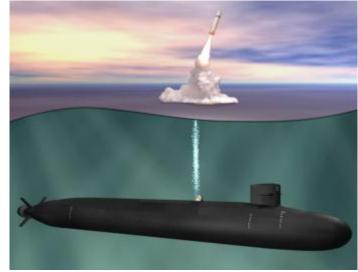
SENEDIA Defense Innovation Days 5 September 2014

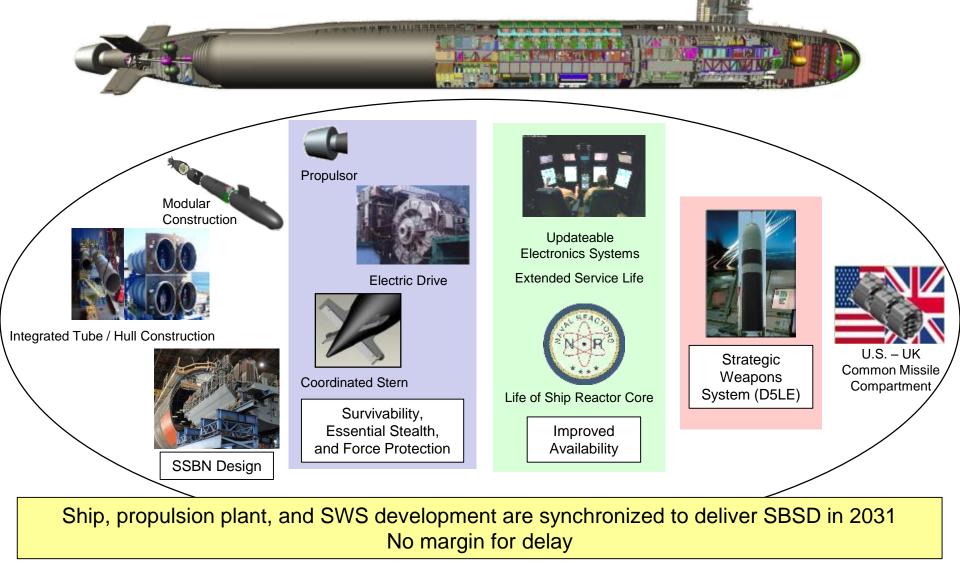
PMS397 Program Director Mr. Jack Evans


OHIO Replacement Program – Defense Innovation Days, 5 September 2014

OHIO Replacement Program

Mission: Strategic deterrence

Description: Develop submarine to replace existing OHIO Class SSBNs as they reach the end of their service lives. A portion of effort develops a Common Missile Compartment (CMC) that will be used by both the U.S. and UK for their replacement SSBNs.


OHIO Replacement SSBN Attributes:

- ➤ 12 OR SSBNs to replace 14 OHIOs
- Sufficient payload to meet USSTRATCOM requirements: 16 x 87" missile tubes
- Sufficient stealth to address the projected threat through the 2080s
- Life of ship reactor core Reduced mid-life maintenance period
- First Strategic Patrol in 2031 (IOC)
- Launch TRIDENT D5 LE Missiles

Employment: Strategic deterrent patrols

A Holistic Plan to Deliver SBSD: "Aligned Execution of Multiple Discrete Elements"

Why Recapitalize Our SSBN Force?

"As long as these weapons exist, the United States will maintain a safe, secure, and effective arsenal to deter any adversary, and guarantee that defense to our allies..."

President Obama

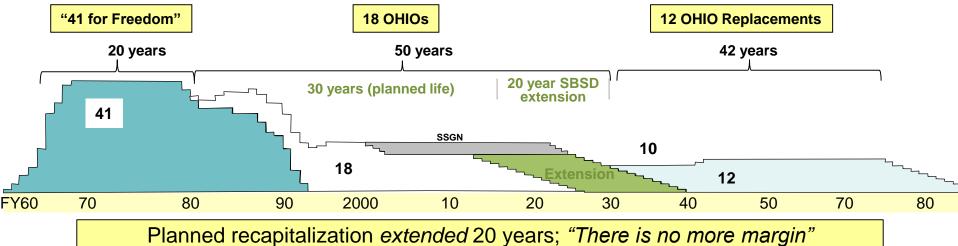
(Nuclear Posture Review, April 2010)

U.S. Strategic Deterrence Promotes Global Stability

- Deterrence relies on the credible threat to impose unacceptable consequences
- Deters aggression against the U.S. and our allies

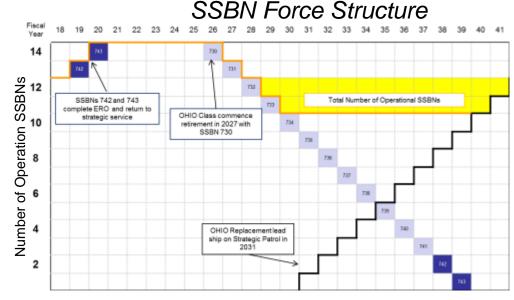
SSBN Force is a reliable and survivable leg of the U.S. nuclear triad

- SSBNs will be responsible for ~70% of deployed nuclear warheads under New START
- Impeccable record of 150 successful flight tests


Effective Sea-based Strategic Deterrent:

- Must have <u>adequate range</u> to allow operation far from adversaries, in broad ocean areas to promote survivability
- Must have requisite stealth technology and innovation into the 2080s regardless of advances made by near-peer navies (stealth enables a smaller force to provide assured response)

Why Now?


Historical SBSD Force Structure

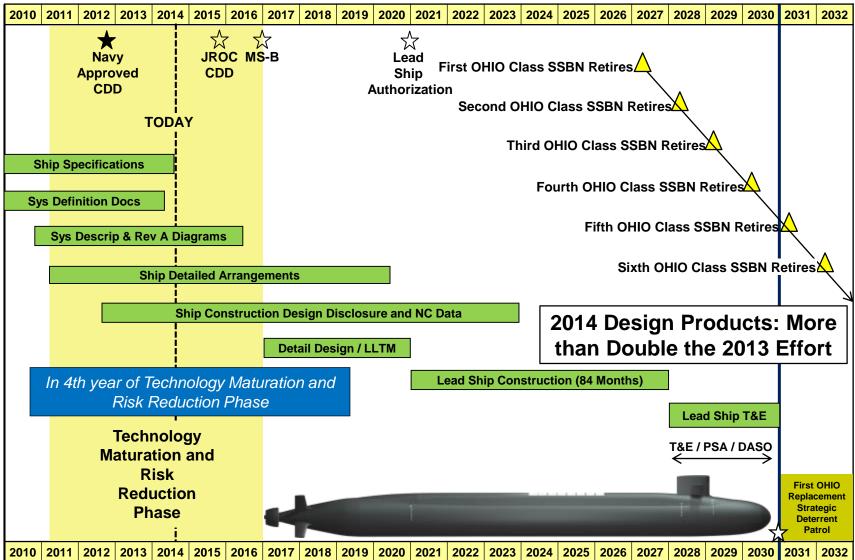
Current OHIO Class is reaching the end of its operational life

- Designed in 1970, commissioned between 1984 and 1997, and will begin to retire in 2027
- Operational life already extended from 30 years to an unprecedented 42 years
- Lead OHIO Replacement construction must commence in 2021
 - Maintains fleet of 10 operational SSBNs through transition with moderate risk
 - Lead ship unique treaty requirements must be completed

CMC and Strategic Weapons System (SWS) designs synchronized with UK ➤ Supports UK continuous at sea deterrence ➤ Reduces U.S. development costs

Common Missile Compartment (12–tubes & MCCM Raft)

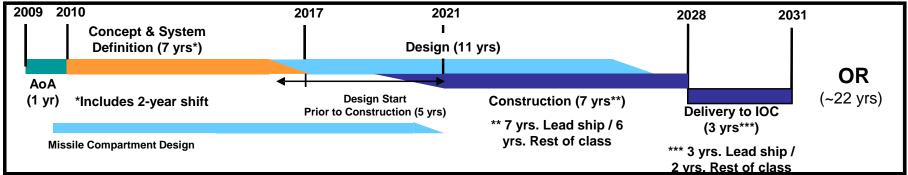
Strategic Partnership with UK


- U.S. and UK strategic deterrence cooperation has underpinned UK SSBN systems since the 1963 Polaris Sales Agreement (PSA)
 - > UK deploys TRIDENT II (D5) system
 - Missiles shared from a common pool
 - > UK SSBN force constitutes 100% of the UK's national nuclear deterrent
- UK VANGUARD Class SSBN force begins retirements before OHIO Class
 - > UK Successor IOC's in 2028, two years prior to OHIO Replacement IOC
 - VANGUARD Class cannot be extended further
- Common Missile Compartment (CMC) developed under cost share arrangement
 - > UK funded CMC efforts in 2008 to meet UK Successor SSBN schedules
 - > CMC designed to be constructed by either nations' submarine build yards
 - UK plans to purchase outfitted missile tubes from U.S.
 - > Realized and future cost savings and economic order quantity opportunities
 - U.S. committed to meeting UK Successor need date (2028)
 - "It is the sense of Congress that the Secretary of Defense and the Secretary of the Navy should make every effort to ensure that the common missile compartment associated with the OHIO-Class ballistic missile submarine replacement program stays on schedule and is aligned with the Vanguard-successor program of the United Kingdom in order for the United States to fulfill its longstanding commitment to our ally and partner in sea-based strategic deterrence." (Sec 26,FY14 NDAA)

Common Missile Compartment Efforts Critical to both U.S. and UK Strategic Deterrence

OHIO Replacement Schedule

Fiscal Year



A High Degree of Design Completion is Critical to a Successful Lead Ship Construction Program

OHIO Replacement Lead Ship Construction Timeline

84 month build span supports FY31 readiness for 1st strategic deterrent patrol

83% Design Maturity is required at Construction Start

Key Program Elements:

- Ship Design
 - Over 9000 Design Products (twice VIRGINIA Class)
 - ~ 60 million manhours of design effort
- Systems Development
 - ~ 60 Procurement Specifications
 - ~ 60 Prototypes
- Modeling and Testing for:
 - Performance, Ruggedness, Reliability, Operability, Validation, Technology Readiness Levels
- Construction
 - Suppliers \rightarrow Shipyards \rightarrow Government Acceptance

The Scope of the OHIO Replacement Design Effort is Unparalleled

Driving Down Cost

Delivering the Core Essential Military Capability at the Lowest Possible Cost

Report to Congress on Annual Long-Range Plan for Construction of Naval Vessels for FY2011 Unit Cost CY1

Unit Cost CY10 \$= \$6B to \$7B

Detailed requirements review produced savings

Reduced number of missile tubes	20 to 16 tubes
Reduced missile tube diameter	97 inches to 87 inches
Reduced torpedo room capacity	Minimum capacity for defensive load only
<i>Removed</i> chin array	Minimum acoustic sensors for defensive detection; leverage VIRGINIA-Class combat systems
Reduced sail mast capacity	10 to 6 masts
Reduced force protection features	Current OHIO-Class system
Reduced OHIO Replacement unique design features	Increased use of VIRGINIA-Class components

Milestone A Service Cost Pos	Average Follow-on Ship CY10 \$ = \$5.6
Recent Affordability Initiatives	EOQ and multi-year procurement Facilities Design for producability Requirements and regulations Integrated Product Development Environment (IPDE) Manufacturing technologies, service, and support

Milestone A Cost Target

Average Follow-on Ship CY10 \$= \$4.9B

(CY10 \$s) Costs developed by NAVSEA05C for OHIO Replacement Service Cost Position; Inflation based on NAVSEA 05C Jan 2010 SCN Shipbuilding Composite Inflation Table

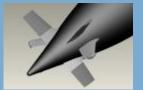
TRIDENTI

Delivering Required Capability at the Least Cost

Cost Savings: Re-host TRIDENT II (D-5)

- Most Reliable Strategic Nuclear Weapon System
- Strategic Launched Ballistic Missile (SLBM) leg responsible for ~70% of operationally deployed warheads under New START
- Long-range of D-5 enables operations in broad operational areas, assuring survivability with <u>smaller SSBN force</u>
- Leverages D-5 Life Extension and Modernization Investments
- Avoids cost and risk of new weapon system development

OHIO REPLACEMENT


OHIO Replacement Program – Defense Innovation Days, 5 September 2014

Innovation: New Developments and Improvements

OHIO REPLACEMENT

Innovation: New Developments

X-Stern

Electric Drive

Out of Autoclave Bow Dome


Integrated Tube / Hull Construction

Atmosphere Control and Monitoring

Life-Of-Ship Reactor Core

42 Year Operational Life

Networks and Cybersecurity

Innovation:

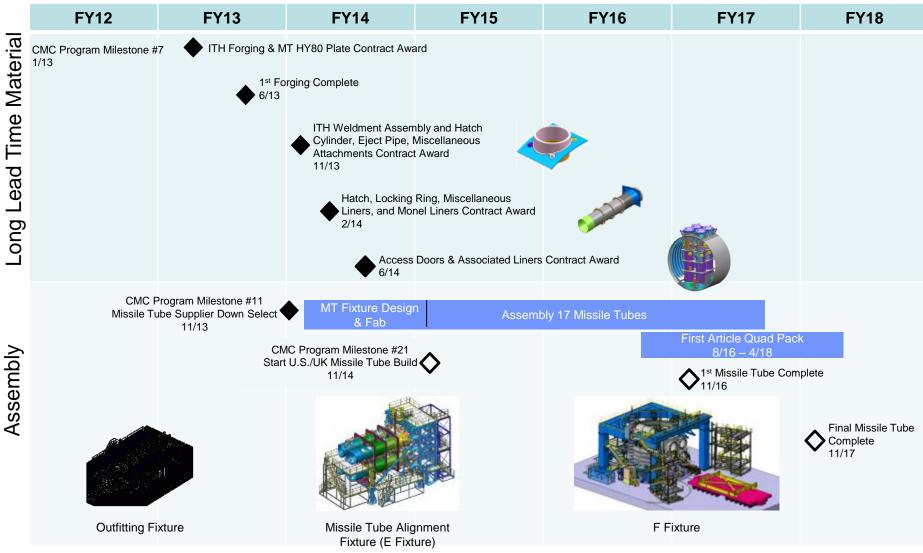
Improvements

Modular Workstations

Cabling in Conduit

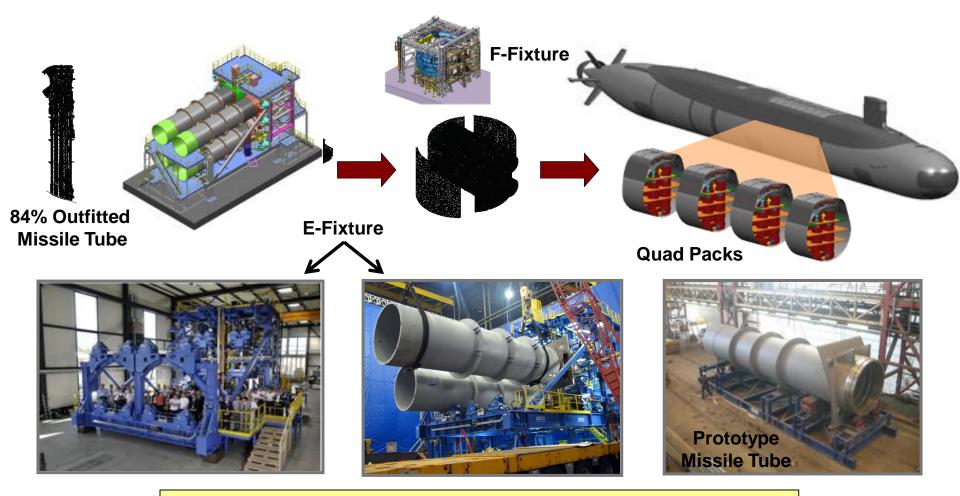
Submarine Warfare Federated Tactical System

OHIO Replacement Program – Defense Innovation Days, 5 September 2014


Areas for Future Innovation

- Cybersecurity
- Reduced Electronics Footprint
- Reduced power consumption/heat loads for electronic equipment
- Improved Secure Long Distance Communications
- Reliability/fault tolerance of software systems
- Sensor improvements for own ship awareness
- Improved submarine battery technology (life span)
- Electric Actuation with improved reliability/backup features to allow meeting Subsafe and ship recoverability requirements
- Improved hull coatings
- Improved corrosion coatings and application processes (e.g. paint schemes)

Integrated Tube & Hull (ITH) Prototyping


Long Lead Time Material (LLTM) and Assembly Procurement

State of the Art Construction Processes Minimize Cost and Save Time

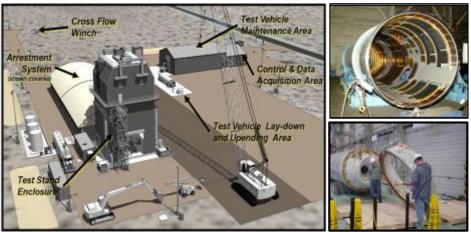
OHIO Replacement "Quad Pack" Construction Process

Reduces Missile Compartment Costs and Construction Time

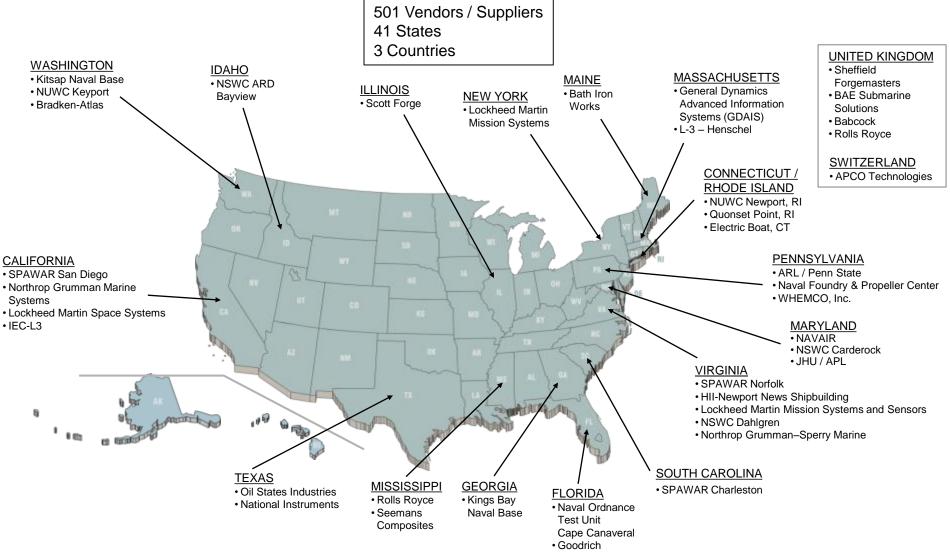
FY13-14 OHIO Replacement Accomplishments

Accomplished

- Set Stern Control Surface Configuration (X-Stern (Apr 2013))
- Joint U.S. / UK CMC Schedule approved (Jun 2013)
- Strategic Weapon Systems Ashore (SWS-A) Test Facility (FL) Construction Start (Jun 2013)
- Superstructure Hydro Testing (Aug 2013)
- Initiated procurement of Long Lead Time Material for Missile Tube procurement (Nov 2013)
- Set Ship Length (Jan 2014)
- Completion of Ship Specifications (Mar 2014)


On-Going & Upcoming

- Propulsor testing
- HM&E component prototyping (ex. Diesel
- Generator, Air Conditioning Plant, Reverse Osmosis Unit, and Light Emitting Diode (LED) Lighting)
- Ship Control Concept of Operation Exercise
- Procurement of U.S. and UK Missile Tubes
- Preparation for Quad Pack Missile Compartment construction


Manufacturing Fixtures

Surface Launch Test Facility

Contractors and Government Field Activities Map

Vendor activities are expected to increase as OHIO Replacement design matures and construction begins

- OHIO Replacement is a cost-effective recapitalization of our Nation's Sea-Based Strategic Deterrent
- 12 OHIO Replacement SSBNs meet requirements for strategic deterrence mission
- Lead ship construction must begin in 2021 in order to build, test, and certify the Lead Ship prior to first strategic patrol in 2031
- Aggressively working to reduce costs without compromising capability

Focused on a successful Technology Development and Engineering Integration to support an affordable FY21 lead ship construction for the 12 ship class