
Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 30

This section demonstrates how to create a simple device driver, and one
method of installing it.

Key Concepts :DriverEntry, DRIVER_OBJECT, SCM

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

Just like any user mode application has an entry point, usually “int main(int argc, char **argv, char
**envp)”, a driver is expected to likewise implement a standard interface – called “DriverEntry”.

Creating a Device Driver

(C) 2009 JL@HisOwn.com 31

**envp)”, a driver is expected to likewise implement a standard interface – called “DriverEntry”.
The name itself may be changed, but if so, the linker has to be told about it with a “/entry” switch
defining the new entry point.

The DriverEntry function will be passed two arguments from the Kernel:

PDRIVER_OBJECT : A pointer to a DRIVER_OBJECT structure. This is discussed shortly.

PUNICODE_STRING: A pointer to a UNICODE_STRING representing the Driver’s Registry
Entry. This is a path name in the system’s registry, under the key:

\Registry\Machine\System\CurrentControlSet\Services \DriverName,

in the SYSTEM hive. The path name is where the Driver’s configuration entries are saved, and
may be tweaked by the System Administrator, or the Driver’s installation function. It’s important to
save this Unicode String (i.e. wstrcpy() it to some Driver global buffer) since the I/O Manager will
free this string upon the DriverEntry function’s return.

Device specific initializations are handled by an addDevice routine, and not by the driver entry.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

The DRIVER_OBJECT is a semi-opaque struct that the I/O manager passes to the device driver.
Upon first invocation of the driver – in the DriverEntry – the driver is expected to populate it with

Creating a Device Driver

(C) 2009 JL@HisOwn.com 32

Upon first invocation of the driver – in the DriverEntry – the driver is expected to populate it with
whatever data it requires for further callbacks. From that point on, the same struct will be passed
on to the respective callbacks.

The structure is semi-opaque on purpose – Microsoft keeps many details and fields for its own
internal use. We will demonstrate one of them later on, when we talk about drivers operating in
“stealth” mode – hiding their presence from others, including the Kernel itself.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

A sample driver, then, that does nothing but initialize, and clean up would look like this:

And for the cleanup:
Listing 1 : Stub Driver, demonstrating a DriverEntry

NTSTATUS DriverEntry (IN PDRIVER_OBJECT pDriverObject,
IN PUNICODE_STRING strRegistryPath)

{
pDriverObject-> DriverUnload = driverCleanupFunction;

DbgPrint(“Driver:: Hello, Kernel!\n");
return STATUS_SUCCESS;

}

Creating a Device Driver

NTSTATUS DriverCleanupFunction (IN PDRIVER_OBJECT pDriverObject)
{

DbgPrint(“Driver:: Exit, Stage Left..\n");
return STATUS_SUCCESS;

}

Listing 2 : Stub Driver, demonstrating a Driver Cleanup function

(C) 2009 JL@HisOwn.com 33

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

Even though most systems today sport Physical memory in the GB range, it’s a recommended
practice to be very conservative with memory usage at the driver level. Visual Studio supports a

Creating a Device Driver

(C) 2009 JL@HisOwn.com 34

practice to be very conservative with memory usage at the driver level. Visual Studio supports a
#pragma called alloc_text , that defines functions as discardable or pageable.

Functions that are used only during the driver initialization phase (i.e. DriverEntry and whatever
functions it calls) can be defined as init functions. Other functions, used at IRQL ==
PASSIVE_LEVEL, can be pageable. The IRQL requirement is, to remind you, because the
system page swapper runs at IRQL == APC_LEVEL.

This pragma only applies to C-linkage functions. To use it, you must define the function prototype,
and place the #pragma setting in between the function prototype and definition. During runtime,
you can also override any pragma settings and force paging using MmPageEntireDriver() , by
supplying it with the address of your DriverEntry or any other function in the section. This
technique must NOT be used if you have registered any Interrupt Handlers (ISRs), as it will crash
the system.

Conversely, you can lock your sections in memory by calling MMResetDriverPaging() .

Caution : Incorrectly marking sections of your driver as pageable will quickly lead to

Bug Check 0xD3: DRIVER_PORTION_MUST_BE_NONPAGED

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming Creating a Device Driver

(C) 2009 JL@HisOwn.com 35

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

A Windows Kernel Device Driver is considered a Windows “Service”, dating back to the old days
of Windows NT, where Drivers were viewable in a similar manner to services, via the Control

Creating a Device Driver

(C) 2009 JL@HisOwn.com 36

of Windows NT, where Drivers were viewable in a similar manner to services, via the Control
Panel.

The simplest way to install a Driver, albeit deprecated, is by using the Service Control Manager.
Much like any user mode service, this requires two calls. The first is a call to OpenSCManager:

Assuming this call succeeds (it would, of course, require Administrator privileges), the returned
handle can be used to install the driver:

hSCM = OpenSCManager(NULL, /* Local Machine */
NULL, /* Local Machine */
SC_MANAGER_ALL_ACCESS); /* or READ | WRITE */

SC_HANDLE hDriver = CreateService(hSCM,
L” My Kernel Driver” ,
L” Driver Display Name ”,
SERVICE_ALL_ACCESS,

/* This makes the difference: */ SERVICE_KERNEL_DRIVER,
SERVICE_DEMAND_START,
SERVICE_ERROR_NORMAL,
“ C:\\driver.sys ”,
NULL,
NULL,
NULL,
NULL,
NULL);

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

A well known method of installing a driver without any Registry or Service Control Manager
interface involves using an undocumented function, ZwSetSystemInformation.

Creating a Device Driver

(C) 2009 JL@HisOwn.com 37

interface involves using an undocumented function, ZwSetSystemInformation.

http://archives.neohapsis.com/archives/ntbugtraq/2000-q3/0114.html

typedef struct _SYSTEM_LOAD_AND_CALL_IMAGE

{ UNICODE_STRING ModuleName; } SYSTEM_LOAD_AND_CALL_IMAGE;

SYSTEM_LOAD_AND_CALL_IMAGE MyDeviceDriver;

WCHAR imagepath[] = L"\\??\\C:\\driver.sys"; /* Path to driver */

RtlInitUnicodeString = (void*)GetProcAddress(GetModuleHandle("ntdll.dll"),

“RtlInitUnicodeString");

ZwSetSystemInformation=(void*)GetProcAddress(GetModuleHandle("ntdll.dll"),

"ZwSetSystemInformation");

if(RtlInitUnicodeString && ZwSetSystemInformation)

{

RtlInitUnicodeString(&(MyDeviceDriver.ModuleName), imagepath);

status = ZwSetSystemInformation(38383838,

&MyDeviceDriver,

sizeof(SYSTEM_LOAD_AND_CALL_IMAGE));

}

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

After a driver is installed with the SCM, it still needs to be installed. This can be done, like any
Windows Service, with a “net start” command:

Creating a Device Driver

(C) 2009 JL@HisOwn.com 38

Windows Service, with a “net start” command:

or programmatically:

if(0 == StartService(hService, 0,
NULL))

{

/* Great! */

}

else {

// Call GetLastError()..

}

E:E:E:E:\\\\WINDOWSWINDOWSWINDOWSWINDOWS\\\\systemsystemsystemsystem32323232> > > > net start "My Kernel Driver"
The My Kernel Driver service is starting.
The My Kernel Driver service was started
successfully.

E:E:E:E:\\\\WINDOWSWINDOWSWINDOWSWINDOWS\\\\systemsystemsystemsystem32323232> > > > net stop "My Kernel Driver"
The My Kernel Driver service is stopping.
The My Kernel Driver service was stopped
successfully.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

The Device Driver will generally act as a service – meaning it will respond to requests coming from
user mode (via System calls and I/O Request Packets, or IRPs), or interrupts coming from a

Creating a Device Driver

(C) 2009 JL@HisOwn.com 39

user mode (via System calls and I/O Request Packets, or IRPs), or interrupts coming from a
device. Sometimes, however, a device driver needs to create its own independent thread for
whatever purpose. For this, the Windows Kernel Process Manager (the Ps subsystem) offers a full
thread API, chief amongst which is the PsCreateSystemThread call.

The call is very similar to Win32’s CreateThread(), with the exception that it allows for a process
handle, as well. If the Process Handle is set to NULL, the thread is created under the System (Id=4)
process. It’s possible, however, to create threads in any process, if a handle to that process can be
obtained. If creating threads in other processes aside from the System one, the “Object Attributes”
must be set to OBJ_KERNEL_HANDLE – or else the thread will be accessible to the process in
which it is running.

There is no known API to terminate a Kernel thread – the thread must terminate itself, by calling
PsTerminateThread().

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

Exercises

1. In this exercise we will create a very basic driver (that does absolutely nothing), compile and
build it.

i. Open a Windows XP “Checked Build” command prompt. Make sure your PATH
settings allow you to invoke the “build” script.

ii. Create the basic driver shown in Listing I.

iii. Create a SOURCES file to build your driver.

iv. Run “build” and examine the resulting SYS file. Use DumpBin to verify its imports and
exports. What are its dependencies?

2. We will now take the simple driver and install it, using the Service Control Manager.

i. Create a main program to invoke the Service Control Manager and install your driver.

ii. Run your program to install the Driver. Now run “Services.msc” and/or “net start” and
look for your driver. What do you see?

iii. Using RegEdit, search for your driver in the registry, in HKLM\System\CCS\Services.

Explain the parameters you see:

Creating a Device Driver – Excerises

(C) 2009 JL@HisOwn.com 40

iv. What other tool could you use to see if your driver has been loaded successfully?

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

Exercises

2. In this exercise we will trace the linked list of Driver objects manually, and see their
interrelations with their devices, and eachother.

i. Start LiveKD, as in the previous exercises

ii. Use !drvobj tpcip, and record the address of the DRIVER_OBJECT. You should see
something like

kd> !drvobj tcpip

Driver object (86868686bebebebe3333cacacaca8888) is for:

\Driver\Tcpip

Driver Extension List: (id , addr)

Device Object list:

86c3fd80 86cbfd80 86c31af0 86c2ef18

86be2bc0

iii. Try the “!devobj” command on the entries in the “Device Object List”. What do you
see?

iv. Do a “dd” on the driver object + 20 bytes. Record this address. This is the address of
the linked list of drivers.

Creating a Device Driver – Excerises

(C) 2009 JL@HisOwn.com 41

v. Next, do a dd or two on the address you just figured out. Somewhere around there lies
a Unicode string which tells you what the pathname of this driver is. What offset is it?
Try the “du” command to see what the pathname is.

vi. Claim: That address indeed holds a linked list, you should be able to see two entries –
the PREV and the next. Follow the linked list by applying (iii-iv) iteratively and figuring
out the names of the next drivers in sequence.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming - Excerpt

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

42

This section discusses the constraints of Kernel Mode programming: The
APIs exposed by the Kernel executive, memory allocation, IPC &
synchronization objects, outputting messages to user space, and crashing.

Key Concepts :Rtl functions, Ex Functions, Mutexes, Events, Timers,
Spinlocks, DbgPrint, Event Logging, Bug Check

Lecture Notes on Windows Kernel Programming - Excerpt

This table lists some of the Kernel API
identifiers in Windows XP. These are

Kernel Survival Guide

Aux Auxiliary Library

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

43

identifiers in Windows XP. These are
very closely tied to the various Kernel
“Subsystems” that we discussed in the
architectural overview. The exception to
this are the Rtl functions, which serve as
basic “Run Time Library” support the
Kernel offers in the absence of a full
fledged C-level API.

Aux Auxiliary Library

Clfs Common Log File System

Cc Cache Manager

Cm Configuration Manager

Ex Executive (Memory Allocation wrappers, etc)

Flt Filter Manager

Hal Hardware Abstraction Layer

Io I/O Manager

Ke Kernel Core

Mm Memory Manager

Nt Native Services (User Mode)

Ob Object Manager

Po PnP/Power Manager

Ps Processes and Threads

Rtl Run Time Library

Se Security Reference Monitor

Wmi Windows Management Instrumentation

Zw Kernel Mode Wrappers for Nt*

Lecture Notes on Windows Kernel Programming - Excerpt

Most drivers need to tweak their functionality to the exact version of Kernel they are running in.
Microsoft Operating Systems do differ in their Kernel implementations in between Windows

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

44

Microsoft Operating Systems do differ in their Kernel implementations in between Windows
Versions and even Service Packs. Therefore it’s standard practice to call RTLGetVersion (), or
the now deprecated PsGetVersion() (used prior to Windows XP). This function is essentially the
Kernel equivalent of GetWindowsVersion() , but operates slightly differently: It accepts a pointer
to a struct of RTL_OSVERSIONINFO, or a slightly more advanced RTL_OSVERSIONINFOEX.
Which looks as follows:

The function relies on the first field, dwOsVersionInfoSize, to be set to the sizeof() the structure
before the call. It can use the size to tell which of the two structs was passed to it.

typedef struct _OSVERSIONINFOEXW {
ULONG dwOSVersionInfoSize;
ULONG dwMajorVersion;
ULONG dwMinorVersion;
ULONG dwBuildNumber;
ULONG dwPlatformId;
WCHAR szCSDVersion[128];
USHORT wServicePackMajor;
USHORT wServicePackMinor;
USHORT wSuiteMask;
UCHAR wProductType;
UCHAR wReserved;

} RTL_OSVERSIONINFOEXW;

Lecture Notes on Windows Kernel Programming - Excerpt

It is then possible to verify what version of Windows you are in with something like the following code:

RTL_OSVERSIONINFOWEX osv;

osv. dwOSVersionInfoSize = sizeof(RTL_OSVERSIONINFOWEX);

NTSTATUS status;
status = RtlGetVersion((RTL_OSVERSIONINFOW *) &osv);

switch (osv. dwMajorVersion)
{

case 5:
if (osw. dwMinorVersion == 1) { /* XP */ }
if (osw. dwMinorVersion == 2) { /* 2003 */ }
break;

case 6:
if (osw. dwMinorVersion == 0) { /* 2008 */ }
break;

default:
..

} /* end Switch */

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

45

Listing 1 : Verifying Windows Kernel Version

Lecture Notes on Windows Kernel Programming - Excerpt

While the Kernel does not allow calling system calls from within Kernel space, sometimes there
has to be a method to access user space objects, most notably files and registry keys. For this,

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

46

has to be a method to access user space objects, most notably files and registry keys. For this,
the Kernel offers the Zw* API, which is a set of wrappers over the NT apis. These calls are
actually faster than their Nt* counterparts, as they bypass parameter validation and access right
checks.

NTSTATUS ZwCreateFile(OUT PHANDLE FileHandle ,
IN ACCESS_MASK DesiredAccess ,
IN POBJECT_ATTRIBUTES Attributes ,
OUT PIO_STATUS_BLOCK IoStatusBlock

,
OPTIONAL IN PLARGE_INTEGER AllocSize ,

IN ULONG FileAttributes ,
IN ULONG ShareAccess ,
IN ULONG CreateDisposition ,
IN ULONG CreateOptions ,
IN PVOID EaBuffer OPTIONAL,
IN ULONG EaLength);

Lecture Notes on Windows Kernel Programming - Excerpt

The Windows Registry.. Can’t live with it, can’t live without it. The Kernel’s RunTime Library
exports an API that is nearly 1:1 that of ADVAPI32’s RegXXX functions. The Kernel also offers an

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

47

exports an API that is nearly 1:1 that of ADVAPI32’s RegXXX functions. The Kernel also offers an
executive interface, via Zw functions, but since these work with keys as objects, the approach
requires interaction with the Object Manager by creating and initializing an
OBJECT_ATTIRBUTES structure.

Lecture Notes on Windows Kernel Programming - Excerpt

Win32 “Handles” are actually implemented as void pointers, that are opaque and manipulated by
the Kernel. Objects from user mode can thus be accessed in Kernel mode, by using the Object

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

48

the Kernel. Objects from user mode can thus be accessed in Kernel mode, by using the Object
Manager’s ObReferenceObjectByHandle function. The “Handle” is the user mode handle.

The AccessMode enum, KPROCESSOR_MODE, may be UserMode or KernelMode

ObjectType may be one of the following:

*IoFileObjectType - PFILE_OBJECT (File Handle)

*ExEventObjectType - PKEVENT (Event Handle)

*ExSemaphoreObjectType – PKSEMAPHORE (Sempahore)

*PsProcessType PEPROCESS or PKPROCESS (Handle from OpenProcess)

*PsThreadType PETHREAD or PKTHREAD (Handle from OpenThread)

And AccessMode should be KernelMode. HandleInfo is left NULL.

Lecture Notes on Windows Kernel Programming Kernel Survival Guide

(C) 2009 JL@HisOwn.com 49

Pool Type Purpose

NonPagedPool Memory that is always resident and never paged out.
Always accessible – but considered scarce. Call may fail .

NonPagedPoolMustSucceed As NonPaged, but if call fails system blue screens with
code 0x41.

PagedPool Normal system memory – not guaranteed to be accessible.
May trigger a pagefault. Must be running at a lower priority
than dispatcher to access this memory.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming - Excerpt

The Windows Kernel, unlike Linux, has surprisingly advanced string manipulation functions. The
Kernel RunTime is not only string-capable, but can also handle Unicode, as well.

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

50

Kernel RunTime is not only string-capable, but can also handle Unicode, as well.

To initialize a String, you’d use RtlInitString(), which automatically resolves to the ANSI or
UNICODE variant, depending on the string initializer value (Unicode strings have an uppercase
“L” right before them.

Strcpy and Strcmp are also available, although under different names.

The only caveat to string manipulation in the Kernel is, that Unicode operations cannot take place
when running at a higher IRQL level. IRQL is discussed later, but for now we can “get away” with
saying that the Unicode functions can only be used in “standard” Kernel scenarios, i.e. when
running as a normal priority thread under the dispatcher, and not in any elevated context such as
that of an Interrupt Handler.

Lecture Notes on Windows Kernel Programming - Excerpt

The Hardware Abstraction Layer provides the only interface to the physical, or hardware layer.
Kernel components may still usse direct calls to I/O and hardware ports, but not using inline

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

51

Kernel components may still usse direct calls to I/O and hardware ports, but not using inline
assembly sequences.

Most of the HAL exported functionality has been rendered obsolete as the I/O manager has
picked up more and more responsibilities, but the HAL still exports macros to read and write
register values and/or port values. Specific macros exist for the specific datatypes. For example:

USHORT READ_REGISTER_USHORT(IN PUSHORT Register);

UCHAR READ_REGISTER_UCHAR(IN PUCHAR Register);

And, for string:

VOID READ_REGISTER_BUFFER_UCHAR(IN PUCHAR Register ,
IN PUCHAR Buffer ,
IN ULONG Count);

And similarly for ports:

UCHAR READ_PORT_UCHAR (IN PUCHAR Port);
VOID WRITE_PORT_ULONG(IN PULONG Port , IN ULONG Value);

Lecture Notes on Windows Kernel Programming - Excerpt

The Kernel supports several synchronization mechanisms for drivers and modules to use. The
first is the classic Mutex object, which is available in three varieties:

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

52

first is the classic Mutex object, which is available in three varieties:

• Mutexes: Using KeInitializeMutex, and KeWaitForMutexObject().

• Fast Mutexes : Which are implemented by “bumping up” a special thread priority value
known as the IRQL to a higher level (APC_LEVEL) rather than usual (PASSIVE_LEVEL).
The exact meaning of this is discussed shortly (as IRQLs deserve their own notes) – but
suffice it to say a Mutex holder will run at a higher priority so long as the mutex remains in
its possession. If the mutex is unavailable (i.e. owned by another thread) the requesting
thread is suspended until the mutex is released.

• Guarded Mutexes : Which have exactly the same interface, but are implemented with
“Guarded Sections” which are quicker to enter and leave than the IRQL level raising.

The Mutex objects are defined globally in non-paged memory, as FAST_MUTEX or
KGUARDED_MUTEX, respectively. A driver or Kernel component usually follows the
Initialize�Acquire�Release pattern, but may also opt to use the TryToAcquire functions, that
return immediately, if it cannot or will not block execution.

Caution : Attempting to acquire a Mutex object you already own will result in a Bug Check

(= Blue Screen of Death) 0xBF: MUTEX_ALREADY_OWNED.

Lecture Notes on Windows Kernel Programming - Excerpt

The Kernel enables Drivers and components to use Event based synchronization, in an API that is
virtually identical to the Win32 API – with good reason – The User mode calls are simply pass

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

53

virtually identical to the Win32 API – with good reason – The User mode calls are simply pass
through calls to their Kernel implementations.

Two types of events are defined, and the Type parameter of KeInitializeEvent can be either:

• SynchronizationEvent: for events that are auto resetting “flags”, that may be signalled
once (by KeSetEvent()) before being reset. These allow a single consumer to awaken,
and service consumers one at a time.

• NotificationEvent : for events/flags which do not reset. As soon as they are signaled,
all waiting consumers awaken, and the flag remains until explicitly cleared by
KeClearEvent() or KeResetEvent() (The latter being a slower function, that also
recovers the value prior to reset).

Consumers wait for one or more events simultaneously by calling KeWaitForSingleObject() or
KeWaitForMultipleObjects() , respectively.

When signaling an event, it is possible to specify a two parameters: A priority increment for
threads that have been waiting on it, and a Boolean wait Value if the signaling thread immediately
wishes to enter a wait state (i.e. call KeWaitForXXX()).

Lecture Notes on Windows Kernel Programming - Excerpt

Timers are another useful mechanism the Kernel offers. A driver may set a timer by
defining a (global) KTIMER object. This object is opaque, and can be manipulated by calls

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

54

defining a (global) KTIMER object. This object is opaque, and can be manipulated by calls
to the Kernel timer functions. The first, KeInitializeTimer , does just that. The Ex variant
(shown above) allows to select one of two timer types: NotificationTimer or
SynchronizationTimer , which follow the same principle as Notification and
Synchronization Events, discussed previously.

The timer may be set by calling KeSetTimer and providing a DueTime argument. The
argument may be positive (in which case it is interpreted as an absolute timestamp), or
negative (in which case it is considered an offset from the current time when KeSetTimer
was called). The Deferred Procedure Call (DPC) supplied as the third argument will be
called upon expiry. KeSetTimerEx inserts another argument in the third position, Period,
which is a value in milliseconds the timer will fire at, periodically.

The I/O Manager offers a simple, watchdog oriented timer. Each device object may register
a single timer function. The timer function will be called by the I/O manager once every
second. This is useful for making sure the driver is still functional, and threads in it have not
deadlocked.

The PIO_TIMER_ROUTINE is a pointer to a function implementing the following interface:

VOID IoTimer(IN struct DEVICE_OBJECT * DeviceObject,
IN PVOID Context);

With Context being the argument set in the 3rd parameter to IoInitializeTimer .

Lecture Notes on Windows Kernel Programming - Excerpt

Spinlocks are thus called because threads “spin” while trying to acquire them – that is, run in a
tight loop. In an SMP environment, this makes sense, as the spinlocks are generally held for very

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

55

tight loop. In an SMP environment, this makes sense, as the spinlocks are generally held for very
short time periods, which do not merit having the thread lose execution rights.

In Windows XP and later, Queued Spin Locks were introduced. These, allegedly, provide for
better performance, and deprecate the “classic” SpinLocks. Queued Spin Locks work are also
fairer than their predecessors – as they are implemented in a FIFO, guaranteeing acquisition in
the order of calls to Acquire..().

Acquiring a queued SpinLock is only slightly more troublesome than a normal one: The driver
needs to additionally allocate and pass a KLOCK_QUEUE_HANDLE structure.

As with all synchronization objects, all Spinlock data must be allocated on non paged data, as a
Spinlock absolutely cannot trigger a page fault This means the memory should be allocated from
the NonPagedPool using ExAllocatePoolWithTag..

Lecture Notes on Windows Kernel Programming - Excerpt

A key concept in Kernel mode programming is that of Interrupt Request Levels , or IRQLs: This
is a range of values each processor uses when running threads, in either Kernel or User mode, to

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

56

is a range of values each processor uses when running threads, in either Kernel or User mode, to
enable or disable preemption as necessary. The values start at the basic PASSIVE level (0) and
go all the way up to the HIGH level (31), with a simple but important policy: A thread running at a
given IRQL, call it n, will be preempted for any thread that becomes runnable with an IRQL of n+1.

Most threads run in the PASSIVE level. Being at level 0, this means they can be preempted for
pretty much any other thread on the system that is non-Passive. However, since most Kernel
mode threads also run at PASSIVE, this doesn’t happen all too much.

The levels above PASSIVE are reserved for very specific use cases:

APC: is reserved for Asynchronous Procedure Calls (callbacks) and page faults. The former must
be handled as soon as possible, and will temporarily preempt other threads. The latter also need
“immediate gratification”, as the appropriate page must be fetched for the thread to continue its
proper execution. Fast Mutexes are also implemented by an IRQL change to this level.

DISPATCH: is the level in which the Thread Scheduler itself executes. Deferred procedure calls
(DPCs) also execute at this level, since they are handled by the scheduler. Code here CANNOT
wait for objects since the code will not be preempted by the dispatcher if it blocks.

Lecture Notes on Windows Kernel Programming - Excerpt

DIRQL: is reserved for Interrupt Handlers (also called Interrupt Service Routines, or ISRs). These
are architecture dependent, and for the x86 architecture are reserved at 3-26 (mapping to IRQs 0-
15 and then some), or when the driver calls KeSynchronizeExecution (which, in turn, calls
SynchCritSection).

Higher IRQLs are usually dangerous territory you do not want to find yourself in. 28+ interferes
with the system timer itself, SMP and power management. Most Kernel code runs at
IRQL_PASSIVE, and that’s the recommended way of going about things.

A Good reference on IRQLs can be found in the Microsoft White Pater “Scheduling, Thread
Context, and IRQL” (downloadable from Microsoft.com).

Caution : Code running at IRQL_DISPATCH or above CANNOT:

• Block

• Wait for any non zero amount of time

• Trigger a page fault (because the Page swap occurs at IRQL_APC)

• Release a spinlock (KeReleaseSpinLock) not acquired (i.e. called KeAcquireSpinLock)

• Acquire a spinlock if already running at this level – use KeAcquireSpinLockAtDpcLevel()

or KeAcquireInStackQueuedSpinLockAtDpcLevel() instead.

• Format Unicode (this includes calling DbgPrint/DbgPrintEx with Unicode % specifiers)

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

57

Lecture Notes on Windows Kernel Programming - Excerpt

Normally, you should be happy at your own IRQL, and would not need to change it in any way.
That said, the Kenel does expose interfaces to get and set the IRQL if required.

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

58

That said, the Kenel does expose interfaces to get and set the IRQL if required.

Caution : Raising your IRQL can have severe impact on system performance and stability,

especially when raised above IRQL_DISPATCH – since this, effectively disables any scheduling by

the Thread Scheduler – which will not get to execute, as it would be of lesser IRQL and priority!

The IRQL_NOT_LESS_OR_EQUAL Blue Screen of Death is commonly the result of executing in the
wrong IRQL – greater than APC_LEVEL (i.e. DISPATCH_LEVEL or above) and accessing paged (or
invalid) memory. The Page fault that occurs cannot be serviced by the system pager, that is designed
to run as the lower APC_LEVEL.

Lecture Notes on Windows Kernel Programming - Excerpt

Naturally, all these rules also apply to calling external functions. A common mistake made by
Kernel coders is adhering to these rules, but calling some external function that does not.

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

59

Kernel coders is adhering to these rules, but calling some external function that does not.

Good references on using Spinlocks properly: http://go.microsoft.com/fwlink/?LinkId=57456

and http://msdn.microsoft.com/en-us/library/aa490225.aspx.

Lecture Notes on Windows Kernel Programming - Excerpt

Much like Linux has its “printk” for printf() like output in the Kernel, so does Windows with
DbgPrint()/DbgPrintEx(). DbgPrint is used to print out messages that are normally ignored, unless

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

60

DbgPrint()/DbgPrintEx(). DbgPrint is used to print out messages that are normally ignored, unless
a Kernel Debugger is attached – in which case the messages can be read. The usage is
straightforward – use it exactly as you would printf(). DbgPrintEx() adds two arguments –
ComponentId and Level. DbgPrint(Format, arguments) is exactly equivalent to
DbgPrintEx (DPFLTR_DEFAULT_ID, DPFLTR_INFO_LEVEL, Format, arguments);

Component IDs are defined as follows:

Level is anywhere between 0-31 (which is actually bit-shifted by the OS), or 32-0xFFFFFFFF.

Setting the Component and the Level is useful for Kernel Debuggers with filtering capabilities.

Constant Purpose

IHVVIDEO Video driver

IHVAUDIO Audio driver

IHVNETWORK Network driver

IHVSTREAMING Kernel streaming driver

IHVBUS Bus driver

IHVDRIVER Any other type of driver

Lecture Notes on Windows Kernel Programming - Excerpt

DbgPrint()s are available in most Kernel code – for IRQLs less than or equal to than DIRQL.
Looking back at the IRQL notes, you can see that this would cover almost all Kernel code –
including Interrupt Handlers – but not SYNCH, CLOCK2, POWER, IPI or HIGH. Chances are,
however, your Kernel code won’t go anywhere near these IRQLs anyway, so you should be fine.
Calling at an IRQL greater than DIRQ risks causing a Kernel deadlock – so be warned.

If you compile the same code for a Checked and a Free build, use KdPrint and KdPrintEx,
respectively. These are macros that expand normally in a checked build, but compile out in a free
build.

In XP, Vista and later, a specific registry key needs to be created:

HKLM\SYSTEM\CurrentControlSet\Control\Session Manage r\Debug Print Filter .

In which a DWORD value needs to be further be defined for each component ID (usually
DEFAULT suffices) and mask (usually 0xFFFFFFFF) to enable DbgPrint messages to be sent.

To view Debug messages, either attach a Kernel Debugger, or – better yet – use DebugView from
the former SysInternals (http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx).

Caution : DbgPrint() is that it is so like printf() you could find yourself printing out debug messages

that contain Unicode strings (%S, %ls , %C, %lc , %ws , %wc and %wZ) – and that’s something you

can do only if the IRQL is IRQL_PASSIVE.

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

61

Lecture Notes on Windows Kernel Programming - Excerpt

Another option for communicating with the outside world is by writing to the System’s Event Log.
This is almost as simple as user-mode’s LogEvent API:

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

62

This is almost as simple as user-mode’s LogEvent API:

Begin by allocating an Error Log Entry. This is done by calling IoAllocateErrorLogEntry. The
arguments here are the PDEVICE_OBJECT or PDRIVER_OBJECT reporting the error, and a size
for the entry (as a UCHAR – up to 255 bytes and under ERROR_LOG_MAXIMUM_SIZE).

Despite the API definition, the pointer returned is actually a PIO_ERROR_LOG_PACKET:

typedef struct _IO_ERROR_LOG_PACKET (
UCHAR MajorFunctionCode;
UCHAR RetryCount;
USHORT DumpDataSize;
USHORT NumberOfStrings;
USHORT StringOffset;
USHORT EventCategory;
NTSTATUSErrorCode;
ULONG UniqueErrorValue;
NTSTATUS FinalStatus;
ULONG SequenceNumber;
ULONG IoControlCode;
LARGE_INTEGER DeviceOffset;
ULONG DumpData[1];

} IO_ERROR_LOG_PACKET, *PIO_ERROR_LOG_PACKET;

The IO_ERROR_LOG_PACKET fields are initialized by the driver, as shown in the following
example:

Kernel Survival Guide

VOID LogEvent(NTSTATUS code, PWSTR userString, PDEVICE_OBJECT fdo)
{
ULONG packetlen = (wcslen(userString) + 1) * sizeof(WCHAR)

+ sizeof(IO_ERROR_LOG_PACKET) ;

PIO_ERROR_LOG_PACKET p = (PIO_ERROR_LOG_PACKET)
IoAllocateErrorLogEntry(fdo, (UCHAR) ERROR_LOG_MAXIMUM_SIZE);

if (!p) {
DEBUGP (MP_ERROR, ("Can't write to Event Log\n"));
return; }

memset(p, 0, sizeof(IO_ERROR_LOG_PACKET));
p->ErrorCode = code;

/* Optional “Dump Data my be set */
p->DumpDataSize = 1;
p->DumpData[0] = '\0';

/* Strings may be set – these correlate to Message file “%1” entries.
p->StringOffset = sizeof(IO_ERROR_LOG_PACKET) + p->DumpDataSize;
p->NumberOfStrings = 1;

/* Copy strings – This example demonstrates only one user supplied String */
wcscpy((PWSTR) ((PUCHAR) p + p->StringOffset), userString);wcscpy((PWSTR) ((PUCHAR) p + p->StringOffset), userString);

IoWriteErrorLogEntry(p); /* No need to free */

} /* end LogEvent */

The real trick, however, is to prepare a “message file” for the driver. This is a separate file, with a
“.mc” extension, that looks something like the example on the next page. This file is compiled into
a resource script using the “mc” tool, which in turn creates an .rc file, and a corresponding .h file.
The .rc is then added to the driver SOURCES.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

The MC file format is described in http://msdn.microsoft.com/en-us/library/aa489593.as px. Here
is a sample file:

Kernel Survival Guide

MessageIdTypedef = NTSTATUS

SeverityNames = (
Success = 0x0:STATUS_SEVERITY_SUCCESS
Informational = 0x1:STATUS_SEVERITY_INFORMATIONAL
Warning = 0x2:STATUS_SEVERITY_WARNING
Error = 0x3:STATUS_SEVERITY_ERROR
)

FacilityNames = (
System = 0x0
Eventlog = 0x2A:FACILITY_EVENTLOG_ERROR_CODE
)

LanguageNames = (
English = 0x0409:msg00001
French = 0x040C:msg00003

)

MessageId = 0x0001
Facility = Eventlog
Severity = Informational
SymbolicName = DRIVER_MSG_INIT
Language = English
NdisCom Driver is loaded. Embed strings with %1, %2, %3. End with a “.” on a line by itselfNdisCom Driver is loaded. Embed strings with %1, %2, %3. End with a “.” on a line by itself

.
MessageId = 0x0002
Facility = Eventlog
Severity = Error
SymbolicName = DRIVER_MSG_SOME_OTHER
Language = English
Example of another message

.

Finally, to enable the Windows NT Event Log Viewer to display the messages, add a registry value for
your driver, under:

HKLM\SYSTEM\CurrentControlSet\Services\Eventlog\Sys tem\<driverName>\EventMessageFile

pointing to your .sys file. Otherwise, The Event Log viewer will display messages like:

“The description for Event ID (10) in Source (driverName) cannot be found. The local computer may
not have the necessary registry information or message DLL files to display messages from a remote
computer. You may be able to use the /AUXSOURCE= flag to retrieve this description; see Help and
Support for details.”

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming - Excerpt

You are encouraged to handle exceptions in your driver by usign structured exception handling
(i.e. __try/__except/__finally blocks) whenever possible. But when a driver detects some

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

65

(i.e. __try/__except/__finally blocks) whenever possible. But when a driver detects some
horrendous, catastrophical, uncorrectable error that compromizes system integrity, sometimes the
only way to go is down – by crashing the system. In the UNIX world this is a panic situation – and
Windows calls this a BugCheck.

BugChecks are more commonly known as Windows “Blue Screens of Death”, and probably need
no introduction (you’re truly exceptional if you’ve never seen one ☺). These screens are the last
thing Windows displays before the system is halted, and usually rebooted.

The only required argument for a BugCheck is the BugCheckCode, which is usually one of the
documented MSDN codes (at http://msdn.microsoft.com/en-us/library/ms789516.aspx). The code
will be translated to its #define name and displayed in the Blue Screen, with an additional line for
the four parameters. There are over 250 codes, and more are added with every release of
Windows, so any attempt to explain them all would almost immediately be outdated. Still, the
following table lists some of the common ones you’re likely to encounter:

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Code #define Meaning

0x0A
0xD1

IRQL_NOT_LESS_OR_EQUAL
DRIVER_IRQL_NOT_LESS_OR_EQUAL

Attempt by Kernel (or by device driver) to access
paged/invalid memory at an

IRQL >= DISPATCH_LEVEL.

Parameters are:
(Addr, IRQL, 0=read/1=write, EIP at fault)

0x1E KMODE_EXCEPTION_NOT_HANDLED Exception that wasn’t caught in a __try/__catch.
E.g. from ProbeForRead()

0x24 NTFS_FILE_SYSTEM Error in NTFS.sys. Usually due to bad sectors

0x41 MUST_SUCCEED_POOL_EMPTY A Must Succeed Allocation didn’t..Parameters:
(Request Size, # Pages, .. , # pages avail)

0x50 PAGE_FAULT_IN_NON_PAGED_AREA Attempt to access invalid system memory.Parameters:
(Addr, 0=read/1=write, EIP at fault, Reserved)

0x7E ..THREAD_EXCEPTION_NOT_HANDLED Usually, your driver’s fault: Arguments:
(Exc Code, Address of Exc, Exc Rec, Context Rec)
(use .exr on arg3, .cxr on arg4)

0xC8 IRQL_UNEXPECTED_VALUE IRQL changed by some driver, but not restored.

OxE2 USER_GENERATED User pressed Ctrl-ScrlLk (twice) and registry is
configured for dumps
(HKLM\System\CCS\i8042prt\Parameters]
"CrashOnCtrlScroll"=dword:00000001

0x109 CRITICAL_STRUCTURE_CORRUPTION PatchGuard (Vista) reporting suspected patching of
Kernel.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

66

It’s also possible for a driver to register a Bug Check callback function, for post-dump processing.

This is done by the following steps:

1. Initialize a CallBack Record

VOID KeInitializeCallbackRecord(IN PKBUGCHECK_CALLBACK _RECORD CallbackRecord);

2. Register the call back:

BOOLEAN KeRegisterBugCheckCallback

(IN PKBUGCHECK_CALLBACK_RECORD CallbackRecord,
IN PKBUGCHECK_CALLBACK_ROUTINE CallbackRoutine,
IN PVOID Buffer,
IN ULONG Length,
IN PUCHAR Component);

3. Implement the call back:

VOID BugCheckCallback(IN PVOID Buffer,
IN ULONG Length);

Parameters are: (0,0,0,corruption) where:
0 = Generic Data 2=IDT 3=GDT 4,5=Process List
6=Debug Routine 7=MSR

Lecture Notes on Windows Kernel Programming - Excerpt

Exercises

1. In this exercise we will utilize SysInternals’ “LiveKD” extension to The Windows Debugger to
view the behind-the-scenes implementation of Kernel IRQLs and Spinlocks, thereby learning
one or two important things.. Follow these steps:

i. Start LiveKD:

a) Make sure you are running as an Admininstrator. If not, use the “runas”
command to start a command prompt (cmd.exe)

b) Make sure to set your Symbol path correctly, using the environtment variable
_NT_SYMBOL_PATH. The easiest way to do that is to use the DOS “subst”
command to assign a logical drive, say K:, to the LiveKD directory, and set
_NT_SYMBOL_PATH to K:\Symbols.

ii. Unassemble HAL’s KeRaiseIrql and KeLowerIrql. How are they implemented?
Specifically, Where is the IRQL value stored in memory? Make note of this address.
Verify this by unassembling KeGetCurrentIrql.

iii. Unassemble hal!KeAcquireSpinLock, and follow the trace. How is the spin lock
acquired? How does that affect the IRQL?

Device Driver Concepts - Exercises

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

67

iv. Next, Unassemble NT’s function for SpinLocks at the IRQL of Dispatch -
nt!KeAcquireSpinLockAtDpcLevel and nt!KeReleaseSpinLockFromDpcLevel. How are
they implemented? Can you explain why?

v. Why are the IRQL function implemented inside HAL, with the exception of the
DPCLevel ones? How would a different HAL, e.g. SMP vs UP, be different?

Lecture Notes on Windows Kernel Programming - Excerpt

Exercises (cont)

2. In this exercise we will examine the difference between the Zw* functions and their Rtl
counterparts. Again, using LiveKD, Unassemble RtlDeleteRegistryValue and
nt!ntDeleteValueKey:

Device Driver Concepts - Exercises

kd> u nt!ZwDeleteValueKey
nt!ZwDeleteValueKey:
804dcbd0 b841000000 mov eax,41h
804dcbd5 8d542404 lea edx,[esp+4]
804dcbd9 9c pushfd
804dcbda 6a08 push 8
804dcbdc e8501a0000 call nt!KiSystemService (804de631)
804dcbe1 c20800 ret 8

kd> u ntdll!RtlDeleteRegistryValue
ntdll!RtlDeleteRegistryValue:
7c933da0 8bff mov edi,edi
7c933da2 55 push ebp
7c933da3 8bec mov ebp,esp
7c933da5 51 push ecx
7c933da6 51 push ecx
7c933da7 8d450c lea eax,[ebp+0Ch]
7c933daa 50 push eax
7c933dab 6a01 push 1

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

68

What’s the difference between the two functions? Unassemble several lines to figure this out.

7c933dab 6a01 push 1
kd> u

(.. More)

Lecture Notes on Windows Kernel Programming

(C) 2009 JL@HisOwn.com 69

This section describes the Windows Memory Management mechanism,
and explains how low level operations using the Mm* API work

Key Concepts :Virtual Memory, MDL

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

The translation of Virtual Addresses into physical ones is a three staged process. Given a 32-bit
address, The CPU segments the address into three separate parts:

Memory ManagementLecture Notes on Windows Kernel Programming

address, The CPU segments the address into three separate parts:

The first 10 bits – point to one of 210 entries in a global Page Directory Table. This table is, in
effect, a table of page tables, and the 10 bits select a specific page table index by a Page
Directory Entry or PDE. This table is defined per process, and maintained in a Page Descriptor
Base Register, which on the Intel architectures is Control Register #3 (CR3). This register is
reloaded on each process context switch from the KPROCESS object, since each process has a
different virtual memory image.

The next 10 bits – point to a specific page (a.k.a Page Table Entry - PTE) in the Page Table
that was selected by the previous 10 bits. 10 bits again mean 210 – so each page table maintains
the addresses of 4 MB (=210 * 4KB) of memory.

The last 12 bits – are the specific offset in the page itself. Since the page itself is 4KB (=4096
bytes) this works out perfectly with 4096 being 212. However, most addresses are aligned on a
DWORD boundary, which allows the system to reserve the last two bits for its own internal use.

Each page table maintains 4MB, and there are 210 tables in the Page Descriptor Table – so 210 *
4MB = 4GB, which is the size of the virtual address space of the process. Things look somewhat
different when Physical Address Extensions* (PAE) are employed, but are sufficiently similar – as
is shown next.

70(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Intel’s Physical Address Extensions (PAE) extend Virtual Memory addressing to systems with
more than 4GB of physical memory. Because of the limitations of 32-bits, this isn’t as simple as it

Memory ManagementLecture Notes on Windows Kernel Programming

more than 4GB of physical memory. Because of the limitations of 32-bits, this isn’t as simple as it
seems. Given a 32-bit address, The CPU now segments the address into four, not three separate
parts:

CR3 – Now points to a table of 4 (=22) entries, called the Page Directory Pointer Table.

The first 2 bits – point to one of the four entries in the Page Directory Pointer Table – which
will serve as the usual Page Descriptor Table.

The next 9 bits – point to one of 29 entries in the Page Descriptor Table. Remember that this
is one of four tables. However, each PDE is now 64-bits. Note the size of the table is the same,
because 29*26 = 210*25.

The next 9 bits – point to a specific page (this is the Page Table Entry - PTE) in the Page
Table that was selected by the previous 9 bits. This page is, again, 64-bits – and 9 bits again
mean 29 – so each page table maintains the addresses of 2 MB (=29 * 4KB) of memory. However,
the address here can be up to 64-bits – allowing for physical address es over 4GB.

The last 12 bits – are the specific offset in the page itself. Since the page itself is 4KB (=4096
bytes) this works out perfectly with 4096 being 212. However, most addresses are aligned on a
DWORD boundary, which allows the system to reserve the last two bits for its own internal use.

Each page table maintains 2MB, and there are 29 tables in the Page Descriptor Table – so 29 *
2MB = 1GB - But there are 4 PDE tables – so we’re back to the 4GB of memory.

71(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

If you did the math on the last pages, you might have noticed something a little bit troubling:

Memory ManagementLecture Notes on Windows Kernel Programming

• Page addresses must start on a page boundary.

• Pages are 4KB in size

• 4KB = 4,096 = 212.

� Page addresses have their 12 lowermost bits always set to 0

� Page Table Entries are effectively only 20 bits out of the 32-bits.

This means that, indeed, using 32-bits for the Page Table Entries would be wasteful – after all, the
last 12 bits would be unused! The system therefore redefines the Page Table Entry to be two
parts: The first 20-bits, which are the actual physical address of the page (called “Page Frame
Number” or PFN), and the last 12 bits, that are used as flags, as shown above.

When using PAE, page directory entries have two more bits: 63 – NX (No Execute) – to defeat
buffer overflow attacks, and bit 7- PS – to allow for 2MB pages rather than Page table entries.

72(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

From http://support.microsoft.com/kb/294418:

Memory ManagementLecture Notes on Windows Kernel Programming

73(C) 2009 JL@HisOwn.com

Limitation On 32-bits On 64-bits

VM 4GB 16TB

PTEs 660MB 128GB

Cache 1GB 1TB

Paged Pool 470MB 128GB

Non Paged Pool 256MB 128GB

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Memory ManagementLecture Notes on Windows Kernel Programming

74(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

The Kernel stack is extremely limited: 12K in size. Therefore, most allocation of memory is done
explicitly, from one of two “Pools” of memory.

Memory Management

(C) 2009 JL@HisOwn.com 75

explicitly, from one of two “Pools” of memory.

ExAllocatePoolWithTag() is the Windows Kernel version of Linux’s kmalloc(). It is very much like
any other malloc() – in that the Number of Bytes is specified (second parameter), and a void
pointer is returned. There are a couple of subtle differences, however:

• The Number Of Bytes should be very close to a multiple of the page size. Otherwise, the
request is rounded up to the nearest multiple. Windows does not have a slab allocator like
Linux for allocations of under a single page.

• Memory may be “tagged” by up to four 7-bit ASCII characters (hence the parameter is
defined as a ULONG).. This is useful for debugging only, and has no effect on the
memory. In fact, you can just call ExAllocatePool() , which tags the last argument as
“656E6F4E” (None). Microsoft keeps track of all its drivers’ pools in a file called
“pooltag.txt”. WinDBG can use this file when analyzing Kernel dumps.

• Last, but most important, the POOL_TYPE parameter is an enum, containing several
values – of which the following are usable by drivers:

Pool Type Purpose

NonPagedPool Memory that is always resident and never paged out.
Always accessible – but considered scarce. Call may fail .

NonPagedPoolMustSucceed As NonPaged, but if call fails system blue screens with
code 0x41.

PagedPool Normal system memory – not guaranteed to be accessible.
May trigger a pagefault. Must be running at a lower priority
than dispatcher to access this memory.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming

Values in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management -

“NonPagedPoolSize” and “PagedPoolSize” control the size of the pools. At any rate, the
NonPaged may not exceed 256MB, and the PagedPool - ~492MB (2000/XP) or 650MB (2003).
Windows Vista and beyond have dynamic pool sizes.

Experiment:

You can see the two pools by opening up Performance Monitor, and selecting the counters under
“Memory”. You’ll have to play with the scale and graph minimum/maximum settings for best
visibility. Then, press ALT-TAB every once in a while to switch between applications, noting what
happens.

Memory Management

(C) 2009 JL@HisOwn.com 76

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Memory ManagementLecture Notes on Windows Kernel Programming

77(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

The Windows Kernel maintains and manages its virtual memory by using “Memory Descriptor
Lists ” or MDLs. An MDL is a descriptor of a single, virtually contiguous buffer of virtual memory,

Memory ManagementLecture Notes on Windows Kernel Programming

Lists ” or MDLs. An MDL is a descriptor of a single, virtually contiguous buffer of virtual memory,
and its mapping to physical memory pages.

By “virtually contiguous” we mean that, even though the buffer can be treated as a single
contiguous range of addresses, this range may be spread over non-contiguous pages in physical
memory. Conceptually, this means an MDL might look something like the illustration above. The
MDL contains the mapping from the virtual pages to the locked-in-memory physical pages.

/* Quick and dirty, as per DDK header file */
PPFN_NUMBER Pages = (PPFN_NUMBER) (Mdl + 1);
/* Recommended way, preserving opacity */
PPFN_NUMBER pPageDesc = MmGetMdlPfnArray(pMdl);

The pages are in an array that immediately follows the MDL in memory. I.e. to access them, one
can simply increment the MDL header pointer, and cast to a PPFN_NUMBER. This can be done
“quick and dirty” in code, but the recommended way is to call MmGetMdlPfnArray() .

The structure is listed in the WinDDK header files. But here, too, are macros used in the interest
of opacity.The definition below, annotated, shows the fields and their macros:

78(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

The virtual memory buffer may or may not be aligned on
a page boundary. Further, it may span any number of
pages, and not necessarily fill its last page. The MDL
thus contains two properties, shown in the structure
above: ByteCount (accessible by
MmGetMdlByteCount()) – which is the size of the
buffer, and ByteOffset (accessible by
MmGetMdlByteOffset()), which is the offset of the
buffer start from the first page boundary. In a sense, the
virtual address this MDL describes can be though of as
StartVa | ByteOffset, since StartVa is guaranteed to be a
20-bit address – as it is the address of a page, and
ByteOffset is necessarily inside a page, thus under the
size of one, which – if you recall – is 4KB on intel
architectures, and thus in the least significant 20 bits.

typedef struct _MDL {
struct _MDL *Next;
CSHORT Size;
CSHORT MdlFlags;
struct _EPROCESS *Process; /* Owning process of thi s MDL */
PVOID MappedSystemVa;
PVOID StartVa; /* Beginning of Buffer – use MmGet MdlVirtualAddress */
ULONG ByteCount; /* sizeof buffer – use MmGetMdlByt eCount */
ULONG ByteOffset; /* First address in buffer – use M mGetMdlByteOffset */

} MDL, *PMDL;
/* Pages immediately follow this header – use MmGetM dlPfnArray here.. */

Memory Management

Next

Size MdlFlags

Process

MappedSystemVa

StartVa

ByteCount

ByteOffset

Lecture Notes on Windows Kernel Programming

A ByteOffset of 0 means the address is aligned on a page boundary. Similarly, a ByteCount divisible by
4KB means that the buffer spans an integer multiple of whole pages. Since more often than not, however,
that is not the case, the ADDRESS_AND_SIZE_TO_SPAN_PAGES macro can be used to calculate the
number of the entries in the array.This macro takes two arguments (surprisingly enough, the address and
size):

ULONG ADDRESS_AND_SIZE_TO_SPAN_PAGES (IN PVOIDVa,
IN ULONG Size);

And returns a ULONG which is the size of the array. So using it on a particular MDL would look like so:

arraySize = ADDRESS_AND_SIZE_TO_SPAN_PAGES (MmGetMdlVirtualAddress(pMdl),
MmGetMdlByteCount(pMdl));

79(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

MDLs may be allocated by calling IoAllocateMdl() . This function (exported by the I/O Manager) is
the preferred way of creating a new MDL (the other, deprecated way being MmCreateMdl()). The

Memory ManagementLecture Notes on Windows Kernel Programming

PMDL IoAllocateMdl(IN PVOID VirtualAddress , /* start addr of buffer */
IN ULONG Length , /* Length of buffer */
IN BOOLEAN SecondaryBuffer ,/* for IRPs, else FALSE */
IN BOOLEAN ChargeQuota , /* charge user memory quota? */
IN OUT PIRP Irp OPTIONAL); /* IRP to assoc. MDL with */

the preferred way of creating a new MDL (the other, deprecated way being MmCreateMdl()). The
MDL is allocated from non-paged memory (since it, itself, describes paged memory and therefore
cannot be paged). The function takes the following arguments:

The first two parameters are straightforward: VirtualAddress and Length initialize the MDL’s StartVa
and ByteCount fields, respectively. The fourth parameter, ChargeQuota, is used to charge the MDL
virtual memory to the owning process/thread’s quota allowance.

The third parameter, SecondaryBuffer, only has meaning if the fifth parameter (Irp) is not null. If this
MDL is associated with an I/O Request Packet (IRP), it may be a primary buffer, or (one of
potentially several) secondary buffers. Every IRP has a list of MDLs, and the I/O manager adds the
MDL to the IRP’s list – at the head of the list (for a primary buffer) or at its tail (for a secondary).

Even though the MDL typedef only accounts for the header, recall that the actual structure allocated
in memory is comprised of the header and the list of physical pages, that follows it. This means that
the actual memory allocation by the I/O manager accounts for that, satisfying the following formula:

(sizeof(MDL) + sizeof(PFN_NUMBER) *ADDRESS_AND_SIZE_TO_SPAN_PAGES(BaseVa, Length))

80(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

That is, the size of the MDL header, plus the size of the page lists that follow. In the interest of
opacity, the function MmSizeOfMdl() can be used to perform this calculation, and will return the
size of the MDL required to hold the address.

ULONGMmSizeOfMdl(IN PVOID Base ,
IN SIZE_T Length);

We can now attempt to construct the pseudo code for IoAllocateMdl():

PMDL IoAllocateMdl(IN PVOID VirtualAddress , /* start addr of buffer */
IN ULONG Length , /* Length of buffer */
IN BOOLEAN SecondaryBuffer ,/* for IRPs, else FALSE */
IN BOOLEAN ChargeQuota , /* charge user memory quota? */
IN OUT PIRP Irp OPTIONAL); /* IRP to assoc. MDL with */

{

ULONG sizeAllocated = MmSizeOfMdl(VirtualAddress, Length);
PMDL returned = (PMDL) ExAllocatePoolWithTag(NonPagedPool,

sizeAllocated,
“Tag ”);

/* Initialize fields */
returned->Size = sizeAllocated;
returned->StartVa = VirtualAddress & 0xFFFFF000;
returned->ByteOffset = VirtualAddress & 0x00000FFF;
returned->ByteCount = Length;
returned->Process = PsGetCurrentProcess();
if (ChargeQuota)

{

Memory ManagementLecture Notes on Windows Kernel Programming

Note : If an MDL is reused, by calling MmInitializeMdl, special care must be taken to ensure that the size
of the buffer pointed to also accounts for the physical page table! Remember to verify with MmSizeOfMdl()

Of course, MDLs must be freed using the inverse function, IoFreeMdl() . Instead of freeing MDLs
and allocating new ones, however, it often makes sense to reuse the existing MDLs and just
reinitialize their page lists. This can be done by calling MmInitializeMdl() with new values for
VirtualAddress and Length.

{
/* Charge Length bytes to process quota */

}
if (Irp)

{
if (SecondaryBuffer)

{
/* Add to end of MDL list */
PMDL listMDL = Irp->MdlAddress;
while (listMDL->Next) { listMDL = listMDL->Next); }
listMDL->Next = returned;

}
else

{
/* Add at head */
Irp->MdlAddress = returned;

}
}

return (returned);

}

81(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

MDLs may describe memory originally allocated from either pool: Paged or Non-Paged. To work
with the MDLs, they must be initialized by one of two functions:

Memory ManagementLecture Notes on Windows Kernel Programming

with the MDLs, they must be initialized by one of two functions:

• MmBuildMdlForNonPagedPool() : which takes the MDL and initializes it with the
appropriate flags corresponding to Non Paged Pool values.

• MmProbeAndLockPages() : which attempts to lock the pages described by the MDL, so
they may be safely used, if they are from the Paged Pool.

Special care must be taken when locking pages, as a lock is an inherently risky operation – when
a driver locks a given MDL’s pages, with MmProbeAndLockPages() , it must be aware of two
major caveats:

• A page fault may be triggered (since MmProbeAndLock() calls ProbeFor..) which, in
turn, may throw the exception. As such, calls to this function must be made within a
__try/__catch block

• The caller must remember to also unlock the pages, i.e. call MmUnlockPages() when
done. The calls must match exactly 1:1, however: Forgetting to call MmUnlockPages()
will result in a DRIVER_LEFT_PAGES_IN_MEMORY bugcheck, whereas calling it one
time too many will corrupt the system Page Frame Number Database (PFN Database),
resulting in a PFN_LIST_CORRUPT bugCheck.

82(C) 2009 JL@HisOwn.com

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming - Excerpt

Networking Protocols – OSI Layers 2-4:
Focusing on - Ethernet, Wi-Fi, IPv4, IPv6, TCP, UDP and SCTP

Application Protocols – OSI Layers 5-7:
Including - DNS, FTP, SMTP, IMAP/POP3, HTTP and SSL

VoIP:
In depth discussion of H.323, SCCP, SIP and RTP/RTCP, down to the packet level.

Windows Networking Internals:

NetBIOS/SMB, CIFS, DCE/RPC, Kerberos, NTLM, and networking architecture

Linux Survival and Basic Skills:

Graceful introduction into the wonderful world of Linux for the non-command line oriented user. Basic
skills and commands, work in shells, redirection, pipes, filters and scripting

Linux Administration:

Follow up to the Basic course, focusing on advanced subjects such as user administration, software
management, network service control, performance monitoring and tuning.

Linux User Mode Programming:

Programming POSIX and UNIX APIs in Linux, including processes, threads, IPC mechanisms and
networking. Linux User experience required.

Linux Kernel Programming:

…If you liked this course, consider…

Linux :

Networking:

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

258

Linux Kernel Programming:

Guided tour of the Linux Kernel, 2.4 and 2.6, focusing on design, architecture, writing device drivers
(character, block), performance and network devices

Embedded Linux Kernel Programming:

Similar to the Linux Kernel programming course, but with a strong emphasis on development on non-
intel and/or tightly constrained embedded platforms

Windows Programming:

Windows Application Development, focusing on Processes, Threads, DLLs, Memory Management,
and Winsock

Windows Kernel Programming (this course):

Windows Kernel Architecture and Device Driver development – focusing on Network Device Drivers
(in particular, NDIS) and the Windows Driver Model. Updated to include NDIS 6 and Winsock Kernel

Cryptography:

From Basics to implementations in 5 days: foundations, Symmetric Algorithms, Asymmetric
Algorithms, Hashes, and protocols. Design, Logic and implementation

Application Security

Writing secure code – Dealing with Buffer Overflows, Code, SQL and command
Injection, and other bugs… before they become vulnerabilities that hackers can exploit.

Windows:

Security:

