
RC23691 (W0508-064) August 9, 2005
Computer Science

IBM Research Report

XML Signature Element Wrapping Attacks and
Countermeasures

Michael McIntosh, Paula Austel
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

XML Signature Element Wrapping Attacks and Countermeasures

Michael McIntosh1,2 and Paula Austel1,3

1IBM Research
19 Skyline Drive

Hawthorne, New York, 10532
2mikemci@us.ibm.com

3pka@us.ibm.com

Abstract. Naïve use of XML Signature may result in signed documents remaining
vulnerable to undetected modification by an adversary. In the typical usage of XML
Signature to protect SOAP messages, an adversary may be capable of modifying valid
messages in order to gain unauthorized access to protected resources. This paper
describes the general vulnerability and several related exploits, and proposes appropriate
countermeasures. While the attacks described herein may seem obvious to security
experts once they are explained, effective countermeasures require careful security policy
specification and correct implementation by signed message providers and consumers.
Since these implementers are not always security experts, this paper provides the
guidance necessary to prevent these attacks.

Introduction

XML Signatures[1] are designed to facilitate integrity protection and origin authentication for a
variety of document types. XML Signature offers several alternatives for protecting document
content. Often these alternatives appear semantically equivalent. However, closer inspection reveals
subtle differences that can lead to security vulnerabilities. Proper use of XML Signatures requires a
thorough understanding of the semantics associated with the alternative mechanisms.

One important property of XML Signature is that signed XML elements along with the associated
signature may be copied from one document into another while retaining the ability to verify the
signature. This can be useful in scenarios where multiple actors process and potentially transform a
document throughout a business process. However, this same property can be exploited by an
adversary allowing the undetected modification of documents. In the general case of XML, simple
obvious countermeasures may effectively prevent these attacks. However, SOAP[2,3,4,5] defines a
message structure and associated processing rules which, in many cases, preclude the use of these
simple countermeasures.

In the following sections we describe the general XML document case, followed by SOAP specific
issues. We will describe specific exploits and propose countermeasures.

Background

As members of the Web Services Interoperability Organization (WS-I) Basic Security Profile (BSP)
Working Group (WG) we are occasionally called upon to provide security guidance to other WS-I
WGs. On one such occasion we were asked by the Sample Applications (SA) WG to help them
choose the best way to sign a specific SOAP message element using Web Services Security
(WSS)[6]. The process of providing them with an answer and its justification[7,8,9] led us to explore
in detail the issues described herein.

Element Context and Semantics

XML facilitates the exchange of information in a tree structure[10]. An XML document contains a
single root element. Each element has a name, a set of attributes, and a value consisting of character
data, and a set of child elements. The interpretation of the information conveyed in an element is
derived by evaluating its name, attributes, value and position in the document. As we demonstrate
below, typical WSS usage of XML Signature protects an element’s name, attributes, and value
without protecting its position in the document.

Context Independent Semantics

In theory, an element may have semantics associated with it that do not vary based on its position in a
document. In practice we can think of no realistic examples of purely context independent semantics.

XML Signature Element Wrapping Attacks and Countermeasures 3

Context Dependent Semantics

In the following sections we define some categories and subcategories of element context dependent
semantics. For each of these we provide one or more examples of how an adversary can exploit the
position independent semantics of XML Signatures and propose suitable countermeasures. Our
examples are based on SOAP-specific constructs and message processing rules. However, the issues
described are not necessarily SOAP-specific.

Simple Ancestry Context

In some cases, an element is required a document at a specific position and its semantics may be
completely derived from its name, attributes, and value and the name of each of its ancestors. We
refer to this as Simple Ancestry Context. An example of such an element is the SOAP Body.

Example 1 is a simple SOAP Message. Note that some details have been excluded, specifically the
namespace definition.
001 <soap:Envelope ...>
002 <soap:Body>
003 <getQuote Symbol=”IBM”/>
004 </soap:Body>
005 </soap:Envelope>

Example 1

Lines 001-005 contain a document root element named soap:Envelope. The syntax and semantics for
the soap:Envelope are defined by SOAP. Lines 002-004 contain an element named soap:Body which
is a child of the soap:Envelope element. Line 003 contains a getQuote element which is a child of the
soap:Body. The syntax and semantics for children of the soap:Body are application specific.

A stock quote application receiving this message would be expected to return a message containing
the price for the stock identified by the getQuote/@Symbol attribute value. The application would
charge consumers for this service and would therefore need to be able to authenticate the identity of
the requestor and protect the relevant message content from intentional or unintentional modification
during transmission. In this case the service provider would publish a security policy describing the
requirements that:

a) the soap:Body element be signed using WSS with XML Signature, and

b) the associated signature verification key be provided by an X.509v3 certificate issued by one
of a set of trusted Certificate Authorities (CAs).

Example 2 contains the message protected by the sender using WSS and XML Signature. Note that
some details have been excluded or abbreviated, specifically namespace definitions, URIs, and digest
and signature values.
001 <soap:Envelope ...>
002 <soap:Header>
003 <wsse:Security>

004 <wsse:BinarySecurityToken
005 ValueType="...#X509v3"
006 EncodingType="...#Base64Binary"
007 wsu:Id="X509Token">
008 MIabcdefg0123456789...
009 </wsse:BinarySecurityToken>
010 <ds:Signature>
011 <ds:SignedInfo>
012 <ds:CanonicalizationMethod
013 Algorithm=".../xml-exc-c14n#"/>
014 <ds:SignatureMethod
015 Algorithm="...#rsa-sha1"/>
016 <ds:Reference URI="#theBody">
017 <ds:Transforms>
018 <ds:Transform
019 Algorithm=".../xml-exc-c14n#"/>
020 </ds:Transforms>
021 <ds:DigestMethod
022 Algorithm=".../xmldsig#sha1"/>
023 <ds:DigestValue>
024 AbCdEfG0123456789...
025 </ds:DigestValue>
026 </ds:Reference>
027 </ds:SignedInfo>
028 <ds:SignatureValue>
029 AbCdEfG0123456789...
030 </ds:SignatureValue>
031 <ds:KeyInfo>
032 <wsse:SecurityTokenReference>
033 <wsse:Reference URI="#X509Token"/>
034 </wsse:SecurityTokenReference>
035 </ds:KeyInfo>
036 </ds:Signature>
037 </wsse:Security>
038 </soap:Header>
039 <soap:Body wsu:Id="theBody">
040 <getQuote Symbol=”IBM”/>
041 </soap:Body>
042 </soap:Envelope>

Example 2

Lines 039-041 contain the same soap:Body element from Example 1, with the addition of the
soap:Body/wsu:Id attribute. Lines 002-038 contain a soap:Header element which is a child of the
soap:Envelope element. Lines 003-037 contain a wsse:Security element which is a child of the
soap:Header element. The syntax and semantics for the wsse:Security element are defined by WSS.
Lines 010-036 contain a ds:Signature which is a child of the wsse:Security element. The syntax and
semantics for the ds:Signature element are define by XML Signature. Lines 011-027 contain a
ds:SignedInfo element which is a child of the ds:Signature element. The ds:Reference/@URI attribute
contains a shorthand pointer as defined by XPointer Framework[11]. The shorthand pointer identifies
the soap:Body element by the value of its wsu:Id attribute. XML parsers typically perform efficient
dereferencing of shorthand pointers.

A receiver of the message above processes the included signature to verify that the signed element,
the soap:Body in this case, has not been altered after it was signed. The receiver also verifies that the
requestor identified by the Subject of the X.509v3 certificate is authorized to make the request.

XML Signature Element Wrapping Attacks and Countermeasures 5

However, since the reference uses a shorthand pointer, which is position independent, the receiver of
the message must enforce the expected security policy beyond merely verifying the signature and
validating the certificate.

Example 3 contains a version of the message from Example 2, as altered by an adversary attempting
to gain unauthorized access. Note that some details from the previous message have been replaced by
ellipses.
001 <soap:Envelope ...>
002 <soap:Header>
003 <wsse:Security>
004 ...
005 <ds:Signature>
006 <ds:SignedInfo>
007 ...
008 <ds:Reference URI="#theBody">
009 ...
010 </ds:Reference>
011 </ds:SignedInfo>
012 ...
013 </ds:Signature>
014 </wsse:Se
015 <Wrapper

curity>

016 soap:mustUnderstand=”0”
017 soap:role=”.../none”>
018 <soap:Body wsu:Id="theBody">
019 <getQuote Symbol=”IBM”/>
020 </soap:Body>
021 </Wrapper>
022 </soap:Header>
023 <soap:Body wsu:Id="newBody”>
024 <getQuote Symbol=”MBI”/>
025 </soap:Body>
026 </soap:Envelope>

Example 3

Lines 018-020 contain the soap:Body element from Example 2, unchanged except it is now a child of
the Wrapper element contained on lines 015-021 instead of the soap:Envelope element. Lines 023-025
contain a new soap:Body element which is a child of the soap:Envelope element. The new soap:Body
element specifies a different getQuote/@Symbol attribute value from that in the original soap:Body.

In this example the soap:mustUnderstand attribute is used to indicate to the SOAP processing layer
that the Wrapper element can be safely ignored. Also, the soap:role attribute indicates to the SOAP
processing layer that the Wrapper element is not targeted at the receiver. However, even without these
attributes the expected behavior is the same since the receiver is not expected to understand how to
process the invented Wrapper element and the default behavior is to ignore header elements that are
not understood.

Since:

a) the message contains a signature provided by an authorized requestor, and

b) the value of the element referenced by the signature is unchanged, and

c) the reference uses a position independent mechanism,

then a naïve implementation of the service may mistakenly authorize this request. This attempted
exploit can be easily prevented by a properly specified and enforced security policy. Care must be
taken to verify that the signed element is the soap:Body element that the application logic will process
and not just any element named soap:Body. A more specific refinement of the policy specified above
would be:

a) the element specified by /soap:Evelope/soap:Body must be signed using WSS with XML
Signature, and

b) the associated signature verification key must be provided by an X.509v3 certificate issued by
one of a set of trusted Certificate Authorities (CAs).

Optional Element Context

Proper security policy specification and enforcement can prevent attempts to move a signed element
within a document when the element has a Simple Ancestry Context. However, when an element is
optional within the document, the specification of an enforceable security policy that prevents its
relocation requires additional considerations.

Example 4 contains a message similar to Example 2, with the addition of an included and signed
optional element.
001 <soap:Envelope ...>
002 <soap:Header>
003 <wsse:Security>
004 ...
005 <ds:Signature>
006 <ds:SignedInfo>
007 ...
008 <ds:Reference URI="#theBody">
009 ...
010 </ds:Reference>
011 <ds:Reference URI="#theReplyTo">
012 ...
013 </ds:Reference>
014 </ds:SignedInfo>
015 ...
016 </ds:Signature>
017 </wsse:Security>
018 <wsa:ReplyTo wsu:Id=”theReplyTo>
019 <wsa:Address>http://good.com/</wsa:Address>
020 </wsa:ReplyTo>
021 </soap:Header>
022 <soap:Body wsu:Id="theBody”>
023 <getQuote Symbol=”IBM”/>
024 </soap:Body>
025 </soap:Envelope>

XML Signature Element Wrapping Attacks and Countermeasures 7

Example 4

Lines 018-020 contain a wsa:ReplyTo element which is a child of the soap:Header element. The
wsa:ReplyTo element specifies where the response for this request should be sent. For the purposes of
our example, assume that this element is optional. If it is not present in the message the response
should be sent in the HTTP Response associated with the HTTP Request that contained the SOAP
request message. Lines 011-013 contain an additional ds:Reference element which refers to the new
wsa:ReplyTo element.

The location where the response should be sent must be authenticated and protected from alteration.
Assume the receiver side security policy is:

a) the element specified by /soap:Evelope/soap:Body must be referenced from a signature “A”
using WSS with XML Signature, and

b) if present, any element matching /soap:Envelope/soap:Header/wsa:ReplyTo must be
referenced from a signature “A” using WSS with XML Signature, and

c) the signature “A” verification key must be provided by an X.509v3 certificate issued by one
of a set of trusted Certificate Authorities (CAs).

At first this receiver side security policy specification appears adequate. But it is not.

Example 5 contains an altered version of Example 4.
001 <soap:Envelope ...>
002 <soap:Header>
003 <wsse:Security>
004 ...
005 <ds:Signature>
006 <ds:SignedInfo>
007 ...
008 <ds:Reference URI="#theBody">
009 ...
010 </ds:Reference>
011 <ds:Reference URI="#theReplyTo">
012 ...
013 </ds:Reference>
014 </ds:SignedInfo>
015 ...
016 </ds:Signature>
017 </wsse:Se
018 <Wrapper

curity>

019 soap:mustUnderstand=”0”
020 soap:role=”.../none”>
021 <wsa:ReplyTo wsu:Id=”theReplyTo>
022 <wsa:Address>http://good.com/</wsa:Address>
023 </wsa:ReplyTo>
024 </Wrapper>
025 </soap:Header>
026 <soap:Body wsu:Id="theBody”>

027 <getQuote Symbol=”IBM”/>
028 </soap:Body>
029 </soap:Envelope>

Example 5

Lines 018-023 contain a Wrapper element which contains the unchanged wsa:ReplyTo element. The
SOAP processing layer dispatches only the soap:Body and entire children of the soap:Header for
processing. Therefore, it will not dispatch the wrapped wsa:ReplyTo and the application will behave
as if the message did not have a wsa:ReplyTo header element. Since:

a) the element specified by /soap:Evelope/soap:Body is referenced from a signature “A” using
WSS with XML Signature, and

b) no element matching /soap:Envelope/soap:Header/wsa:ReplyTo is present,

c) the signature “A” verification key is provided by an X.509v3 certificate issued by one of the
set of trusted Certificate Authorities (CAs),

then the service may mistakenly authorize this request and return the response in the HTTP Response
associated with the HTTP Request that contained the SOAP request.

The above is an example where receiver side specification and enforcement of security policy does
not provide the processing expected by the sender. Some additional specification by the sender is
required.

Example 6 contains a message based on Example 4.
001 <soap:Envelope ...>
002 <soap:Header>
003 <wsse:Security>
004 ...
005 <ds:Signature>
006 <ds:SignedInfo>
007 ...
008 <ds:Reference URI="#theBody">
009 ...
010 </ds:Reference>
011 <ds:Reference URI="">
012 <ds:Transforms>
013 <ds:Transform
014 Algorithm=".../REC-xpath-19991116">
015 <ds:XPath ...>
016 /soap:Envelope/soap:Header/wsa:ReplyTo
017 </ds:XPath>
018 </ds:Transform>
019 <ds:Transform
020 Algorithm=".../xml-exc-c14n#"/>
021 </ds:Transforms>
022 ...
023 </ds:Reference>
024 </ds:SignedInfo>
025 ...
026 </ds:Signature>
027 </wsse:Security>
028 <wsa:ReplyTo wsu:Id=”theReplyTo>
029 <wsa:Address>http://good.com/</wsa:Address>

XML Signature Element Wrapping Attacks and Countermeasures 9

030 </wsa:ReplyTo>
031 </soap:Header>
032 <soap:Body wsu:Id="theBody”>
033 <getQuote Symbol=”IBM”/>
034 </soap:Body>
035 </soap:Envelope>

Example 6

Lines 011-023 contain an altered ds:Reference from Example 4. The ds:Reference/@URI no longer
specifies a shorthand pointer but is now empty. An empty URI identifies the document root. Lines
013-018 contain a new ds:Transform. The ds:Transform/@Algorithm specifies the XPath[12,13]
algorithm. Lines 015-017 contain a ds:XPath element which is a child of the ds:Transform element.
Line 016 contains an XPath expression which specifies any element named wsa:ReplyTo which is a
child of any element named soap:Header which is a child of any root element named soap:Envelope.

This position dependent or absolute path XPath expression reference can be considered a sender side
specification of security policy. If the wsa:ReplyTo element were moved from its intended position
after the signature was generated, during signature verification the XPath expression would resolve to
an empty nodeset and the digest value would not match.

A refined receiver side security policy would be:

a) the element specified by /soap:Evelope/soap:Body must be referenced from a signature “A”
using WSS with XML Signature, and

b) if present, any element matching /soap:Envelope/soap:Header/wsa:ReplyTo must be
referenced via an absolute path XPath expression from a signature “A” using WSS with XML
Signature, and

c) the signature “A” verification key must be provided by an X.509v3 certificate issued by one
of a set of trusted Certificate Authorities (CAs).

Sibling Value Context

The simple absolute path XPath expression described above may provide suitable countermeasures
against wrapping of optional elements when it is not possible for any of the element’s ancestors to
have a sibling element with the same name but with different semantics.

Example 7 contains a message which is similar to Example 6. This example no longer uses the
optional wsa:ReplyTo element but instead it includes an optional signed wsu:Timestamp element.
001 <soap:Envelope ...>
002 <soap:Header>
003 <wsse:Security>
004 ...
005 <ds:Signature>
006 <ds:SignedInfo>
007 ...
008 <ds:Reference URI="#theBody">

009 ...
010 </ds:Reference>
011 <ds:Reference URI="">
012 <ds:Transforms>
013 <ds:Transform
014 Algorithm=".../REC-xpath-19991116">
015 <ds:XPath ...>
016 /soap:Envelope/soap:Header/wsse:Security/wsu:Timestamp
017 </ds:XPath>
018 </ds:Transform>
019 ...
020 </ds:Transforms>
021 ...
022 </ds:Reference>
023 </ds:SignedInfo>
024 ...
025 </ds:Signature>
026 <wsu:Timestamp wsu:Id="theTimestamp">
027 <wsu:Created>2005-05-29T08:45:00Z</wsu:Created>
028 <wsu:Expires>2005-05-29T09:00:00Z</wsu:Expires>
029 </wsu:Timestamp>
030 </wsse:Security>
031 </soap:Header>
032 <soap:Body wsu:Id="theBody”>
033 <getQuote Symbol=”IBM”/>
034 </soap:Body>
035 </soap:Envelope>

Example 7

Lines 026-029 contain a wsu:Timestamp element which is a child of the wsse:Security element. The
syntax and semantics associated with the wsu:Timestamp element are specified by WSS. Line 027
contains a wsu:Created element which is a child of the wsu:Timestamp element. The value of the
wsu:Created element specifies the time the wsse:Security element was generated. Line 028 contains a
wsu:Expires element which is a child of the wsu:Timestamp element. The value of the wsu:Expires
element specifies the time after which the semantics associated with the other child elements
contained in the wsse:Security element no longer apply. Line 016 contains an XPath expression which
specifies any element named wsu:Timestamp which is a child of any element named wsse:Security
which is a child of any element named soap:Header which is a child of any root element named
soap:Envelope.

A appropriate receiver side security policy would be:

a) the element specified by /soap:Evelope/soap:Body must be referenced from a signature “A”
using WSS with XML Signature, and

b) if present, any element matching /soap:Envelope/soap:Header/wsa:ReplyTo must be
referenced via an absolute path XPath expression from a signature “A” using WSS with XML
Signature, and

c) if present, any element matching /soap:Envelope/soap:Header/wsse:Security/wsu:Timestamp
must be referenced via an absolute path XPath expression from a signature “A” using WSS
with XML Signature, and

d) the signature “A” verification key must be provided by an X.509v3 certificate issued by one
of a set of trusted Certificate Authorities (CAs).

XML Signature Element Wrapping Attacks and Countermeasures 11

However, this might not provide the desired level of protection.

Example 8 contains an altered message based on Example 7.
001 <soap:Envelope ...>
002 <soap:Header>
003 <wsse:Security>
004 ...
005 <ds:Signature>
006 <ds:SignedInfo>
007 ...
008 <ds:Reference URI="#theBody">
009 ...
010 </ds:Reference>
011 <ds:Reference URI="">
012 <ds:Transforms>
013 <ds:Transform
014 Algorithm=".../REC-xpath-19991116">
015 <ds:XPath ...>
016 /soap:Envelope/soap:Header/wsse:Security/wsu:Timestamp
017 </ds:XPath>
018 </ds:Transform>
019 ...
020 </ds:Transforms>
021 ...
022 </ds:Reference>
023 </ds:SignedInfo>
024 ...
025 </ds:Signature>
026 </wsse:Security
027 <wsse:Security

>

028 soap:mustUnderstand=”0”
029 soap:role=”…/none”>
030 <wsu:Timestamp wsu:Id="theTimestamp">
031 <wsu:Created>2005-05-29T08:45:00Z</wsu:Created>
032 <wsu:Expires>2005-05-29T09:00:00Z</wsu:Expires>
033 </wsu:Timestamp>
034 </wsse:Security>
035 </soap:Header>
036 <soap:Body wsu:Id="theBody”>
037 <getQuote Symbol=”IBM”/>
038 </soap:Body>
039 </soap:Envelope>

Example 8

Lines 027-034 contain a wsse:Security element which is a child of the soap:Header element. Line 029
contains a wsse:Security/@soap:role attribute with a value of “none” which indicates that no SOAP
node should process this header element. Lines 030-033 contain the wsu:Timestamp element from
Example 7, unchanged except it is a child of the new wsse:Security element instead of the original.
WSS allows for the presence of more than one wsse:Security header element in a message. WSS does

have a restriction that each wsse:Security header elements must have a unique value for the
wsse:Security/@soap:role attribute.

Protecting against this exploit proves very difficult. The wsse:Security header cannot itself be
completely signed since intermediary SOAP nodes may need to add elements to it. Obviously some
value that uniquely identifies the ambiguous ancestor is required to be used in the XPath expression,
but that also must be protected from alteration.

Example 9 contains a modified form of the message contained in example 7.
001 <soap:Envelope ...>
002 <soap:Header>
003 <wsse:Security soap:role=”.../ultimateReceiver”>
004 ...
005 <ds:Signature>
006 <ds:SignedInfo>
007 ...
008 <ds:Reference URI="#theBody">
009 ...
010 </ds:Reference>
011 <ds:Reference URI="">
012 <ds:Transforms>
013 <ds:Transform
014 Algorithm=".../REC-xpath-19991116">
015 <ds:XPath ...>
016
/soap:Envelope/soap:Header/wsse:Security[@soap:role=”.../ultimateRec
eiver”]/wsu:Timestamp
017 </ds:XPath>
018 </ds:Transform>
019 ...
020 </ds:Transforms>
021 ...
022 </ds:Reference>
023 </ds:SignedInfo>
024 ...
025 </ds:Signature>
026 <wsu:Timestamp wsu:Id="theTimestamp">
027 <wsu:Created>2005-05-29T08:45:00Z</wsu:Created>
028 <wsu:Expires>2005-05-29T09:00:00Z</wsu:Expires>
029 </wsu:Timestamp>
030 </wsse:Security>
031 </soap:Header>
032 <soap:Body wsu:Id="theBody”>
033 <getQuote Symbol=”IBM”/>
034 </soap:Body>
035 </soap:Envelope>

Example 9

Line 003 contains the updated wsse:Security element which now explicitly specifies a soap:role
attribute with a value indicating that the element should be processed by the ultimate receiver. Line
016 contains the updated XPath expression which specifies that the wsse:Security element must have
a soap:role attribute with a value that indicates that it should be processed by the ultimate receiver.

Unfortunately this is still inadequate. WSS allows presence of one wsse:Security header element with
an explicit soap:role indicating that the element should be processed by the ultimate receiver, and

XML Signature Element Wrapping Attacks and Countermeasures 13

another wsse:Security header element without a soap:role which implicitly indicates that the element
should also be processed by the ultimate receiver.

Example 10 contains a modified form of the message contained in example 9.
001 <soap:Envelope ...>
002 <soap:Header>
003 <wsse:Security soap:role=”.../ultimateReceiver”>
004 <wsu:Timestamp wsu:Id="theTimestamp">
005 <wsu:Created>2005-05-29T08:45:00Z</wsu:Created>
006 <wsu:Expires>2005-05-29T09:00:00Z</wsu:Expires>
007 </wsu:Timestamp>
008 </wsse:Security>
009 <wsse:Security>
010 ...
011 <ds:Signature>
012 <ds:SignedInfo>
013 ...
014 <ds:Reference URI="#theBody">
015 ...
016 </ds:Reference>
017 <ds:Reference URI="">
018 <ds:Transforms>
019 <ds:Transform
020 Algorithm=".../REC-xpath-19991116">
021 <ds:XPath ...>
022
/soap:Envelope/soap:Header/wsse:Security[@soap:role=”.../ultimateRec
eiver”]/wsu:Timestamp
023 </ds:XPath>
024 </ds:Transform>
025 ...
026 </ds:Transforms>
027 ...
028 </ds:Reference>
029 </ds:SignedInfo>
030 ...
031 </ds:Signature>
032 </wsse:Security>
033 </soap:Header>
034 <soap:Body wsu:Id="theBody”>
035 <getQuote Symbol=”IBM”/>
036 </soap:Body>
037 </soap:Envelope>

Example 10

Lines 003-008 contain the original wsse:Security header element with all of its contents removed
except for the wsu:Timestamp. Lines 009-032 contain a new wsse:Security header containing all of
the contents of the original except for the wsu:Timestamp. The semantics of the new header are the
same as the original without the wsu:Timestamp.

Prevention of that exploit requires more specific receiver side security policy such as:

a) a signature “A” XML Signature must be present in a wsse:Security header element with an
explicit soap:role attribute with the value “…/ultimateReceiver”.

b) the element specified by /soap:Evelope/soap:Body must be referenced from a signature “A”,
and

c) if present, any element matching /soap:Envelope/soap:Header/wsa:ReplyTo must be
referenced via an absolute path XPath expression from a signature “A”, and

d) if present, any element matching
/soap:Envelope/soap:Header/wsse:Security[@role=”…/ultimateReceiver”]/wsu:Timestamp
must be referenced via an absolute path XPath expression from a signature “A”, and

e) the signature “A” verification key must be provided by an X.509v3 certificate issued by one
of a set of trusted Certificate Authorities (CAs).

Unfortunately, this solution does not protect against the general form of this exploit, since it depends
on the semantics of the wsse:Security header. More work is required to define appropriate
countermeasures that do not rely on element specific semantics.

Sibling Order Context

Another difficult problem involves the protection of individually signed sibling elements, whose
semantics are related to their order relative to one another, from reordering by an adversary. More
work is required to define appropriate countermeasures that do not prevent the addition and removal
of siblings that do not impact the ordering semantics.

Conclusion

XML Signatures can be used to effectively protect SOAP messages only when appropriate security
policies are specified and correctly enforced. Typical Web Service developers may not be aware of
some subtle properties of XML Signature that can create unintended vulnerabilities. In certain
circumstances shorthand pointer references do not provide adequate protection against element
wrapping attacks. XPath expression references may be used effectively in many cases where
shorthand pointer references are inadequate. A simple subset of XPath should be profiled in order to
foster efficient, interoperable, and secure Web Services.

Acknowledgements

Portions of this work were originally described in email messages sent to Web Services
Interoperability Organization (WS-I) mailing lists. A form of the attack similar to that described in
Example 3 was subsequently presented by Fournet[14].

We would like to thank our colleagues at IBM especially Anthony Nadalin, Kelvin Lawrence, Hyen
V. Chung, Barbara McKee, Rick Allen, Birgit Pfitzmann, Hiroshi Maruyama, Naohiko Uramoto,
Suzanne McIntosh, Larry Koved, Josyula Rao, and Charles Palmer; and the members of the WS-I

XML Signature Element Wrapping Attacks and Countermeasures 15

Basic Security Profile (BSP) and Sample Applications Working Groups; especially Paul Cotton,
Thomas DeMartini, Martin Gudgin, and Hal Lockhart; and members of the Organization for the
Advancement of Structured Information Systems (OASIS) Web Services Security Technical
Committee (TC), especially Chris Kaler.

References

1. Eastlake, D., Reagle, J., Solo, D. (editors): XML-Signature Syntax and Processing: W3C
Recommendation: 12 February 2002 (See: http://www.w3.org/TR/2002/REC-xmldsig-core-
20020212/)

2. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., Thatte, S.,
Winer, D.: Simple Object Access Protocol (SOAP) 1.1: W3C Note: 08 May 2000: (See:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508)

3. Mitra, N. (editor): SOAP Version 1.2 Part 0: Primer: W3C Recommendation: 24 June 2003: (See:
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/)

4. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H. F (editors): SOAP Version 1.2
Part 1: Messaging Framework: W3C Recommendation 24 June 2003: (See:
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/)

5. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H. F. (editors): SOAP Version 1.2
Part 2: Adjuncts: W3C Recommendation: 24 June 2003: (See: http://www.w3.org/TR/2003/REC-
soap12-part2-20030624/)

6. Nadalin, A., Kaler, C., Hallam-Baker, P., Monzillo, R. (editors) Web Services Security: SOAP
Message Security 1.0 (WS-Security 2004): OASIS Standard 200401, March 2004 (See:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf)

7. McIntosh, M. "New Issue (w/Proposal): Signing the Signer's Security Token": Online Posting: 23
September 2004: WS-I Basic Security Profile Working Group (See: http://members.ws-
i.org/Resource.phx/lyris/newmessage.htx?id=64333)

8. McIntosh, M. "Re: [wsi_wsbasic_apps] question from sample apps group on C5440": Online
Posting: 23 September 2004: WS-I Basic Security Profile Working Group (See:
http://members.ws-i.org/Resource.phx/lyris/newmessage.htx?id=64445)

9. McIntosh, M. "Re: [wsi_wsbasic_apps] question from sample apps group on C5440": Online
Posting: 24 September 2004: WS-I Basic Security Profile Working Group (See:
http://members.ws-i.org/Resource.phx/lyris/newmessage.htx?id=64673)

10. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F. (editors): Extensible
Markup Language (XML) 1.0 (Third Edition): W3C Recommendation: 04 February 2004 (See:
http://www.w3.org/TR/2004/REC-xml-20040204)

11. Grosso, P., Maler, E., Marsh, J., Walsh, N. (editors): XPointer Framework: W3C
Recommendation: 25 March 2003: (See: http://www.w3.org/TR/2003/REC-xptr-framework-
20030325/)

12. Boyer, J., Hughes, M., Reagle, J. (editors): XML-Signature XPath Filter 2.0: W3C
Recommendation: 08 November 2002: (See: http://www.w3.org/TR/2002/REC-xmldsig-filter2-
20021108/)

13. Clark, J., DeRose, S. (editors): XML Path Language (XPath) Version 1.0: W3C Recommendation
16 November 1999: (See: http://www.w3.org/TR/1999/REC-xpath-19991116)

14. Fournet, C. “Formal Tools for Web Services Security”: 5-6 May 2005: DIMACS Workshop
(See: http://dimacs.rutgers.edu/Workshops/Commerce/slides/fournet.ppt)

