl();
tbl.setHeaderVisible(true);
for (int i = 0; i < colHeaders.length; i++) {

TableColumn tc = new TableColumn(tbl, colAlignments[i]);
tc.setText(colHeaders[i]);
tc.setWidth(colWidths[i]);

}//end for
tblViewerInventory.setContentProvider(new

InvTableContentProvider());
tblViewerInventory.setLabelProvider(new InvTableLabelProvider());

}// end method
 Chapter 8. Advanced plug-in example: SAP integration 381

SapMgr changes
There are three BAPIs that we will use to collect the information from SAP, as
shown in Table 8-8.

Table 8-8 Overview of the SAP BAPIs used in the inventory example

The first step is to get a list of material IDs. Add the code in Example 8-34 to do
this.

Example 8-34 Get a list of material IDs

public Product[] getInventory(){
Product[] products = null;
JCO.Function functionGetInventory = null;
JCO.Table tblMaterialSelection = null;
JCO.Table tblPlantSelection = null;
JCO.Table tblMaterials = null;

try {

functionGetInventory =
this.createFunction(INV_BAPI_GET_MATERIAL_BY_PLANT);

//set input parameters

BAPI Description Input Output

BAPI_MATERIAL_
GETLIST

Retrieves a list of
materials (that is,
products) at the
given plant (that is,
factory).

plant ID A list of material
IDs (product IDs).

BAPI_MATERIAL_
GET_DETAIL

Retrieves details
for the material ID.

material ID Detailed material
information (price,
unit of measure,
and so on).

BAPI_MATERIAL_
AVAILABILITY

Checks the
availability of a
given material at a
given plant for a
given quantity. If
there is not enough
stock, it estimates
when there will be
enough.

material ID,
quantity, unit of
measure, and plant
ID

The availability of
the material. If
there is not enough
stock, it will
estimate when
enough stock will
be ready to meet
this potential order.
382 Extending Sametime 7.5: Building Plug-ins for Sametime

//set the maximum number of results you want to return
functionGetInventory.getImportParameterList().setValue(100,

"MAXROWS");
//set the material parameter to return all materials with

MATNR_LOW = *
//this could be filtered to return only specific

materials/products
tblMaterialSelection =

functionGetInventory.getTableParameterList().getTable("MATNRSELECTION")
;

tblMaterialSelection.appendRow();
tblMaterialSelection.setValue("I", "SIGN");
tblMaterialSelection.setValue("CP", "OPTION");
tblMaterialSelection.setValue("*", "MATNR_LOW");

//enter the plant id to search for
tblPlantSelection =

functionGetInventory.getTableParameterList().getTable("PLANTSELECTION")
;

tblPlantSelection.appendRow();
tblPlantSelection.setValue("I", "SIGN");
tblPlantSelection.setValue("CP", "OPTION");
tblPlantSelection.setValue(plantId, "PLANT_LOW");

sapConnection.execute(functionGetInventory);

tblMaterials =
functionGetInventory.getTableParameterList().getTable("MATNRLIST");

products = new Product[tblMaterials.getFieldCount()];
for (int i = 0; i < tblMaterials.getFieldCount(); i++) {

tblMaterials.setRow(i);
products[i] =

getProductInfo(tblMaterials.getString("MATERIAL"), plantId);
}//end for

} catch (Exception ex) {
ex.printStackTrace();
Activator.logError("Getting Inventory", ex.getMessage());

}//end try-catch

return products;
}//end method
 Chapter 8. Advanced plug-in example: SAP integration 383

You now need to get information for each of the material IDs. Create the method
shown in Example 8-35.

Example 8-35 Get detailed information for the material

private Product getProductInfo(String productId, int plantId){
Product product = null;
JCO.Function functionGetProductDetail = null;

try {

functionGetProductDetail =
this.createFunction(INV_BAPI_GET_MATERIAL_DETAIL);

//set parameters

functionGetProductDetail.getImportParameterList().setValue(productId,
"MATERIAL");

functionGetProductDetail.getImportParameterList().setValue(
""+plantId, "PLANT");

sapConnection.execute(functionGetProductDetail);

JCO.Structure returnStructure =
functionGetProductDetail.getExportParameterList().getStructure("RETURN"
);

checkForErrors(returnStructure);

JCO.Structure structureExportMaterial =
functionGetProductDetail.getExportParameterList().getStructure("MATERIA
L_GENERAL_DATA");

product = new Product();
product.setProductId(productId);
product.setPlant(plantId+"");

product.setUnits(structureExportMaterial.getString("BASE_UOM"));

product.setName(structureExportMaterial.getString("MATL_DESC"));

JCO.Structure structureExportValuation=
functionGetProductDetail.getExportParameterList().getStructure("MATERIA
LVALUATIONDATA");

for (int i = 0; i < structureExportValuation.getFieldCount();
i++) {

System.out.println("valuation = " +
structureExportValuation.getField(i).getName());
384 Extending Sametime 7.5: Building Plug-ins for Sametime

}

product.setCurrency(structureExportValuation.getString("CURRENCY"));

product.setPrice(structureExportValuation.getDecimals("STD_PRICE"));

} catch (Exception ex) {
ex.printStackTrace();
Activator.logError("Error retrieving info for product id = " +

productId, ex.getMessage());
}//end try-catch

return product;
}//end method

The last functionality to implement is checking the availability. Create the method
shown in Example 8-36.

Example 8-36 Check the availability

public Product checkProductStatus(Product product){
JCO.Function functionProductStatus = null;
try {

functionProductStatus =
this.createFunction(INV_BAPI_GET_MATERIAL_BY_PLANT);

//set input parameters

functionProductStatus.getImportParameterList().setValue(product.getProd
uctId(), "MATERIAL");

functionProductStatus.getImportParameterList().setValue(product.getPlan
t(), "PLANT");

functionProductStatus.getImportParameterList().setValue(product.getUnit
s(), "UNIT");

sapConnection.execute(functionProductStatus);

JCO.Structure returnStructure =
functionProductStatus.getExportParameterList().getStructure("RETURN");

product.setQuantity(returnStructure.getInt("AV_QTY_PLT"));
 Chapter 8. Advanced plug-in example: SAP integration 385

product.setAvailabilityDate(returnStructure.getDate("ENDLEADTME").toStr
ing());

} catch (Exception ex) {
ex.printStackTrace();
Activator.logError("Getting Inventory", ex.getMessage());

}//end try-catch
return product;

}//end method

TestMgr changes
To test the inventory UI, you need to update the getInventory method to create a
test inventory (that is, products) that will be returned by the TestMgr. An example
is given in Example 8-37. Feel free to edit the test data to fit your needs.

Example 8-37 Inventory changes to TestMgr

public Product[] getInventory(){
Product [] products = new Product[5];

Product prod1 = new Product("2222", "Blue Widgets", "1001", 36,
"USD", 7, "Widgets", "01/01/2009");

Product prod2 = new Product("2250", "Green Widgets", "1001", 36,
"USD", 45, "Widgets", "02/14/2006");

Product prod3 = new Product("2290", "Electric Widgets", "1001",
36, "USD", 3, "Widgets", "06/01/2007");

Product prod4 = new Product("1150", "Diesel Motor", "1001", 2000,
"USD", 12, "Motors", "12/10/2006");

Product prod5 = new Product("1071", "Hybrid Motor", "1001", 2500,
"USD", 4, "Motors", "01/15/2007");

products[0] = prod1;
products[1] = prod2;
products[2] = prod3;
products[3] = prod4;
products[4] = prod5;

return products;
}//end method

The user interface code you added should now compile correctly and you can
test out the integration.
386 Extending Sametime 7.5: Building Plug-ins for Sametime

8.3 SAP tips

This section contains a list of tips that we found useful when developing an SAP
application.

1. Install an SAP GUI on your development machine. This is really helpful when
testing your code versus what should come back from SAP. It is also very
helpful in selecting test data and verifying input and output parametetrs for
different BAPIs and RFCs.

2. Transaction SE37: In the SAP GUI, you can enter this transaction to check
parameters and values for different BAPIs.

3. Unexpected Errors: The SAP GUI performs some formatting for you
automatically, which you will have to manually do when using the Java
Connector. An example is the order status BAPI. 9783 works in the GUI, but
0000009783 must be used in the Java Connector. You should also double
check the parameter names as they are cut off sometimes in the GUI and you
will need the full names for the Java Connector.

4. Use all CAPS for user names, passwords, parameters, types, and so on. The
SAP GUI will convert this for you without you noticing, but the Java Connector
does not. This is an easy mistake that is very difficult to discover.

8.4 Extending this plug-in

Ideas/extension points to take this further:

� Directory integration or synchronization between the Sametime directory and
SAP.

� Add a lookup function to find Sametime names for SAP contacts and vice
versa; useful for external partners.

� Store a mapping of the contacts and their links to SAP, save some core data
in a file; similar to the recent buddies sample.

� Add an interface to a mapping services, such as Google maps, to show where
the current order is or to chart the plants that house the parts.

� Extend the order status example to send the status as an e-mail or IM to the
client or relevant employee within the company.

� Extend the order status to notify the client of certain events, such as failed
delivery or delivery problem.
 Chapter 8. Advanced plug-in example: SAP integration 387

388 Extending Sametime 7.5: Building Plug-ins for Sametime

Part 4 Advanced example:
building a
framework for
structured content

In this part, we introduce an in-depth, advanced example of how to build a
framework for structured content. In the case of this example, the content is
specific to online learning. The details of how to build this plug-in are detailed
within the following chapters.

Part 4
© Copyright IBM Corp. 2007. All rights reserved. 389

390 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 9. Introducing My Lotus
Learning Education
framework plug-in for
Sametime Connect

A recent trend in the development of learning content is embedded learning. With
embedded learning, education content is delivered directly within the context of
an associated task, tool, or process. There is no separate education content
delivery vehicle, such as a classroom session or training CD.

This chapter presents an introduction of My Lotus Learning plug-in. My Lotus
Learning plug-in was created as a means for providing and managing learning
materials in the IBM Lotus Sametime 7.5 Connect client.

The following topics are presented in this chapter:

� Overview of My Lotus Learning plug-in

� Design overview of My Lotus Learning plug-in

9

© Copyright IBM Corp. 2007. All rights reserved. 391

Attention: All sample code used for this example can be downloaded from the
IBM Redbooks FTP site. Please refer to Appendix A, “Additional material” on
page 557 for detailed instructions on how to download and deploy the code
sample:

ftp://www.redbooks.ibm.com/redbooks/SG247346
392 Extending Sametime 7.5: Building Plug-ins for Sametime

ftp://www.redbooks.ibm.com/redbooks/SG247346

9.1 Overview of My Lotus Learning plug-in

At a recent meeting of Educational Centers for IBM Software (ECIS) partners,
suggestions were made that IBM should pursue embedded learning delivery for
software products. Several meeting participants, both from within IBM and the
partner channel, mentioned the idea of using Sametime plug-ins in this context.
My Lotus Learning plug-in is a proof-of-concept of embedded learning. It allows
the user of Lotus Sametime Connect to view education content about the product
using the plug-in facilities embedded within the Sametime product.

My Lotus Learning Plug-in is actually composed of several Eclipse plug-ins. A
User interface and controller functions are packaged in one mini-app plug-in,
while the content definition is packaged in another plug-in that is an extension of
My Lotus Learning plug-in. Multiple content plug-ins may exist in a user's
Sametime installation and each is selectable for viewing in My Lotus Learning
plug-in. An XML file within the content plug-in defines the structure of the
content, including the available topics and the supporting content, or resources,
for the topics. The content can be of any subject, so there is a great potential
uses of the plug-in in displaying a variety of education content. Figure 9-1
illustrates an overview of the My Lotus Learning plug-in.

Figure 9-1 My Lotus Learning plug-in

Select a
course or
course topic
to display

Right-click a
topic for
assistance
 Chapter 9. Introducing My Lotus Learning Education framework plug-in for Sametime Connect 393

As part of the content definition process, Sametime users can be identified as
assistance providers for specific content topics. My Lotus Learning plug-in
presents an interface that allows the user to display the assistance providers for
a selected topic, view their Sametime connectivity status, and initiate
communications with those users over the Sametime communication channels,
such as chat, e-mail, or voice suite.

9.2 Thinking about this plug-in as a sample for
structured content delivery

With this example, we introduce an in-depth, advanced example of how to build a
framework for structured content. In the case of this example, the content is
specific to online learning. As you read this, keep in mind how this example
plug-in could be extended and used with other types of structured content. For
example, the content could be education related, or it could serve as a structured
list of forms for an organization. Once you understand how to build the plug-in
and create the framework, your organization could ultimately use this to provide
many different types of content.

For additional ways in which this plug-in could be utilized, see 11.4, “Additional
examples: using the Lotus Education plug-in for for other content delivery” on
page 521.

9.2.1 Sametime specific value add

In the case of this plug-in, it could easily serve as a stand-alone application. So,
what are the specific benefits to having this embedded within Sametime? In
particular, this application has a “Live Assistance” feature that allows the user to
ask an expert who is associated with each topic. This ability for real-time
interaction with an expert, and that the expert is embedded within the context of a
specific topic, which illustrates the unique value of Sametime and having this as a
Sametime application. See “Getting live assistance” on page 398 for details on
this powerful feature.

9.2.2 Embedded learning with IBM Lotus Sametime 7.5

My Lotus Learning plug-in is used to manage learning materials inside your IBM
Lotus Sametime 7.5 Connect client.
394 Extending Sametime 7.5: Building Plug-ins for Sametime

Navigating learning content
There are three ways to navigate and search for learning content:

� Course list

� Topic Filter list

� Topics expanded list

Figure 9-2 shows these navigation choices.

Figure 9-2 Searching and displaying content

Course list
The course list displays a list of courses that are installed in My Lotus Learning
plug-in. Users click the list arrow to view and select a course title, as shown in
Figure 9-3.

Figure 9-3 Selecting a course
 Chapter 9. Introducing My Lotus Learning Education framework plug-in for Sametime Connect 395

Filtered topics list
It is possible to also display related learning content by topic. Use the Topic
Filter to view and select a topic from the list of predefined topics. The result is
that a list of related topics displays in the Topics area, as shown in Figure 9-4.

Figure 9-4 Using Topic Filters to display content

Expanded topics list
After you select a course title or Topic Filter, the course menu or list of topics
displays in the Topics area. Click the “+” icon to expand the topics list and select
a specific item to view. Figure 9-5 shows the expanded topic list.

Figure 9-5 Viewing expanded topics list

To display a learning resource, the user clicks the resource item in the expanded
Topics list. My Lotus Learning plug-in connects, via an URL to the associated
page and displays the content of the page, whether local or Web-based, in a new
window. Figure 9-6 on page 397 shows the new content window after a user
selects the resource from the Topics menu.
396 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 9-6 Displaying content

Learning object icons
Learning content can be presented in many ways. For example, a task may be
documented in a procedure table, a movie, or click-through demonstration. A
task may also be documented in a reference card that you can download and
print.

Icons are used to help you identify the format of each learning item. Figure 9-7
shows a sample menu, with the icons next to each item denoting the type of
learning object.

Figure 9-7 Menu icons
 Chapter 9. Introducing My Lotus Learning Education framework plug-in for Sametime Connect 397

Table 9-1 lists and describes the icons that display next to the learning items in
the Topics menu.

Table 9-1 Learning object icons

Getting live assistance
Another feature of My Lotus Learning plug-in is the link between a content topic
and a live person. Users right-click a content topic and click Assistance
(Figure 9-8) to view a list of users, both online and offline, who have been
assigned as assistance resources for the topic.

Figure 9-8 Right-click a topic and select Assistance

 Icon Function

Knowledge resource that is information, knowledge, or concept.

Let me try interactive simulation or launchable tutorial.

Show me demonstration, animation, or simulation.

Procedure instructions or table.

Reference item which can be downloaded and printed.
398 Extending Sametime 7.5: Building Plug-ins for Sametime

The result is that a window opens and displays the users who have been
assigned as assistance providers for the topic, as shown in Figure 9-9. The
online status of the user also displays. Select an assistance provider and their
contact information displays.

Figure 9-9 Assistance providers

Users can also display the assistance providers from the learning content
window. Figure 9-10 shows the Assistance tab in the learning content window.

Figure 9-10 Getting assistance from within a learning resource

9.3 Design overview of My Lotus Learning plug-in

The design of My Lotus Learning plug-in was constructed using the
model-view-controller pattern common in object-oriented programming.

The primary model components of the plug-in consist of a three-level class
hierarchy that represents a course, and an external representation of that class
hierarchy in an XML file.
 Chapter 9. Introducing My Lotus Learning Education framework plug-in for Sametime Connect 399

The top level of the class hierarchy is the Course class, which represents a
collection of related content that can be viewed with the plug-in. Related
materials in the course are grouped in a topic, which are represented by the
Topic class in the second level of the hierarchy. There is a one-to-many
relationship between Class and Topic. Course content is represented by
Resource class in the third-level of the hierarchy; there is also a one-to-many
relationship between Topic and Resource. Additional classes are used to
represent a topic classification category (Category), assignment of a category to
a topic (Tag), and Sametime contact IDs (Contact) who can be contacted for
assistance on a topic.

A Document Type Definition (DTD) is defined for the XML that describes a
course. The course definition XML files are stored in separate plug-ins that
implement an extension point defined by My Lotus Learning plug-in. There is one
plug-in per course. At plug-in initialization time, the extension registry searches
for the plug-ins implementing the extension, creating a dynamic list of courses.
The course definition XML file is parsed and the class representation of the
course is built the first time a course is selected from the course list.

The view components of My Lotus Learning plug-in are implemented with SWT
widgets and controls and their corresponding JFace viewers. The course
selection and topic filtering controls are implemented as combo viewers, and the
topic list is implemented with a tree viewer. Content provider and label provider
classes provide and format the data from the model for viewing. The plug-in's
primary actions open new windows outside of the physical display space
bounded by the plug-in; these user interfaces use the same general design
approach as the plug-in's own interface.
400 Extending Sametime 7.5: Building Plug-ins for Sametime

The controller components of the plug-in are implemented with a combination of
selection listeners, menus, and actions.

� Selection listener: A selection listener on the course combo drives changes
to the category (topic filer) and topic list. Similarly, a selection listener on the
topic filter combo drives changes in the topic list.

� Menus: Context menus for the topics and resources in the topic list tree are
provided by a menu manager. When a topic or resource item in a context
menu is selected, the run method of the corresponding Action class is
invoked.

� Actions: The actions of My Lotus Learning plug-in displays properties for a
topic or resource, provides a list Sametime contact who can provide
assistance for a topic, and displays the content associated with a resource in
a browser.

9.4 Creating the MyLearning plug-in project

The MyLearning MiniApp is developed within an Eclipse plug-in project. Before
we can begin development, we need to create the plug-in project, specify
dependencies on other plug-ins and libraries, define the application as a miniApp
extension. In addition, we will do some basic housekeeping tasks, such as
setting up a Java package structure and creating a folder to store the user
images that will be used in the user interface.

1. Create an new Eclipse plug-in project with a name like
com.ibm.wplc.education.mylearning. You can use the procedure in shown in
4.1.1, “Creating a plug-in project and plug-in” on page 64 as a guide.

In the Plug-in Content dialog box that is displayed during the project creation
process, specify com.ibm.wplc.education.mylearning.MyLearningPlugin in
the Activator field.

2. Click the Dependencies tab.

3. On the Dependencies page, in the Required Plug-ins section, click Add.

4. In the Plug-in Selection dialog box, select
com.ibm.wplc.education.mylearning.content.

5. Repeat step 3 and 4 to add the following plug-ins as dependencies:

– org.eclipse.ui

– org.eclipse.core.runtime

– com.ibm.collaboration.realtime.imhub

– com.ibm.collaboration.realtime.community
 Chapter 9. Introducing My Lotus Learning Education framework plug-in for Sametime Connect 401

– com.ibm.rcp.realtime.livenames

– com.ibm.collaboration.realtime.core

6. On the Dependencies page, in the Imported Packages section, click Add.

7. From the Package Selection dialog box, select
com.ibm.collaboration.realtime.

8. Repeat steps 6 and 7 to add the
com.ibm.collaboration.realtime.contacts.search package. The Dependencies
page should look like Figure 9-11.

Figure 9-11 Defining dependencies

9. Click the Extensions tab.

10.Click the Add button and select the
com.ibm.collaboration.realtime.imhub.miniApps plug-in from the
Extension Point Selection dialog box.

11.Right-click the com.ibm.collaboration.realtime.imhub.miniApps icon and
select New → miniApp from the context menu.

12.In the Extension Element Details form to the right of the page, enter the
following values:

– id: com.ibm.wplc.education.learning.mylearningminiapp

– displayName: My Lotus Learning

– class: com.ibm.wplc.education.mylearning.MyLearningMiniApp

– category: shelf,messaging

– maxHeight: 400

– icon: images/learning_view.gif

The Extensions page should look like Figure 9-12 on page 403.
402 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 9-12 Defining extensions

13.Save the project. You will see a warning icon next to the plugin.xml file in the
project hierarchy. The warning is due to the fact that the images directory
specified in the icon field of the miniApp extension definition has not yet been
created.

Create ui, model, and catalog sub-packages
The code for the plug-in will be created in one of three sub-packages (ui, model,
and catalog) of the package created at project creation time. To create these
packages, use the following procedure:

1. Expand the \src folder in the project hierarchy.

2. Select New → Package from the context menu.

3. In the Java Package dialog box, in the Name field, enter
com.ibm.wplc.educat.ion.mylearning.ui

4. Click Finish.

5. Repeat steps 2 to 5, to add the two other packages. For the Name field in step
3, enter:

com.ibm.wplc.education.mylearning.catalog
com.ibm.wplc.education.mylearning.model

Move the activator class
Move the activator class, MyLearningPlugin.java, that you specified during
project creation, to the ui package using the following procedure:

1. Right-click the MyLearning.java icon in the
com.ibm.wplc.education.mylearning package.

2. Select Refactor → Move... from the context menu.

3. In the Move dialog box, select com.ibm.wplc.education.mylearning.ui as
the destination package.
 Chapter 9. Introducing My Lotus Learning Education framework plug-in for Sametime Connect 403

4. Click OK.

Create \images folder
The images that are used in the MyLearning plug-in are stored in an images
folder located directly below the project folder. To create this folder, use the
following procedure:

1. Right-click the com.ibm.wplc.education.mylearning project folder.

2. Select New → Folder from the context menu.

3. In the New Folder dialog box, in the Folder Name field, enter images.

4. Click Finish.

You are now ready to start development of the MyLearning miniApp plug-in.
404 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 10. Building the education
framework plug-in

In this chapter, we examine how to build a My Lotus Learning plug-in, including
the data model, the user interface, and the plug-in’s control logic.

The following topics are presented in this chapter:

� Plug-in data

� Plug-in user interface

� Plug-in controller

10

Attention: All sample code used for this example can be downloaded from the
IBM Redbooks FTP site. Please refer to Appendix A, “Additional material” on
page 557 for detailed instructions on how to download and deploy the code
sample:

ftp://www.redbooks.ibm.com/redbooks/SG247346
© Copyright IBM Corp. 2007. All rights reserved. 405

ftp://www.redbooks.ibm.com/redbooks/SG247346

10.1 Plug-in data

In this section, we examine the data structure of the MyLearning plug-in.

First, we examine the class diagram that represents the content displayed in the
plug-in. Next, we proceed to implement the classes in the class diagram. Finally,
we create an implementation of the ICatalog interface, which defines the
methods used to create the list of courses available to the user of the plug-in to
find a particular course for display by the plug-in.

10.1.1 Data model class diagram

The plug-in models a learning course and its associated content using a series of
aggregated classes, as shown in Figure 10-1.

Figure 10-1 Plug-in class model

The top level class, Course, uses the classes Category, CourseDescriptor, and
Topic.

� Category represents a keyword that can be used to classify or categorize the
content of the course for possible filtering in the user interface. The category
is analogous to an index.
406 Extending Sametime 7.5: Building Plug-ins for Sametime

� CourseDescriptor represents the name and unique identifier of the course.

� Topic represents the major organizing structure of the course, somewhat
analogous to a chapter in a book.

Topic contains a further aggregation of classes, including Contact, Tag, and
Resources.

� The Contact class represents the contact ID of the person who can provide
assistance on the topic and who can be contacted via the user interface with
the communication facilities provided by Sametime connect, including e-mail,
chat, and VoIP.

� Tag represents the assignment of a keyword defined in Category.

� Resource represents learning content. The url attribute of the class points to
the actual content that is presented by the plug-in user interface.

10.1.2 Implementing the class model diagram

In this section, we will implement the class diagram into the corresponding Java
classes. Each of the attributes in a class will have a public accessor and mutator
method defined within the class.

Creating the Resource and ResourceList classes
The first class to be added to the com.ibm.wplc.education.model package is the
class named Resource. Resource has the instance variables shown in
Table 10-1.

Table 10-1 Resource instance variables

Name Type Notes

author String Corporate or personal author of the resource

description String Short description of the resource

id String Unique identifier

label String Display name

level String Targeted level of expertise for the content, such as
Basic or Advanced

topic Topic Reference to parent Topic

type String Type of learning resource, such as Reference or
Procedure

url String URL of the resource content
 Chapter 10. Building the education framework plug-in 407

Create the Resource class
To create the Resource class in the com.ibm.wplc.education.model package, use
the following procedure:

1. Select the com.ibm.wplc.education.model package.

2. Right-click and select New → Class from the context menu.

3. In the New Java Class dialog box, enter Resource in the Name field and click
Finish.

4. Code the variable as shown in Table 10-1 on page 407 as private instance
variables of the class.

5. Create public accessor and mutator methods for each of the instance
variable.

Right-click in the source editing pane and select Source → Generate Getters
and Setters. A wizard opens to assist you in generating these methods.

6. Create an empty no-argument constructor.

7. Create a constructor that takes String arguments of id and label and sets the
corresponding instance variables.

8. Optionally, you can create a toString method to provide more meaningful
String representation of the class than the default method inherited from the
Object class.

For many of the model classes, such as Resource, it will be useful to provide a
corresponding class that represents a list of instances of the class. For example,
a Topic entity can contain multiple Resources, so it would be desirable to have a
ResourceList class that could be used to represent the aggregated multiple
Resources within the Topic class.

The java.util.ArrayList container class is a very flexible and useful list container,
but unfortunately it is not type-sensitive since it holds references to Object.
However, a type-sensitive list container that uses ArrayList could be created, as
shown in Example 10-1 on page 409 of a class called ResourceList that can only
contain references to the Resource class.

Note: There will be compilation errors in the source because the Topic
class referenced by the topic attribute has not yet been created. When the
Topic class is later defined, this error will not longer appear. You will see
similar errors constructing all these classes, until all the classes in the
package have been defined.
408 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-1 ResourceList class

package com.ibm.wplc.education.mylearning.model;

import java.util.ArrayList;
import java.util.Iterator;

/*
 * Type-sensitive array list of Resource
 */
public final class ResourceList {

private ArrayList list = new ArrayList();

public void add(Resource Resource) {
list.add(Resource);

}
public Resource get(int index) {

return (Resource) list.get(index);
}

public int size() {
return list.size();

}

public Resource[] toArray(Resource[] array) {
return (Resource[]) list.toArray(array);

}

public void clear() {
list.clear();

}

public Iterator iterator() {
return list.iterator();

}

public String toString() {
StringBuffer sb = new StringBuffer("[");
sb.append(this.getClass().getName());
sb.append(" size = ");
sb.append(size());
sb.append("]");
return sb.toString();

}
}

 Chapter 10. Building the education framework plug-in 409

For the remainder of the model classes in the
com.ibm.wplc.education.mylearning.model package, you will use a procedure
similar to that used for the Resource and ResourceList classes to create the
remainder of the classes that are contained in the package.

Creating the Topic and TopicList classes
The Topic class has the instance variables listed in Table 10-2.

Table 10-2 Topic class instance variables

Much like the topic variable in the Resource class, the courseDescriptor variable
serves as a “backwards pointer” to the course containing the topic. The
CourseDescriptor class contains instance variables that represent the id and
label attributes of the Course entity.

Like the Resource class, the Topic class has an empty non-argument constructor
and a constructor that takes String arguments of id and label and sets the
corresponding instance variables.

A TopicList class, similar to the ResourceList class, also needs to be created as
shown in Example 10-2 on page 411. Refer to “Create the Resource class” on
page 408 for instructions to create the TopicList class.

Name Type Notes

Id String Unique identifier

Label String Display name

description String Short description of the
topic

tagList TagList List of Tag assigned to the
topic

resourceList ResourceList List of Resource contained
in the topic

contactList Contact List of Contact providing
assistance on the topic

courseDescriptor CourseDescriptor Reference to the
CourseDescriptor for the
parent course
410 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-2 TopicList class

package com.ibm.wplc.education.mylearning.model;

import java.util.ArrayList;
import java.util.Iterator;

/*
 * Type-sensitive array list of Tag
 */
public final class TagList {

private ArrayList list = new ArrayList();

public void add(Tag Tag) {
list.add(Tag);

}
public Tag get(int index) {

return (Tag) list.get(index);
}

public int size() {
return list.size();

}

public Tag[] toArray(Tag[] array) {
return (Tag[]) list.toArray(array);

}

public void clear() {
list.clear();

}

public Iterator iterator() {
return list.iterator();

}
}

Creating the Tag and TagList classes
The Tag class has just one instance variable, as shown in Table 10-3:

Table 10-3 Tag class instance variables

Name Type Notes

key String The id of a Category
 Chapter 10. Building the education framework plug-in 411

Tag has one constructor that takes a String argument and sets its only instance
variable.

A TagList class also needs to be created. Refer to “Create the Resource class”
on page 408 for instructions to create the TagList class.

Creating the Contact and ContactList classes
Another simple data model class like the Tag class is the Contact class. Contact
has one constructor that takes a String argument and sets it as the only instance
variable, as shown in Table 10-4.

Table 10-4 Contact class instance variable

A ContactList class also needs to be created. Refer to “Create the Resource
class” on page 408 for instructions to create the TopicList class.

Creating the CourseDescriptor and CourseDescriptor Classes
CourseDescriptor contains the instance variables shown in Table 10-5.

Table 10-5 CourseDescriptor class instance variables

In addition to being an aggregated component of the Course class,
CourseDescriptor is also used as a component of the course catalog, as
described in 10.1.3, “Create the Catalog class” on page 414.

The CourseDescription class overrides the equals method of the Object parent
class (see Example 10-3 on page 413). The equals method of this class is used
in the Catalog class to search for a particular CourseDescription in a
CourseDescriptionList. CourseDescription instances are equal only if the id and
label instance variables of the two instances are equal.

Name Type Notes

e-mail String The Sametime Connect
contact ID in the standard
Internet e-mail format

Name Type Notes

id String Unique identifier

label String Display name
412 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-3 Overrided hashCode and equals method

public boolean equals(Object o) {
// equals if the id and label fields are the same

boolean b = false;
if (o == this) return true;
if (o != null && o instanceof CourseDescriptor) {

String thisId = getId();
String oId = ((CourseDescriptor)o).getId();
String thisLabel = getLabel();
String oLabel = ((CourseDescriptor)o).getLabel();
b = (thisId != null && oId != null && thisId.equals(oId) &&

thisLabel.equals(oLabel));
}
return b;

}

public int hashCode(){
int r = 71;
r = 57 * r + id.hashCode();
r = 57 * r + label.hashCode();
return r;

}

Notice that the hashCode method of the parent Object class is also overridden in
the CourseDescriptor class. Java programming best practices recommend that a
class's hashCode method be overridden when the equals method is overridden
in order to provide the same hash code for equivalent classes.This standard
method in the Object class does not provide this capability.

A CourseDescriptorList class also needs to be created to store the list of
available courses on a user's system. Refer to “Create the Resource class” on
page 408 for instructions to create the TopicList class.

Note: A good resource for this topic is the Effective Java Programming
Language Guide, by Bloch.
 Chapter 10. Building the education framework plug-in 413

Creating the Category and CategoryList classes
The Category has two instance variables, as shown in Table 10-6.

Table 10-6 Category Class

The Category class has an empty non-argument constructor and a constructor
that takes String arguments of id and label and sets the corresponding instance
variables.

A CategoryList class also needs to be created. Refer to “Create the Resource
class” on page 408 for instructions to create the TopicList class.

Creating the Course class
The Course class represents the Course entity and has the instance variables
shown in Table 10-7.

Table 10-7 Course class instance variables

The Course class has an overridden equals method and corresponding
overridden hashCode method that returns true if the courseDescriptor instance
variables for the comparing classes are equal.

10.1.3 Create the Catalog class

The Catalog class implements the ICatalog interface, which defines the methods
show in Example 10-4 on page 415.

Name Type Notes

id String Unique identifier

label String Display name

Name Type Notes

categoryList CategoryList List of Category for the
course

topicList TopicList List of Topic for the course

defaultCategory Category The default category for
the course

courseDescriptor CourseDescriptor The CourseDescriptor for
the course
414 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-4 ICatalog interface

package com.ibm.wplc.education.mylearning.catalog;

import com.ibm.wplc.education.mylearning.model.Course;
import com.ibm.wplc.education.mylearning.model.CourseDescriptor;
import com.ibm.wplc.education.mylearning.model.CourseDescriptorList;

public interface ICatalog {
public Course findCourse(CourseDescriptor c);
public CourseDescriptorList list();
public CourseDescriptor findDefaultCourseDescriptor();
}

In the completed My Lotus Learning plug-in, the Catalog class implements the
interface's list method by creating a CourseDescriptorList that is built by locating
course plug-ins in the Eclipse Workbench registry that will use the description
extension and then reading attributes of the plug-ins's <extension> element to
obtain the course's id and label. This resulting list serves as the “course catalog”
for the MyLearning plug-in.

The findCourse method builds an instance of the Course class by parsing the
course definition XML file for the course plug-in that is identified by the method's
CourseDescriptor parameter.

The findDefaultCourseDescriptor returns a CourseDescriptor whose label
instance variable is displayed as the initial selection in the Course combo of the
MyLearning plug-in user interface after initialization. The default
CourseDescriptor is simply the first item in the CourseDescriptorList returned
from list method.

For the first development iteration of the Catalog class, we will forego the course
plug-in location and XML parsing of the Catalog class's final implementation of
the ICatalog interface. Instead, we will use a simplified approach of creating a
hard-coded, singe-item CourseDescriptorList and corresponding test Course. In
11.1, “Refining the catalog” on page 487, we will re-implement the interface with
the final version of Catalog as one of the last steps in the development process.
 Chapter 10. Building the education framework plug-in 415

The single test course has three categories and two topics (each with one
contact, three tags, and two resources), as specified in Figure 10-2.

Figure 10-2 Test course

Create the Catalog class
To create the Catalog class, perform the following steps:

1. In the com.ibm.wplc.education.mylearning.catalog package, create the
ICatalog interface, as in Example 10-4 on page 415.

2. Create the Catalog class to implement the ICatalog interface in the same
package as the interface.

3. Create the private instance variables courseList of type CourseDescriptorList
and course of type Course.

4. Create a no-argument constructor for the Catalog class that calls a private
void setup() method, as shown in Example 10-5 on page 417.

Course id:C1 label:Test Course

Category id:AllTopics label:All Topics

Category id:TopicA label:Topic A

Category id:TopicB label:Topic B

Topic id:TA label:Topic A

Contact email-id:contactA@a.com

Tag id:AllTopics

Tag id:TopicA

Resource id:RA1 label:Resource A1 level:Basic type:Reference author:Authors

url:file://C|testhtml/RA1.html
Resource id:RA2 label:Resource A2 level:Basic type:Reference author:Authors

url:file://C|testhtml/RA2.html

Topic id:TB Topic B
Contact email-id:contactB@b.com
Tag id:AllTopics
Tag id:Topic B
Resource id:RB1 label:Resource B1 level:Basic type:Reference author:Authors

url:file://C|testhtml/RB1.html
Resource id:RB2 label:Resource B2 level:Basic type:Reference author:Authors

url:file://C|testhtml/RB2.html
416 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-5 Catalog class constructor

public Catalog() {
setup();

}

5. Code the setup method to implement the specification of the test course,
presented 10.1.2, “Implementing the class model diagram” on page 407, by
using classes you created in the previous steps of this chapter and the
instance variable you created in step 3 of this procedure. The completed
method is shown in Example 10-6.

Example 10-6 Setup method for the Catalog class

private void setup() {
Tag tagAll = new Tag("AllTopics");

Tag tagA = new Tag("TopicA");
TagList tagListA = new TagList();
tagListA.add(tagA);
tagListA.add(tagAll);

Contact contactA = new Contact("ContactA@a.com");
ContactList contactListA = new ContactList();
contactListA.add(contactA);

Resource resourceA1 = new Resource("RA1", "Resource A1");
resourceA1.setDescription("Resource A1");
resourceA1.setLevel("Basic");
resourceA1.setType("Reference");
resourceA1.setAuthor("Author");
resourceA1.setUrl("file:///C|/testhtml/RA1.htm");
Resource resourceA2 = new Resource("RA2", "Resource A2");
resourceA2.setDescription("Resource A2");
resourceA2.setLevel("Basic");
resourceA2.setType("Reference");
resourceA2.setAuthor("Author");
resourceA2.setUrl("file://C|/testhtml/RA2.htm");
ResourceList resourceListA = new ResourceList();
resourceListA.add(resourceA1);
resourceListA.add(resourceA2);

Topic topicA = new Topic("TA", "Topic A");
topicA.setDescription("Topic A");
topicA.setTagList(tagListA);
topicA.setResourceList(resourceListA);
 Chapter 10. Building the education framework plug-in 417

topicA.setContactList(contactListA);
resourceA1.setTopic(topicA);
resourceA2.setTopic(topicA);

//Setup topicB and resource B1 and resource B2 as in previous
//code for topicA and resource A1 and resource A2
//code not shown

TopicList topicList = new TopicList();
topicList.add(topicA);
topicList.add(topicB);
Category categoryAll =

new Category("AllTopics", "All Topics");
Category categoryA = new Category("TopicA", "Topic A");
Category categoryB = new Category("TopicB", "Topic B");
CategoryList categoryList = new CategoryList();
categoryList.add(categoryAll);
categoryList.add(categoryA);
categoryList.add(categoryB);

CourseDescriptor courseDescriptor =
new CourseDescriptor("C1", "Test Course");

course = new Course();
course.setCourseDescriptor(courseDescriptor);
course.setCategoryList(categoryList);
course.setDefaultCategory(categoryAll);
course.setTopicList(topicList);
topicA.setCourseDescriptor(courseDescriptor);
topicB.setCourseDescriptor(courseDescriptor);
courseList = new CourseDescriptorList();
courseList.add(courseDescriptor);

}

6. Code the list method to return instance variable courseList, as shown in
Example 10-7.

Example 10-7 list method of Catalog class

public CourseDescriptorList list() {
return courseList;

}

418 Extending Sametime 7.5: Building Plug-ins for Sametime

7. Code the findCourse method to return instance variable course, as shown in
Example 10-8.

Example 10-8 findCourse method of Catalog course

public Course findCourse(final CourseDescriptor descriptor) {
return course;

}

8. Code the findDefaultCourseDescriptor method to return the first element in
the CourseDescriptorList returned from the list method, as shown in
Example 10-9.

Example 10-9 findDefaultCourseDescriptor method of Catalog class

public CourseDescriptor findDefaultCourseDescriptor() {
// Just make the first course the default
return list().get(0);

}

9. Create four small test HTML files that contain the test content for each
resource and place them in the locations on your local file system specified by
each resource URL.

A typical test HTML files is shown in Example 10-10.

Example 10-10 Typical HTML test

<html>
<body>
<h3>Resource RA1</h3>
<p>Test content for Resource RA1</p>
</body>
</html>

The test course definition is now complete. We will be using the definition test
course to verify the plug-in actions implemented in 10.3.3, “Create actions” on
page 446.
 Chapter 10. Building the education framework plug-in 419

10.2 Plug-in user interface

In this section, we examine the user interface of the MyLearning plug-in. We:

1. Create the MyLearningMiniApp class that extends the AbstractMiniApp class
and create the methods that will be overridden to define the user interface.

2. Create basic controls of the user interface, using SWT widget classes, such
as Label, Combo, and Tree.

3. Introduce the data from the MyLearning plug-in's course catalog into the user
interface and use the Eclipse JFace classes to populate the contents of the
user interface controls with the course data.

4. Implement a filter mechanism into the user interface that allows users to
select a subset of course topics for display.

10.2.1 Create the MyLearingMiniApp class

When the plug-in.xml file was created, the name of the miniApp class was
specified in the class attribute of the <miniApp> element as
com.wplc.education.mylearning.ui.MyLearningMiniApp. Use the following
procedure to create the MyLearningMiniApp class and the associated methods
that will be required to implement the user interface:

1. Select the com.ibm.wplc.education.ui package.

2. Right-click and select New → Class from the context menu.

3. In the New Java Class dialog box, enter Resource in the Name field.

4. Browse the Superclass field for the AbstractMiniApp class.

5. Click Finish.

6. Create a constructor that will assign the location of the class instance to a
static variable named myLearningInstance, as shown in Example 10-11.

Example 10-11 MyLearning MiniApp class constructor

private static MyLearningMiniApp myLearningInstance;

public MyLearningMiniApp() {
myLearningInstance = this;

}

7. Create a public no-argument method getInstance that will return the static
variable myLearningInstance, as shown in Example 10-12 on page 421.
420 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-12 Method of MyLearning MiniApp class

public static MyLearningMiniApp getInstance() {
return myLearningInstance;

}

8. Create the createControl method.

This is a public method that has one parameter of type Composite (in the
org.eclipse.swt.widgets package, as are most of the user interface controls).

The createControl method is a method of AbstractMiniApp that will be
overridden to specify the user interface of the plug-in miniApp.

Within the method, create a new composite and specify the layout type to be
form layout. The form layout method allows for the user interface controls to
be precisely located and sized to be specified as in terms of pixel units.

Example 10-13 createControl method of MyLearning MiniApp class

public Control createControl(final Composite parent) {
final Composite comp = new Composite(parent, SWT.BORDER);

comp.setLayout(new FormLayout());
}

9. Add the code shown in Example 10-14 to establish the image as a
background.

We will be using the image mod_menu_background.gif as the background for
the image.The image is contained in an images folder within the MyLearning
plug-in. By specifying the constant SWT.INHERIT_DEFAULT in the
setBackgroundMode method of the composite, we ensue that the background
of other controls contained within the composite are inherited from this
background image.

Example 10-14 Setting the background to an image

comp.setBackgroundMode(SWT.INHERIT_DEFAULT);
final ImageDescriptor id =
ImageDescriptor.createFromURL(FileLocator
.find(MyLearningPlug-in.getDefault().getBundle(),

new Path("images/mod_menu_background.gif"),
null));

Image bgImage = id.createImage();

comp.setBackgroundImage(bgImage);
 Chapter 10. Building the education framework plug-in 421

10.Create another overridden method, init, as shown in Example 10-15. This is a
public method that has no parameters an empty method body, and throws
Exception. No initialization of MyLearningMinApp is required beyond that
performed in the createControl method, so this method will remain as an
empty body method.

Example 10-15 init method

public void init() throws Exception {
}

10.2.2 Create basic user interface widgets

We can proceed with composing the createControl method to add the user
interface controls to MyLearning plug-in.

1. Add a Label control to specify the instructions for using the plug-in user
interface, as shown in Example 10-16.

Example 10-16 Instructions label

final Label instructions = new Label(comp, SWT.LEFT |
SWT.HORIZONTAL| SWT.WRAP);

// Note: Following setText method should be entered on one line
instructions.setText("Select a Course.

Expand an entry on the Topics list to see the learning
resources for the topic. Double-click on a resource to view
it.");

FormData data = new FormData();
data.top = new FormAttachment(0, 5);
data.left = new FormAttachment(0, 5);
data.right = new FormAttachment(100, -5);
instructions.setLayoutData(data);
422 Extending Sametime 7.5: Building Plug-ins for Sametime

2. Add a Label control that will be a label (“Course:”) to the left of the course
combo, as shown in Example 10-17.

Example 10-17 Course label

final Label coursesLabel = new Label(comp, SWT.LEFT |
SWT.HORIZONTAL);

coursesLabel.setText("Course:");
data = new FormData();
data.top = new FormAttachment(instructions, 5);
data.left = new FormAttachment(0, 5);
data.right = new FormAttachment(20, 0);
coursesLabel.setLayoutData(data);

3. Add the course drop-down, read-only Combo control to the right of the label
you just created, as shown in Example 10-18.

Example 10-18 Course combo

final Combo courseCombo = new Combo(comp, SWT.DROP_DOWN |
SWT.READ_ONLY);

data = new FormData();
data.top = new FormAttachment(instructions, 5);
data.left = new FormAttachment(coursesLabel, 5);
data.right = new FormAttachment(100, -5);
courseCombo.setLayoutData(data);

4. Add a Label control that will be a label (“Topic Filter”) to the left of the
categories combo, as shown in Example 10-19.

Example 10-19 Topic Filter label

final Label categoriesLabel =
new Label(comp, SWT.LEFT | SWT.HORIZONTAL);

categoriesLabel.setText("Topic Filter:");
data = new FormData();
data.top = new FormAttachment(courseCombo, 5);
data.left = new FormAttachment(0, 5);
data.right = new FormAttachment(20, 0);
categoriesLabel.setLayoutData(data););
 Chapter 10. Building the education framework plug-in 423

5. Add the categories drop-down, read-only Combo to the right of the “Topic
Filter” label you just created, as shown in Example 10-20.

Example 10-20 Category combo

final Combo categoryCombo = new Combo(comp, SWT.DROP_DOWN
| SWT.READ_ONLY);

data = new FormData();
data.top = new FormAttachment(courseCombo, 5);
data.left = new FormAttachment(categoriesLabel, 5);
data.right = new FormAttachment(100, -5);
categoryCombo.setLayoutData(data);

6. Add a Label control that will be a label (“Topic:”) to the left of the topic tree, as
shown in Example 10-21.

Example 10-21 Topics label

final Label topicsLabel = new Label(comp, SWT.LEFT |
SWT.HORIZONTAL);

topicsLabel.setText("Topics);
data = new FormData();
data.top = new FormAttachment(categoryCombo, 5);
data.left = new FormAttachment(0, 5);
data.right = new FormAttachment(20, 0);
topicsLabel.setLayoutData(data);

7. The last control is a Tree control where the topic and resource tree is
displayed.

Create a Tree control, as shown in Example 10-22.

Example 10-22 Topic Tree

final Tree topicTree = new Tree(comp, SWT.BORDER | SWT.V_SCROLL
| SWT.SINGLE);

data = new FormData();
data.top = new FormAttachment(categoryCombo, 5);
data.left = new FormAttachment(topicsLabel, 5);
data.right = new FormAttachment(100, -5);
data.bottom = new FormAttachment(100, -10);
topicTree.setLayoutData(data);

You can now test the user interface. Use the Eclipse Workbench Run control to
start the plug-in mini-app. The user interface should look like the screen capture
in Figure 10-3 on page 425.
424 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 10-3 My Learning user interface

10.2.3 Create JFace viewers

We have created a user interface for the MyLearning plug-in. All of the controls
are in place, but none are populated with any data from the course catalog. In
this section, we use JFace classes to enhance the Combo and Tree controls to
be JFace types of ComboViewer and TreeViewer that can accept and display the
course catalog data.

For each of the viewers, we will specify a content provider class, a label provider
class, and an input source. The task of the content provider is to convert the input
source to an array of objects that are associated with the viewer. The task of the
label provider is to convert each element associated with the viewer into a
displayable format; both text and image formats can be displayed by the viewers.

Sort providers and filters can further manipulate the viewer's element data by
sorting it in a specified order or by selecting subsets of the element array to be
displayed according to a specified search criteria. We will implement a sort filter
in a single viewer. The topic of viewer filters will be covered in “Implementing the
Topic Filter” on page 433.
 Chapter 10. Building the education framework plug-in 425

To create the JFace viewers, use the following procedure:

1. At the bottom of the createControls method, add the code (see
Example 10-23) that will use the ICatalog interface’s methods to:

a. Create the course catalog (list)

b. Find the default course descriptor (findDefaultCourseDescriptor)

c. Find the default course using the default course descriptor (findCourse).

Example 10-23 Using the iCatalog interface

final ICatalog catalog = new Catalog();
final CourseDescriptorList courseList = catalog.list();
final CourseDescriptor defaultCourseDescriptor = catalog

.findDefaultCourseDescriptor();
final Course defaultCourse = catalog

.findCourse(defaultCourseDescriptor);.

2. Create a ComboViewer from the courseCombo (see Example 10-24).

Specify a content provider class (CourseContentProvider) with the
setContentProvider method, a label provider class (CourseLabelProvider)
with the setProviderLabel method, and an input source (courseList) with the
setInput method. Also, specify that the list in the combo viewer is to be sorted
alphabetically by specifying the default ViewerSorter class as the combo
viewer’s sorter.

Example 10-24 Course combo viewer

final ComboViewer courseComboViewer =
new ComboViewer(courseCombo);

courseComboViewer.setContentProvider(
new CourseContentProvider());

courseComboViewer.setLabelProvider(new CourseLabelProvider());
courseComboViewer.setInput(courseList);
courseComboViewer.setSorter(new ViewerSorter());

3. Create the CourseContentProvider content provider, which implements the
IStructureContentProvider interface.

Within the content provider class, the getElements method’s role is to take the
input element object specified in the setInput method of the combo viewer
and transform it to an Object array. Each element in the returned Object array
represents an element in the course combo viewer list. Since the courseList
input source is of type CourseList, we can use the toArray method to convert
it to an Object array, as shown in Example 10-25 on page 427.
426 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-25 getElements method of CourseContentProvider class

public Object[] getElements(final Object inputElement) {
int arraySize =

 ((CourseDescriptorList)inputElement).size();
CourseDescriptor[] cd = new CourseDescriptor[arraySize];
return ((CourseDescriptorList) inputElement).toArray(cd);

}

4. Create the CourseLabelProvider label provider, which extends the
LabelProvider class.

The getText method’s role in the label provider is to transform its input
parameter to a String for display in the combo viewer. The input parameter of
the method is an element in the Object array returned by the getElement
method of the content provider class. Since this element would be of type
CourseDescriptor, we only need to use the getLabel method to return the text
to be displayed, as shown in Example 10-26.

Example 10-26 getText method of CourseLabelProvider class

public String getText(final Object inputElement) {
return ((CourseDescriptor) inputElement).getLabel();

}

5. In the createControl method of the MyLearningMiniApp, specify the initial
selection for the courseComboViewer as the variable
defaultCourseDescriptor, as shown in Example 10-27. The viewer element
represented by this variable is displayed in the course combo after the
MyLearning program is initialized.

Example 10-27 Setting initial selection of course combo viewer

courseComboViewer.setSelection(new StructuredSelection(
defaultCourseDescriptor), true);

Note: The inputChange method in the class is only invoked when the input
source changes. Because the input source (courseList) is never changed
once it has been created, an empty-body implementation of the method is
adequate.
 Chapter 10. Building the education framework plug-in 427

6. Create a ComboViewer from the categoryCombo, as shown in
Example 10-28.

This step is much like step 2. We are going to display the categories in the
order maintained by the input source, so we do not need a sorter. The input
source is provided by invoking the getCategoryList method on the
defaultCourse variable.

Example 10-28 Category combo viewer

final ComboViewer categoryComboViewer =
new ComboViewer(categoryCombo);

categoryComboViewer.setContentProvider(new
CategoryContentProvider());

categoryComboViewer.setLabelProvider(
new CategoryLabelProvider());

categoryComboViewer.setInput(defaultCourse.getCategoryList());

7. Create the CategoryContetProvider content provider.

This code is very similar to the code produced in step 3, except we are now
handling a CategoryList as the input element instead of a
CourseDescriptorList. The getElements method is shown in Example 10-29.

Example 10-29 getelements method of CategoryContextProvider class

public Object[] getElements(final Object inputElement) {
Category[] categoryArray =

new Category[((CategoryList) inputElement).size()];
return ((CategoryList)inputElement).toArray(categoryArray);

8. Create the CategoryLabelProvider label provider. This code is very similar to
the code produced in step 4. The getText method is shown in Example 10-30.

Example 10-30 getelements method of CategoryLabelProvider class

public String getText(final Object inputElement) {
return ((Category) inputElement).getLabel();

}

9. In the createControl method of the MyLearningMiniApp, specify the initial
selection for the categoryComboViewer as the return value from the method
defaultCourse.getDefaultCategory (see Example 10-31 on page 429). This
value is displayed in the category combo (Topic Filter) after the MyLearning
program is initialized.
428 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-31 Setting initial selection of Category combo view

categoryComboViewer.setSelection
(new StructuredSelection(defaultCourse

.getDefaultCategory()), true);

10.At the top of the class file, declare topicTreeViewer as a private instance
variable of type TreeViewer, as shown in Example 10-32.

Example 10-32 topicTreeViewer instance variable

private TreeViewer topicTreeViewer;

11.Create a TreeViewer from the topicTree, as shown in Example 10-33. This
step follows the general pattern presented in step 2. The input source is
provided by invoking the getTopicList method on the defaultCourse variable. A
viewer sorter is not required.

Example 10-33 Topic tree viewer

topicTreeViewer = new TreeViewer(topicTree);
topicTreeViewer.setContentProvider(new TopicContentProvider());
topicTreeViewer.setLabelProvider(new TopicLabelProvider());
topicTreeViewer.setInput(defaultCourse.getTopicList());

12.Create the TopicContentProvider content provider, which implements the
ITreeContentProvider interface. as shown in Example 10-34. The getElement
method is very similar to the getElement method used in the combo content
providers that implement the IStructureContentProvider interface.

Example 10-34 getElements method of TopicContentProvider class

public Object[] getElements(final Object inputElement) {
int arraySize = ((TopicList) inputElement).size();
Topic[] topicArray = new Topic[arraySize];
return ((TopicList) inputElement).toArray(topicArray);

}

Content provider classes that implement the ITreeContentProvider interface
have three more methods, getParent, hasChildren, and getChildren, than the
content provider classes that implement IStructuredContentProvider. These
additional methods, as shown in Example 10-35 on page 430, reflect the
hierarchical nature of the TreeViewer, as compared to the simple list structure

Note: In step 14, a reference will be made to the topicTreeViewer variable
inside the scope of an inner class, so it must be a class instance variable to
have the proper visibility for the inner class.
 Chapter 10. Building the education framework plug-in 429

inherent in the ComboViewer, and are used to compose the hierarchical
display of a tree viewer. As you study these additional methods, remember
from the class diagram (Figure 10-1 on page 406) that the Topic class is the
parent of the Resource class.

Example 10-35 TreeContentProvider hierarchy navigation methods

public Object[] getChildren(final Object parentElement) {
if (parentElement instanceof Topic) {

ResourceList list = ((Topic)
parentElement).getResourceList();

return (Resource[]) list.toArray(new
Resource[list.size()]);

} else {
return new Object[] {};

}
}

public Object getParent(final Object element) {
if (element instanceof Resource) {

return ((Resource) element).getTopic();
} else {

return null;
}

}

public boolean hasChildren(final Object element) {
if (element instanceof Topic) {

if (((Topic) element).getResourceList().size() > 0) {
return true;

} else {
return false;

}
} else {

return false;
}

}

13.Create the TopicLabelProvider.

The getElement method of the label provider is much like the previous version
of the method, as shown in this section for the combo viewers. However, in
the present case of the tree viewer, the input parameter of this method could
be either the parent class (Topic) or the child class (Resource).

To handle this case, we introduce a new interface called ILabel, shown in
Example 10-36 on page 431.
430 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-36 ILabel interface

package com.ibm.wplc.education.mylearning.ui;

public interface ILabel {
String getLabel();

}

Since both Resource and Topic have been defined with getLabel methods
that are in the ILabel interface, we can change both their class declarations to
implement the interface, as shown in Example 10-37.

Example 10-37 Implementing ILabel in Resource and Topic

public class Resource implements ILabel

public class Topic implements ILabel

After the above changes have been made to the Resource and Topic class
declarations, the getElement method of the TopicLabelProvider can be coded,
as shown in Example 10-38, to eliminate the need for any conditional code
based on the type of the input element.

Example 10-38 getElement method of TopicLabelProvider

public String getText(final Object inputElement) {
// ILabel interface implemented by Resource and Topic
return ((ILabel) inputElement).getLabel();

}

The tree display of the topic tree viewer is designed to display an icon
adjacent to each entry of a Resource to indicate the value of the type attribute
in the class. For example, if the type variable has a value of “Reference”, an
icon depicting a reference book is displayed. The getImage method is used to
handle the display of images as shown in Example 10-39.

Example 10-39 getImage method

public Image getImage(final Object element) {
Image icon = null;
if (element instanceof Resource) {

final ImageDescriptor id = ImageDescriptor
.createFromURL(getIconUrl(((Resource)

element).getType()));
icon = id.createImage();
setImage(icon);

}
return icon;
 Chapter 10. Building the education framework plug-in 431

}

The entire TopicLabelProvider class is available with the downloaded plug-in
code, available from the Redbooks FTP site. There is an additional method
(getIconURL) and class variable declarations in this class that are used in the
getImage method. You should examine these to understand the getImage
method.

14.As a final step, we need to add a selection changed listener for the course
combo viewer in the MyLearning MiniApp class. When a user selects a new
course in the course combo viewer, the Course instance corresponding to the
selection must be located, and the category combo viewer and topic tree
viewer must be updated with elements from the selected course.

An argument-defined anonymous inner class will be defined to handle the
course selection processing, as shown in Example 10-40.

Example 10-40 Course combo SelectionChangedListener (MyLearningMiniApp class)

courseComboViewer
.addSelectionChangedListener(

new ISelectionChangedListener() {
IStructuredSelection selection;

public void selectionChanged(
final SelectionChangedEvent event) {
selection =(IStructuredSelection)

courseComboViewer
 .getSelection();

if (!selection.isEmpty()) {
final Course course = catalog

.findCourse((CourseDescriptor)
selection

.getFirstElement());
categoryComboViewer.setInput(course

.getCategoryList());
categoryComboViewer.setSelection(

new StructuredSelection(
course
.getDefaultCategory()), true);

categoryComboViewer.refresh();

Note: A dispose method must be coded to specifically free memory
allocated to the image, unlike the case for text which does not require an
explicit dispose method.
432 Extending Sametime 7.5: Building Plug-ins for Sametime

topicTreeViewer.setInput(
course.getTopicList());

topicTreeViewer.refresh();
}

}
});

When a user selects a course from category combo viewer:

a. The selectionChanged method of the selection listener class in invoked.
As shown in Example 10-40 on page 432, the method first finds the new
Course based on the selection of the course in the course combo viewer.

b. The input source of the category combo viewer is then set to the
categories from the new course with the getCategoryList, and the default
selection is set to the return value of the getDefaultCategory method.

c. The refresh method of the categoryComboViewer makes sure the viewer
has the latest data.

d. The topic tree viewer input source is set to the return value of the
getTopicList method of course and the topic tree viewer is refreshed.

Implementing the Topic Filter
When a user selects a category from the category combo viewer (labeled Topic
Filter), the resulting action of the MyLearning plug-in is to display only those
topics in the topic tree viewer that have the selected category associated with
them. As you recall from the class diagram (Figure 10-1 on page 406), a
Category is associated with the Topic instance by including a Tag instance
variable in the Topic class. The key attribute of the Tag class contains the ID from
the desired Category class instance.

In this section, you will implement the topic filtering mechanism. A new class,
TopicFilter, is created to perform the filtering action. Additionally, code is added to
the createControl method of the MyLearningMiniApp that detects the selection of
a category from the category combo viewer and then invokes a method to add
the filter to the topic tree viewer.

To implement the filtering mechanism, use the following procedure:

1. Create a class named TopicFilter in the
com.ibm.wplc.education.mylearning.ui package.

The class is an extension of the JFace ViewerFilter class. The select method
of TopicFilter determines if a data element (as specified by the element input
parameter of the method) is to be displayed. Since we are filtering the topic
tree viewer, as specified in the viewer input parameter of the method, the
element input parameter represents either an instance of the Topic class or
 Chapter 10. Building the education framework plug-in 433

an instance of the Resource class. The select method is invoked for each
element associated with the topic tree viewer. If the select method returns
“true,” the element is displayed in the topic tree viewer.

From the code in Example 10-41, notice that the type of element is checked
and that Resource instances are always selected to be displayed. Checking
Resources is not necessary, since they do not have a Tag instance directly
associated with them. For elements of type Topic, the list of Tag instances
associated with the topic are searched and the key attribute of each Tag class
in the list is compared to the categoryId. The categoryId variable is the filter’s
search term and is set via a mutator method in the class and corresponds to
the category selected by the user in the category combo viewer. If the
categoryId and key attribute of any of the Tag in the list are equal, the method
returns “true.”

Example 10-41 Select method of the TopicFilter class

public boolean select(final Viewer viewer,
final Object parentElement,
final Object element) {

boolean found = false;
if (element instanceof Topic) {

final TagList categories =
((Topic) element).getTagList();

Iterator iterator = categories.iterator();
while (iterator.hasNext()&& found == false) {

if (((Tag) iterator.next()).getKey().equals(
categoryId)) {

found = true;
}

}
} else {

found = true; // do not filter Resource object
}
return found;

}

2. Add code to the createControl method of the MyLearningMiniApp class that
adds a selection changed listener for the course combo viewer.

Place the new code directly after the setInput method statement for
taskTreeViewer. The selection listener class, which is an argument-defined
anonymous inner class of type ISelectionChangedListener, manages the
TopicFilter class that was created in step 14 on page 432. The code to add
the selection changed listener is listed in Example 10-42 on page 435.
434 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-42 Category combo viewer selection changed listener (MyLearningMiniApp class)

categoryComboViewer
.addSelectionChangedListener(

new ISelectionChangedListener() {
TopicFilter filter;
IStructuredSelection selection;

public void selectionChanged(
final SelectionChangedEvent event){

selection = (IStructuredSelection)
categoryComboViewer.

getSelection();
// Filters task list according to category
// selections
if (!selection.isEmpty()) {

if (filter == null) {
filter = new TopicFilter();

} else {
topicTreeViewer.

removeFilter(filter);
}

filter.setCategoryId(((Category)
selection
.getFirstElement()).getId());

topicTreeViewer.addFilter(filter);
}

}
});

When a user selects a course from the course combo viewer:

a. The selectionChanged method of the selection listener class in invoked.
As shown in the code in Example 10-42, the method first extracts the
selected element from the category combo viewer and then creates a new
instance of TopicFilter if it does not exist, or removes the current filter from
the topic tree viewer.

b. The selected category (categoryId) is passed to the filter by the
setCategoryId method.

c. The filter is then added to the topicTreeViewer to be used to check if each
element in the tree viewer should be displayed.
 Chapter 10. Building the education framework plug-in 435

3. You can now test the user interface. Use the Eclipse Workbench Run control
to start the plug-in mini-app and note how the interface controls are populated
with the data. Try selecting different categories in the combo viewer labeled
Topic Filter and notice the difference in the topics displayed in the Topic tree
viewer, as shown in Figure 10-4, Figure 10-5, and Figure 10-6 on page 437.

Figure 10-4 User interface with “All Topics” selected from Topic Filter

Figure 10-5 User interface with “Topic B” selected
436 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 10-6 Icons associated with the resources

10.3 Plug-in controller

In this section, we examine the plug-in controller of the MyLearning plug-in.
Within Eclipse-based applications like MyLearning, the control of processing is
largely handled by context menus and actions.

Actions are classes that can be listed as an item on a menu. When the item is
selected in the menu, the run method of the action class is invoked, which
performs the desired processing, usually by utilizing additional classes written to
perform tasks specific to the action.

From a user viewpoint, context menus are available by right-clicking either a topic
or resource element in the topic tree viewer. The menu and available actions,
Assistance and Properties, for a topic element are shown in Figure 10-7.

Figure 10-7 Topic context menu
 Chapter 10. Building the education framework plug-in 437

For a resource element, the available actions in the context menu are Open,
Assistance, and Properties, as shown in Figure 10-8.

Figure 10-8 Resource context menu

The Open action can also be selected by double-clicking a resource element in
the topic tree viewer.

For the MyLearning plug-in, each action opens a new window and displays a set
of data in that window.

� The Assistance action displays Sametime contacts who have been defined as
a contact for assistance on a topic.

� The Properties actions display information about the selected topic or
resource element.

� The Open action opens a url associated with a resource and displays it
content in a browser-like interface.

In this section, we will:

1. Create the Action classes that are used in the MyLearning plug-in.

2. Place those action classes in a context menu that available by right-clicking
elements in the topic tree viewer.

3. Create the classes are invoked by each action class's run method.
438 Extending Sametime 7.5: Building Plug-ins for Sametime

10.3.1 Define the actions

The actions are defined in classes that extend the JFace Actions class. The
name of the action classes, by action, are presented in Table 10-8.

Table 10-8 Classes that extend the JFace Actions class

To define the actions available in the MyLearning plug-in, use the following
procedure:

1. Create a new class named AssistAction that extends Action.

Within the class, create a constructor that takes a TreeViewer as an
argument. The constructor should:

– Copy its input parameter to a private instance variable.

– Use the setEnable method to enable the action.

– Use the setText method to set the text of the action in the menu to
“Assistance.”

This class, and all of the other classes related to action definition and
implementation, are part of the com.ibm.wplc.education.mylearning.ui
package.

Action Action class

Properties (Topic) DescribeTopicAction

Properties (Resource) DescribeResourceAction

Open DisplayAction

Assistance AssistAction
 Chapter 10. Building the education framework plug-in 439

Also, create a no-argument method called run that has private access and
returns void. For now, the run method has an empty method body, as shown
in Example 10-43, but it will be completed later in the procedure.

Example 10-43 AssistAction cpass

public class AssistAction extends Action {

private TreeViewer taskTreeViewer;

AssistAction(final TreeViewer taskTreeViewer) {
this.taskTreeViewer = taskTreeViewer;
setEnabled(true);
setText("Assistance");

}

public void run() {
}

}

2. Repeat step 1 for the action class DisplayAction.

Example 10-44 DisplayAction class

public class DisplayAction extends Action {

private TreeViewer taskTreeViewer;

DisplayAction(final TreeViewer taskTreeViewer) {
this.taskTreeViewer = taskTreeViewer;
setEnabled(true);
setText("Open");

}

public void run() {
}

}

3. Repeat step 1 for the action class DescribeResourceAction, as shown in
Example 10-45 on page 441.
440 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-45 DescribeResourceAction class

public class DescribeResourceAction extends Action {

private TreeViewer treeViewer;

DescribeResourceAction(final TreeViewer treeViewer) {
this.treeViewer = treeViewer;
setEnabled(true);
setText("Properties");

}

public void run() {
}

}

4. Repeat step 1 for the action class DescribeTopicAction, as shown in
Example 10-46.

Example 10-46 DescribeTopicAction class

public class DescribeTopicAction extends Action {

private TreeViewer treeViewer;

DescribeTopicAction(final TreeViewer treeViewer) {
this.treeViewer = treeViewer;
setEnabled(true);
setText("Properties");

}

public void run() {
}

}

5. Create a new method in the MyLearningMiniApp class named createActions,
as shown in Example 10-47. The method has private access, is of type void,
and has no arguments.

Example 10-47 createActions method declaration

private void createActions() {
}

 Chapter 10. Building the education framework plug-in 441

6. Place the call to createActions in the createControl method, just above the
return statement, as shown in Example 10-48.

Example 10-48 createActions method invocations

createActions();

7. In the MyLearningMiniApp class, declare four private variables of type Action
as instance variables.

The variable names are:

– displayAction (representing the Open action)

– describeTopicAction (representing the Properties action for a topic)

– describeResourceAction (representing the Properties action for a
resource)

– assistAction (representing the Assistance action)

Example 10-49 shows the instance variable declarations.

Example 10-49 Action instance variables

private Action displayAction, describeTopicAction,
 describeResourceAction, assistAction;

8. Within the createActions method, create new instances of the Action classes
DisplayAction, DescribeTopicAction, DescribeResourceAction, and
AssistAction, as shown in Example 10-50.

Each class has a single argument, topicTreeViewer, passed to the
constructor.

Example 10-50 Creating new Action classes

displayAction = new DisplayAction(topicTreeViewer);
describeTopicAction = new DescribeTopicAction(topicTreeViewer);
describeResourceAction =
 new DescribeResourceAction(topicTreeViewer);
assistAction = new AssistAction(topicTreeViewer);
442 Extending Sametime 7.5: Building Plug-ins for Sametime

10.3.2 Create the context menu for the TreeViewer viewer

In this section, we will create a context menu manager for the topic TreeViewer.
The menu manager will display a list of available actions in a context menu when
an element in the topic TreeViewer is right clicked. To create the menu manager,
use the following procedures:

1. Create a new method in the MyLearningMiniApp class named
createMenuManager as shown in Example 10-51. The method has private
access, is of type void, and has no arguments.

Example 10-51 createMenuManager method declaration

private void createMenuManager() {
}

2. Place the call to the createMenuManager method in the createControl
method, just above the return statement, but after the createActions
statement.

Example 10-52 createMenuManager method invocation

createMenuManager();

3. In the createMenuManager method, add the code shown in Example 10-53 to
create a context menu to be used in the topic tree viewer.

Example 10-53 Setting up the menu manager

final MenuManager manager = new MenuManager();
final Menu menu = manager.createContextMenu(

topicTreeViewer.getControl());.getControl());
topicTreeViewer.getControl().setMenu(menu);

4. Context menus can be either static or dynamic. Since the set of actions that
are available are different for the two different types of elements (topic and
resource) in the topic tree viewer, we will need to create a dynamic menu that
can determine the current element selection in the viewer and display the
appropriate context menu.
 Chapter 10. Building the education framework plug-in 443

To create a dynamic menu, the menu manager's setRemoveAllWhenShown
method must be used with an argument of true and a menu listener must be
added to the code, as shown in Example 10-54.

Example 10-54 Dynamic context menu construction

manager.setRemoveAllWhenShown(true);
manager.addMenuListener(new IMenuListener() {

public void menuAboutToShow(
final IMenuManager manager) {
final IStructuredSelection selection =

(IStructuredSelection)
topicTreeViewer

.getSelection();

if (selection.getFirstElement() instanceof
 Resource) {

manager.add(displayAction);
manager.add(new Separator());
manager.add(assistAction);
manager.add(new Separator());

manager.add(describeResourceAction);
} else if (selection.getFirstElement()instanceof

Topic) {
manager.add(assistAction);
manager.add(new Separator());
manager.add(describeTopicAction);

}
}

});

From the code in Example 10-54, it can be seen that the selection listener
class is an anonymous argument-defined inner class that implements
IMenuListener. When the user right-clicks a topic TreeViewer element, the
menuAboutToShow method is invoked. The menuAboutToShowMethod
determines the type of the selected element and dynamically constructs the
context menus using the menu manager add method. The Separator class
draws a horizontal line between the action entries in the resulting context
menu.
444 Extending Sametime 7.5: Building Plug-ins for Sametime

5. The Open action is selectable by selecting Open from the topic TreeViewer
context menu or by double-clicking a resource element.

To add the double-click selection capability, a double-click listener is added to
the topic tree viewer (see Example 10-55). The double-click selection listener
class is an anonymous argument-defined inner class that implements
IDoubleClickListener. When an element of the topic TreeViewer is
double-clicked, the doubleClick method is invoked. If the selected element is
of type Resource, the run method of the DisplayAction action is invoked.

Example 10-55 Topic TreeViewer double-click selection listener

// Listen for double clicks on resource in task tree
topicTreeViewer.addDoubleClickListener(new IDoubleClickListener()

{
public void doubleClick(final DoubleClickEvent event) {

if (((IStructuredSelection) event.getSelection())
.getFirstElement() instanceof Resource) {

displayAction.run();
}

}
});

6. The MyLearning plug-in is now ready to be tested to confirm that the context
menus are properly displayed. Right-clicking a topic element in the topic
TreeViewer should display the context menu shown in Figure 10-9.

Figure 10-9 Topic context menu
 Chapter 10. Building the education framework plug-in 445

Right-clicking a resource element in the topic TreeViewer should display the
context menu shown in Figure 10-10.

Figure 10-10 Resource context menu

10.3.3 Create actions

In the previous sections, we created the menus and “stub” action classes. In this
section, we will put code in place to perform the actual processing required by
each action.

The classes and development steps for implementing each of the actions in the
MyLearning plug-in are similar. The actions generally have:

� A class that creates a new window in which to display the action's data. These
classes extend the JFace Windows class. Each class contains a
createContents method, which is where the user interface composite is
defined. The Open and Assistance actions define the composite in separate
classes and these separate classes are then used in the createContents
method.

� Classes that serve as content and label providers for the JFace viewers in the
user interface composite (except for the Open action).

� Supporting classes that provide data structures or processing functions
required by the action.

Note: Nothing will happen when you select one of the actions because the run
method of all the action classes is currently implemented as an empty body.
446 Extending Sametime 7.5: Building Plug-ins for Sametime

Table 10-9 shows the class names for each of the above types of classes by
action. All of these classes are part of the com.ibm.wplc.education.mylearning.ui
package.

Table 10-9 Supporting action classes

For each action, the run method of the associated action class uses the following
pattern of processing:

1. Determines the selected topic or resource element in the topic tree viewer.

2. Obtains parameters to be passed to window creation class constructor,
usually from methods of the selected element's Topic or Resource class.

3. Constructs a new instance of the applicable window creation class.

4. Opens the window.

The following sections will describe the classes used in each of the actions.
Many of the classes have familiar code patterns and artifacts that were explained
earlier in the chapter, so we will focus on examining new aspects of the classes.

Actions Window
creation

Composite
definition

Content and label
providers

Supporting
classes

Properti
es
(Topic)

DescriptionWin
dow

DescriptionWin
dow

DescriptionConten
tProvider

DescriptionLabelPr
ovider

DescriptionTab
le

DescriptionTab
leRow

Properti
es
(Resour
ce)

DescriptionWin
dow

DescriptionWin
dow

DescriptionConten
tProvider

DescriptionLabelPr
ovider

DescriptionTab
le

DescriptionTab
leRow

Assistan
ce

AssistWindow AssistComposi
te

AssistContentProvi
der

AssistLabelProvide
r

PeopleList
PersonHelper

Open DIsplayWindow AssistComposi
te

BrowserComp
osite

AssistContentProvi
der

AssistLabelProvide
r

None
 Chapter 10. Building the education framework plug-in 447

Topic Properties Action
The Properties action for a Topic presents a window with a table of name and
value pairs for the attributes of selected topic, as shown in Figure 10-11.

Figure 10-11 Topic Properties

The only attribute shown for a topic is its description.

To create the Properties action for a topic, use the following procedure:

1. Create the DescriptionWindow class and add the code for the class, as shown
in Example 10-56.

Example 10-56 DescriptionWindow class

/**
 *
 */
package com.ibm.wplc.education.mylearning.ui;

import org.eclipse.jface.viewers.ColumnWeightData;
import org.eclipse.jface.viewers.TableLayout;
import org.eclipse.jface.viewers.TableViewer;
import org.eclipse.jface.window.Window;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Shell;
import org.eclipse.swt.widgets.Table;
import org.eclipse.swt.widgets.TableColumn;
/*
 * Displays window for properties action
 */
final class DescriptionWindow extends Window {

private DescriptionTable description;

private static final int WIDTH = 300;
private static final int HEIGHT = 200;
448 Extending Sametime 7.5: Building Plug-ins for Sametime

private String label;

DescriptionWindow(final DescriptionTable desc, final String label) {
super((Shell) null);
setLabel(label);
setDescription(desc);

}

public Control createContents(final Composite parent) {
final Shell shell = parent.getShell();
shell.setLayout(new FillLayout());
shell.setSize(WIDTH, HEIGHT);
shell.setText(getLabel());

final Composite comp = new Composite(parent, SWT.NONE);
comp.setLayout(new FillLayout());
final Table table = new Table(comp, SWT.MULTI | SWT.READ_ONLY);
final TableLayout layout = new TableLayout();
table.setLayout(layout);
table.setLinesVisible(true);
table.setHeaderVisible(true);

layout.addColumnData(new ColumnWeightData(5, 50, false));
final TableColumn colLeft = new TableColumn(table, SWT.NONE);
colLeft.setAlignment(SWT.LEFT);
colLeft.setText("Name");

layout.addColumnData(new ColumnWeightData(5, 200, true));
final TableColumn colRight = new TableColumn(table, SWT.NONE);
colRight.setAlignment(SWT.LEFT);
colRight.setText("Value");

final TableViewer descTable = new TableViewer(table);
descTable.setContentProvider(new DescriptionContentProvider());
descTable.setLabelProvider(new DescriptionLabelProvider());
descTable.setInput(getDescription());

return comp;
}

private DescriptionTable getDescription() {
return description;

}

 Chapter 10. Building the education framework plug-in 449

private void setDescription(DescriptionTable desc) {
this.description = desc;

}

private String getLabel() {
return label;

}

private void setLabel(String label) {
this.label = label;

}

}

The first parameter of the class constructor is a DescriptionTable, which is a
class that contains a table of attributes. The first column of the table contains
the name of the attribute and the second column of the table contains the
value of the attribute. The second parameter is the label of the topic, which is
used as the window's title text.

The createContents method creates a Table control. The ColumnWeightData
class permits the relative widths of the columns to be defined in the table
layout. Columns are created with the TableColumn class and incorporated
into the table layout. Methods setText and setAlignment in the TableColumn
class allow for specification and alignment of the text in the column headers.

A TableViewer is then created from the Table control. The input source is the
DescriptionTable that was obtained as the first argument of the
DescriptionWindow's constructor. The table viewer's content provider and
label provider are covered in the next steps of the procedure.

2. Create the DescriptionContentProvider class and add the code to the class,
as shown in Example 10-57.

Example 10-57 DescriptionContentProvider class

/**
 *
 */
package com.ibm.wplc.education.mylearning.ui;

import org.eclipse.jface.viewers.IStructuredContentProvider;
import org.eclipse.jface.viewers.Viewer;

/*
450 Extending Sametime 7.5: Building Plug-ins for Sametime

 * Content provider for description table viewer
 */

final class DescriptionContentProvider implements
IStructuredContentProvider {

public void dispose() {
}

public Object[] getElements(final Object inputElement) {
return ((DescriptionTable) inputElement).getTableRow();

}

public void inputChanged(final Viewer viewer, final Object
oldElement, final Object newElement) {

}
}

This content provider is much like others we have looked at this chapter. The
getElements method uses the getTablesRow method of DescriptionTable to
return an array of DescriptionTableRow.

3. Create the DescriptionLabelProvider class and add the code to the class, as
shown in Example 10-58.

Example 10-58 DescriptionLabelProvider class

/**
 *
 */
package com.ibm.wplc.education.mylearning.ui;

import org.eclipse.jface.viewers.ITableLabelProvider;

import org.eclipse.jface.viewers.LabelProvider;
import org.eclipse.swt.graphics.Image;

/*
 * Label provider for description table viewer
 */

final class DescriptionLabelProvider extends LabelProvider implements
ITableLabelProvider {

public Image getColumnImage(final Object element, final int col) {
return null;

}

 Chapter 10. Building the education framework plug-in 451

public String getColumnText(final Object element, final int col) {
String text = "";
if (col == 0) {

text = ((DescriptionTableRow) element).getName();
} else if (col == 1) {

String s = ((DescriptionTableRow) element).getValue();
// Values defined as #IMPLIED in the DTD may be null, so

convert to blank
text = (s == null) ? " " : s;

}
return text;

}
}

This variant of this label provider is slightly different than the ones we have
seen before. Since the input element is a table, the getColumnText method
contains a column parameter (col), which the method uses to determine
whether it should use the getName or getValue method of
DescriptionTableRow class.

4. Create the DescriptionTable class and add the code to the class, as shown in
Example 10-59.

This class represents a table as an array of DescriptionTableRow.

Example 10-59 DescriptionTable class

/**
 *
 */
package com.ibm.wplc.education.mylearning.ui;

import org.eclipse.jface.viewers.IStructuredContentProvider;
import org.eclipse.jface.viewers.Viewer;

/*
 * Content provider for description table viewer
 */

final class DescriptionContentProvider implements
IStructuredContentProvider {

public void dispose() {
}

public Object[] getElements(final Object inputElement) {
return ((DescriptionTable) inputElement).getTableRow();
452 Extending Sametime 7.5: Building Plug-ins for Sametime

}

public void inputChanged(final Viewer viewer, final Object
oldElement, final Object newElement) {

}
}

5. Create the DescriptionTableRow class and the code to the class, as shown in
Example 10-60.

Example 10-60 DescriptionTableRow class

/**
 *
 */
package com.ibm.wplc.education.mylearning.ui;

import org.eclipse.jface.viewers.ITableLabelProvider;

import org.eclipse.jface.viewers.LabelProvider;
import org.eclipse.swt.graphics.Image;

/*
 * Label provider for description table viewer
 */

final class DescriptionLabelProvider extends LabelProvider implements
ITableLabelProvider {

public Image getColumnImage(final Object element, final int col) {
return null;

}

public String getColumnText(final Object element, final int col) {
String text = "";
if (col == 0) {

text = ((DescriptionTableRow) element).getName();
} else if (col == 1) {

String s = ((DescriptionTableRow) element).getValue();
// Values defined as #IMPLIED in the DTD may be null, so

convert to blank
text = (s == null) ? " " : s;

}
return text;

}
}

 Chapter 10. Building the education framework plug-in 453

This class represents a (name, value) pair as a row with methods to return the
name (getName) or value (getValue) of the pair.

6. Complete the run method of the DescriptionTopicAction class, as shown in
Example 10-61.

Example 10-61 Run method of the DescriptionTopicAction class

package com.ibm.wplc.education.mylearning.ui;

import org.eclipse.jface.action.Action;
import org.eclipse.jface.viewers.IStructuredSelection;
import org.eclipse.jface.viewers.TreeViewer;

import com.ibm.wplc.education.mylearning.model.Topic;

/*
 * Action to display properties table of a Topic
 */

public class DescribeTopicAction extends Action {

private TreeViewer treeViewer;

DescribeTopicAction(final TreeViewer treeViewer) {
this.treeViewer = treeViewer;
setEnabled(true);
setText("Properties");

}

public void run() {
final IStructuredSelection selection = (IStructuredSelection)

treeViewer
.getSelection();

if (!selection.isEmpty()) {
final Topic task = (Topic) selection.getFirstElement();
final DescriptionWindow window = new DescriptionWindow(

new DescriptionTable(
new DescriptionTableRow[] { new

DescriptionTableRow(("Description"), task.getDescription()) }),
task.getLabel());

window.open();
}

}

454 Extending Sametime 7.5: Building Plug-ins for Sametime

}

The run method obtains the selected topic and creates a new instance of the
DescriptionWindow class.

The first parameter of the DescriptionWindow constructor is a new instance of
DescriptionTable, with one new instance of DescriptionTableRow. The
constructor of DescriptionTableRow sets the name component of the row as a
String literal “Description” and sets the value component of the row as the
return value from the getDescription method of the selected Topic element.

The second parameter of the DescriptionWindow constructor is obtained from
the getLabel method of the selected Topic element.

After the DescriptionWindow is created, it is opened with the open method.

7. Test the new action. The Properties window (shown for Topic B) should look
like Figure 10-12.

Figure 10-12 Topic B Properties window

Resource Properties action
The Properties action for a Resource presents a window with a table containing
name and value pairs for the attributes of selected resource, as shown in
Figure 10-13.

Figure 10-13 Resource Properties window
 Chapter 10. Building the education framework plug-in 455

The Resource Properties actions uses most of the same components as the
Topic Properties action. Only the DescriptionResourceAction class is unique to
the Resource Properties action. To create the Properties action for a resource,
use the following procedure:

1. Complete the run method of the DescriptionResourceAction class, as shown
in Example 10-62.

Example 10-62 Run method of DescriptionResourceAction class

public void run() {
final IStructuredSelection selection = (IStructuredSelection)

treeViewer
.getSelection();

if (!selection.isEmpty()) {
final Resource resource = (Resource)

selection.getFirstElement();
final DescriptionWindow window = new DescriptionWindow(

new DescriptionTable(
new DescriptionTableRow[] {

new DescriptionTableRow("Description",
resource.getDescription()),

new DescriptionTableRow("Level",
resource.getLevel()),

new DescriptionTableRow("Type",
resource.getType()),

new DescriptionTableRow("Author",
//$NON-NLS-1$

resource.getAuthor()) }),
resource.getLabel());

window.open();

}
}

The run method obtains the selected resource and creates a new instance of
the DescriptionWindow class.

The first parameter of the DescriptionWindow constructor is a new instance of
DescriptionTable consisting of multiple DescriptionTableRow in an array. For
each element in the DescriptionTableRow array, the constructor of
DescriptionTableRow sets the name component of the row as a String literal
and sets the value component of the row as the return value from a
corresponding accessor method of the selected Resource element.

The second parameter of the constructor is obtained from the getLabel
method of the selected Topic element.
456 Extending Sametime 7.5: Building Plug-ins for Sametime

After the DescriptionWindow is created, it is opened with the open method.

2. Test the new action. The Properties window for a resource should look like the
Figure 10-14.

Figure 10-14 Topic B Properties window test

Assistance action
The Assistance action presents a window that contains a list of people who are
identified as assistance providers for a particular topic. The action is available
both from the resource and topic context menus. The action is also available from
a resource. In this instance, the assistance providers are taken from the
resource's parent topic.

When a user is selected from the assistance provider list, their business card is
displayed, as shown in Figure 10-15.

Figure 10-15 Assistance provider business card

Notice that the Sametime status icon displays next to the assistance providers
contact ID. This status indicator represents the person's current Sametime
status, not just the status that was available when the Assistance action was first
selected. Changes to a person's Sametime status are immediately reflected in
the status icon.

Right-clicking a selected contact displays a Sametime context menu with
available actions, such as start chat, send announcement, and compose e-mail
targeted to the selected contact.
 Chapter 10. Building the education framework plug-in 457

To create the Assistance action use the following procedure:

1. Create an interface called IAssist, as shown in Example 10-63.

Example 10-63 IAssist interface

package com.ibm.wplc.education.mylearning.ui;

import com.ibm.wplc.education.mylearning.model.Topic;

public interface IAssist {
public Topic getTopic();

}

2. Change the class declaration of the Resource class so that it implements the
IAssist interface, as shown in Example 10-64.

The Resource class already has a getTopic method defined, so no additional
changes are required for the class to meet the interface contract.

Example 10-64 IAssist implemented by Resource

public class Resource implements ILabel, IAssist {

3. Change the class declaration of the Topic class so that it implements the
IAssist interface. Add a getTopic method to the Topic class so that it conforms
to the interface contract class, as shown in Example 10-65.

Example 10-65 IAssist implemented by Topic

public class Topic implements ILabel, IAssist {

public Topic getTopic() {
return this;

}

With the IAssist interface implemented by Resource and Topic, we can obtain
the topic associated with a selected element in the topic TreeViewer with the
interface's getTopic method, regardless of whether the element has a base
type of Resource or Topic.

4. Create a PeopleList class to represent a list that is type-aware of
com.ibm.collaboration.realtime.people.Person, which is the class used to
represent a Sametime contact. Model the list after a class such as
CategoryList. Example 10-66 on page 459 shows the complete PeopleList
class.
458 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-66 PeopleList class

package com.ibm.wplc.education.mylearning.ui;
/*
 * Type-sensitive array list of IPerson
 */

import java.util.ArrayList;
import java.util.Iterator;

import com.ibm.collaboration.realtime.people.Person;

public class PeopleList {

private ArrayList list = new ArrayList();

public void add(Person people) {
list.add(people);

}
public Person get(int index) {

return (Person) list.get(index);
}

public int size() {
return list.size();

}

public Person[] toArray(Person[] array) {
return (Person[]) list.toArray(array);

}

public void clear() {
list.clear();

}

public Iterator iterator() {
return list.iterator();

}
}

 Chapter 10. Building the education framework plug-in 459

5. Create the AssistWindow class and add the code for the class, as shown in
Example 10-67.

Example 10-67 AssistWindow class

/**
 *
 */
package com.ibm.wplc.education.mylearning.ui;

import org.eclipse.jface.window.Window;
import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Color;
import org.eclipse.swt.graphics.RGB;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Shell;

/*
 * Displays the Assistance window
 */

final class AssistWindow extends Window {

private final static int WIDTH = 580;

private final static int HEIGHT = 240;

private String label;

private String topic;

private String course;

private PeopleList people;

AssistWindow(final IAssist assist, final PeopleList people) {
super((Shell) null);
setLabel(assist.getTopic().getLabel());
setPeople(people);
setCourse(assist.getTopic().getCourseDescriptor().getLabel());
setTopic(assist.getTopic().getLabel());

}

460 Extending Sametime 7.5: Building Plug-ins for Sametime

public Control createContents(final Composite parent) {

final Shell shell = parent.getShell();
shell.setLayout(new FillLayout());
shell.setText(getLabel());
shell.setSize(WIDTH, HEIGHT);

final Composite comp = new Composite(parent, SWT.NONE);
comp.setLayout(new FillLayout());

// Set background to Lotus Yellow
comp.setBackgroundMode(SWT.INHERIT_DEFAULT);

 Color bgColor = new Color(comp.getDisplay(), new RGB(255, 204,
0));

 comp.setBackground(bgColor);
 bgColor.dispose();

// Assistance form
new AssistComposite(comp, SWT.NONE, getPeople(), getCourse(),

getTopic());
// bgImage.dispose();

return comp;
}

private String getLabel() {
return label;

}

private void setLabel(final String label) {
this.label = label;

}

private PeopleList getPeople() {
return people;

}

private void setPeople(final PeopleList people) {
this.people = people;

}

private String getCourse() {
return course;

}

private void setCourse(final String course) {
 Chapter 10. Building the education framework plug-in 461

this.course = course;
}

private String getTopic() {
return topic;

}

private void setTopic(final String topic) {
this.topic = topic;

}
}

The constructor's first argument is of type IAssist and represents the selected
Topic or Resource in the topic TreeViewer, and the second argument is of
type PeopleList and represents the contact IDs for the selected element.

The createContents class creates a new instance of AssistComposite which
is where the user interface controls are defined, as explained in step 6.

6. Create the AssistComposite class.

The class constructor takes the following arguments:

– The parent composite

– The composite style flag (SWT.NONE)

– A PeopleList of those who can provide assistance

– The course name

– The topic name

The constructor sets instance variables from the constructor arguments and
calls a private method createLayout, which contains the definitions of the user
interface.

The code in the first part of the createLayout method sets a background and
creates several Label and Text widgets to display instructions, the course
name, and the topic. The remainder of the code is more interesting and deals
primarily with managing the Sametime contact list and the business card.

The class hierarchy of the MyBusinessCard class includes the SWT Control
class, so it can be created and laid out like any other control, as shown in
Example 10-68.

Example 10-68 Creating a MyBusinessCard instance

// Setup business card
final MyBusinessCard card = new MyBusinessCard(this,

MyBusinessCard.DIRECTORY_INFO | MyBusinessCard.IMAGE
| MyBusinessCard.LIVENAME);
462 Extending Sametime 7.5: Building Plug-ins for Sametime

data = new FormData();
data.top = new FormAttachment(topicText, 10);
data.left = new FormAttachment(assistTable, 10);
data.right = new FormAttachment(100, -10);
card.setLayoutData(data);

The TableViewer shown in Example 10-69 displays the list of assistance
contact names. The input source is the PeopleList that was an argument to
the AssistComposite class constructor. The viewer's content provider is
AssistContentProvider and the label provider is AssistLabelProvider; both are
explained later in this procedure.

Example 10-69 TableViewer

// Setup table of names that can provide assistance
final TableViewer assistTableViewer = new TableViewer(assistTable);
assistTableViewer.setContentProvider(new AssistContentProvider());
assistTableViewer.setLabelProvider(new AssistLabelProvider());
assistTableViewer.setInput(getPeople());

To obtain data about a contact person that can be placed in their business
card, the Sametime directory is used. To use the directory, we first need to
obtain a reference to the Sametime directory service, as shown in
Example 10-70. This sequence of code starts with a reference to a static
method getCommunity in class PersonHelper. The PersonHelper class
contains a set of Sametime-related utility methods and will be shown later in
this procedure.

Example 10-70 Obtaining a Directoryservice instance

// Get directory service to use to obtain image url for a selected
// user
final Community community = PersonHelper.getCommunity();
final DirectoryServiceFactory factory = (DirectoryServiceFactory)
community

.getService(DirectoryServiceFactory.SERVICE_TYPE);
final RtcSession rtcSession = community.getRtcSession();
final DirectoryService directoryService = factory

.getDirectoryService(rtcSession);
 Chapter 10. Building the education framework plug-in 463

The next section of code, shown in Example 10-71 defines a named
(LookupHandler) inner class that is used as a user information lookup
handler. When this class is installed as a lookup event handler, the
handleUserInfoLookupEvent method is executed whenever there is a request
to look up user information. The code in the handleUserInfoLookupEvent
method finds a contact's directory information and obtains the URL to the
person's image, which it then sets into the business card so the image can be
retrieved and displayed.

Example 10-71 LookupHandler class

// Lookup handler class for directory services user lookups
class LookupHandler implements UserLookupListener {

public void handleUserInfoLookupEvent(
final UserInfoLookupEvent event) {

if (event.getType() == UserInfoLookupEvent.USERINFO_SUCCEEDED)
{

final ContactInfo contact = event.getUserInfo();
final DirectoryInfo dirInfo = contact

.getDirectoryInfo();
if (dirInfo != null) {

String imagePath = (String) dirInfo
.get(DirectoryInfo.IMAGE_PATH);

if (imagePath != null) {
// point to picture url for business card
card.setImageUrl(imagePath);

}
}

}
}

}

In the next segment of code, shown in Example 10-72 on page 465, we set a
selection changed event handler on the assistance table viewer. As in
previous instances of setting event handlers on JFace viewers, the handler is
an argument-defined anonymous inner class that has the same general
execution pattern as other selections changed event handlers we have
examined.

When a selection is made in the assistance table, the selectionChanged
method in the handler runs.

a. First, the selected element (type Person) is extracted. We now get to use
the directory service reference we obtained earlier to invoke its
addUserInfoLookupListener method to add a user lookup listener. The
handler for the listener is the LookupHandler class previously defined as a
named inner class.
464 Extending Sametime 7.5: Building Plug-ins for Sametime

b. Next, the directory service queryUserAttributes method is issued with a
request to obtain the person's image path. The invocation of the
queryUserAttributes method causes the handlerUserInfoLookupEvent
method in LookupHandler to run, as described above. The directory
service user lookup listener is then removed and the selected person from
the assist table viewer is set into the business card.

Example 10-72 Assistance section changed listener

assistTableViewer
.addSelectionChangedListener(new ISelectionChangedListener() {

IStructuredSelection selection;
public void selectionChanged(

final SelectionChangedEvent event) {
selection = (IStructuredSelection) assistTableViewer

.getSelection();
if (!selection.isEmpty()) {

final Person person = (Person) selection
.getFirstElement();

// Lookup image path for selected user and
// set on card (done by lookup handler class).
final LookupHandler lookupHandler = new LookupHandler();
directoryService

.addUserInfoLookupListener(lookupHandler);
directoryService

.queryUserAttributes(
person.getContactId(),
new String[] { DirectoryInfo.IMAGE_PATH });

directoryService
.removeUserInfoLookupListener(lookupHandler);

// Setup business card for current person
card.setPerson(person);
card.setShowExtraInfo(false);

}
}

});
 Chapter 10. Building the education framework plug-in 465

The final code segment (Example 10-73) sets the initial selection of the assist
table viewer to the first person in the list and sets up the Sametime LiveName
context menu with the PersonHelper.getContextMenu method. The context
menu allows a variety of Sametime actions, such as starting a chat, sending
an announcement, or composing an e-mail for the person selected in the
assist table viewer.

Example 10-73 Setting the initial selection for Assistance table

// Set default assistance provider user (first in table)
assistTableViewer.setSelection(new StructuredSelection(getPeople()

.get(0)), true);

// Setup Live Name context menu (same as used in Sametime
PersonHelper.getContextMenu(assistTable, assistTableViewer);

7. Create the AssistContentProvider class and add the code shown in
Example 10-74 to the class.

Example 10-74 AssistContentProvider class

/**
 *
 */
package com.ibm.wplc.education.mylearning.ui;
/*
 * Content provider for Topics tree list viewer
 */

import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import java.util.Iterator;

import org.eclipse.jface.viewers.IStructuredContentProvider;
import org.eclipse.jface.viewers.StructuredViewer;
import org.eclipse.jface.viewers.Viewer;
import org.eclipse.swt.widgets.Control;

import com.ibm.collaboration.realtime.people.Person;

final class AssistContentProvider implements
IStructuredContentProvider,

PropertyChangeListener {

private StructuredViewer viewer;
466 Extending Sametime 7.5: Building Plug-ins for Sametime

public void dispose() {
}

public Object[] getElements(final Object inputElement) {
int arraySize = ((PeopleList) inputElement).size();
Person[] personArray = new Person[arraySize];
return ((PeopleList) inputElement).toArray(personArray);

}

public void inputChanged(final Viewer viewer, final Object
oldElement,

final Object newElement) {
// Add or remove property listensers for each person PeopleList
this.viewer = (StructuredViewer) viewer;
if (oldElement != newElement) {

if (oldElement != null) {
Iterator it = ((PeopleList) oldElement).iterator();
while (it.hasNext()) {

Person person = (Person) it.next();
if (person != null) {

person.removePropertyChangeListener(this);
}

}
}
if (newElement != null) {

Iterator it = ((PeopleList) newElement).iterator();
while (it.hasNext()) {

Person person = (Person) it.next();
if (person != null) {

person.addPropertyChangeListener(this);
}

}
}

}
}

public void propertyChange(final PropertyChangeEvent event) {
// Refresh view when any person property changes
Control ctrl = viewer.getControl();
if ((ctrl != null) && !ctrl.isDisposed()) {

ctrl.getDisplay().asyncExec(new Runnable() {
public void run() {

viewer.refresh();
}

});
 Chapter 10. Building the education framework plug-in 467

}
}

}

This content handler is different from the ones we have examined so far. All of
the previous content handlers assumed the data input source was static, but
this handler is designed to handle changes that are made to the data source.
The mostly likely change to the viewer's elements (type Person) is a change
in Sametime status.

In all other content providers, the inputChanged method had an empty
method body, but in this one, the implementation is fully coded to handle input
source changes through the use of property change listeners. To provide the
property change listener capability, this content provider implements the
PropertyChangeListener interface.

The inputChanged method is first run when the setInput method of the viewer
is run. At that time, oldElement is null, so the code iterates through
newElement (the PeopleList data source) to get each Person instance in the
list and add a property change listener to each person with the
addPropertyChangeListener method of the Person class. The this argument
in the addPropertyChangeListener specifies that the existing instance of the
AssistContentProvider serves as the handler class for the property change
listener.

When a property change event fires (such as a change in a person's
Sametime status), the propertyChange method runs, invoking the refresh
method of the viewer. This causes the data input source to be reread.

When the method is about to be disposed, newElement is null, so the code
iterates through oldElement (the PeopleList data source) to get each Person
instance in the list and removes the property change listener from each
person with the removePropertyChangeListener method of the Person class.

8. Create the AssistLabelProvider class and add the code shown in
Example 10-75 to the class.

Example 10-75 AssistLabelProvider class

/**
 *
 */
package com.ibm.wplc.education.mylearning.ui;

import java.net.URL;
import java.util.HashMap;
import java.util.Map;
468 Extending Sametime 7.5: Building Plug-ins for Sametime

import org.eclipse.core.runtime.FileLocator;
import org.eclipse.core.runtime.Path;
import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.jface.viewers.ILabelProvider;
import org.eclipse.jface.viewers.LabelProvider;
import org.eclipse.swt.graphics.Image;

import com.ibm.collaboration.realtime.people.Person;

/*
 * Label provider for Assistance table
 */

final class AssistLabelProvider extends LabelProvider implements
ILabelProvider{

Image image;

public static final Map STATUS_ICON_PATH_TABLE;

static {
// Map status to icon path
STATUS_ICON_PATH_TABLE = new HashMap(12);

STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_DND), new
Path(

"images/ST_Awns_DND.png"));
STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_DND_MOBILE),

new Path("images/ST_Awns_DND.png"));
STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_IN_MEETING),

new Path("images/ST_Awns_InAMtng.png"));
STATUS_ICON_PATH_TABLE.put(new

Integer(Person.STATUS_IN_MEETING_MOBILE),
new Path("images/ST_Awns_InAMtng.png"));

STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_INVALID),
new Path("images/ST_Awns_Offline.png"));

STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_NOT_USING),
new Path("images/ST_Awns_Offline.png"));

STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_OFFLINE),
new Path("images/ST_Awns_Offline.png"));

STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_ONLINE),
new Path("images/ST_Awns_Active.png"));

STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_OVER_LIMIT),
new Path("images/ST_Awns_Offline.png"));
 Chapter 10. Building the education framework plug-in 469

STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_UNKNOWN),
new Path("images/ST_Awns_Offline.png"));

STATUS_ICON_PATH_TABLE.put(new Integer(Person.STATUS_AWAY), new
Path(

"images/ST_Awns_Away.png"));
STATUS_ICON_PATH_TABLE.put(new

Integer(Person.STATUS_AWAY_MOBILE),
new Path("images/ST_Awns_Away.png"));

};

public Image getImage(final Object element) {

Image icon = null;
final ImageDescriptor id = ImageDescriptor

.createFromURL(getIconUrl(((Person) element).getStatus()));
icon = id.createImage();
setImage(icon);
return icon;

}

public String getText(final Object element) {
return ((Person) element).getDisplayName();

}

public void dispose() {
super.dispose();
if (getImage() != null) {

getImage().dispose();
}

}

private URL getIconUrl(final int statusCode) {
URL url = null;
final Integer key = new Integer(statusCode);
if (STATUS_ICON_PATH_TABLE.containsKey(key)) {

url =
FileLocator.find(MyLearningPlug-in.getDefault().getBundle(),

(Path) STATUS_ICON_PATH_TABLE.get(key), null);
} else {

url =
FileLocator.find(MyLearningPlug-in.getDefault().getBundle(), new Path(

"images/ST_Awns_Offline.png"), null);
}
return url;

}

470 Extending Sametime 7.5: Building Plug-ins for Sametime

private Image getImage() {
return image;

}

private void setImage(Image image) {
this.image = image;

}
}

This label provider is much like others we have examined in the chapter. The
provider handles both text and images. Text for display is extracted from the
Person element with the getDisplayName method. Images are selected
according to the value of the getStatus method.

9. Create the PersonHelper class and add the code to the class shown in
Example 10-76.

Example 10-76 PersonHelper class

package com.ibm.wplc.education.mylearning.ui;

/*
 * Methods that use the Sametime Community, Person, and LiveNames APIs
 */

import java.util.Iterator;

import org.eclipse.core.runtime.IStatus;
import org.eclipse.core.runtime.Status;
import org.eclipse.jface.viewers.ISelectionProvider;
import org.eclipse.swt.widgets.Control;

import com.ibm.collaboration.realtime.im.community.Community;
import com.ibm.collaboration.realtime.im.community.CommunityService;
import com.ibm.collaboration.realtime.people.PeopleService;
import com.ibm.collaboration.realtime.people.Person;
import com.ibm.collaboration.realtime.servicehub.ServiceException;
import com.ibm.collaboration.realtime.servicehub.ServiceHub;
import com.ibm.rcp.realtime.livenames.LiveNameContextMenu;
import com.ibm.rcp.realtime.livenames.LiveNameService;
import com.ibm.wplc.education.mylearning.model.Contact;
import com.ibm.wplc.education.mylearning.model.ContactList;

public class PersonHelper {
 Chapter 10. Building the education framework plug-in 471

static Community getCommunity() {
Community community = null;
try {

final CommunityService communityMgr = (CommunityService)
ServiceHub

.getService(CommunityService.SERVICE_TYPE);
community = communityMgr.getDefaultCommunity();

} catch (final ServiceException e) {
StackTraceElement[] st = e.getStackTrace();
String className = st[0].getClassName();
final String message = "ServiceException detected in

getCommunity() in class "
+ className;

final Status status = new Status(IStatus.ERROR,
MyLearningPlug-in

.getDefault().getBundle().getSymbolicName(),
IStatus.ERROR,

message, e);
MyLearningPlug-in.getDefault().getLog().log(status);

}
return community;

}

static void getContextMenu(final Control control,
final ISelectionProvider provider) {

try {
final LiveNameService svc = (LiveNameService) ServiceHub

.getService(LiveNameService.SERVICE_TYPE);
final LiveNameContextMenu liveNamesMenu = svc

.createLiveNameContextMenu();
liveNamesMenu.registerContextMenu(control, provider,

MyLearningMiniApp.getInstance().getSite());
} catch (final Exception e) {

StackTraceElement[] st = e.getStackTrace();
String className = st[0].getClassName();
final String message = "ServiceException detected in

getContextMenu() in class "
+ className;

final Status status = new Status(IStatus.ERROR,
MyLearningPlug-in

.getDefault().getBundle().getSymbolicName(),
IStatus.ERROR,

message, e);
MyLearningPlug-in.getDefault().getLog().log(status);

}

472 Extending Sametime 7.5: Building Plug-ins for Sametime

}

static PeopleList getDisplayPeople(final IAssist topic) {
final PeopleList pList = new PeopleList();
final ContactList idList = topic.getTopic().getContactList();
final Iterator iterator = idList.iterator();
while (iterator.hasNext()) {

final Person p = getPerson(((Contact)
iterator.next()).getEmail());

pList.add(p);
}
return pList;

}

private static PeopleService getPeopleService() {
PeopleService peopleService = null;
try {

peopleService = (PeopleService) ServiceHub
.getService(PeopleService.SERVICE_TYPE);

} catch (final ServiceException e) {
StackTraceElement[] st = e.getStackTrace();
String className = st[0].getClassName();
final String message = "ServiceException detected in

getPeopleService() in class " + className; //$NON-NLS-1$
final Status status = (new Status(IStatus.ERROR,

MyLearningPlug-in
.getDefault().getBundle().getSymbolicName(),

IStatus.ERROR,
message, e));

MyLearningPlug-in.getDefault().getLog().log(status);
}
return peopleService;

}

private static Person getPerson(final String id) {
Person p = null;
final Community community = getCommunity();
if (null != community) {

p = getPeopleService().getPerson(id, community.getId());
}
return p;

}

}

 Chapter 10. Building the education framework plug-in 473

This class is a collection of static utility methods primarily dealing with
Sametime services. The primary purposes of this class are to hide the details
of Sametime services from the referencing classes, such as AssistComposite,
and to consolidate all Sametime specific classes in one location. The class
has three default-access static methods:

– getCommunity returns the Sametime community service and is used by
AssistComposite.

– getContextMenu returns the Sametime context menu for a given Control
and ISelectionProvider and is used by AssistComposite.

– getDisplayPeople returns a PeopleList for a given IAssist and is used by
AssistAction.

10.Complete the run method of the AssistAction class, as shown in
Example 10-77.

Example 10-77 AssistAction class

package com.ibm.wplc.education.mylearning.ui;

import org.eclipse.jface.action.Action;
import org.eclipse.jface.viewers.IStructuredSelection;
import org.eclipse.jface.viewers.TreeViewer;

/*
 * Action to display list of help providers for a topic
 */

public class AssistAction extends Action {

private TreeViewer taskTreeViewer;

AssistAction(final TreeViewer taskTreeViewer) {
this.taskTreeViewer = taskTreeViewer;
setEnabled(true);
setText("Assistance");

}

public void run() {

Note: Several methods throw the ServiceException exception. The Status
class serves as a container for error and exception details. Messages
constructed with status are then written to the plug-in's log.
474 Extending Sametime 7.5: Building Plug-ins for Sametime

final IStructuredSelection selection = (IStructuredSelection)
taskTreeViewer

.getSelection();
if (!selection.isEmpty()) {

final IAssist assist = (IAssist) selection.getFirstElement();
final AssistWindow window = new AssistWindow(assist,

PersonHelper.getDisplayPeople(assist));
window.open();

}
}

}

The run method obtains the selected IAssist element and creates a new
instance of the AssistWindow class. The first parameter of the
DescriptionWindow constructor is the selected element and the second
parameter is the PeopleList for the selected element obtained by method
PersonGelp.getDisplayPeople. After the new instance of AssistWindow is
created, it is opened.
 Chapter 10. Building the education framework plug-in 475

Open action
The Open action displays the content identified by the url attribute of a selected
resource.

The output is presented in a two tabbed display, as shown in Figure 10-16. The
first tab, labeled Browser, displays the actual content. The second tab, labeled
Assistance, displays the same information as the Assistance action for the
resource.

Figure 10-16 Learning content display

To complete the Open action, use the following procedure:

1. Create the DisplayWindow class and add the code for the class shown in
Example 10-78 on page 477.
476 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 10-78 DisplayWindow class

/**
 *
 */
package com.ibm.wplc.education.mylearning.ui;

import org.eclipse.jface.window.Window;
import org.eclipse.swt.SWT;
import org.eclipse.swt.custom.CTabFolder;
import org.eclipse.swt.custom.CTabItem;
import org.eclipse.swt.graphics.Color;
import org.eclipse.swt.graphics.RGB;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Shell;

import com.ibm.wplc.education.mylearning.model.Resource;

final class DisplayWindow extends Window {

private final static int HEIGHT = 600;

private final static int WIDTH = 600;

private String url, label, course, topic;

private PeopleList people;

DisplayWindow(final Resource resource,
final PeopleList people) {

super((Shell) null);
setUrl(resource.getUrl());
setLabel(resource.getLabel());
setPeople(people);
setCourse(resource.getTopic().getCourseDescriptor().getLabel());
setTopic(resource.getTopic().getLabel());

}

public Control createContents(final Composite parent) {

final Shell shell = parent.getShell();
shell.setLayout(new FillLayout());
 Chapter 10. Building the education framework plug-in 477

shell.setText(getLabel());
shell.setSize(WIDTH, HEIGHT);

final Composite comp = new Composite(parent, SWT.NONE);
comp.setLayout(new FillLayout());

// Set background to Lotus Yellow
comp.setBackgroundMode(SWT.INHERIT_DEFAULT);

 Color bgColor = new Color(comp.getDisplay(), new RGB(255, 204,
0));

 comp.setBackground(bgColor);
 bgColor.dispose();

// Setup tab folders (with curved tabs)
final CTabFolder tabFolder = new CTabFolder(comp, SWT.NONE);
tabFolder.setSimple(false);

// Setup browser tab
final CTabItem browserTab = new CTabItem(tabFolder, SWT.BORDER);
browserTab.setText("Browser"); //$NON-NLS-1$
final Composite browserComp = new Composite(tabFolder, SWT.NONE);
browserComp.setLayout(new FillLayout());

// Browser Form
new BrowserComposite(browserComp, SWT.NONE, getUrl());
browserTab.setControl(browserComp);

// Assistance tab
final CTabItem collabTab = new CTabItem(tabFolder, SWT.BORDER);
collabTab.setText("Assistance"); //$NON-NLS-1$
final Composite collabComp = new Composite(tabFolder,

SWT.BORDER);
collabComp.setLayout(new FillLayout());

// Assistance form
new AssistComposite(collabComp, SWT.NONE, getPeople(),

getCourse(), getTopic());
collabTab.setControl(collabComp);

return comp;
}

private String getCourse() {
return course;

}

478 Extending Sametime 7.5: Building Plug-ins for Sametime

private void setCourse(String course) {
this.course = course;

}

private String getLabel() {
return label;

}

private void setLabel(String label) {
this.label = label;

}

private PeopleList getPeople() {
return people;

}

private void setPeople(PeopleList people) {
this.people = people;

}

private String getTopic() {
return topic;

}

private void setTopic(String topic) {
this.topic = topic;

}

private String getUrl() {
return url;

}

private void setUrl(String url) {
this.url = url;

}
}

The first parameter of the class constructor is the selected resource element,
and the second parameter is PeopleList from the parent topic of the selected
element.

In the createControl method, a CTabFolder instance is created to form a
composite tabFolder; this is the instance that creates the tabbed folder
 Chapter 10. Building the education framework plug-in 479

metaphor. Specifying false to the setSimple method for the tab folder results
in a set of curved tabs being displayed.

The first tab is created by creating a new instance CTabItem associated with
tabFolder and the tab's text (Browser) is specified through the setText
method.

A new child composite, called browserComp, is created from tabFolder. A new
instance of the BrowserComposite is then created that uses browserComp as
its parent composite. The setControl method of browserTab specifies that
browserComp is to be the composite displayed in the interface when the
Browser tab is selected.

A similar process is used to create the second tab (Assistance), which uses
the AssistComposite, as detailed in the previous paragraph.

2. Create the BrowserComposite class and add the code for the class, as shown
in Example 10-79.

Example 10-79 BrowserComposite class

package com.ibm.wplc.education.mylearning.ui;

import java.net.MalformedURLException;
import java.net.URL;

import org.eclipse.swt.SWT;
import org.eclipse.swt.browser.Browser;
import org.eclipse.swt.graphics.Color;
import org.eclipse.swt.graphics.RGB;
import org.eclipse.swt.layout.FormAttachment;
import org.eclipse.swt.layout.FormData;
import org.eclipse.swt.layout.FormLayout;
import org.eclipse.swt.widgets.Composite;

final class BrowserComposite extends Composite {

private String url;

BrowserComposite(final Composite comp, final int style, final String
url) {

super(comp, style);
setUrl(url);
createLayout();

}

private void createLayout() {
this.setLayout(new FormLayout());
480 Extending Sametime 7.5: Building Plug-ins for Sametime

this.setBackgroundMode(SWT.INHERIT_DEFAULT);
final Color bgColor = new Color(this.getDisplay(), new RGB(255,

204, 0));
this.setBackground(bgColor);

// Setup Browser
final Browser browser = new Browser(this, SWT.NONE);
FormData data = new FormData();
data.top = new FormAttachment(0, 5);
data.left = new FormAttachment(0, 5);
data.bottom = new FormAttachment(100, -5);
data.right = new FormAttachment(100, -5);
browser.setLayoutData(data);

try {
new URL(getUrl());
browser.setUrl(getUrl());

} catch (final MalformedURLException e) {
// Assume URL is really HTML text
browser.setText(getUrl());

}

}

private String getUrl() {
return url;

}

private void setUrl(final String url) {
this.url = url;

}

}

The class constructor takes the following arguments:

– The parent composite

– The composite style flag (SWT.NONE)

– The URL of the content

The constructor sets instance variables from the constructor arguments and
calls a private method, createLayout, which contains the definitions of the
user interface.

The createLayout method sets up a background color, then creates a new
instance of a Browser composite. The URL is passed as a constructor
 Chapter 10. Building the education framework plug-in 481

argument to a new URL class instance to test if it is properly formed. If a
MalformedURLException is thrown, it is assumed that the URL is actually an
HTML String and the browser's setText method is used to display the HTML.
In Chapter 11, “Refining and implementing the education framework plug-in
for Sametime Connect” on page 485, we will see how an HTML string can be
used to display an error message in the browser. If the url is valid, the
browser's setURL method is called and the content at the url location is
displayed in the browser.

3. Complete the run method of the DisplayAction class, as shown in
Example 10-80.

Example 10-80 Run method of the DisplayAction class

public void run() {
final IStructuredSelection selection = (IStructuredSelection) taskTreeViewer

.getSelection();
if (!selection.isEmpty()) {

final IAssist assist = (IAssist) selection.getFirstElement();
final AssistWindow window = new AssistWindow(assist,

PersonHelper.getDisplayPeople(assist));
window.open();

}
}

The run method obtains the selected IAssist element and creates a new
instance of the DisplayWindow class. The first parameter of the
DisplayWindow constructor is the selected element. The second parameter is
the PeopleList for the selected element, obtained by method
PersonGelp.getDisplayPeople. After the new instance of AssistWindow is
created, it is opened.

4. Test the Open action by selecting Open from a resource context menu or
double-click a resource item. The resulting display should look like
Figure 10-17 on page 483.
482 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 10-17 Testing the Open action
 Chapter 10. Building the education framework plug-in 483

484 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 11. Refining and implementing
the education framework
plug-in for Sametime
Connect

At this point, we have a working MyLearning plug-in with one notable exception:
the course catalog. When we started developing the plug-in, we created a
rudimentary implementation of a course catalog in the Catalog class by
hand-coding a single-element CourseDescriptorList and the corresponding
Course.

The following topics are presented in this chapter:

� Refining the catalog

� Including Content in a Course Plug-in

� Creating a course plug-in

� Additional examples: using the Lotus Education plug-in for for other content
delivery

11
© Copyright IBM Corp. 2007. All rights reserved. 485

Attention: All sample code used for this example can be downloaded from the
IBM Redbooks FTP site. Please refer to Appendix A, “Additional material” on
page 557 for detailed instructions on how to download and deploy the code
sample:

ftp://www.redbooks.ibm.com/redbooks/SG247346
486 Extending Sametime 7.5: Building Plug-ins for Sametime

ftp://www.redbooks.ibm.com/redbooks/SG247346

11.1 Refining the catalog

We are now ready to upgrade the Catalog class so that it can build the course
catalog by searching the plug-in registry for plug-ins that extend the description
extension of the MyLearning plug-in.

The data for each entry in the course catalog will be obtained by reading the
plug-in's identifier and name, which will correspond to a course's identifier and
label, respectively. When a user requests a course to be displayed in the
MyLearning plug-in, methods in the Catalog class will read and parse a course
definition XML file and store the representation of the course (the Course and its
aggregated classes) in a list so it can be referenced again without parsing the
definition file again.

In this section, we:

� Examine the course definition XML file and its accompanying DTD.

� Show how to create the description extension point and examine how the
Catalog class builds a course catalog by searching for plug-ins that use the
description extension.

� Examine how the Catalog class parses the XML file and builds the internal
representation of a course.

� Take a brief look at the SAX parser used to parse the course definition XML
and several associated helper classes.

11.1.1 Course definition XML

From the class diagram (Figure 9-1 on page 393), we can derive a DTD that can
be used to validate the course definition XML. The DTD is shown in
Example 11-1.

Example 11-1 DTD

<!DOCTYPE course [
<!ELEMENT course (categories, topics)>
<!ELEMENT categories (category+)>
<!ELEMENT category EMPTY>
<!ELEMENT topics (topic+)>
<!ELEMENT topic (tag+,contact*,resource+)>
<!ELEMENT tag EMPTY>
<!ELEMENT contact EMPTY>
<!ELEMENT resource EMPTY>
<!ATTLIST categories

 default REF #REQUIRED>
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 487

<!ATTLIST category
 id ID #REQUIRED
 label CDATA #REQUIRED>

<!ATTLIST topic
 id ID #REQUIRED
 label CDATA #REQUIRED
 description CDATA #REQUIRED>

<!ATTLIST tag
 key IDREF #REQUIRED>

<!ATTLIST contact
 email-id CDATA #REQUIRED>

<!ATTLIST resource
 id ID #REQUIRED
 label CDATA #REQUIRED
 description CDATA #REQUIRED
 url CDATA #REQUIRED
 type CDATA #IMPLIED
 level CDATA #IMPLIED
 author CDATA #IMPLIED>

]>

By applying the rules of the DTD to the Course structure that we created earlier
in the setup method of the Catalog class, the course definition XML file is
produced, as shown in Example 11-2.

Example 11-2 Course definition XML

<course>
<categories default="AllTopics">

<category id="AllTopics label="All Topics"/>
<category id="TopicA" label="Topic A"/>
<category id="TopicB" label="Topic B"/>

<categories>
<topics>

<topic id="TA" label="Topic A"
description="Topic A">
<tag key="AllTopics"/>
<tag key="TopicA"/>
<contact email="contactA@a.com"/>
<resource id="RA1" label="Resource A1"

 description="Resource A1"
 level="Basic" type="Reference"

 author="Author"
 url="file:///C|/testhtml/RA1.html"/>

<resource id="RA2" label="Resource A"
488 Extending Sametime 7.5: Building Plug-ins for Sametime

 description="Resource A2"
 level="Basic" type="Reference"

 author="Author"
 url="file:///C|/testhtml/RA2.html"/>

</topic>
<topic id="TB" label="Topic B"

description="Topic B">
<tag key="AllTopics"/>
<tag key="TopicB"/>
<contact email="contactB@b.com"/>
<resource id="RB1" label="Resource B1"

 description="Resource B1"
 level="Basic" type="Reference"

 author="Author"
 url="file:///C|/testhtml/RB1.html"/>

<resource id="RB2" label="Resource B"
 description="Resource B2"
 level="Basic" type="Reference"

 author="Author"
 url="file:///C|/testhtml/RB2.html"/>

</topic>
</topics>

</course>

11.1.2 Creating the Description Extension Point

The XML schema that describes the extension point can now be generated. The
schema should be implemented so that:

� The id attribute of the extension element is required. This attribute represents
the course ID.

� The name attribute of the extension element is required. This attribute will
represents the course label.

� A new element named description is added.

� The description element has an attribute named file that is required. This
attribute represents the name of the course definition XML file.

� The description element has an attribute name validate that is required. This
attribute is a flag that indicates if DTD validation should be performed during
parsing of the XML course description file.

� The description element is sequenced after the extension element.

� All the attributes are of type string.
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 489

Create the description extension point
To create the description extension point for the MyLearning plug-in, use the
following procedure:

1. Double-click the plug-in.xml icon for the MyLearning plug-in.

2. Click the Extension Points tab.

3. Click the Add button.

4. In the Extension Point Properties dialog box:

a. In the Extension Point ID field, enter description.

b. In the Extension Point Name field, enter Course Description.

The Extension Point Schema field is automatically generated from the value
entered in the Extension Point ID field. See Figure 11-1.

Figure 11-1 Extension Point Properties dialog

5. Click Finish.

6. The Course Description forms appears. Click the Definition tab.

7. Click the plus sign icon to the left of the extension icon to see the attributes of
the element, as shown in Figure 11-2 on page 491.
490 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 11-2 Extension Point Elements

8. Click the id attribute.

The Attribute Details form appears to the right of element tree, as shown in
Figure 11-3.

9. In the Use field, select required.

Figure 11-3 id Attribute Details

10.Click the name icon in the element tree.

11.In the Attribute Detail form, select required for the Use field.

12.Click the New Element button.
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 491

The Element Details form appears to the right of the element tree.

13.In the Element Details form, in the Name field enter description, and then
press Enter. The form should look like Figure 11-4.

Figure 11-4 Element Details form

14.Click the New Attribute button.

The Attribute Details form appears to the right of the element tree.

15.In the Attribute Details form,

a. In the Name field, enter file

b. In the Use field, select required.

16.Click the New Attribute button again.

17.In the Attribute Details form,

a. In the Name field, enter validate

b. In the Use field, select required.

18.Right-click the extension icon in the element tree and select New →
Compositor → sequence.

19.Right-click the Sequence icon and select New → Reference → description
from the context menu.

20.The Course Description page should look like Figure 11-5 on page 493.
492 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 11-5 Course Description

21.Save the descripton.xsd schema file.

11.1.3 Creating the course catalog

In this section, we will replace the setup and list methods of the first
implementation of the Catalog class, by using the following procedure:

1. Create the CourseExtension class in the
com.wplc.education.mylearning.catalog package. All of the classes that are
created or modified in this section are members of this catalog package. Add
the code shown in Example 11-3.

Example 11-3 CourseExtension class

package com.ibm.wplc.education.mylearning.catalog;

import com.ibm.wplc.education.mylearning.model.Course;

/* Describes a course and the related plug-in
 * configuration elements for a description extension of the
 * HowDoI plug-in. Also stores status regarding parsing of the
 * courses XML configration file in parsed and valid fields.
 */

public class CourseExtension extends Course {
private String namespace;

private boolean validate;
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 493

private String xmlFile;

private boolean parsed;

public boolean isParsed() {
return parsed;

}

public void setParsed(boolean parsed) {
this.parsed = parsed;

}

public String getXmlFile() {
return xmlFile;

}

public void setXmlFile(String xmlFile) {
this.xmlFile = xmlFile;

}

public String getNamespace() {
return namespace;

}

public void setNamespace(String namespace) {
this.namespace = namespace;

}

public boolean isValidate() {
return validate;

}

public void setValidate(boolean validate) {
this.validate = validate;

}

}

As its name implies the CourseExtension class extends the Course class.
CourseExtension is used to store the representation of Course derived from
parsing the course definition XML. Additional instance variables in this class
494 Extending Sametime 7.5: Building Plug-ins for Sametime

are used primarily to store information related to the course plug-in and the
parsing process.

2. Create the CourseExtensionList class and add the code shown in
Example 11-4.

Example 11-4 CourseExtensionList class

package com.ibm.wplc.education.mylearning.catalog;

import java.util.ArrayList;
import java.util.Iterator;
/*
 * A type-dependent array list for CourseExtensions
 */

public class CourseExtensionList {

private ArrayList list = new ArrayList();

public void add(CourseExtension CourseExtension) {
list.add(CourseExtension);

}
public CourseExtension get(int index) {

return (CourseExtension) list.get(index);
}

public int size() {
return list.size();

}

public CourseExtension[] toArray(CourseExtension[] array) {
return (CourseExtension[]) list.toArray(array);

}

public void clear() {
list.clear();

}

public Iterator iterator() {
return list.iterator();

}

public void remove(int index) {
 list.remove(index);

}

 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 495

public String toString() {
StringBuffer sb = new StringBuffer("[");
sb.append(this.getClass().getName());
sb.append(" size = ");
sb.append(size());
sb.append("]");
return sb.toString();

}
}

This class is a type-aware list class for the CourseExtension class and is
similar to may other classes of this type that we have already examined in this
chapter.

3. Replace the setup method in the Catalog class with the code shown in
Example 11-5.

Example 11-5 New constructor and setup method for Catalog class

private static final String EXTENSION_POINT_ID = "description";

private final CourseExtensionList list = new CourseExtensionList();

public Catalog() {
setup();

}

private void setup() {
/*
 * Read plug-in extension information to setup class extension

descriptor
 * list
 */
final IExtensionRegistry registry = Platform.getExtensionRegistry();
final IExtensionPoint extensionPoint = registry.getExtensionPoint(

MyLearningPlug-in.PLUG-IN_ID, EXTENSION_POINT_ID);
final IExtension[] e = extensionPoint.getExtensions();
for (int i = 0; i < e.length; i++) {

final CourseExtension cx = new CourseExtension();
cx.setNamespace(e[i].getContributor().getName());
// Course id and label
cx.setCourseDescriptor(new CourseDescriptor(e[i]

.getSimpleIdentifier(), e[i].getLabel()));
// Only one config element defined for extension
496 Extending Sametime 7.5: Building Plug-ins for Sametime

final IConfigurationElement config = e[i]
.getConfigurationElements()[0];

// Path to XML config file for course
cx.setXmlFile(config.getAttribute(FILE_ATTR));
// Flag to indicate if validating parser should be used
cx.setValidate(isTrue(config.getAttribute(VALIDATE_ATTR)));
list.add(cx);

}
}

Note that setup is the only method called from the class constructor. The
setup method obtains a reference to the extension registry and locates the
description extension point for the MyLearning plug-in. The getExtensions
method returns an array of IExtension, which represents the course plug-ins.

The setup method loops through that array and, for each extension, data
contained in the extension is copied to a new instance of a CourseExtension
class. At the end of each loop iteration, the CourseExtension instance is
added to the CourseExtensionList list instance variable.

Data that is stored from the plug-in into the CourseExtension instance
include:

– The extension namespace.

– The CourseDescriptor, which is constructed from the extension's identifier
and name.

– The file path to the course description XML file, as defined in the file
attribute of the extension definition's description element.

– The validate flag, as defined in the validate attribute of the extension
definition's description element.
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 497

4. Replace the list method in the Catalog class with the code shown in
Example 11-6.

Example 11-6 New list method for Catalog class

public CourseDescriptorList list() {
/*
 * Provide a course descriptor list of all courses (dervied from

course
 * extension list)
 */
final CourseDescriptorList descriptorList = new

CourseDescriptorList();
final Iterator it = list.iterator();
while (it.hasNext()) {

descriptorList.add(((Course) it.next()).getCourseDescriptor());
}
if (descriptorList.size() == 0) {

// If there are no courses add a "marker" course descriptor
descriptorList.add(CatalogHelper.getNoCourseDescriptor());

}
return descriptorList;

}

Given that we have already constructed a CourseExtensionList of all the
available courses in the setup method, the list method only needs to iterate
through that list to extract each CourseDescriptor, and build a new
CourseDescriptorList. If no courses are found, a special “marker” course
descriptor is placed in the list.The marker course is produces by a method in the
CatalogHelper class, which will be covered in step 4 on page 503.

11.1.4 Building a course from the XML definition

In this section, we upgrade the findCourse method in the Catalog class to parse
the course definition XML and build the corresponding Course object that is
returned by the method.

1. Replace the findCourse method in the Catalog class with the code shown in
Example 11-7 on page 499.
498 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 11-7 New findCourse method in the Catalog class

public Course findCourse(final CourseDescriptor descriptor) {
/*
 * Find a course based on the course descriptor. The course may

already
 * have been parsed and stored in a course extension, or the course

XML
 * config file may need to be parsed to get a course object.
 */
Course course = null;
if (descriptor != null) {

final Iterator it = list.iterator();
while (it.hasNext()) {

final CourseExtension cx = (CourseExtension) it.next();
if (descriptor.equals(cx.getCourseDescriptor())) {

if (cx.isParsed()) {
// The XML config file has already been parsed

course = cx;
} else {

// Parse the XML config file to get the course
course = translateCourseFromXml(cx);

}
break;

}
}

}
// If course not found, return "marker" course
return (course == null) ? CatalogHelper.getNoCourse() : course;

}

Recall that the list variable created by the setup method is a
CourseExtensionList of all the courses that have been found as extensions to
the MyLearning plug-in's description extension. After completion of the setup
method, the CourseExtension elements in the list contain basic information
about the course and the plug-in, but the representation of the course as an
instance of the Course class (the supertype of CourseExtension) has not yet
been built.

To find a course in the list, the findCourse method loops through the list and
compares the CourseDescriptor passed in the method's input argument to the
CourseDescriptor associated with the CourseExtension elements contained
in list. If a match is found, the isParsed method of the matching
CourseExtension element is checked. If isParsed returns “true,” this means
the course definition file has already been parsed, and the CourseExtension
element is assigned to a Course variable and returned. If isParsed returns
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 499

“false,” the private static method translateCourseFromXML is called and
passed the CourseExtension element as its argument.

2. Create the translateCourseFromXML method with the code shown in
Example 11-8.

Example 11-8 translateCourseFromXML method of the Catalog class

private static Course translateCourseFromXml(final CourseExtension cx)
{

/*
 * Get the course from XML config file. Post parsing processing is
 * required to set the course descriptor from the course extension

and
 * fix up backward pointers in objects not set by parse handler.
 * Synchronize the derived Course and the CourseExtension object so

the
 * config file does not need to be re-parsed when it is referenced
 * again.
 */
Course course = null;
cx.setParsed(true);
try {

final InputStream s = getInputStream(cx.getNamespace(),
cx.getXmlFile());

course = parseCourse(s, cx.isValidate());
try {

s.close();
} catch (final IOException ie) {

final String message = "IOException detected closing parse
input stream";

final Status status = (new Status(IStatus.ERROR,
MyLearningPlug-in

.getDefault().getBundle().getSymbolicName(),
IStatus.ERROR, message, ie));

MyLearningPlug-in.getDefault().getLog().log(status);
}

} catch (final SAXException se) {
final String message = "SAXException detected parsing course id "

+ cx.getCourseDescriptor().getId() + " ("
+ cx.getCourseDescriptor().getLabel() + ") ";

final Status status = (new Status(IStatus.ERROR,
MyLearningPlug-in

.getDefault().getBundle().getSymbolicName(), IStatus.ERROR,
message, se));

MyLearningPlug-in.getDefault().getLog().log(status);
500 Extending Sametime 7.5: Building Plug-ins for Sametime

} catch (final IOException ie) {
final String message = "IOException detected in parse input

stream";
final Status status = new Status(IStatus.ERROR,

MyLearningPlug-in.getDefault()
.getBundle().getSymbolicName(), IStatus.ERROR, message,

ie);
MyLearningPlug-in.getDefault().getLog().log(status);

} catch (final DefinitionException de) {
final String message = "Error detected parsing course with id "

+ cx.getCourseDescriptor().getId() + " ("
+ cx.getCourseDescriptor().getLabel() + ")";

final Status status = new Status(IStatus.ERROR,
MyLearningPlug-in.getDefault()

.getBundle().getSymbolicName(), IStatus.ERROR, message,
de);

MyLearningPlug-in.getDefault().getLog().log(status);
}
// If any errors (course == null) set course to course
// definition error "marker" course
course = (course == null) ? CatalogHelper

.getCourseDefinitionErrorCourse() : course;
// Course extension has course descriptor from plug-in extension

data
course.setCourseDescriptor(cx.getCourseDescriptor());
// Set "backward pointers"
course = establishCourseBackwardPointers(course);
// Synchronize the course extension and course
copyCourse(cx, course);
return course;

}

Parsing the XML course definition file
The translateCourseFromXML method starts by setting the isParsed method
of the CourseExtension argument to true, to indicate that this course has
been parsed. The XML file's input stream is obtained with the private static
getInputStream method, using the namespace and XML file path that were
copied into the CourseExtension during the setup method.

The private static parseCourse method is used to set up the parser handler
that will parse course XML file. The validate flag passed to parseCourse is
supplied by the CourseExtension isValidate method instructs the parser on
whether or not to perform DTD validation during the parsing process. This is
another data element that copied to the CourseExtension object from the
extension configuration data. The parseCourse method throws a
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 501

DefinitonException if it detects that any parsing errors were encountered by
the parser handler. If a DefinitionException, SAXException, or IOException
are detected, Status containers are created with the appropriate error
messages and exception information and written to the plug-in's log.

If the parseCourse method returns the Course as null, indicating an error, a
special marker course is created to indicate that there were course definition
parsing errors. Additional processing is performed on the Course object by
the private static establishBackwardCoursePointers method. This ensures
that references from each Resource to its parent Topic, and from each Topic
to its parent CourseDescriptor, are property established. Finally, the resulting
Course instance that represents the structure of the course is copied to the
CourseExtension that is the method's input argument.

3. Create the parseCourse method in the Catalog class using the code in
Example 11-9.

Example 11-9 ParseCourse method in Catalog class

private static Course parseCourse(final InputStream s,
final boolean validate) throws DefinitionException, IOException,
SAXException {

Course course = null;
// Parse the course definition XML file
if (s != null) {

// See CourseHandler for the SAX parsing details
final CourseHandler handler = new CourseHandler();
final XMLReader reader = XMLReaderFactory.createXMLReader();
reader.setContentHandler(handler);
reader.setErrorHandler(handler);
reader.setFeature(VALIDATING_FEATURE, validate);
reader.parse(new InputSource(s));
if (handler.getErrors() == 0) {

course = handler.getCourse();
} else {

throw new DefinitionException(handler.getErrorMessage());
}

}
return course;

}

This method follows a standard pattern for setting up a SAX parsing handler.
The actual parsing is being done by the class handler, CourseHandler. At the
completion of parsing, the method checks if there were any errors by issuing
the handler's getErrors method. If no errors are detected, the Course object
generated from parsing the XML definition file is obtained with the handler's
getCourse method. If there are errors, a DefintionException is created, using
502 Extending Sametime 7.5: Building Plug-ins for Sametime

the handler getErrorMessage method as the argument to its constructor, and
a DefintionException is thrown.

4. Create the CatalogHelper class.

The CatalogHelper class creates special instances of a Course that are used
to report error conditions associated with the definition of a course. These
objects are used as an alternative to an error reporting dialog box.

These special courses, used to report error conditions, contain a single topic
and a single resource, both titled with the nature of the error, either “Course
Definition Error” or “No Courses Available”. Additional error message details
are composed as HTML text string and set as the URL attribute of the
resource so that the error message is displayed in the browser when the
resource is double-clicked. This class also produces a CourseDescriptor with
an ID and label that indicate no courses are available to display.

The source for the CatalogHelper class is shown in Example 11-10.

Example 11-10 CatalogHelper class

package com.ibm.wplc.education.mylearning.catalog;
/*
 * Helper methods for the Catalog class. Return various
 * instances of Course or CourseDescriptor if there are
 * no courses available for the plug-in to display or if there
 * are course definition errors in the XML definition file.
 */

import com.ibm.wplc.education.mylearning.model.Category;
import com.ibm.wplc.education.mylearning.model.CategoryList;
import com.ibm.wplc.education.mylearning.model.ContactList;
import com.ibm.wplc.education.mylearning.model.Course;
import com.ibm.wplc.education.mylearning.model.CourseDescriptor;
import com.ibm.wplc.education.mylearning.model.Resource;
import com.ibm.wplc.education.mylearning.model.ResourceList;
import com.ibm.wplc.education.mylearning.model.Tag;
import com.ibm.wplc.education.mylearning.model.TagList;
import com.ibm.wplc.education.mylearning.model.Topic;
import com.ibm.wplc.education.mylearning.model.TopicList;

public class CatalogHelper {

private static final String NO_COURSES_ID = "NoCoursesAvailable";

private static final String COURSE_DEFINITION_ERROR_ID =
"CourseDefinitionError";
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 503

private static Course noCourse;

private static Course courseDefinitionErrorCourse;

private CatalogHelper() {
}

static Course getNoCourse() {
if (noCourse == null) {

StringBuffer sb = new StringBuffer("<html>"); //$NON-NLS-1$
sb.append("<h1>No Courses Available</h1>");
sb.append("<p>No plug-ins were found for the 'description'

extension point of the com.wplc.education.mylearning plug-in.</p>");
sb.append("</html>"); //$NON-NLS-1$
noCourse = getMinimalCourse(NO_COURSES_ID, "No Courses

Available",
sb.toString());

}
return noCourse;

}

static CourseDescriptor getNoCourseDescriptor() {
return new CourseDescriptor(NO_COURSES_ID, "No Courses

Available");
}

 static Course getCourseDefinitionErrorCourse() {
if (courseDefinitionErrorCourse == null) {

StringBuffer sb = new StringBuffer("<html>");
sb.append("<h1>Course Definition Error</h1>");
sb.append("<p>An error was encountered parsing the course

definition file. Check the log for details.</p>");
sb.append("<p>The log is located on Windows at C:\\Documents

and Settings\\[user]\\Application Data\\Sametime\\.metadata\\.log");
sb.append("</html>");
courseDefinitionErrorCourse =

getMinimalCourse(COURSE_DEFINITION_ERROR_ID,
"Course Definition Error", sb.toString());

}
return courseDefinitionErrorCourse;

}

private static Course getMinimalCourse(String id, String label,
String htmlMessage) {

Tag tag = new Tag(id);
504 Extending Sametime 7.5: Building Plug-ins for Sametime

TagList tagList = new TagList();
tagList.add(tag);
ContactList contactList = new ContactList();
Resource resource = new Resource(id, label);
resource.setDescription(label);
resource.setLevel("Basic");
resource.setType("Reference");
resource.setUrl(htmlMessage);
ResourceList resourceList = new ResourceList();
resourceList.add(resource);
Topic topic = new Topic(id, label);
topic.setDescription(label);
topic.setTagList(tagList);
topic.setResourceList(resourceList);
topic.setContactList(contactList);
TopicList topicList = new TopicList();
topicList.add(topic);
Category category = new Category(id, label);
CategoryList categoryList = new CategoryList();
categoryList.add(category);
CourseDescriptor courseDescriptor = new CourseDescriptor(id,

label);
Course course = new Course();
course.setCourseDescriptor(courseDescriptor);
course.setCategoryList(categoryList);
course.setDefaultCategory(category);
course.setTopicList(topicList);
return course;

}

}

11.1.5 SAX parser and helper classes

The course definition XML is parsed with a SAX parser handler implemented in
the CourseHandler class. CourseHandler extends the SAX helper
DefaultHandler class and overrides two of its methods, startElement and
endElement.

The SAX parser process is event-driven in nature. As the XML stream is parsed,
the startElement method is executed as the start of an element is encountered.
In a similar fashion, the endElement method is processed when the end of an
element is processed. In either case, the startElement or endElement method
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 505

examines the name of the element and then calls another handler method to
process a particular element.

Typical processing in an element-specific handler method is to create new
instances of classes associated with the element to be processed and to set the
instance variable of these classes with the element attributes, which are passed
to the element-specific handlers.

The startElement method is shown in Example 11-11.

Example 11-11 startElement method in CourseHandler class

public void startElement(final String uri, final String localName,
final String qName, final Attributes attrs) throws SAXException {
if (TOPIC.equals(qName)) {

handleTopicElement(attrs);
} else if (TOPICS.equals(qName)) {

handleTopicsElement(attrs);
} else if (RESOURCE.equals(qName)) {

handleResourceElement(attrs);
} else if (TAG.equals(qName)) {

handleTagElement(attrs);
} else if (CONTACT.equals(qName)) {

handleContactElement(attrs);
} else if (CATEGORIES.equals(qName)) {

handleCategoriesElement(attrs);
} else if (CATEGORY.equals(qName)) {

handleCategoryElement(attrs);
}

}

Example 11-12 shows a typical element-specific method, handleTopicElement,
that is called from startElement.

Example 11-12 handleTopicElement method of CourseHandler class

private void handleTopicElement(final Attributes attrs) {
setTopic(new Topic());
setResourceList(new ResourceList());
setContactList(new ContactList());
setTagList(new TagList());
getTopic().setId(attrs.getValue(ID));
getTopic().setLabel(attrs.getValue(LABEL));
getTopic().setDescription(attrs.getValue(DESCRIPTION));

}

506 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 11-13 shows the endElement method.

Example 11-13 endElement method of CourseHandler class

public void endElement(final String uri, final String localName,
final String qName) throws SAXException {

if (TOPIC.equals(qName)) {
handleEndTopicElement();

} else if (CATEGORIES.equals(qName)) {
handleEndCategoriesElement();

} else if (COURSE.equals(qName)) {
handleEndCourseElement();

}
}

Example 11-14 shows a typical element-specific method,
handleEndTopicElement, that is called from endElement.

Example 11-14 handeEndTopicElement method of CourseHander class

private void handleEndTopicElement() {
getTopic().setContactList(getContactList());
getTopic().setTagList(getTagList());
getTopic().setResourceList(getResourceList());
getTopicList().add(getTopic());

}

The CourseHandlerErrorHelper is a class that provides a method to format error
messages that may be found during the parsing of the XML definition.

The source list for CourseHandlerErrorHelper is presented in Example 11-15.

Example 11-15 CourseHandlerErrorHelper class

package com.ibm.wplc.education.mylearning.catalog;

import java.util.Iterator;

import org.xml.sax.SAXParseException;

/*
 * Helper class to process error messages for CourseHandler
 * SAX parser handler class.
 */

public class CourseHandlerErrorHelper {
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 507

CourseHandlerErrorHelper() {
}

private static String formatExceptionMessage(Exception e) {
String s = null;
if (e instanceof SAXParseException) {

s = "Error at line " + ((SAXParseException) e).getLineNumber()
+ " column " + ((SAXParseException) e).getColumnNumber()
+ " " + e.getMessage();

} else {
s = e.getMessage();

}
return s;

}

private static StringBuffer formatErrorReportSection(final
ExceptionList list,

final String header) {
final StringBuffer sb = new StringBuffer(header);
sb.append(": ");
sb.append(list.size());
sb.append(" ");
final Iterator i = list.iterator();
while (i.hasNext()) {

sb.append(" ");
sb.append(formatExceptionMessage((Exception) i.next()));
sb.append(" ");

}
return sb;

}

static String getErrorMessage(ExceptionList errorList, ExceptionList
warningList,

ExceptionList fatalList) {
final StringBuffer sb = new StringBuffer("Parsing error report");
sb.append(" ");
sb.append(formatErrorReportSection(errorList, "Errors:"));
sb.append(formatErrorReportSection(warningList,"Warnings:"));
sb.append(formatErrorReportSection(fatalList, "Fatal:"));
return sb.toString();

}

public String toString() {
StringBuffer sb = new StringBuffer("[");
508 Extending Sametime 7.5: Building Plug-ins for Sametime

sb.append(this.getClass().getName());
sb.append("']"); //$NON-NLS-1$
return sb.toString();

}

}

A DefinitionException is thrown by the parseCourse method in Catalog if errors
are encountered. The source for this exception, shown in Example 11-16, follows
standard Java practice for defining exception extensions.

Example 11-16 DefinitionException class

package com.ibm.wplc.education.mylearning.catalog;

/*
 * Exception for storing errors regarding SAX parsing of
 * the course definition XML file.
 */

public class DefinitionException extends Exception {

private static final long serialVersionUID = 45612389011L;

public DefinitionException(String message) {
super(message);

}

public DefinitionException(String message, Exception exception) {
super(message, exception);

}

}

 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 509

A class that implements Exception type-aware ArrayList processing is also used
by the parsing classes and its source, as shown in Example 11-17.

Example 11-17 ExceptionList class

package com.ibm.wplc.education.mylearning.catalog;

import java.util.ArrayList;
import java.util.Iterator;

public final class ExceptionList {
private ArrayList list = new ArrayList();

public void add(Exception Exception) {
list.add(Exception);

}
public Exception get(int index) {

return (Exception) list.get(index);
}

public int size() {
return list.size();

}

public Exception[] toArray(Exception[] array) {
return (Exception[]) list.toArray(array);

}

public void clear() {
list.clear();

}
public Iterator iterator() {

return list.iterator();
}

}

11.2 Including Content in a Course Plug-in

The MyLearning Plug-in has the capability to access content that is stored in a
course plug-in. In order for a course to contain content, it must implement the
content extension point of the MyLearning plug-in. The content is referenced
through a special URL. The URL has the format shown in Example 11-18.
510 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 11-18 Pattern for referencing plug-in resident content

http://com.ibm.wplc.education.mylearning/[id]/[path]

In Example 11-18, id is the value of the id attribute of the extension element for
the content extension of a plug-in. Path is the path name of the file relative to the
plug-in root.

For example, if the HTML file RA1.html were imported into the project folder of a
plug-in identified by an id of demo in its content extension definition, then the
URL would be as shown in Example 11-19.

Example 11-19 Reference to plug-in-resident content

http://com.ibm.wplc.education.mylearning/demo/RA1.html

Code in the BrowerComposite class recognizes this special URL pattern and
maps it into a URL with a file:// device using classes available in the Eclipse
Workbench.

In this section, we outline the specification for the content extension point
schema and examine the code in the BrowserComposite class that analyzes and
maps the URL for content stored in a course plug-in.

11.2.1 Creating the content extension point

The XML schema for the extension point can now be defined. The requirements
of the schema are:

� The id attribute of the extension point is required and of type string.

� The name attribute of the extension point is required.

Create the content extension point
To define the extension point, use the following procedure:

1. Double-click the plug-in.xml icon for the MyLearning plug-in.

2. Click the Extension Points tab.

3. Click the Add button.

4. In the Extension Point Properties dialog box:

a. In the Extension Point ID field, enter content.

b. In the Extension Point Name field, enter Resource Content.

c. The Extension Point Schema field is automatically generated from the
value entered in the Extension Point ID field.
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 511

5. Click Finish.

The Course Description forms appears.

6. Click the Definition tab.

7. Click the plus sign icon to the left of the extension icon to see the attributes of
the element, as shown in Figure 11-6.

Figure 11-6 Extension Point Elements

8. Click the id attribute.

The Attribute Details form appears to the right of the element tree.

9. In the Attribute Detail form, in the Use field, select required, as shown in
Figure 11-7 on page 513.
512 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 11-7 Extension Point Elements: Attribute Details

10.Click the name icon in the element tree.

11.In the Attribute Detail form, in the Use field, select required.

12.Save the context.xsd schema file.

11.2.2 Enhancing the BrowserComposite class

Use the following procedure to modify the BrowserComposite class to accept
URL for content stored in course plug-ins:

1. Find and select the code in the createLayout method shown in
Example 11-20.

Example 11-20 URL parsing in BrowserComposite class

try {
new URL(getUrl());
browser.setUrl(getUrl());

 } catch (final MalformedURLException e) {
// Assume URL is really HTML text
browser.setText(getUrl());

 }
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 513

2. Replace the selected code with the code shown in Example 11-21.

Example 11-21 New URL parsing in BrowserComposite class

private static final String EXTENSION_POINT_ID = "content";

private static final String PLUG-IN_HOST =
"com.ibm.wplc.education.mylearning";

private static final String FILE_SEPARATOR = "/";

try {
final URL u = new URL(getUrl());
if (PLUG-IN_HOST.equals(u.getHost())) {

final URL url = getResolvedUrl(u.getFile());
if (u == null) {

browser.setText("<htm><h1><p>Null URL
returned</p></h1></html>");

} else {
browser.setUrl(url.toString());

}
} else {

browser.setUrl(getUrl());
}

 } catch (final MalformedURLException e) {
// Assume URL is really HTML text
browser.setText(getUrl());

 }

The revised code coverts the String URL passed in the constructor to a
type of URL and then extracts the host portion of the name. If the host
portion of the name matches the special host name defined in
PLUG-IN_HOST, then the file portion of the URL is passed as an
argument to the getResolvedURL method, which returns the URL resolved
to a file:// device URL. The resolved URL is then displayed in the browser
with the setURL method.

If the resolved URL is null, an HTML String error message is displayed in
the browser with the setText method.

The getResolvedURL method, shown in Example 11-22 on page 515,
parses the file portion of the URL to determine the path of the content
relative to the plug-in root.
514 Extending Sametime 7.5: Building Plug-ins for Sametime

Example 11-22 getResolvedURL method

private static URL getResolvedUrl(final String filename) {
URL u = null;
String plug-inId = null;
StringBuffer file = null;
final StringTokenizer st = new StringTokenizer(filename,

FILE_SEPARATOR);
if (st.hasMoreTokens()) {

plug-inId = st.nextToken();
file = new StringBuffer();
while (st.hasMoreTokens()) {

file.append(st.nextToken());
file.append(FILE_SEPARATOR);

}
if (file.length() > 1) {

file.deleteCharAt(file.length() - 1);
u = resolveURLFromFile(getNameSpace(plug-inId),

file.toString());
}

}
return u;

}

The method resolveURLFromFile, shown in Example 11-23, determines
the resolved URL. It uses the name space of the plug-in and the path of
the content relative to the plug-in root, by using static methods from both
the Plug-in and FileLocator classes. Essentially, this method finds the
location of the content in the file system and returns a URL with a file://
device reflecting that location.

Example 11-23 resolveURLFromFile method

private static URL resolveURLFromFile(final String namespace,
final String filename) {

URL u = null;
if (namespace != null) {

final Bundle bundle = Platform.getBundle(namespace);
final IPath path = new Path(filename);
try {

final URL bundleUrl = FileLocator.find(bundle, path, null);
u = FileLocator.resolve(bundleUrl);

} catch (final IOException e) {
// s == null used to indicate error
// log
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 515

final String message = "Unable to get input stream for"+ " '"
+ filename + "'";

final Status status = new Status(IStatus.ERROR,
MyLearningPlug-in

.getDefault().getBundle().getSymbolicName(),
IStatus.ERROR, message, e);

MyLearningPlug-in.getDefault().getLog().log(status);
}

}
return u;

}

The getNamespace method, shown in Example 11-24, returns the
namespace of the plug-in whose id was contained in the original URL. This
method uses code very similar to the code in the setup method of the Catalog
class to locate the configuration information for the plug-in with the specified
id that extends the content extension point.

Example 11-24 getNamespace method in Browser

private static String getNameSpace(final String plug-inId) {
String s = null;
final IExtensionRegistry registry = Platform.getExtensionRegistry();
final IExtensionPoint extensionPoint = registry.getExtensionPoint(

MyLearningPlug-in.PLUG-IN_ID, EXTENSION_POINT_ID);
final IExtension[] e = extensionPoint.getExtensions();
if (e != null) {

for (int i = 0; i < e.length; i++) {
if (plug-inId.equals(e[i].getSimpleIdentifier())) {

s = e[i].getContributor().getName();
break;

}
}

}
return s;

}

The listing for the new version of the BrowserComposite is included in the
downloadable code available from the FTP site for the IBM Redbook.

At this point, the plug-in is complete. You can now start to create and include
content.
516 Extending Sametime 7.5: Building Plug-ins for Sametime

11.3 Creating a course plug-in

Now that the MyLearning plug-in is complete, we can start adding courses and
content in course plug-ins. We will create an Eclipse plug-in project, configure the
plug-in to use the content and description extension, create the course definition
XML file, and add some content to the plug-in.

To create a course plug-in project and configure the content and description
extensions, use the following procedure:

1. Create an new Eclipse plug-in project with a name such a
com.ibm.wplc.education.content.redbook_demo.

The project does not require a Java project, so you should:

a. In the Plug-in Project dialog box, deselect Create a Java project.

b. In the Templates dialog box, deselect Create a plug-in using one of
these templates.

2. Click the Dependencies tab.

3. Click the Add button

4. In the Plug-in Selection dialog box, select
com.ibm.wplc.education.mylearning.content.

5. Click the Extensions tab.

6. Click the Add button.

7. In the Extension Point Selection dialog box, select the
com.ibm.wplc.education.content plug-in.

8. In the Extension Details form to the right of the page:

a. In the ID field, enter redbook_demo

b. In the Name field, enter Demo Content.

9. Click the Add button.

10.In the Extension Point Selection dialog box, select the
com.ibm.wplc.education.mylearning.description plug-in.

Note: The value of the ID field is the simple identifier of a plug-in where
content is stored. In this case, the value of ID points to the same plug-in
that is storing the course definition XML file, but it could be any plug-in
extending the MyLearning plug-ins content extension point.
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 517

11.In the Extension Details form to the right of the page:

a. In the ID field, enter demo_course.

b. In the Name field, enter Demo Course.

12.Right-click the com.ibm.wplc.education.mylearning.description icon and
select New → description from the context menu.

13.In the Extension Element Details form to the right of the page:

a. In the file field, enter course.xml.

b. In the validate field, enter yes.

14.Save the project.

Create course definition file
Follow these instructions to create the course definition file:

1. Right-click the project folder and select New → File from the context menu.

2. In the New File dialog box, in the File name field, confirm that the project
folder is selected as the parent folder. Enter course.xml.

3. The file opens in the editing pane. Enter the text shown in Example 11-25 into
the file.

Example 11-25 course.xml course definition XML file

<!DOCTYPE course [
<!ELEMENT course (categories, topics)>
<!ELEMENT categories (category+)>
<!ELEMENT category EMPTY>
<!ELEMENT topics (topic+)>
<!ELEMENT topic (tag+,contact*,resource+)>
<!ELEMENT tag EMPTY>
<!ELEMENT contact EMPTY>
<!ELEMENT resource EMPTY>
<!ATTLIST categories

 defaultIDREF#REQUIRED>
<!ATTLIST category

 id ID #REQUIRED
 labelCDATA#REQUIRED>

<!ATTLIST topic
 id ID #REQUIRED
 labelCDATA#REQUIRED
 descriptionCDATA#REQUIRED>

<!ATTLIST tag
 key IDREF#REQUIRED>

<!ATTLIST contact
518 Extending Sametime 7.5: Building Plug-ins for Sametime

 email-idCDATA#REQUIRED>
<!ATTLIST resource

 id ID #REQUIRED
 labelCDATA#REQUIRED
 descriptionCDATA#REQUIRED
 url CDATA#REQUIRED
 typeCDATA#IMPLIED
 levelCDATA#IMPLIED
 authorCDATA#IMPLIED>

]>

<course>
<categories default="AllTopics">

<category id="AllTopics" label="All Topics"/>
<category id="TopicA" label="Topic A"/>
<category id="TopicB" label="Topic B"/>

</categories>
<topics>

<topic id="TA" label="Topic A"
description="Topic A">
<tag key="AllTopics"/>
<tag key="TopicA"/>
<contact email-id="contactA@a.com"/>
<resource id="RA1" label="Resource A1"

 description="Resource A1"
 level="Basic" type="Reference"

 author="Author"

url="http://com.ibm.wplc.education.mylearning/redbook_demo/RA1.htm"/>
<resource id="RA2" label="Resource A2"

 description="Resource A2"
 level="Basic" type="Reference"

 author="Author"
 url="file:///C|/testhtml/RA2.htm"/>

</topic>
<topic id="TB" label="Topic B"

description="Topic B">
<tag key="AllTopics"/>
<tag key="TopicB"/>
<contact email-id="contactB@b.com"/>
<resource id="RB1" label="Resource B1"

 description="Resource B1"
 level="Basic" type="Reference"

 author="Author"
 url="file:///C|/testhtml/RB1.htm"/>
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 519

<resource id="RB2" label="Resource B2"
 description="Resource B2"
 level="Basic" type="Reference"

 author="Author"
 url="file:///C|/testhtml/RB2.htm"/>

</topic>
</topics>

</course>

4.Save the course.xml file.

Moving content to a course plug-in
From the course definition file listing above, you can see that the URL for
Resource RA1 is defined to reside in the plug-in. To move that HTML file from the
current location in C:\testhtml in the file system to the plug-in, use the following
procedure:

1. Right-click the project folder and select Import.

2. In the Select dialog box, click File System, and then click Next.

3. In the File System dialog box, use Browse... to select the C:\testhtml
directory.

4. Mark the check box adjacent to the RA1.htm file.

5. Click Finish.

Your project structure should look like Figure 11-8.

Figure 11-8 Project structure

Test the course plug-in
You can now test the MyLearning plug-in to ensure that the course plug-in has
been detected.

1. Double-click the plug-in.xml file in the
com.ibm.wplc.education.content.redbook_demo plug-in project.

Note: Before you deploy the course plug-in, you should check that the course
definition XML and any content files are included in the build.
520 Extending Sametime 7.5: Building Plug-ins for Sametime

2. Click the Build tab

3. Mark the check boxes next to the course.xml and RA1.htm files, as shown in
Figure 11-9.

Figure 11-9 Binary and source builds window

4. Save the plug-in.xml file.

Testing and verifying the plug-in
At this point, you can open the plug-in and view the content you created.

11.4 Additional examples: using the Lotus Education
plug-in for for other content delivery

It is not difficult to imagine using this plug-in framework to deliver other types of
content.

Human resource example
For example, an organization may populate the environment with links to human
resources information, procedures, and forms used by employees. Live
assistance can support users who may need further help. Figure 11-10 on
page 522 shows how the plug-in could be used to provide resources and support
from an organization’s human resource department.
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 521

Figure 11-10 Human Resources example

ISO certification example
Another example would be an organization that uses the environment to manage
their ISO certification documentation. ISO certification requires:

� Employees have access to up-to-date controlled documentation. These
include:

– Quality statement

– Work instructions

– Policies

– Procedures

– Controlled forms

– Controlled records

� Processes be assigned to owners or teams of owners

The Lotus Education plug-in supports both these requirements. Controlled
documents and forms can be maintained in a central server location where they
can be updated as needed.

Process, policy, and work instruction owners can be assigned to documents
using the Assistance feature of this plug-in. Users can directly contact these
owners as needed.

Help and support example
Some organizations are moving to a self-serve model for first-line user support.
Using this strategy, users are encouraged and enabled to first help themselves in
solving a problem. In many instances, users can resolve their own problems if
522 Extending Sametime 7.5: Building Plug-ins for Sametime

they are provided the appropriate tools and resources. If a user cannot resolve
their problem, they are directed to a trained support person who can help.

The structure of this plug in supports this strategy as well. Users can search
online resources for information, tools, and tips to first try to resolve a problem.
The filtered topics list can be used to direct users according to feature, function,
product, task and so on. If a user cannot solve his problem, he can use the
Assistance feature to directly contact an available support person who has been
assigned to that topic area.

Figure 11-11 shows the plug-in populated with troubleshooting information for a
variety of applications. Users search for their problem and display information,
instruction, or demonstrations about how to resolve their issue. If the user is still
having problems, he can right-click a topic for assistance.

Figure 11-11 Help and support example
 Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect 523

524 Extending Sametime 7.5: Building Plug-ins for Sametime

Chapter 12. Deploying plug-ins for
Sametime 7.5

This chapter presents how to deploy IBM Lotus Sametime Connect client
plug-ins, including how to manually install plug-ins, and how to set up
administrative provisioning to automatically distribute plug-ins for a distributed
environment.

The following topics are presented in this chapter:

� Deploying Custom Plug-ins to IBM Lotus Sametime Connect Users

� Deploying Plug-ins Automatically

� Deploying Plug-ins Manually Through Sametime Connect

� Configuring Plug-ins

� Setting Automatic Plug-in Update Preferences

� Installing Plug-Ins Through the Preferences.ini File

� Disabling Manual Plug-in Installs Through the Sametime Connect Client

12
© Copyright IBM Corp. 2007. All rights reserved. 525

12.1 Deploying custom plug-ins to IBM Lotus Sametime
Connect users

When you have finished developing and testing your custom plug-in for Lotus
Sametime Connect 7.5, you will need to make your plug-in available to your
target users. To do so, you have a couple of options:

� Auto provision plug-ins: Work with the Sametime administrator to
automatically provision your plug-in to all Lotus Sametime Connect users in a
particular community. When using this option, your plug-in is automatically
downloaded to the client when the user launches Lotus Sametime Connect.
The user is notified of the update and can have the client restart automatically
to load the new plug-in. The user does not need to take any other action.

� Manually install plug-ins: Post your plug-in on an Eclipse update site and
instruct users to install the plug-in using the Lotus Sametime Connect
Manage Updates User Interface. Note that Sametime administrators can
disable the ability for users to install plug-ins in this way, in which case you will
need to use the first option.

This chapter will show how to set up each option.

For more information about using an Eclipse update sites to distribute plug-ins,
see the How To Keep Up To Date article at this site:

http://www.eclipse.org/articles/Article-Update/keeping-up-to-date.html

12.2 Deploying plug-ins automatically

To deploy plug-ins automatically, complete the following tasks. Each task is
described in detail in the following pages.

Task 1: Prepare your plug-in for deployment.

Task 2: Create a Feature.

Task 3: Create an Eclipse Deployment Web site.

Task 4: Configure the Sametime Server.

12.2.1 Task 1: Prepare your plug-in for deployment

The following steps prepare the plug-in for deployment:

1. Open Eclipse. Be sure to use the same work space where you created your
plug-ins. Figure 12-1 on page 527 shows the Eclipse interface.
526 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.eclipse.org/articles/Article-Update/keeping-up-to-date.html

Figure 12-1 Open workspace displaying your plug-in

2. Expand your plug-in in the Package Explorer perspective.

3. Double-click the Build.Properties file.
 Chapter 12. Deploying plug-ins for Sametime 7.5 527

The Build Configuration Editor page displays in your center view, as shown in
Figure 12-2.

Figure 12-2 Build Configuration Editor

4. Select the portions of the plug-in you need or wish to include in the build. For
the purposes of this example, all are chosen; however, this may or may not be
necessary in your scenario.

Figure 12-3 Select what will be included in the Binary and Source Builds

5. Click File → Save.
528 Extending Sametime 7.5: Building Plug-ins for Sametime

12.2.2 Task 2: Create a feature

A Feature contains a manifest that provides basic information about the feature
and its contents, including plug-ins and fragments. A feature is deployed and
delivered in the form of a JAR file.

Now that your plug-in is ready to be deployed, it will need to be packaged in a
manner that will be recognized by Eclipse Update Manager. Eclipse Update
Manager is an Eclipse tool that manages versions and deployment of plug-ins
and fragments.

Next, you need to create a Feature for your plug-in(s).

1. Make sure your plug-in is open in the Workspace you created.

2. Select File → New → Project. This will launch the New Project Wizard.

Note: For the purposes of this example, we are deploying one plug-in only;
however, you may have several closely coupled or similarly themed plug-ins
you want to deploy in a single packaged feature. A feature will provide a
structure for your similarly themed plug-ins as well as a place for branding
elements, such as About pages and Images.
 Chapter 12. Deploying plug-ins for Sametime 7.5 529

3. Select Feature Project wizard, and then click Next, as shown in Figure 12-4.

Figure 12-4 Select the New Feature Wizard

4. On the New Properties page for the New Feature wizard, complete the
properties as follows, and as shown in Figure 12-5 on page 531:

– The Project Name should be the same as the plug-in you want to deploy
with the term .feature appended, as shown in Example 12-1.

Example 12-1 Project Name

com.riverbend.sametime.branding.feature

– The Feature ID should be left as the default after you create a feature
name.

– If your plug-in utilizes a custom installer, provide that information in the
Install Handler Library field.

Note: As you give the Feature Project a name, you will notice that other
properties, such as Feature ID and Feature Provider, become populated
with information based on your feature name. You can leave them as the
default or change them to something you will recognize more easily.
530 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 12-5 Feature Properties Dialog in the New Feature Wizard

5. Click Next.
 Chapter 12. Deploying plug-ins for Sametime 7.5 531

6. On the Referenced Pug-ins and Fragments page, shown in Figure 12-6,
select the plug-in you are making ready for deployment from the list, and then
click Finish.

Figure 12-6 Select your plug-in from the Plug-ins and Fragments page of the wizard

The wizard now creates your feature package and opens the feature on the
Overview tab of the feature.xml file (see Figure 12-7 on page 533). You can
always come back to this view (known as the feature manifest editor) by double
clicking the feature.xml file.
532 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 12-7 Overview tab of the Feature.xml file in the Feature editor

7. There are many options in this view. Change the following fields if necessary:

a. In the Branding Plug-in field, click the Browse... field.

b. Select the plug-in you wish to deploy and click OK, as shown in
Figure 12-8.

Figure 12-8 Select plug-in dialog
 Chapter 12. Deploying plug-ins for Sametime 7.5 533

c. In the Update Site URL field, enter the Eclipse Update Site URL.

d. In the Update Site Name field, enter the site name.

This information is used to specify the site that will be used to load your
feature using Eclipse Update Manager. When Update Manager looks for
updates, it will look for sites defined in your update site URL. If you have
not created an Eclipse update site yet (this is shown in 12.2.3, “Task 3:
Create an Eclipse deployment Web site” on page 536), you can change
this setting later.

e. In the Supported Environments section, enter OS, platform, and language
specifications, if these are required by your plug-in. For our example, this
is not necessary.

8. Click the Information tab.

The Feature Information, Copyright, License and Sites to Visit tabs are
displayed. Feature information is displayed to the user by the update manager
when the feature is selected.

9. For each of these tabs, you can either enter a URL, if sites already exist, or
you can enter the information in the Text area for each (see Figure 12-9).

Figure 12-9 Information tab in the Feature editor

10.In the Optional URL field, enter a URL and name for any other relevant
Update sites you have.
534 Extending Sametime 7.5: Building Plug-ins for Sametime

11.Click the Plug-in tab.

12.Confirm that your plug-in is listed in the Plug-ins and Fragments window. If it
is not, click Add... and select the plug-in you wish to include, and then click
OK. Figure 12-10 shows the Plug-ins and Fragments window.

Figure 12-10 The Plug-ins tab of the Feature editor should show your plug-in(s)

13.Click the Version button.

14.Select Synchronize Versions on Build (recommended), as shown in
Figure 12-11 on page 536, and then click Finish. This will synchronize your
feature version and plug-in version.
 Chapter 12. Deploying plug-ins for Sametime 7.5 535

Figure 12-11 Version Synchronization Dialog

15.Your feature and plug-in are now ready to deploy.

12.2.3 Task 3: Create an Eclipse deployment Web site

Whether you want to deploy Sametime plug-ins automatically or prefer to let your
user base manually choose and install plug-ins, you will need an Eclipse
Deployment Web site. This section describes how to create an Eclipse
Deployment Web site using Eclipse V3.2.

1. Open Eclipse. Be sure to open the workspace where you created your plug-in
and feature (see Figure 12-12).

Figure 12-12 Verify your Feature shows in Package Explorer

2. Select File → New → Project.
536 Extending Sametime 7.5: Building Plug-ins for Sametime

3. Select Update Site Project, as shown in Figure 12-13, and then click Next to
launch the wizard.

Figure 12-13 Select the Update Site wizard

4. The New Update Site wizard has only one page, as shown in Figure 12-14 on
page 538.

a. Enter a Project name. You should enter the plug-in name and append a
another word to denote that this is an update site project. In our example,
we use com.riverbend.sametime.branding.update.

b. Select Use the default location.

c. Check the Generate a Web page listing all available resources within
the site.

d. Leave the Web resource location as the default web.

5. Click Finish.
 Chapter 12. Deploying plug-ins for Sametime 7.5 537

Figure 12-14 Update Site Wizard properties page

The wizard creates your update site within your Eclipse workspace.

6. Double-click the index.htm file located in the Package Explorer tab, as shown
in Figure 12-15.

Figure 12-15 Select the index.html file in your update site
538 Extending Sametime 7.5: Building Plug-ins for Sametime

This will display the look of the Web site in the editor frame (center frame).
Note that there are no plug-ins currently listed in this site. You will need to add
them.

Figure 12-16 The wizard created site has no plug-ins by default

7. To add your feature(s), double-click the site.xml file located in the Package
Explorer frame.

Figure 12-17 Select the site.xml file in your update site

8. This will open your site manifest editor in the editor frame (center frame), as
shown in Figure 12-18 on page 540.

To add your new feature, click Add Feature. If you are adding more than one
feature/plug-in or plan to in the future, you may choose to organize them by
category.
 Chapter 12. Deploying plug-ins for Sametime 7.5 539

Figure 12-18 New category and Add Feature buttons in Update site manifest editor

9. Click New Category to categorize your plug-ins.

10.If adding a new category, click New Category, as shown in Figure 12-19.

Figure 12-19 Clicking New Category displays properties for the New Category
540 Extending Sametime 7.5: Building Plug-ins for Sametime

11.In the Category Properties pane, enter a Name and Label for the new
category, as well as a description.

12.Highlight the newly named category in the site category list (left).

13.Click Add Feature to add feature(s) to this category, as shown in
Figure 12-20.

Figure 12-20 Click Add Feature to set your feature/plug-in within the update site

14.Select the feature you are including in this category, as shown in Figure 12-21
on page 542. You can select more than one by holding down the Ctrl key.
When finished selecting, click OK.
 Chapter 12. Deploying plug-ins for Sametime 7.5 541

Figure 12-21 Select your feature.

15.Click the Build All button, as shown in Figure 12-22.

This adds the /Features and /Plug-ins directories to the Site project and
populates them with JAR files containing your feature and plug-in files.

Figure 12-22 Building the Update Site locally
542 Extending Sametime 7.5: Building Plug-ins for Sametime

This will now build your update site locally. You will see a progress bar, as
shown in Figure 12-23.

Figure 12-23 Progress Bar for Site Build

16.Once completed, click the site.xml tab to switch to the Update Site Map
dialog for the site.xml page of the editor, as shown in Figure 12-24.

Figure 12-24 Site.xml tab of the Manifest editor

Your XML code should look like Example 12-2.

Example 12-2 XML code for the River Bend update site

?xml version="1.0" encoding="UTF-8"?>
<site>
 <feature
url="features/com.riverbend.sametime.branding.feature_1.0.0.jar"
id="com.riverbend.sametime.branding.feature" version="1.0.0">
 Chapter 12. Deploying plug-ins for Sametime 7.5 543

 <category name="Corporate Branding"/>
 </feature>
 <category-def name="Corporate Branding" label="Corporate Branding">
 <description>
 River Bend Branding of the Sametime Connect Client
 </description>
 </category-def>

That is it. You have now created an Eclipse Update site locally.

17.Copy the site map and jar files within the update project to your Web server
(see Figure 12-25). These files are found under the project root directory. In
our example, this is com.riverbend.sametime.branding.update.

Figure 12-25 Files and folders that need to be transferred to the web server

The files and folders in this directory include:

� features folder

� plug-ins folder

� web folder

� .project

� index.html

� site.xml
544 Extending Sametime 7.5: Building Plug-ins for Sametime

18.After you have the directory copied, open the site in a browser
(http://fullyqualifiedname/folder/index.html). It should look like Figure 12-26.

Figure 12-26 Verify your Web server

12.2.4 Task 4: Configure the Sametime server

The URL that was created for your update site will now need to be added to the
Lotus Sametime server. Adding this will enable the deployment of the plug-in to
all users who have this community as the primary community.

To configure the Sametime server to automatically push down plug-ins, do the
following.

1. Open stconfig.nsf on the Sametime server.

2. Edit the Community Client Document.

3. Add the URL to the Eclipse Deployment Web site, as shown in Figure 12-27
on page 546.

Note: This is known as adding a “server attribute” to the Sametime server.
 Chapter 12. Deploying plug-ins for Sametime 7.5 545

Figure 12-27 Community Client Document in stconfig.nsf on Sametime Server

4. Restart your Sametime server.

The next time a user logs into the Sametime Connect client, the plug-in is
downloaded and the user is prompted to restart the Sametime client.

12.3 Deploying plug-ins manually through Sametime
Connect

An user can install Sametime Connect plug-ins manually by doing the following
from the Sametime Connect Client:

1. Select File → Manage Updates → Download Plugins....

2. Click Search for New Features to Install, as shown in Figure 12-28 on
page 547.

Note: This can be disabled by an administrator. This is discussed in 12.8,
“Disabling manual plug-in installs through the Connect Client” on page 552.
546 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 12-28 Manual plug-in Install (Feature Installs)

3. Click Next.

4. Click New Remote Site.

5. Enter the Name and URL for that site, as shown in Figure 12-29. This is the
Eclipse Deployment Web Site that was discussed in 12.2.3, “Task 3: Create
an Eclipse deployment Web site” on page 536.

Figure 12-29 New Update Site
 Chapter 12. Deploying plug-ins for Sametime 7.5 547

6. Click OK. Figure 12-30 should appear.

Figure 12-30 Update Site

7. Select Ignore features not applicable to this environment.

8. Click Finish. Figure 12-31 on page 549 should appear.
548 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 12-31 Updates

9. Select the plug-ins to install.

10.Select to Show the latest version of a feature only.

11.Select whether to install each plug-in only once by choosing to filter features.

12.Click Next.

13.Select whether you accept the licensing agreement for each plug-in you are
installing, and then click OK.

14.Select a feature to install.

15.Click Change location to select a different location to which to install it or
leave the default.

16.Click Finish.

The plug-in will now be installed and the user will be prompted to restart.
 Chapter 12. Deploying plug-ins for Sametime 7.5 549

12.4 Deploying a plug-in through copying files

It is possible to manually deploy plug-ins by copying files to specific directories by
doing the following:

1. Export the plug-in JAR file from Eclipse.

2. Copy the exported plug-in JAR file to the <sametime-root>/eclipse/plug-in
directory, where <sametime-root> is the directory in which the Sametime
client is installed.

3. If the Connect Client is currently running, restart it to detect the plug-in.

The Eclipse plug-in should then become part of the Sametime client.

12.5 Configuring plug-ins

You can view and change the configuration settings for any plug-ins you have
installed, if your system administrator makes this functionality available to you.

To configure your plug-ins, do the following

1. Click File → Manage updates → Configure.

2. In the navigator, click the name of the plug-in configuration you want to view
or change.

3. Optional: Click the plus sign (+) beside the plug-in name to select the
installation location or specific plug-ins whose configuration you want to view
or change.

4. Click the task you want to perform.

5. Click the X to close the Product Configuration window.

Important: Deploying plug-ins in by copying files will not allow users to
configure the plug-in through the Sametime Connect interface. The plug-in will
not appear in the File → Manage updates → Configure dialog box. The
ability to deploy plug-ins in this manner may be prohibited in future releases of
Lotus Sametime.
550 Extending Sametime 7.5: Building Plug-ins for Sametime

12.6 Setting automatic plug-in update preferences

Your system administrator determines whether plug-ins are available to you and
whether new plug-in updates are automatically installed to your IBM Lotus
Sametime Connect client. If automatic updates are available to you, you can
specify an update schedule and download options. To enable this, do the
following:

1. Select File → Preferences and click the plus (+) sign beside Install/Update in
the navigator. Then click Automatic Updates.

2. Select Automatically find new updates and notify me to automatically
install updates to plug-ins.

3. Select how often you want to look for updates and down load options for new
updates, as shown in Figure 12-32.

Figure 12-32 Sametime 7.5 Connect Automatic Updates preferences

4. Click Apply.
 Chapter 12. Deploying plug-ins for Sametime 7.5 551

5. Click OK.

12.7 Installing plug-ins through the preferences.ini file

Sametime plug-ins can also be installed through the preferences.ini. The file is
located at C:\Program Files\IBM\Sametime Connect
7.5\plugins\com.ibm.collaboration.realtime.update_1.0.0\preferences.ini file.

The actual file location is dependent on where Sametime is installed.

The Eclipse Update Site URL would need to be added to the
adminUpdatePolicyURL= line in the preferences.ini.

The order of events follow:

1. The Sametime client starts.

2. The Sametime client searches for the existence of the server property, which
is the Eclipse Update Site URL, in the Community Client Document, in
stconfig.nsf.

3. If the key is not found, the client searches the preferences.ini for the
adminUpdatePolicyURL value. If it is there, the client will handle it as though it
came from the server attributes.

12.8 Disabling manual plug-in installs through the
Connect Client

An administrator can disable the ability for users to manually download plug-ins.
The user will see that they cannot use the File → Manage Updates menu
options because they will be grayed out.

Follow these instructions to disable this ability:

1. On the server machine, open the \Lotus\Domino\sametime.ini file.

2. Under the [config] section, add the following line:

DisableConnectPluginUpdates=1

3. Restart the server and reconnect with the client.

The user options will be greyed out, as shown in Figure 12-33 on page 553.

Note: IBM is reviewing the ability to use polices to deploy plug-ins in a future
release of Sametime.
552 Extending Sametime 7.5: Building Plug-ins for Sametime

Figure 12-33 Disabled plug-in
 Chapter 12. Deploying plug-ins for Sametime 7.5 553

554 Extending Sametime 7.5: Building Plug-ins for Sametime

Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2007. All rights reserved. 555

556 Extending Sametime 7.5: Building Plug-ins for Sametime

Appendix A. Additional material

This IBM Redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247346

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247346.

A

© Copyright IBM Corp. 2007. All rights reserved. 557

ftp://www.redbooks.ibm.com/redbooks/SG247346
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this IBM Redbook includes the
following files:

Table 12-1 File name and description

Details of how to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

� Extension Points.zip

File name Description

Code Samples.zip All of the code samples used within the
book. Within this .zip file, the following files
are contained:

Extension Points.zip Code used for the example in Chapter 4,
“Extension points” on page 61

Branding.zip Code used for the example in Chapter 5,
“Introduction to building a plug-in:
modifying the UI” on page 161

Calendar Lookup.zip Code used for the example in Chapter 6,
“Leveraging Web services and building a
calendar lookup plug-in for Sametime
Connect” on page 215

com.ibm.redbook.sametime.statistics.zip Code used for the example in Chapter 7,
“Advanced plug-in example: The
Sametime Server Statistics Plug-in” on
page 249

com.ibm.redbooks.st75.sap_1.0.0.zip Code used for the example in Chapter 8,
“Advanced plug-in example: SAP
integration” on page 297

com.ibm.wplc.education.mylearning.zip Code used for the examples in Chapter 9,
“Introducing My Lotus Learning Education
framework plug-in for Sametime Connect”
on page 391, Chapter 10, “Building the
education framework plug-in” on
page 405, Chapter 11, “Refining and
implementing the education framework
plug-in for Sametime Connect” on
page 485
558 Extending Sametime 7.5: Building Plug-ins for Sametime

This .zip file contains three plug-ins with their associated source code.

Import them into your Eclipse workspace by unzipping the three .jar files to
your hard-drive, then select File → Import → Plug-in Development →
Plug-ins and Fragments.

Make sure you specify Projects with source folders in the Import As section
of the wizard.

The plug-in com.ibm.redbooks.extensionpoints_1.0.0.jar covers the extension
points detailed in 4.3, “Adding to the contact list window” on page 69, 4.4,
“Adding to the chat window” on page 100, 4.6, “Adding a preference page” on
page 143, and 4.7, “Adding a mini application” on page 151.

The plug-in com.ibm.riverbend.enway_1.0.0.jar covers the extension points
detailed in 4.5, “Adding to the nway chat (multi person chat) window” on
page 120.

The plug-in com.ibm.redbooks.messagelistener_1.0.0.jar covers the
extension point detailed in 4.8, “Message Event Notification extension point”
on page 154

� Branding.zip

This .zip file contains one plug-in and associated source code.

Import it into your Eclipse workspace by unzipping the .jar file to your
hard-drive, then select File → Import → Plug-in Development → Plug-ins
and Fragments.

Make sure you specify Projects with source folders in the Import As section
of the wizard.

The plug-in com.riverbend.chat.branding_1.0.1.jar covers the Branding
options detailed in Chapter 5, “Introduction to building a plug-in: modifying the
UI” on page 161.

� Calendar Plug-in Sample.zip

This .zip file contains the source code used in the Calendar Lookup plug-in,
and a Domino database containing the Calendar Lookup Web service.

This code is provided for illustration only; you will need to create your own
plug-in project and generate your own Web service client jar file from your
deployed version of the Domino Web service.

The Domino database must be deployed on a Domino 7 server, as it uses the
new Web service design element.

� Sametime Admin Statistics Sample

The Java source code for the Sametime Server Statistics application are
contained in archive file com.ibm.redbook.sametime.statistics.zip. When the
archive is expanded, the resulting structure consists of a single top-level
 Appendix A. Additional material 559

directory, com.ibm.redbook.sametime.statistics, which contains two
sub-directories:

\plugin The plugin directory contains files associated with the
Sametime Server Statistics plug-in.

\servlet The servlet directory contains files associated with the
stlogserv servlet.

The plugin and servlet sub-directories both contain bin and src directories.
The plugin directory contains an additional xml directory.

The structure of the expanded com.ibm.redbook.sametime.statistics.zip
archive file is shown below:

com.ibm.redbook.sametime.statistics

plugin

 bin(compiled and exported Sametime plug-in)

 src

 com

 ibm

 redbook

 sametime

 statistics(Java source files)

 xml(plugin.xml)

servlet

 bin(compiled stlogserv servlet)

 src(Java source files)

� MyLearning.zip

The Java source code and images for the My Lotus Learning plug-in are
contained in archive file com.ibm.wplc.education.mylearning.zip. When the
archive is expanded, the resulting structure consists of a single top-level
directory, com.ibm.wplc.education.mylearning, which contains two
sub-directories:

\src The src directory contains further sub-directories that
correspond to the three packages used to organize the
plug-in’s code:

com.ibm.wplc.education.mylearning.catalog

com.ibm.wplc.education.mylearning.model

com.ibm.wplc.education.mylearning.ui.
560 Extending Sametime 7.5: Building Plug-ins for Sametime

\image The image directory contains various GIF and PNG
image files that are used for icons and graphic labels
within the plug-in’s user interface.

The structure of the expanded com.ibm.wplc.education.mylearning.zip
archive file is shown below:

com.ibm.wplc.education.mylearning

src

 com

 ibm

 wplc

 education

 mylearning

 catalog (Java source files)

 model (Java source files)

 ui (Java source files)

image(Image files)

The course definition XML file, course.xml, for the test course used with My
Lotus Learning plugin, is also available for download.
 Appendix A. Additional material 561

562 Extending Sametime 7.5: Building Plug-ins for Sametime

Glossary

API. Application Programming Interface.

ATF. Ajax Tools Framework.

CDT. C/C++ Development Tools.

CLASS file. A compiled Java source file.

Compilation unit. A Java source file.

Eclipse Platform. Eclipse Platform is the name for
the core frameworks and services upon which
plug-in extensions are created. It provides the run
time in which plug-ins are loaded and run. The
Platform's direct consumers are tool builders, or
ISVs, since they add the value to the Eclipse
Platform that makes it useful to people.
The Eclipse Platform is divided up into Core and UI.
Anything classified as "UI" needs a window system,
while things classified as "Core" can run "headless".
The UI portion of the Eclipse Platform is known as
the Workbench. The core portion of the Eclipse
Platform is simply called the Platform Core, or Core.

Eclipse SDK. The Eclipse SDK includes the
Eclipse Platform, Java development tools, and
Plug-in Development Environment, including source
and both user and programmer documentation.

Eclipse. An open platform for rich client
development. Although Eclipse is a Java-based
platform, it can be used to build tools for other
programming languages.

EMF. Eclipse Modeling Framework.

Extension Points. The specification that declares
how extensions can add to the functionality of a
plug-in. Several plug-ins can contribute to an
extension point by defining extensions in the
plug-in's extension manifest file, plugin.xml.
© Copyright IBM Corp. 2007. All rights reserved.
Extension. A mechanism that expands the
functionality of a plug-in by connecting to an
extension point. An extension is also referred to as a
"contribution" to another plug-in.

GEF. Graphical Editing Framework.

IBM WebSphere Everyplace Deployment. The
platform used by Lotus Sametime Connect and IBM
managed client products. WebSphere Everyplace
Deployment includes the Eclipse Rich Client
Platform (RCP) and Java Runtime Environment
(JRE), as well as additional services used by
managed client products. The WebSphere
Everyplace Deployment platform is available as a
separate product, so that third parties can build their
own WebSphere Everyplace Deployment
applications.

IDE. Integrated Development Environment. The
IBM Rational Application Developer IDE and Eclipse
IDEs are examples of IDEs.

ISV. Independent Software Vendor.

J2SE. Java 2 Platform, Standard Edition. This is
the standard JRE for desktop applications.

J9 JCL Desktop. A custom run time environment
that provides a wide set of features from the Java 2
Platform API core libraries. J9 JCL Desktop is the
runtime environment used by Lotus Sametime
Connect 7.5 on Windows and Linux platforms.

JDT. Java Development Tools.

JFace. JFace is the mid-level UI framework useful
for building complex UI pieces, such as property
viewers. JFace works in conjunction with SWT.

JRE Java Runtime Environment. This is the
technology that allows Java applications to run.
 563

OSGi. The OSGi Service Platform is a standard
that defines, among other things, how Eclipse
plug-ins are packaged.

Packages. A group of types that contain Java
compilation units and CLASS files.

PDE. The plug-in development environment.

Perspective. An Eclipse Development Term that
indicates a view into your Eclipse development
environment workbench. More specifically, the
Eclipse development environment (and Eclipse
applications) runs inside an environment called a
workbench. The workbench is a collection of
toolbars, menus, and one or more perspectives.
Essentially, you can think of the workbench as the
Eclipse IDE. When starting a new project, you can
create a specific profile for a development project,
known as a workspace.

Plug-in registry. A registry of declared plug-ins,
extension points, and extensions managed by the
Eclipse Runtime Platform.

Plug-in. An Eclipse platform feature component. A
plug-in is the basic building block of an Eclipse
application.

RCP. Rich Client Platform.

RTC. Real-time Collaboration, which describes
synchronous technologies such as instant
messaging, presence awareness, Web conferences,
telephony, and so on.

SIP. Session Initiation Protocol, a standard
protocol for managing interactive sessions between
users. SIP is used for instant messaging, presence,
telephony, and a number of other applications

Source folder. A folder that contains Java
packages.

SWT. Standard Widget Toolkit is a small, fast
widget toolkit with a portable API and a native
implementation. So far, SWT has been ported to
Windows, Linux (GTK and Motif window systems),
AIX® (Motif), Solaris™ (GTK), HP-UX (Motif), QNX
(Photon), and Mac OS X (Carbon).

Type. A type inside a compilation unit or CLASS
file.

Workbench. Eclipse development environment. A
workbench is a collection of toolbars, menus, and
one or more perspectives.

Workspace. A workspace is the general umbrella
for managing resources in the Eclipse Platform.
Note that workspaces and resources are an optional
part of the Platform; some configurations of the
Platform will not have a workspace.
The Workbench is a high-level UI framework for
building products with sophisticated UIs built from
pluggable components. The Workbench is built atop
JFace, SWT, and the Platform Core.
564 Extending Sametime 7.5: Building Plug-ins for Sametime

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 566. Note that some of the documents referenced here may
be available in softcopy only.

� Lotus Instant Messaging/Web Conferencing (Sametime): Building Sametime
Enabled Applications, SG24-7037

Other publications
These publications are also relevant as further information sources:

� D'Anjou, Jim, et al, The Java Developer's Guide to Eclipse, Second Edition,
Covers Eclipse 3.0, Pearson Education, 2004, ISBN 0321305027

� Bloch, Joshua, Effective Java Programming Language Guide,
Addison-Wesley, 2001, ISBN 0201310058

� Carlson, David. Eclipse Distilled (The Eclipse Series), Pearson Education,
2005, ISBN 0321288157

� Burnette, Ed. Eclipse IDE Pocket Guide, O'Reilly Media, Incorporated, 2005,
ISBN 0596100655

Online resources
These Web sites are also relevant as further information sources:

� Chris Aniszczyk’s Recommended Eclipse Reading List

http://www-128.ibm.com/developerworks/library/os-ecl-read/index.html

� IBM WebSphere EveryplaceDeployment

http://www.ibm.com/software/pervasive/ws_everyplace_deployment
© Copyright IBM Corp. 2007. All rights reserved. 565

http://www-128.ibm.com/developerworks/library/os-ecl-read/index.html
http://www.ibm.com/software/pervasive/ws_everyplace_deployment

� Sametime Home page on IBM developerWorks

http://www-128.ibm.com/developerworks/lotus/products/instantmessagin
g/

Eclipse
� Eclipse Organization Community home page

http://www.eclipse.org

� Eclipse Workbench User’s Guide basic tutorial

http://help.eclipse.org/help32/index.jsp

� Eclipse project resources

http://www.ibm.com/developerworks/opensource/top-projects/eclipse.ht
ml

� Eclipse documentation, including help, tutorial and guides

http://www.eclipse.org/documentation/

Java
� The Java Tutorial

http://java.sun.com/docs/books/tutorial/

� Java technology

http://www.ibm.com/developerworks/java

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, IBM Redpapers, Hints and
Tips, draft publications and Additional materials, as well as order hardcopy
Redbooks or CD-ROMs, at this Web site:

ibm.com/redbooks
566 Extending Sametime 7.5: Building Plug-ins for Sametime

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www-128.ibm.com/developerworks/lotus/products/instantmessaging/
http://www.eclipse.org
http://help.eclipse.org/help32/index.jsp
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.eclipse.org/documentation/
http://java.sun.com/docs/books/tutorial/
http://www.ibm.com/developerworks/java

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 567

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

568 Extending Sametime 7.5: Building Plug-ins for Sametime

Index

A
A branded chat window 164
A branded hub window (Buddy List) 166
A branded login window 164
A custom action added to the Connect client’s menu
bar 70
A look at the com.ibm.collaboration.realtime.ui pack-
age 168
A meeting node 276
A preview of what you will build in this chapter 162
A statistic node 275
About Lotus Sametime V7.5 5
About plug-ins 10
About sample plug-ins 55
About The Integrated Development Environment
38
About the J9 JCL desktop custom runtime environ-
ment 43
Accessing the display name of the selected contact
96
Acronym Expander 15
Acronym Expander plug-in user interface 16
action class 87, 96, 437–440

run method 447
action extension element details 74
Action instance variables 442
actionSet extension element details 73, 88
Activator class 65, 196, 208, 241, 243, 246, 266,
279, 403

image cache 246
Activator class created by the Plug-in Project wizard
67
Activator.getD efault 147–148, 243, 247, 335–336
Activator.getI mageDescriptor 243, 247
Activator.java 241
Activator.java code 196
Activator.java code changes needed. 198
Activator.logE rror 344–345
Activator’s clearImageCache() method 242
Activator’s getImage() method 241
Add a new chatAction extension element 103
Add a Sametime Server Statistics menu item 292
Add additional libraries to the JRE 45
© Copyright IBM Corp. 2007. All rights reserved.
Add an action to a person selection 90
Add extra column and new function 125
Add Installed JRE 44
Add JRE dialog box 45
Add logging methods 320
Add the action item to the Menu Bar 75
Add the full JRE to the project’s build path 229
Add the Java Connector to the Development Envi-
ronment 339
Add the Java Connector to the Example Plug-in
340
Add the URL of the Web service’s WSDL file 224
Add variables and update the connection methods
343
Added nwayListExtension 124
Adding a chat area extension 112
Adding a constructor to the STServerInfo Class 271
Adding a mini application 151
Adding a new action extension element 74
Adding a new actionSet extension element 73
Adding a new actionSetPartAssociation extension
element 76
Adding a new folder to the plug-in project 84
Adding a new Label to the SWT Composite 290
Adding a new miniApp extension element 152
Adding a popup message area 116
Adding a preference page 143
Adding an action to a group selection 96
Adding an action to both Menu and Tool bars 109
Adding an action to the Format bar 110
Adding an action to the Menu bar 70, 101
Adding an action to the system tray menu 88
Adding an action to the Tool Bar 82
Adding an action to the Tool bar 105
Adding an extension to plugin.xml 292
Adding an nwayListExtension 124
Adding JAR files to the JRE 47
Adding the com.ibm.collaboration.realtime.imhub
plug-in as a dependency 86
Adding the com.ibm.rcp.realtime.livenames plug-in
as a dependency 94
Adding the new SWT object to your UI 289
Adding the STStatsPreferencePage class 283
Adding the Web service client JAR file to the
 569

plug-in’s classpath 234
Adding to the chat window 100
Adding to the contact list window 69
Adding to the context (right-click) menu 90
Adding to the nway chat (multi person chat) window
120
Adding unimplemented methods to your class 293
Additional examples - Using the Lotus Education
Plug-in for Content Delivery 521
Advanced Example 22, 389
Advanced Plug-in Example - SAP Integration 297
Advanced Plug-in Example - The Sametime Server
Statistics Plug-in 249
All branding plug-ins begin the same 169
AllTopics label 488
alue 383
An example of a filtered organizational hierarchy
307
An example of the error message when the filter is
applied on a non-manager 308
An example of the inventory search results 309
An example of the inventory user interface. 302
An example of the order status user interface. 303
An overview of the Sametime Server Statistics
plug-in to be developed in this example 251
ArrayList 409, 411, 495, 510
AssistAction class 474
AssistAction cpass 440
Assistance Action 457
Assistance provider business card 457
Assistance providers 399
Assistance section changed listener 465
AssistContentProvider class 466
AssistLabelProvider class 468
AssistWindow class 460
associated action class

run method 447
ATTLIST category 487–488, 518
AWT class 252, 258
ayoutData 364

B
back-end system 297–298
BAPI 344, 356
BAPIs

output parametetrs 387
Benefits of extending client functionality 8
blank XML 272–273

boolean b 344, 351, 413
Branding 18
Brief overview of Eclipse 24
browser.setT ext 481, 513–514
browser.setU rl 114, 481, 513–514
BrowserComposite class 480
buddy list 12–13, 29, 162, 166, 217
BuddyNote 12
BuddyNote plug-in user interface 13
Build Configuration Editor 528
Building a Branding Plug-in 169
Building a Course from the XML Definition 498
Building the application 257
Building the Education Framework Plug-in 405
Building the sample application 312
Building the Update Site locally 542
BundleContext context 130, 142, 197, 209, 283

C
calendar entry 217, 239–240, 243

text values 248
Calendar lookup plug-in showing buddy’s calendar
details 239
CalendarDetailsWindow.java 243
CalendarEntriesContentProvider.java 246
CalendarEntriesLabelProvider.java 246
CalendarEntriesLabelProvider’s getColumnImage()
method 246
CalendarEntriesLabelProvider’s getColumnText()
method 248
CalendarEntryResult.java 246
CalendarEntryWebServiceLookup.java 244
CalendarLookupAction.java 242
CalendarLookupAction’s run() method 243
Calling the Sametime statistic servlets to perform an
update 287
Calling the Web service 245
Calling the Web service from the plug-in 234
Catalog Class 412, 414, 416, 485, 487–488

first development iteration 415
no-argument constructor 416
XML parsing 415

Catalog class
findCourse method 498
Helper methods 503
list method 498
ParseCourse method 502
setup method 488, 516
570 Extending Sametime 7.5: Building Plug-ins for Sametime

Catalog class constructor 417
CatalogHelper class 503
Category Class 414
Category combo 424
Category combo viewer 428
Change the names of the class and page and then
click Finish 333
Chat branding element property details 189
Chat message with Acronym Expander 15
Chat message without Acronym Expander 15
Chat transcript area retains tabbed heading after
closure of chat area 116
Chat Window

Further modifications 192
top right portion 165

chat window 17–18, 67, 69, 162, 164
Menu bar 101
menu bar 101, 104
new capabilities 67
Quick Response 17

Chat window extension points 20, 69
Chat window showing custom action in both Menu
and Tool bars 110
Chat window showing newly opened chat area 115
Chat window with branding 165
Chat window with chat area extension 112
Chat window with popup message area displayed
117
chatArea 112–113
ChatArea’s createPartControl() method 114
ChatBrandingArea.java code changes. 194
ChatWindowMenuBarAction’s run() method 104
ChatWindowOpenChatArea’s run() method 114
ChatWindowPopupAddOn class details 118
Check the availability 385
Choosing new control for chat branding element
189
class file 79, 86, 94, 231, 429
Class link that launches New Class wizard 79
Class wizard the for the second labelProvider class
135
Classes that extend the JFace Actions class 439
Classes used in the creation of additional code 193
Click Add Feature to set your feature/plug-in within
the update site 541
Click class to create a new cellListener class 131
Click Class to create new labelProvider Class. 127
click Finish 11, 57, 65, 72, 171, 177, 219–220, 266,
332–333, 403–404, 408, 420, 490, 512, 532, 535

click Next 10, 64, 123, 170–171, 218, 220, 265,
332, 520, 530–531
Click the Add... button 330
Clicking New Category displays properties for the
New Category 540
Clicking the menu action displays the dialog box 81
Client location targeViews 168
Client locations available to branding 168
code sample 62, 161, 166, 216, 250, 392, 405, 486,
558
Code to retrieve preference values 149
Column Image code in the labelProvider class 128
column index 246
com.ibm.rcp.realtime.livenames.LiveName.getSta-
tus() field values 137
combo viewer 400, 426, 433

different categories 436
input source 433
setInput method 426

Common elements 169
comp.setB ackground 194, 206, 461, 478
comp.setL ayout 119, 153, 194, 206, 243, 421, 449
Component layers 31
Configure the Plug-in to run without SAP 341
Configuring Plug-ins 550
Configuring the Sametime Server Statistics Plug-in
255
Considerations around possible limitations for the J9
JCL Desktop 33
Considerations for additional code 192
Considerations for the modifications 204
Constants 347
Constants.java 347
Contact class instance variable 412
contact email 488–489
contact list 18, 21, 61, 69–70, 162, 168, 215, 217,
239
content provider 241, 244, 400, 425–426
Content provider’s getElements() object 246
Context menu

action 95–96
bar action 95
resource item 401

context menu 12, 61, 90–91, 240, 242, 401, 408,
420, 466, 492, 518

action classes 438
available actions 438
Select Uninstall 12

Copying com.ibm.collaboration.realtime.doc.isv
 Index 571

folder 51
course catalogue 412, 415, 485, 487

rudimentary implementation 485
Course class 400, 412, 414, 494, 499

aggregated component 412
Course class instance variables 414
Course combo 423

viewer 426–427
Course combo viewer 426
Course Definition XML 487
course definition XML 488
course definition XML file 400, 415, 487, 489, 502,
509, 561
Course Description 493
Course label 423, 489
Course list 395
course.xml course definition XML file 518
CourseDescriptor 406–407, 496, 504
CourseDescriptor class instance variables 412
CourseDescriptorList 413, 415, 498

private instance variables courseList 416
CourseExtension class 493–494

new instance 497
type-aware list class 496

CourseExtensionList class 495
CourseHandlerErrorHelper class 507
Create mages folder 404
Create a Base64 encoding/decoding class 266
Create a class to test the Web service client 227
Create a JFree object to store graph data 261
Create a list of active meetings 274
Create a new cellListener Class 132
Create a new class 190
Create a new launch configuration 54
Create a new view from org.eclipse.ui.views. 139
Create a preferences page 283
Create a Sametime server information object class
270
Create a Sametime statistics dialog window 286
Create a second column for new functionality 134
Create a second nwayListExtension from
com.ibm.collaboration.realtime.chatwindow.nway-
ListExtension. 134
Create a toolView 138
create a vector object for field data 260
Create Actions 446
Create Basic User Interface Widgets 422
Create course definition file 518
Create Data Objects 320

Create first labelProvider Class 128
Create JFace Viewers 425
Create MyLearingMiniApp Class 420
Create New cellListener. 126
Create new folder called images. 123
Create new plug-in project 313
Create Preferences 329
Create Project and Base Objects 313
Create SapMiniApp 313
Create the action’s code 79
Create the basic user interface 318
Create the Catalog Class 414
Create the Catalog class 416
Create the content extension point 511
Create the Context Menu for the Tree Viewer viewer
443
Create the description extension point 490
Create the graph 263
Create The Plug-in 265
Create the Resource class 408
Create the SAP and Test Classes 341
Create the Servlet 258
Create ui, model, and catalog sub-packages 403
createActions method declaration 441
createActions method invocations 442
createContents 243, 284
createContents() method creates the window’s Shell
object 243
createControl method 168, 318, 421–422

createMenuManager method 443
createControl method of MyLearning MiniApp class
421
createMenuManager method

invocation 443
createMenuManager method declaration 443
createMenuManager method invocation 443
Creating a Branded Login Window 178
Creating a Chat Window branding plug-in 186
Creating a Course Plug-in 517
Creating a Hub Branding Plug-in 199
Creating a MyBusinessCard instance 462
Creating a new class 202
Creating a new control 201
Creating a new launch configuration 212
Creating a new part extension element 76
Creating a new Web Service Client 223
Creating a plug-in project and plug-in 64
Creating a Web service client 222
Creating images folder 181
572 Extending Sametime 7.5: Building Plug-ins for Sametime

Creating new Action classes 442
Creating the action class 87
Creating the calendar lookup plug-in 239
Creating the Category and CategoryList Classes
414
Creating the chatArea class 113
Creating the Contact and ContactList Classes 412
Creating the Content Extension Point 511
Creating the Course Catalog 493
Creating the Course Class 414
Creating the CourseDescriptor and CourseDescrip-
tor Classes 412
Creating the Description Extension Point 489
Creating the JFace TableViewer 244
Creating the miniApp class 153
Creating the MyLearning Plugin Project 401
Creating the plug-in project and plug-in 232
Creating the Resource and ResourceList Classes
407
Creating the table columns 244
Creating the Tag and TagList Classes 411
Creating the Topic and TopicList Classes 410
Creating the Workspace 44
Custom action added to chat window Format bar
110
Custom action added to Menu bar of chat window
101
Custom action added to person context menu 91
Custom action added to the system tray menu 88
Custom action added to the Tool Bar 82
Custom action in the person selection context menu
95
Custom action in the Tools menu 78
Custom mini application added to the contacts list
151
custom UI 287–288
customer service representative (CSR) 304

D
Data Model Class Diagram 406
Data Object Overview 320
data.righ t 422–423
dataset 261
default value 126, 148, 334–335
Define compiler settings 48
Define the Actions 439
Defining the properties of the stbranding extension
element. 180

definition file 487, 499
DefinitionException class 509
Dependencies for example plug-in 122
Dependencies tab 174
Dependency tab with com.collaboration.realtime.ui
dependency added 175
Deploying Custom Plug_ins to IBM Lotus Sametime
Connect Users 526
Deploying Plug-in Through Copying Files 550
Deploying plug-ins automatically 526
Deploying plug-ins for Sametime V7.5 525
Deploying Plug-ins Manually Through Sametime
Connect 546
DescribeResourceAction class 441
DescribeTopicAction class 441
DescriptionContentProvider class 450
DescriptionLabelProvider class 451
DescriptionTable class 452
DescriptionTableRow 454, 456
DescriptionTableRow class 453
DescriptionWindow class 448
Deselect the required plug-ins option to find the re-
quired extension point 102
Design Overview of My Lotus Learning Plug-in 399
Development Environment 3, 8, 27, 33, 35, 37–38,
167, 199, 339
dialog box 29, 77–78, 80–81, 235, 237, 490, 503
Dialog generated by clicking on group context menu
action 100
Disabled plug-in 553
Disabling Manual Plug-in Installs Through the
Sametime Connect Client 552
DisplayAction class 440
Displaying the Extensions tab 187, 199
Displaying the image property details 185
Displaying the stbranding extension 179
displayName property 106–107
DisplayWindow class 477
Downloading 289, 338
Downloading and Deploying the application 252
Downloading and Deploying the Plug-in 305
Downloading and displaying the chart 289
Downloading the SDK and setting up the IDE 10
drop-down arrow 54, 211
DTD 400, 452–453, 487–488
Dynamic context menu construction 444
 Index 573

E
e.prin tStackTrace 133, 237, 264, 272
Eclipse IDE 27, 40–41, 211
Eclipse New Project wizard 64
Eclipse platform 8–9, 23–24, 218, 258, 295
Eclipse platform components 28
Eclipse platform for extending functionality 8
Eclipse Preferences 222
Eclipse Update Manager 219
Eclipse’s Quick Fix mechanism 226
Education Framework 405, 485
Educational Centers for IBM Software (ECIS) 393
element tree 491–492

extension icon 492
name icon 491, 513

EM_NUMBER (EN) 335, 337
E-mail Address 207
Embedded Learning with IBM Lotus Sametime V7.5
394
Employee Id 356, 359
end if-else 345, 347
end method 318–319
endElement method of CourseHandler class 507
Enhancing the BrowserComposite Class 513
Ensure properties file values are loaded at start up
283
equa lsIgnoreCase 263
Error generated when clicking the action 78
event handler 464
ex.getM essage 344–345
ex.prin tStackTrace 344–345
Example Activator.java 129
Example cellListener code 132
Example code for creating ChatBrandingArea class
193
Example code for creating HubBrandingArea class
205
Example displayName property 106
Example of the human resources user interface
301
Example of VM arguments 213
Example tooltipText and image properties 107
Exception e 264, 272, 508
ExceptionList class 510
Expanded topics list 396
ext 45, 361
Extend the GroupActionDelegate class 99
Extend the LiveNameActionDelegate class 94
Extendable platform 8

Extending a standard Eclipse preferences page
283
Extending the Sametime Connect Client 8
Extending this plug-in 248, 387
extension element 73–74, 76, 169, 178, 489, 511

id attribute 489
name attribute 489

Extension Ideas 294
Extension Point 8, 19–20, 26–27, 35, 61, 252, 312,
315, 400, 402, 487, 489, 558–559
extension point

client UI 8
id attribute 511
name attribute 511
XML schema 511

Extension Point Elements 491, 512
Attribute Details 513

Extension Point Properties dialog 490
Extension Point Selection dialog 75
Extension point selection wizard 72
Extension Points 61
Extension points added to the Extensions list 146
Extensions for com.ibm.collaboration.realtime.ui
package 168
Extensions tab 71, 176, 178, 235, 315, 330
Extensions tab with com.ibm.collaboration.rea-
time.ui.stbranding extension added 178
Extensions window 124–126, 176
extensions window

cellListener entry 131
com.ibm.collaboration.realtime.chatwin-
dow.nwayListExtension extension 134, 138
labelProvider entry 126
newly added cellListeners 126
newly added extraColumns 125
newly added nwayListExtension 125
newly created extension 124
second extraColumns 134
second nwayListExtension 134
third nwayListExtension 138

External JARs 45, 339

F
Feature Id 530
Feature Properties Dialog in the New Feature Wiz-
ard 531
Feature Verification 221
File name and description 558
574 Extending Sametime 7.5: Building Plug-ins for Sametime

File System
dialog box use 520
Wizard 182
Wizard window 182

Files and folders that need to be transferred to the
web server 544
FillLayout 119, 153, 243, 449
Filtered topics list 396
findCourse method 415, 419, 498–499
findCourse method of Catalog course 419
findDefaultCourseDescriptor method of Catalog
class 419
Finished SAP preference page 338
FormAttachment 422–423
FormData 422–423
Further modifcations for the hub window plug-in
204
Further modifications for the Chat Window Branding
plug-in 192

G
Get a list of material IDs 382
Get detailed information for the material 384
getElement method 427, 429
getElement method of TopicLabelProvider 431
getElements method 426, 428
getelements method of CategoryContextProvider
class 428
getelements method of CategoryLabelProvider
class 428
getElements method of CourseContentProvider
class 427
getElements method of TopicContentProvider class
429
getImage descriptor undefined - use the light bulb
for possible soultions 195
getNamespace method in Browser 516
getResolvedURL method 515
getText method of CourseLabelProvider class 427
Getting assistance from within a learning resource
399
Getting live assistance 398
graphical user interface (GUI) 32, 258
GridData 194, 206, 291, 318, 353
GridLayout 194, 206, 318, 353

H
handeEndTopicElement method of CourseHander

class 507
handleTopicElement method of CourseHandler
class 506
Help and support example 522–523
Helper methods for calling SAP BAPIs 344, 358
Highlight the cellListener entry 131
Highlight the labelProvider entry. 127
Highlight the Project in the Package Explorer per-
spective 122
How to test your Branding Plug-in 210
HR (Corporate Directory) Integration 304
HR changes to the SapMgr 356
HR changes to the SapMiniApp 353
HR changes to the TestMgr 359
HR Example 307, 348
HRFilter 352
HRFilter.java 352
HRLabelProvider 350
HRLabelProvider.java 350
HRTreeContentProvider 351
HRTreeContentProvider.java 351
HTML text 481, 503, 513
HTTP process 253
Hub window with branding 166
HubBrandingArea class 203, 205–206
Human resource example 521
Human Resources Example 306
Human Resources example 522
Human resources example showing the complete
organizational hierarchy 306
Human Resources use case 301

I
IAction arg0 81, 89, 243, 293
IAssist implemented by Resource 458
IAssist implemented by Topic 458
IAssist interface 458
IBM developerWorks (ID) 10, 38, 41
IBM Lotus Sametime 5–6, 23, 27, 39–40, 551

7.5 8, 20–21, 58, 394
7.5 SDK 41
Software Developers Kit 12
Software Development Kit 55
V7.5 toolkits 10

IBM Workplace
Collaboration Service 6
environment 163
Managed Client 30–31
 Index 575

ICatalog interface 406, 414–415
final implementation 415

Icons associated with the resources 437
id Attribute Details 491
id.crea teImage 289, 421, 431
IERPMgr.java 341
ILabel interface 431
Image files moved to images folder 184
images folder 123, 181–182, 404, 421
Implement a properties file 279
Implement your own Base64 encoder class 267
Implementing ILabel in Resource and Topic 431
Implementing the Class Model Diagram 407
Implementing the createContent method 284
Implementing the Topic Filter 433
Import Images 122
import org.eclipse.swt.SWT 140, 193, 205, 448,
460
Import Plug-in and Fragments 57
Importing the Web service client JAR 233
Improved Web conferencing 7
in.leng (ILEN) 267, 269
Including Content in a Course Plug-in 510
Information tab in the Feature editor 534
Initial Screen for the Inventory Tab 371
input source 276, 425–426
Installable features from Callisto Discovery Site
220
Installing Plug-Ins Through the Preferences.ini File
552
Installing Sample Plug-ins 55
Installing the Sametime IDE 40
Installing the Web Tools Platform 218
instance variable 407–408, 497, 506
int i 99, 244–245, 262, 267, 357, 368, 496, 516
Integrated Development Environment (IDE) 9–10,
37–38
Introducing My Lotus Learning Education Frame-
work Plug-in 391
Introduction 63, 162
Introduction to Building a Plug-in - Modifying the UI
161
Introduction to Sametime V7.5 3
Introduction to the scenario 162
InvComboContentProvider 376
InvComboContentProvider.java 376
InvComboLabelProvider 374
InvComboLabelProvider.java 374
Inventory changes to TestMgr 386

Inventory Example 308, 371
Inventory Integration 304
Inventory UI code in the SapMiniApp 379
Inventory UI helper methods 381
Inventory Use Case 302
InvTableContentProvider 378
InvTableContentProvider.java 378
InvTableLabelProvider 377
InvTableLabelProvider.java 377
ISO certification example 522
IStatus.ERRO R 320, 472, 500, 516
it.hasN ext 467, 498–499

J
J9 JCL Desktop 32
jar file 46–47, 230–231, 253, 339–340, 529, 542,
544, 559

Web service client classes 237
JAR file specification 232
Java Build Path updated to include the SAP Java
Connector 340
Java Class

Library 9, 32
Java Compiler Preference settings 48
Java Connecter 305, 339–340

full names 387
Java Development Tool 9, 42
Java run-time environment (JRE) 31, 40, 43, 229
Java Virtual Machine (JVM) 32, 252, 258
java.lang.Obje ct 374–375
JCL Desktop 31, 33, 39–40, 43, 211–212, 229–230
JFace MessageDialog

object 80, 89
window 104

JFace Viewer 425, 446
event handlers 464
label providers 446

L
label provider 241, 244, 425–426

class 400, 425
getElement method 430

labelProvider
Extension Element Details 127

launch configuration 41, 53, 210, 212
name 53

Launching the Sametime monitoring plug-in UI 256
Learning content display 476
576 Extending Sametime 7.5: Building Plug-ins for Sametime

Learning object icons 397–398
leContext 129–130, 196–197
Leveraging Web Services and Building a Calendar
Lookup Plug-in 215
Lightbulb - identifying exceptions in the Eclipse edi-
tor 195
Lightbulb Icon in Eclipse 3.2 class editor. 195
Linux platform 31–32, 40, 42
list method of Catalog class 418
list.clea r 409, 411, 495, 510
list.toAr ray 409, 411, 495, 510
Load the stored values from the properties file 281
Locations for adding an action to the Tool Bar. 83
Login window 162, 164
Logon window with branding 164
LookupHandler class 464
Lotus Education 521
Lotus Expeditor toolkit 39
Lotus Learning 391, 393, 405, 415

plugin 561
plug-in display property 401

Lotus Sametime 3–4, 8, 23, 25, 30, 37–38, 61, 68,
161–162, 391, 393, 525–526

future releases 550
internal directory 9
key functionality 9
major release 32
overarching goal 29
presence components 8
previous releases 7
related branding information 162

Lotus Sametime Connect client extension points
19, 68
Lotus Sametime Java Toolkit 32
Lotus Sametime Platform 25
Lotus Sametime Server Architecture 33

M
Mac OS X

platform 40
version 10.4 6

Make the returned statistics available to the rest of
the plug-in 274
Managing plug-in updates 11
Manual plug-in Install (Feature Installs) 547
Manually install a plug-in 10
Manually remove a plug-in 12
material id 382, 384

Menu bar 70, 75, 222
Menu icons 397
menu manager 401, 443
MenuBarAction’s run() method 81
menubarPath property 74–75

lists valid values 104
Valid values 89, 92

menubarPath property values for the system tray
menu 89
Message Event Notification extension point 154
MessageDialog.open Information 81, 87, 237
Method of MyLearning MiniApp class 421
mini-app 254
Modifications including an image, cursor change
and tool tip 193
Modifying the Recent Buddies list 14
Modifying the Vector list of the STServerInfo objects
279
Move the activator class 403
Moving content to a course plug-in 520
mportParameterList 356
mutator method 407, 434
My Learning user interface 425
My Lotus Learning Plug-in 393
MyLearning MiniApp class constructor 420
MyLearningMiniApp class 420, 432

createControl method 434
new method 441, 443

MyLearningPlug-in.getD efault 421, 470, 500, 516

N
Name field 45, 53, 171, 211, 403–404, 408, 420,
490, 492
Naming the HubBrandingArea class 203
Naming the new Java class 191
Navigate to the Libraries tab of the Java Build Path
339
Navigating learning content 395
New category and Add Feature buttons in Update
site manifest editor 540
New class wizard. 140
New column creation. 126
New constructor and setup method for Catalog class
496
New findCourse method in the Catalog class 499
New images folder 181
New in Sametime version 7.5 5
New Java Class wizard 80
 Index 577

New list method for Catalog class 498
New plug-in dependency prompt 235
new plug-in project 65, 232, 313
New Plug-in Project wizard 65
New Sametime Connect client 6
New Update Site 547
New URL parsing in BrowserComposite class 514
Newly Created labelProvider 125
next step 128, 232, 280, 282, 334, 450
Notes API

document object 262
Item object 262
session object 259
ViewEntryCollection object 261

O
Object element 129, 136, 246, 248, 350–351
Obtaining a Directoryservice instance 463
Obtaining the group name and contents from the
menu action 99
Open Action 476
Open the Notes Database 259
Open workspace displaying your plug-in 527
Opening a MessageDialog when the menu item is
clicked 95
order id 309–310
Order Status 297, 302

Example 309, 312, 360
Integration 304
Tab 299, 366
Use Case 302

Order status changes to the SapMgr 368
Order status changes to the TestMgr 370
Order Status Example 309, 360
Order status helper methods 366
Order Status Integration 304
Order status results 310
Order status results page 361
Order status start screen 360
Order status UI code in the SapMiniApp 361
Order Status Use Case 302
Order status when the order id is not found 311
Order.java 327
org.eclipse.ui 65, 70
org.eclipse.ui.acti onSets 56, 72, 82, 292
org.eclipse.ui.pref erencePages

Extension 331
extension point 146

organization Id 311, 337
Organization.java 324
Organizational chart filtered to only show the em-
ployees of the selected manager. 349
Organizational hierarchy from the SAP system 348
Overrided hashCode and equals method 413
Overriding default methods of the PreferencePage-
Class 284
Overriding the default functionality of the Apply or
OK buttons 285
Overview of Lotus Sametime V7.5 Architecture 23
Overview of My Lotus Learning Plug-in 393
Overview of the functional tabs within the plug-in
300
Overview of the HR classes to create or update 349
Overview of the Inventory classes to create or up-
date 373
Overview of the Lotus Sametime Connect architec-
ture 29
Overview of the plug-in 217
Overview of the Sametime Architecture 29
Overview of the Sametime Server Statistics plug-in
251
Overview of the samples provided in this book 20
Overview of the SAP BAPIs used in the HR example
356
Overview of the SAP BAPIs used in the inventory
example 382
Overview of the SAP BAPIs used in the order status
example 367
Overview tab of the Feature.xml file in the Feature
editor 533

P
package com.ibm.wplc.education.mylearning.ui
431, 448, 450–451
Package Explorer

frame 181, 196, 207
perspective 122–123, 187, 199, 527
tab 538

Package Overview 312
Package selection dialog 79
page and initializer extension elements added by
the wizard 146
param path 131, 142, 198, 210
parent.getS hell 243, 449, 461
ParseCourse method in Catalog class 502
Parsing the XML and storing statistics 276
578 Extending Sametime 7.5: Building Plug-ins for Sametime

Parsing the XML course definition file 501
Pattern for referencing plug-in resident content 511
PeopleList 462
PeopleList class 459
Person.java 321
PersonHelper class 471
plain old java object (POJO) 321
Planning 311
plant Id 311, 337
Platform runtime 28
plugin 65, 72, 305, 312, 401–402, 560
Plug-in class model 406
Plug-in Content window 172
Plug-in Controller 437
Plug-in Data 406
Plug-in Dependancy 88, 90, 96, 169–170, 236
Plug-in Development

Overview window 172
perspective 57, 172, 210

plug-in development
environment 9, 27, 42, 55

Plug-in Development Overview window 173
Plug-in integration points 18
Plug-in Overview 299
plug-in project 63–64, 169–170, 232–233, 240,
265, 312–313, 401

creation 240
new folder 232
o 356

Plug-in Project details 66
Plug-in project details 233
Plug-in project following import of JAR file 234
Plug-in Project window 171
Plug-in User Interface 420
plugin.xml after addition of actionSet element 74
plugin.xml after addition of part element 77
plugin.xml after class generation 81
plugin.xml file 72, 77, 313, 403

enough information 78
plugin.xml file after extension point specified 73
plugin.xml tab added by the wizard 72
Plug-in’s Classpath settings 235
plug-in-resident content 511
Plug-ins added as dependencies by the Plug-in
Project wizard 66
popupAddOn 117, 119
Positive results from the inventory search 372
preference page 28, 65, 143, 284–285, 305
Preference Page extension wizard 144

Preference page nested beneath existing one 150
Preference page properties 145
PreferenceConstants class created by the wizard
148
PreferenceConstants.java 334
PreferenceInitializer class created by the wizard
148
PreferenceInitializer.java 335
preferenceStore.getS tring 343
Prepare your Development Enviornment 265
Preparing to Build a Branding Plug-in 166
Preparing your Development Environment 167
Preview of custom branding results 163
private Person

getEmployeeInfo 358
manager 321

private void
createActions 441
createHRTab 318, 353
createInventoryTab 318, 379
createInventoryTable 381
createMenuManager 443
createOrderStatusTab 319, 361
handleEndTopicElement 507
handleTopicElement 506
initializeInventory 381
refreshOrderStatus 366
setCourse 461, 479
setDescription 450
setImage 471
setLabel 450, 461
setPeople 461, 479
setTopic 462, 479
setup 416, 496
setUrl 479, 481

Procedure to install sample plug-ins 56
Product.java 324–325
Progress Bar for Site Build 543
Project Structure 520
Prompt to add to the list of plug-in dependencies
103
public boolean

hasChildren 351, 430
isLabelProperty 129, 137, 350, 375

public Control createControl 153, 194, 206, 318,
421
public int size 409, 411, 495, 510
public Object 246, 351–352, 427–428
public static final int
 Index 579

HR_ORGANIZATION_ID 348
INVENTORY_AVAILABILITY_DATE_COLUMN
348
INVENTORY_CURRENCY_COLUMN 348
INVENTORY_NAME_COLUMN 347
INVENTORY_PLANT_ID 348
INVENTORY_PRICE_COLUMN 347
INVENTORY_PRODUCT_ID_COLUMN 347
INVENTORY_QUANTITY_COLUMN 348
INVENTORY_UNITS_COLUMN 348

public static final String
CLIENT_NUMBER 334
Host 334
HR_BAPI_GET_EMPLOYEE_INFO 343
HR_BAPI_GET_ORG_EMPLOYEES 343
HR_FILTER_ALL 348
HR_FILTER_SELECTED_MANAGER 348
INV_BAPI_GET_MATERIAL_AVAILABILITY
343
INV_BAPI_GET_MATERIAL_BY_PLANT 343
INV_BAPI_GET_MATERIAL_DETAIL 343
Language 334
ORDER_BAPI_GET_ORDER_STATUS 343
Organization 334
P_BOOLEAN 148
P_CHOICE 148
P_PATH 148, 334
P_STRING 148
Password 334
Plant 334
PLUGIN_ID 196, 208
SYSTEM_NUMBER 334
Title 334
USER_NAME 334

public Tag 411
public void 81, 87, 322, 409, 411, 494–495

addListener 129, 136, 350, 374
addMeeting 274
addServer 279
clearImageCache 242
closeConnection 341, 344
createConnection 341–342
createFieldEditors 147, 336
createPartControl 114, 141
crunch_st_stat_xml 276
doGet 258
doubleClick 445
endElement 507
handleDefaultMessage 157

handleEvent 133
handleMessage 157
handleUserInfoLookupEvent 464
init 337, 347, 422
initializeDefaultPreferences 148, 335
loadSettings 281
menuAboutToShow 444
mouseUp 194, 206
processSTLOGView 260
propertyChange 467
removeAllServers 280
removeListener 129, 137, 351, 375
removeServer 279
run 89, 95, 237, 243, 293, 440–441
saveSettings 282
setAvailabilityDate 326
setCurrency 326, 328
setDeliveryDate 327
setDeliveryId 329
setDeliveryQuantity 328
setDescription 327
setEmployees 323–324
setFocus 141
setId 324
setManager 323
setManagerFlag 323
setManagerId 323
setManagerName 353
setName 323–324
setNamespace 494
setOrderDate 327
setOrderId 327
setOrgCode 323
setOrgName 323
setPlant 325
setPrice 326, 328
setProductId 326, 328
setQuantity 326, 328
setShowAll 353
setStatus 328
setTotal 328
setUnits 326, 329
setValidate 494
setXmlFile 494
start 130, 142, 197, 209, 283
startElement 506
stop 130, 142, 197, 209
widgetDefaultSelected 288
widgetSelected 287, 354–355
580 Extending Sametime 7.5: Building Plug-ins for Sametime

Q
Query our custom servlet stlogserv 273
Query the Sametime statistics servlet 271
Quick Response 16
Quick Response Plug-in user interface 17

R
Real-Time Collaboration (RTC) 5, 7, 32, 163
Real-Time Collaboration (RTC) Gateway 7
Recent buddies 13
Recent Buddies plug-in interface 14
RedbookMiniApp’s createControl() method 153
RedbookPreferencePage class created by the wiz-
ard 147
Redbooks Web site 566

Contact us xv
Reference to plug-in-resident content 511
Refining and Implementing the Education Frame-
work Plug-in 485
Refining the Catalog 487
resolveURLFromFile method 515
Resource A1 417–418, 488, 519
Resource A2 417–418, 489, 519
resource B2 418, 489, 520
Resource class 400, 408, 410, 430

class declaration 458
topic variable 410

Resource context menu 438, 446
resource element 437–438
resource id 488–489
Resource instance variables 407
Resource Properties Action 455
Resource Properties window 455
Resource RA1 419, 520

Test content 419
ResourceList Class 407, 410
ResourceList class 409
Result of invoking the Web service 238
resulting context menu

action entries 444
Results when there is not enough in stock inventory
373
return comp 119, 154, 194, 206, 449, 461
return list.size 409, 411, 495, 510
Return the Vector list of stored meetings 275
return url 470, 479
Rich Client Platform 27
Rich Client Platform (RCP) 27, 29

Right-click a topic and select Assistance 398
River Bend

Coffee 162
RTC (Real-Time Collaboration) API 32
RTC API 32
run method 401, 437–438, 445
Run method of DescriptionResourceAction class
456
runtime environment 39–40, 210, 212

S
Sametime 3, 23, 25, 37–38, 61, 161–162, 215, 217,
249, 251, 253, 258, 298, 303, 407, 412, 525–526
Sametime Connect client showing new toolbar item
238
Sametime Connect IDE Requirements 40
Sametime Connect Platform 26
Sametime Connect toolkit (Sametime Connect
SDK) 9
Sametime Java Toolkit

Guide 162
Tutorial 162

Sametime SDK 12, 32–33, 40–41, 167
J9 JCL Desktop runtime environment 42

Sametime SDK Plug-in extensions 56
Sametime SDK plug-ins added to Eclipse environ-
ment. 58
Sametime Server

Open stconfig.nsf 545
Sametime server 21, 33, 38, 77, 249, 251–252,
526, 545

current list 286
currently active meetings 273, 275
fully qualified DNS name 270
global list 279
info 284
information object class 270
instant messaging passes 33
Java components 38
list 279
name 253, 271
object 280

Sametime Software Development Kit (SDK) 38
Sametime specific value add 394
Sametime Toolkits 9
Sametime V7.5 4–5, 23, 31, 38, 40, 50, 64, 137,
162, 167, 248, 252–253, 305, 312

new addition 252
 Index 581

new feature 248
Sametime V7.5 Connect Automatic Updates prefer-
ences 551
Sample action code to close chat area 115
Sample action code to open the popupAddOn 119
Sample action code to toggle the popupAddOn 120
sample application 312
sample code 62, 161, 166, 216, 250, 252, 392, 405,
486
Sample custom preference page 143
Sample DefaultMessageHandler subclass 157
Sample implementations of createControl(), getIni-
tialSize() and getName() 119
Sample MessageHandlerAdapter subclass 156
Sample MessageHandlerPreCallback subclass
156
Sample plug-in extensions 56
Sample Plug-ins included in the Sametime SDK 12
Sample properties for chatArea extension element
113
Sample properties to add action to both Menu and
Tool bars 109
Sample values for the chatAction extension element
111
SAP and Test Classes 341
SAP Java Connector Installation 338
SAP Tips 387
sapConnection.exec ute 357–358
SapMgr change 356, 367
SapMgr changes 356, 367, 382
SapMgr.java 342
SapMiniApp 312–313, 347
SapMiniApp change 353, 361
SapMiniApp changes 353, 361, 379
SapMiniApp with the base user interface 319
SapPreferencePage.java 336
Save values to the properties file 282
SAX Parser and Helper Classes 505
sb.appe nd 99, 409, 496, 504
SDK toolkits 38
Searching and displaying content 395
Second labelProvider Class code example 136
Second labelProvider. 134
Select com.collaboration.realtime.ui 175
Select com.ibm.collaboration.realtime.imhub.min-
iApps 316
Select image files 183
Select JAR file as the Export type 231
Select method of the TopicFilter class 434

Select Plug-in Dialog 533
Select Plug-in Project 170
Select the com.ibm.collaboration.realtime.imhub
plug-in 314
Select the default template and click Next 332
Select the GroupSelection interface as the object
contribution 98
Select the index.html file in your update site 538
Select the New Feature Wizard 530
Select the org.eclipse.ui.preferencePages exten-
sion 331
Select the PersonSelection interface 92
Select the site.xml file in your update site 539
Select the Update Site wizard 537
Select what will be included in the Binary and
Source Builds 528
Select your feature. 542
Select your plug-in from the Plug-ins and Fragments
page of the wizard 532
selected element 435, 444

contact ids 462
parent topic 479

Selecting a course 395
Selecting activator.java 208
Selecting activator.java file 196
Selecting com.ibm.collaboration.reatime.ui.stbrand-
ing extension 177
Selecting File System where images folder is locat-
ed 182
Selecting new image 184
Selecting plug-ins to test 214
Selecting source code locations 52
Selecting stbranding 179, 188
Selecting stbranding element 200
Selecting the default JRE 47
Selecting the image 186
selection.getF irstElement 444, 454
Send a Quick Response 17
servlet 249, 252
servlets.prop erties 253
Set Dependencies 121
Set Extensions 123
Set the default runtime environment 47
Set up the stlogserv Servlet on your Sametime serv-
er 265
Set values for second column. 135
setText method 422, 439, 514
Setting Automatic plug-in Update Preferences 551
Setting initial selection of Category combo view 429
582 Extending Sametime 7.5: Building Plug-ins for Sametime

Setting initial selection of course combo viewer 427
Setting the background to an image 421
Setting the category to an existing preference page
id 149
Setting the initial selection for Assistance table 466
Setting up the contents of the window 243
Setting up the IDE 37
Setting up the menu manager 443
setup method 417, 488, 496

available courses 498
Setup method for the Catalog class 417
shell.setL ayout 243, 449, 461
shell.setS ize 243, 449, 461
shell.setT ext 243, 449, 461
Site.xml tab of the Manifest editor 543
Snippets 17
Software Developers Kit (SDK) 4, 9
software development kit (SDK) 21, 37–38
Sort through the Domino documents 261
source code 559
Specify automatic updates 11
Specify the folder name 85
Specifying plug-in target location 50
src folder 196, 207, 403
standard widget toolkit (SWT) 28
startElement method in CourseHandler class 506
Statistics servlet 271
Statistics Toolkit

example 266
Guide 266

statName.equa ls 277
Stbranding extension elements 169
stlog.nsf database 259

custom servlet interacts 288
store.setD efault 148, 335
String name 271, 274, 321
String orderId 342
String s 345, 355, 452–453, 508, 516
StringBuffer 99, 409, 496, 504
StringBuffer sb 99, 409, 496, 504
StringFieldEditor 147, 337
STServerInfo class 270
STServerInfo object 279, 291

current Vector list 282
Vector list 279

STStatsPlugin.getD efault 281–282
Summary of extension points and dependencies
82, 88, 90, 96, 100, 105, 109, 150, 154
super.star t 130, 142, 197, 209, 283

superclass 86, 94, 236
Supporting Action classes 447
SWT.HORI ZONTAL 422–423
SWT.INHE RIT_DEFAULT 421, 461
system and possess (SAP) 297–298
System.out.prin tln 157, 228, 350, 352
SystemTrayAction’s run() method 89

T
TabItem 318–319
table viewer 450–451
TableViewer 463
Tag class instance variables 411
target platform 41, 48, 210
Target platform preferences selected 52
targetID property for the actionSetPartAssociation
element 76
Task 1

Create the plug-in project 170
Install the IBM Lotus Sametime V7.5 SDK 41
Prepare your plug-in for deployment 526

Task 2
Associate an image to the element 180
Create a feature 529
Create the Plug-in Dependencies 174
Install Eclipse 3.2 SDK 41

Task 3 40, 170, 176, 526
Create an Eclipse deployment website 536
Create the plug-in extension 176
Install the J9 JDT launching plug-in for Eclipse
(Windows and Linux platforms) 42

Task 4
Configure the runtime environment 43
Configure the Sametime server 545

Task 5
Configure the target platform 48

Task 6
Create a launch configuration 53

Task overview 170
tblStatusInfo.getD ecimals 369
tblStatusInfo.getS tring 368
Telephony Conferencing Service Provider Interface
(TCSPI) 39
Terminology for working in Eclipse 58
Test the course plug-in 520
Test the Menu Bar action item 77
Testing and verifying the plug-in 521
Testing the Open action 483
 Index 583

TestMgr change 359, 370
TestMgr changes 359, 370, 386
TestMgr.java 346
The calendar lookup plug-in 240
The calendar lookup Web service 240
The class declaration for the servlet 258
The completed Sametime server monitoring plug-in
294
The extensions tab after adding the preferences ex-
tension. 333
The Extensions tab of the plug-in’s manifest file 71
The id of the part must be com.ibm.collaboration.re-
altime.imhub 77
The interface 290
The JFreeCharts 288
The MessageHandlerListener extension point 155
The output from running the WebServiceClient class
230
The Plug-in’s preferences page 286
The Plug-ins tab of the Feature editor should show
your plug-in(s) 535
The resulting SWT Tree structure 292
The resulting UI 290
The Sametime Connect Toolkit 39
The Sametime Monitoring and Statistics Toolkit ex-
ample 266
The Stbranding extension 169
The stlogserv Servlet Code 258
The STLOGView function 260
The WebServiceClient class that calls the Web ser-
vice 227
The wizard created site has no plug-ins by default
539
Thinking about this plug-in as a sample for struc-
tured content delivery 394
this.crea teFunction 356, 358
this.empl oyees 322–323
To do’s added to the class code 192, 204
TODO Auto-generated method stub 342
Tool Bar 17, 82–83
tool bar

Quick Response icon 17
Tool bar action represented by image with tool tip
108
Tool bar action with text label produced by dis-
playName property 107
Tool bar action without an image defined 106
toolbarPath property 83, 235

valid values 83

toolView element details. 138
Topic B 418, 436, 488–489
Topic B Properties window test 457
Topic B Properties window. 455
Topic class 400, 408, 430

aggregated multiple Resources 408
class declaration 458
declaration 431
instance variable 433

Topic class instance variables 410
Topic context menu 437, 445
Topic Filter 395–396, 423, 428
Topic Filter label 423
Topic Properties 448
Topic Properties Action 448
Topic Tree 424
Topic tree

viewer 431–433, 435
viewer double-click selection listener 445

Topic tree viewer 429
Topic tree viewer double-click selection listener
445
TopicList Class 410
TopicList class 411
topics display 396
Topics label 424
topicTreeViewer instance variable 429
translateCourseFromXML method of the Catalog
class 500
tree viewer 400, 429–430

hierarchical display 430
TreeItem 291
TreeItem item5 291
Typical HTML test 419

U
unimplemented method 287, 293
Unpacking the results from the Web service 245
Update Activator.java 320
Update Site 548
update site 219, 526, 534
Update Site Wizard properties page 538
Updated Activator.java code used in the example.
141
Updated depenencies 315
Updated init method 347
Updated list of plug-in dependencies 103, 236
Updated SapMiniApp Extension 317
584 Extending Sametime 7.5: Building Plug-ins for Sametime

Updates 549
URL 24, 41–42, 165, 168, 219, 222, 271, 273, 407,
419, 510, 534
url attribute 476, 503
URL parsing in BrowserComposite class 513
used to initialise (UI) 7–8, 65–66
user interface

basic controls 420
course catalog 420
filter mechanism 420

user interface (UI) 13, 16, 28, 61, 64, 153,
161–162, 243, 251, 256, 297, 301, 393, 400–401,
405, 420–421, 561
User Interface extension points 67
User interface with “All Topics” selected from Topic
Filter 436
User interface with “Topic B” selected 436
username-password pair 251, 271
Using a Web service client in a plug-in 230
Using Eclipse tooling to create a Web service client
218
Using Plug-ins 10
Using the calendar lookup plug-in 217
Using the iCatalog interface 426
Using the Plug-in 305
Using the plug-in 254
Using Topic Filters to display content 396

V
Valid menubarPath property values 98
Valid path property values 111
Valid values for the menubarPath property 93, 104
Valid values for the path property 108
Value to the developer 218, 257, 304
Value to the End User 304
Value to the end user 218, 257
Variables for the STServerInfo Class 270
Vector list 275, 279
Verify your Feature shows in Package Explorer 536
Verify your web server 545
Version Sycnchonization Dialog 536
view class code used in the example 140
View Properties for new org.eclipse.ui.views, view
entry. 139
viewContribution extension element details 83
Viewing expanded topics list 396
virtual machine (VM) 33, 45, 252

W
web conferencing 5, 7, 257
Web page 18, 38, 162, 186, 537
Web Service 21, 215–216, 559
Web service client details 225
Web Services Definition Language (WSDL) 222
Web Site 24, 114, 547, 557
Web Site Voice 5, 8, 394
Web Tools Platform (WTP) 218, 222
WebServiceActionDelegate’s run() method 237
WebSphere Everyplace Deployment 31

6.1 31, 33
APIs 31, 33
layer 30
platform 31
shipping release 31

WebSphere Everyplace Deployment (WED) 3, 9,
27, 29
WSDL file 224–225

X
xml code for the River Bend update site 543
XML data 270–271
XML file 393, 399, 487–488
XML format 39, 252, 266

Sametime server statistics 39
statistical information 252

xportParameterList 357

Z
zip file 41–42, 338, 340, 558–559
zontalAlignment 354
 Index 585

586 Extending Sametime 7.5: Building Plug-ins for Sametime

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Extending Sam
etim

e 7.5:
Building Plug-ins for Sam

etim
e

®

SG24-7346-00 ISBN 0738489786

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Extending Sametime 7.5
Building Plug-ins for
Sametime

Overview of the
Sametime
Architecture

Building custom
plug-ins

Data manipulation
and system
integration

With the release of IBM Lotus Sametime Connect 7.5, IBM provides an
application platform upon which enhancements and application plug-ins can
be built to best meet your organization's needs. Sametime Connect 7.5 is
the first release of new instant messaging technology built on the
Eclipse-based IBM WebSphere Everyplace Deployment platform. This new
release leverages the Eclipse plug-in framework to provide developers with
extensibility features that go far beyond those available in previous releases.

Lotus Sametime Connect 7.5 offers more than simple instant messaging and
presence features. Because it is built on Eclipse, a variety of plug-ins that
expand the functionality of Lotus Sametime Connect are shipped with the
product, and third parties can build additional plug-ins.

The objective of this IBM Redbook is to show you how to develop Eclipse
based plug-ins to customize and personalize the real-time, collaborative
capabilities of Sametime within your organization. The book serves as a
thorough guide on how to build plug-ins, beginning with how to install the
Eclipse development environment, and then leading the reader through
numerous examples ranging from a basic introduction on branding your
Sametime environment, to showing how to integrate with a back-end
system, retrieve information, and then manipulate the data presentation
within the context of a Sametime window. For each example, we provide the
audience with a step-by-step guide on how to build the plug-in.

Finally, this capability for custom development represents a primary value
point for Sametime 7.5. The ability to create plug-ins allows organizations to
meet the growing needs of the instant messaging community. This flexibility,
combined with Sametime’s already proven security model and numerous
user interface enhancements, makes Lotus Sametime Connect a powerful
tool to help companies harness the potential of their employees.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Thanks to the following people for their contributions to this project:
	Become a published author
	Comments welcome

	Part 1 Product overview and architecture
	Chapter 1. Introduction to Sametime 7.5
	1.1 About Lotus Sametime 7.5
	1.1.1 New in Sametime 7.5
	1.1.2 New Sametime Connect client
	1.1.3 Improved Web conferencing
	1.1.4 Real-Time Collaboration (RTC) Gateway
	1.1.5 Extendable platform

	1.2 Extending the Sametime Connect Client
	1.2.1 Benefits of extending client functionality
	1.2.2 Eclipse platform for extending functionality

	1.3 Sametime toolkits
	1.3.1 Sametime Connect toolkit (Sametime Connect SDK)

	1.4 Using plug-ins
	1.4.1 About plug-ins
	1.4.2 Manually install a plug-in
	1.4.3 Managing plug-in updates
	1.4.4 Manually remove a plug-in

	1.5 Sample plug-ins included in the Sametime SDK
	1.5.1 BuddyNote
	1.5.2 Recent buddies
	1.5.3 Acronym Expander
	1.5.4 Quick Response
	1.5.5 Snippets
	1.5.6 Branding

	1.6 Plug-in integration points
	1.7 Overview of the samples provided in this IBM Redbook

	Chapter 2. Overview of Lotus Sametime 7.5 architecture
	2.1 Brief overview of Eclipse
	2.2 Lotus Sametime platform
	2.2.1 Rich Client Platform
	2.2.2 Eclipse platform components
	2.2.3 Platform run time

	2.3 Overview of the Sametime architecture
	2.4 Overview of the Lotus Sametime Connect architecture
	2.5 Component layers
	2.5.1 WebSphere Everyplace Deployment
	2.5.2 Real-Time Collaboration (RTC) API
	2.5.3 Lotus Sametime Java Toolkit

	2.6 J9 JCL Desktop
	2.7 Lotus Sametime Server architecture

	Part 2 Preparing the development environment and understanding extension points
	Chapter 3. Setting up the Integrated Development Environment
	3.1 About the Integrated Development Environment
	3.1.1 Sametime Software Development Kit (SDK)
	3.1.2 SDK toolkits
	3.1.3 The Sametime Connect Toolkit
	3.1.4 Lotus Expeditor toolkit

	3.2 Sametime Connect IDE requirements
	3.3 Installing the Sametime IDE
	3.3.1 Task 1: Install the IBM Lotus Sametime 7.5 SDK
	3.3.2 Task 2: Install Eclipse V3.2 SDK
	3.3.3 .Task 3: Install the J9 JDT launching plug-in for Eclipse (Windows and Linux platforms)
	3.3.4 Task 4: Configure the run time environment
	3.3.5 Task 5: Configure the target platform
	3.3.6 Task 6: Create a launch configuration

	3.4 Installing sample plug-ins
	3.4.1 About sample plug-ins
	3.4.2 Sample plug-in extensions
	3.4.3 Procedure to install sample plug-ins

	3.5 Terminology for working in Eclipse

	Chapter 4. Extension points
	4.1 Introduction
	4.1.1 Creating a plug-in project and plug-in

	4.2 User interface extension points
	4.3 Adding to the contact list window
	4.3.1 Adding an action to the Menu bar
	4.3.2 Adding an action to the Tool Bar
	4.3.3 Adding an action to the system tray menu
	4.3.4 Adding to the context (right-click) menu

	4.4 Adding to the chat window
	4.4.1 Adding an action to the Menu bar
	4.4.2 Adding an action to the Tool bar
	4.4.3 Adding an action to both Menu and Tool bars
	4.4.4 Adding an action to the Format bar
	4.4.5 Adding a chat area extension
	4.4.6 Adding a pop-up message area

	4.5 Adding to the nway chat (multi person chat) window
	4.5.1 Add extra column and new function
	4.5.2 Create a second column for new functionality
	4.5.3 Create a toolView

	4.6 Adding a preference page
	4.7 Adding a mini application
	4.8 Message Event Notification extension point
	4.8.1 The MessageHandlerListener extension point

	Part 3 Example plug-ins
	Chapter 5. Introduction to building a plug-in: modifying the UI
	5.1 Introduction
	5.2 A preview of what you will build in this chapter
	5.2.1 Introduction to the scenario
	5.2.2 Preview of custom branding results

	5.3 Preparing to build a branding plug-in
	5.3.1 Preparing your development environment
	5.3.2 A look at the com.ibm.collaboration.realtime.ui package
	5.3.3 Extensions for the com.ibm.collaboration.realtime.ui package

	5.4 Building a branding plug-in
	5.4.1 Creating a branded login window
	5.4.2 Creating a chat window branding plug-in
	5.4.3 Creating a hub branding plug-in

	5.5 How to test your branding plug-in

	Chapter 6. Leveraging Web services and building a calendar lookup plug-in for Sametime Connect
	6.1 Overview of the plug-in
	6.1.1 Using the calendar lookup plug-in
	6.1.2 Value to the user
	6.1.3 Value to the developer

	6.2 Using Eclipse tooling to create a Web service client
	6.2.1 Installing the Web Tools Platform
	6.2.2 Creating a Web service client

	6.3 Using a Web service client in a plug-in
	6.3.1 Creating the plug-in project and plug-in
	6.3.2 Importing the Web service client JAR
	6.3.3 Calling the Web service from the plug-in

	6.4 Creating the calendar lookup plug-in
	6.4.1 The calendar lookup Web service
	6.4.2 The calendar lookup plug-in

	6.5 Extending this plug-in

	Chapter 7. Advanced plug-in example: The Sametime Server Statistics Plug-in
	7.1 Overview of the Sametime Server Statistics plug-in
	7.1.1 Downloading and deploying the application
	7.1.2 Using the plug-in
	7.1.3 Value to the user
	7.1.4 Value to the developer

	7.2 Building the application
	7.2.1 Create the Servlet
	7.2.2 The stlogserv servlet code
	7.2.3 Set up the stlogserv Servlet on your Sametime server

	7.3 Create the plug-in
	7.3.1 Prepare your development environment
	7.3.2 Create a Base64 encoding/decoding class
	7.3.3 Create a Sametime server information object class
	7.3.4 Implement a properties file
	7.3.5 Create a preferences page
	7.3.6 Create a Sametime statistics dialog window
	7.3.7 Add a Sametime Server Statistics menu item

	7.4 Extension Ideas

	Chapter 8. Advanced plug-in example: SAP integration
	8.1 Plug-in overview
	8.1.1 Value to the user
	8.1.2 Value to the developer
	8.1.3 Downloading and deploying the plug-in
	8.1.4 Using the plug-in
	8.1.5 Planning

	8.2 Building the sample application
	8.2.1 Create project and base objects
	8.2.2 SAP Java Connector installation
	8.2.3 Configure the plug-in to run without SAP
	8.2.4 Create the SAP and test classes
	8.2.5 HR example
	8.2.6 Order status example
	8.2.7 Inventory example

	8.3 SAP tips
	8.4 Extending this plug-in

	Part 4 Advanced example: building a framework for structured content
	Chapter 9. Introducing My Lotus Learning Education framework plug-in for Sametime Connect
	9.1 Overview of My Lotus Learning plug-in
	9.2 Thinking about this plug-in as a sample for structured content delivery
	9.2.1 Sametime specific value add
	9.2.2 Embedded learning with IBM Lotus Sametime 7.5

	9.3 Design overview of My Lotus Learning plug-in
	9.4 Creating the MyLearning plug-in project

	Chapter 10. Building the education framework plug-in
	10.1 Plug-in data
	10.1.1 Data model class diagram
	10.1.2 Implementing the class model diagram
	10.1.3 Create the Catalog class

	10.2 Plug-in user interface
	10.2.1 Create the MyLearingMiniApp class
	10.2.2 Create basic user interface widgets
	10.2.3 Create JFace viewers

	10.3 Plug-in controller
	10.3.1 Define the actions
	10.3.2 Create the context menu for the TreeViewer viewer
	10.3.3 Create actions

	Chapter 11. Refining and implementing the education framework plug-in for Sametime Connect
	11.1 Refining the catalog
	11.1.1 Course definition XML
	11.1.2 Creating the Description Extension Point
	11.1.3 Creating the course catalog
	11.1.4 Building a course from the XML definition
	11.1.5 SAX parser and helper classes

	11.2 Including Content in a Course Plug-in
	11.2.1 Creating the content extension point
	11.2.2 Enhancing the BrowserComposite class

	11.3 Creating a course plug-in
	11.4 Additional examples: using the Lotus Education plug-in for for other content delivery

	Chapter 12. Deploying plug-ins for Sametime 7.5
	12.1 Deploying custom plug-ins to IBM Lotus Sametime Connect users
	12.2 Deploying plug-ins automatically
	12.2.1 Task 1: Prepare your plug-in for deployment
	12.2.2 Task 2: Create a feature
	12.2.3 Task 3: Create an Eclipse deployment Web site
	12.2.4 Task 4: Configure the Sametime server

	12.3 Deploying plug-ins manually through Sametime Connect
	12.4 Deploying a plug-in through copying files
	12.5 Configuring plug-ins
	12.6 Setting automatic plug-in update preferences
	12.7 Installing plug-ins through the preferences.ini file
	12.8 Disabling manual plug-in installs through the Connect Client

	Part 5 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	Details of how to use the Web material

	Glossary
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Eclipse
	Java

	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

