Lecture Notes on Windows Kernel Programming

Creating Device Drivers

Creating a sample “Hello, Kernel” driver

This section demonstrates how to create a simple device driver, and one
method of installing it.

Key Concepts :DriverEntry, DRIVER_OBJECT, SCM

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 30

Lecture Notes on Windows Kernel Programming Creating a Device Driver

Creating a Device Driver

Writing a basic Device Driver

» Device Drivers all implement a standard interface

NTSTATUS DriverEntry(PDRIVER OBJECT pDriverObject,
PUNICODE_STRING pRegistryPath);

* Driver is required to:
— populate pDriverObject
— Set callback routines
— Perform any driver specific (NOT device specific) initializations
— Return an NTSTATUS response code (e.g. STATUS_SUCCESS)

+ To link to an entry point with a different name: /entry

Just like any user mode application has an entry point, usually “int main(int argc, char **argv, char
**envp)”, a driver is expected to likewise implement a standard interface — called “DriverEntry”.
The name itself may be changed, but if so, the linker has to be told about it with a “/entry” switch
defining the new entry point.

The DriverEntry function will be passed two arguments from the Kernel:

PDRIVER OBJECT: A pointer to a DRIVER_OBJECT structure. This is discussed shortly.

PUNICODE STRING: A pointer to a UNICODE_STRING representing the Driver's Registry
Entry. This is a path name in the system’s registry, under the key:

\Registry\Machine\System\CurrentControlSet\Services \DriverName,

in the SYSTEM hive. The path name is where the Driver’'s configuration entries are saved, and
may be tweaked by the System Administrator, or the Driver’s installation function. It's important to
save this Unicode String (i.e. wstrcpy() it to some Driver global buffer) since the I/O Manager will
free this string upon the DriverEntry function’s return.

Device specific initializations are handled by an addDevice routine, and not by the driver entry.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 31

Lecture Notes on Windows Kernel Programming Creating a Device Driver

Creating a Device Driver

The Driver Object

» A semi-opaque object used by the I/O manager

Field Use
PDEVICE OBJECT DeviceObject Linked list of Driver’s devices
PDRIVER EXTENSION DriverExtension Used for AddDevice
PUNICODE_STRING HardwareDatabase \Registry\Machine\Hardware path
PFAST IO DISPATCH FastIoDispatch Fast I/O (File Systems/Network drivers)

PDRIVER INITIALIZE DriverInit Pointer to DriverEntry

PDRIVER STARTIO DriverStartlIo Pointer to Driver StartlO function, or NULL.
PDRIVER UNLOAD DriverUnload Pointer to DriverUnload function, or NULL.
PDRIVER DISPATCH MajorFunction Array of Major function codes corresponding to

IRPs handled by dispatcher function(s)

* Populated by DriverEntry

The DRIVER_OBJECT is a semi-opaque struct that the I/O manager passes to the device driver.
Upon first invocation of the driver — in the DriverEntry — the driver is expected to populate it with
whatever data it requires for further callbacks. From that point on, the same struct will be passed
on to the respective callbacks.

The structure is semi-opaque on purpose — Microsoft keeps many details and fields for its own
internal use. We will demonstrate one of them later on, when we talk about drivers operating in
“stealth” mode — hiding their presence from others, including the Kernel itself.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 32

Lecture Notes on Windows Kernel Programming Creating a Device Driver

A sample driver, then, that does nothing but initialize, and clean up would look like this:

NTSTATUS DriverEntry (I N PDRI VER_OBJECT pDriverObiject,
I N PUNI CODE_STRI NG strRegistryPath)
{
pDriverObject-> Dri ver Unl oad = driverCleanupFunction;
DbgPr i nt (“Driver:: Hello, Kernel\n");
return STATUS SUCCESS;
}

Listing 1 : Stub Driver, demonstrating a DriverEntry
And for the cleanup:

NTSTATUS DriverCleanupFunction (I N PDRI VER_OBJECT pDriverObject)
{

DbgPri nt (“Driver:: Exit, Stage Left..\n");

return STATUS_SUCCESS;

Listing 2 : Stub Driver, demonstrating a Driver Cleanup function

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 33

Lecture Notes on Windows Kernel Programming Creating a Device Driver

Creating a Device Driver

Controlling Driver Paging

+ Use #pragma alloc_text where available:
— alloc_text(init, function) on discardable initialization functions

— alloc_text(page, function) on pageable functions
* Note: Pageable functions MUST run at IRQL == PASSIVE_LEVEL

° Selectively lock/unlock pages (#pragma data_seg() or code_seg())

PVOID MmLockPagableCodeSection (IN PVOID AddressInSection) ;

PVOID MmLockPagableDataSection (IN PVOID AddressInSection) ;
VOID MmUnlockPagableImageSection (IN PVOID ImageHandle) ;

» Entire Driver can be paged or locked

PVOID MmPageEntireDriver (IN PVOID AddressofDriverEntry) ;
PVOID MmResetDriverPaging (IN PVOID AddressWithinSection) ;

* Note: Driver cannot be paged if it installed Interrupt Handlers!

Even though most systems today sport Physical memory in the GB range, it's a recommended
practice to be very conservative with memory usage at the driver level. Visual Studio supports a
#pragma called alloc_text , that defines functions as discardable or pageable.

Functions that are used only during the driver initialization phase (i.e. DriverEntry and whatever
functions it calls) can be defined as init functions. Other functions, used at IRQL ==
PASSIVE_LEVEL, can be pageable. The IRQL requirement is, to remind you, because the
system page swapper runs at IRQL == APC_LEVEL.

This pragma only applies to C-linkage functions. To use it, you must define the function prototype,
and place the #pragma setting in between the function prototype and definition. During runtime,
you can also override any pragma settings and force paging using MmPageEntireDriver() , by
supplying it with the address of your DriverEntry or any other function in the section. This
technigue must NOT be used if you have registered any Interrupt Handlers (ISRs), as it will crash
the system.

Conversely, you can lock your sections in memory by calling MMResetDriverPaging() .

Caution : Incorrectly marking sections of your driver as pageable will quickly lead to
Bug Check 0xD3: DRIVER_PORTION_MUST_BE_NONPAGED

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 34

Lecture Notes on Windows Kernel Programming Creating a Device Driver

Creating a Device Driver

Installing the Device Driver

Device drivers may be installed:
— By using an INF file:
* The preferred, professional method
+ Allows for automatic installation by Windows setup
+ Device Manager can add/remove/update driver

— Programmatically:
» The deprecated method, that should be avoided
+ Installation must be performed manually
+ (extremely) Useful if you're a trojan installing a rootkit..

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 35

Lecture Notes on Windows Kernel Programming Creating a Device Driver

Creating a Device Driver

Installing the Device Driver

« Start by obtaining a handle to the Service Control Manager:

SC_HANDLE WINAPI OpenSCManager (OPTIONAL IN LPCTSTR lpMachineName,
OPTIONAL IN LPCTSTR lpDatabaseName,
IN DWORD dwDesiredAccess) ;

e Then: SC_HANDLE WINAPI CreateService

(IN SC_HANDLE hSCManager,

IN LPCTSTR lpServiceName,

OPTIONAL IN LPCTSTR lpDisplayName,

IN DWORD dwDesiredAccess,

IN DWORD dwServiceType,

IN DWORD dwStartType,

IN DWORD dwErrorControl,

OPTIONAL IN LPCTSTR lpBinaryPathName,
OPTIONAL IN LPCTSTR lpLoadOrderGroup,
__outOPTIONAL LPDWORD IpdwTagId,
OPTIONAL IN LPCTSTR lpDependencies,
OPTIONAL IN LPCTSTR lpServiceStartName,
OPTIONAL IN LPCTSTR lpPassword) ;

A Windows Kernel Device Driver is considered a Windows “Service”, dating back to the old days
of Windows NT, where Drivers were viewable in a similar manner to services, via the Control
Panel.

The simplest way to install a Driver, albeit deprecated, is by using the Service Control Manager.
Much like any user mode service, this requires two calls. The first is a call to OpenSCManager:

hSCM = OpenSCManager(NULL, /* Local WMachine */
NULL, /* Local Machine */
SC_MANAGER_ALL_ACCESS)/ * or READ | WRITE */

Assuming this call succeeds (it would, of course, require Administrator privileges), the returned
handle can be used to install the driver:

SC _HANDLE hDriver = Cr eat eSer vi ce(hSCM,
L” My Kernel Driver” ,
L” Driver Display Name
SERVICE_ALL_ACCESS,

/* This makes the difference: */ SERVICE KERNEL DRIVER,
SERVICE_DEMAND_START,
SERVICE_ERROR_NORMAL,
“ C:\\driver.sys
NULL,
NULL,
NULL,
NULL,
NULL);

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 36

Lecture Notes on Windows Kernel Programming Creating a Device Driver

Creating a Device Driver

Installing the Device Driver

“Stealth” Mode:
* Undocumented call: ZwSetSystemlInformation
» Code 38: Loads AND calls an image

* Leaves no registry trace, no SCM entry

+ Caveats:
— Driver is pageable.
— Unreliable

A well known method of installing a driver without any Registry or Service Control Manager
interface involves using an undocumented function, ZwSetSysteminformation.

http://archives.neohapsis.com/archives/ntbugtrag/2000-g3/0114.html

typedef struct _SYSTEM_LOAD_AND_CALL_IMAGE

{ UNICODE_STRING ModuleName; } SYSTEM_LOAD_AND_CALL_IMAGE;

SYSTEM_LOAD_AND_CALL_IMAGE MyDeviceDriver;

WCHAR imagepath[] = L"\\??\\C:\\driver.sys"; /* Path to driver */

Rt1InituUnicodeString = (void*)GetProcAddress(GetModuleHandle("ntd11.d11™),
“Rt1InitunicodeString");

ZwSetSystemInformation=(void*)GetProcAddress (GetModuleHandle("ntd11.d11"),
"zZwSetSystemInformation");

if(RtlInituUnicodeString && zwSetSystemInformation)

{
Rt1InituUnicodeString(&(MyDeviceDriver.ModuleName), imagepath);
status = zZwSetSystemInformation(38,
&MyDeviceDriver,
sizeof (SYSTEM_LOAD_AND_CALL_IMAGE));
3

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 37

Lecture Notes on Windows Kernel Programming

Creating a Device Driver

— Programmatically

Starting/Stopping the Driver

* Drivers may be controlled by:

— “Net start/stop” — from any console (command line) window

Creating a Device Driver

accessing the SCM:

BOOL WINAPI ControlService (IN SC_HANDLE hService,

IN DWORD dwControl,
ouT LPSERVICE_STATUS lpServiceStatus) ;

After a driver is installed with the SCM, it still needs to be installed. This can be done, like any
Windows Service, with a “net start” command:

successfully.

successfully.

E:\WINDOWS\system32> net start "My Kernel Driver"
The My Kernel Driver service is starting.
The My Kernel Driver service was started

E:\WINDOWS\system32> net stop "My Kernel Driver"
The My Kernel Driver service is stopping.
The My Kernel Driver service was stopped

or programmatically:

if(0 == St art Ser vi ce(hService, 0,
NULL))

{

[* Great! */

}
else {

/I Call GetLastError()..

}

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com

38

Lecture Notes on Windows Kernel Programming Creating a Device Driver

Creating a Device Driver

Creating System Threads

» Creating system threads is straightforward:

NTSTATUS PsCreateSystemThread (
OUT PHANDLE ThreadHandle, // close with ZwClose ()
IN ULONG DesiredAccess,
IN POBJECT ATTRIBUTES ObjectAttributes, // OBJ_KERNEL HANDLE
IN HANDLE ProcessHandle OPTIONAL,
ouT PCLIENT_ID ClientId OPTIONAL,
IN PKSTART ROUTINE StartRoutine,
IN PVOID StartContext);

» Thread priority may be further controlled:

KPRIORITY KeSetPriorityThread(IN PKTHREAD Thread,
IN KPRIORITY Priority):;

* No terminate API - Thread must terminate itself

The Device Driver will generally act as a service — meaning it will respond to requests coming from
user mode (via System calls and I/O Request Packets, or IRPS), or interrupts coming from a
device. Sometimes, however, a device driver needs to create its own independent thread for
whatever purpose. For this, the Windows Kernel Process Manager (the Ps subsystem) offers a full
thread API, chief amongst which is the PsCreateSystemThread call.

The call is very similar to Win32’'s CreateThread(), with the exception that it allows for a process
handle, as well. If the Process Handle is set to NULL, the thread is created under the System (Id=4)
process. It's possible, however, to create threads in any process, if a handle to that process can be
obtained. If creating threads in other processes aside from the System one, the “Object Attributes”
must be set to OBJ_KERNEL_HANDLE — or else the thread will be accessible to the process in
which it is running.

There is no known API to terminate a Kernel thread — the thread must terminate itself, by calling
PsTerminateThread().

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 39

Lecture Notes on Windows Kernel Programming Creating a Device Driver - Excerises

Exercises

1. Inthis exercise we will create a very basic driver (that does absolutely nothing), compile and
build it.

i. Opena Windows XP “Checked Build” command prompt. Make sure your PATH
settings allow you to invoke the “build” script.

ii. Create the basic driver shown in Listing .
iii. Create a SOURCES file to build your driver.

iv. Run “build” and examine the resulting SYS file. Use DumpBin to verify its imports and
exports. What are its dependencies?

2. Wewill now take the simple driver and install it, using the Service Control Manager.
i. Create a main program to invoke the Service Control Manager and install your driver.

ii. Run your program to install the Driver. Now run “Services.msc” and/or “net start” and
look for your driver. What do you see?

iii. Using RegEdit, search for your driver in the registry, in HKLM\System\CCS\Services.
Explain the parameters you see:

&' Registry Editor

File Edit Yiew Fawvorites Help
= a A | Mame Type Data
(1 Security (Default) REG_SZ {value not set)

@ Kbt_:lclass DisplayName REG_S2 Johnr's Driver Display Mame
g g':[:D ErrorControI REG_DWORD 000000001 (13
3 lanmanserver ImagePath REG_EXPAND_S5Z VAT Johnny, Sys

| [R¥]start REG_DWORD 0x00000003 (3)
(2 lanmarmsarkst: .

B8] Tvpe REG_DWORD 0x00000001 {13

(2 Ibrtfde

2 dap
(21 LicenseService
{2 LmHasts
[Z1 Messenger
{21 mnmdd
[0 mnmsrve
(23 Madem
(2 Mouclass
{21 mouhid
(2 MauntMgr
[mraid3s:
(20 MRxDav
(2 MRxsmb
2 msDTC
[Z1 M3DTC Bridge
(20 Msfs
(Z msIserver
[mskssRy
[MsPCLOck W

< ¥ < ¥

Iy Computer\HKEY _LOCAL_MACHIMELSYSTEM\CurrentControlSet) Services) Johnny

iv. What other tool could you use to see if your driver has been loaded successfully?

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 40

Lecture Notes on Windows Kernel Programming Creating a Device Driver - Excerises

Exercises

2. Inthis exercise we will trace the linked list of Driver objects manually, and see their
interrelations with their devices, and eachother.

i. Start LiveKD, as in the previous exercises

ii. Use !drvobj tpcip, and record the address of the DRIVER_OBJECT. You should see
something like
kd> !drvobj tcpip
Driver object (86be3ca8) is for:
\Driver\Tcpip
Driver Extension List: (id , addr)

Device Object Tist:
86c3fd80 86cbfd80 86c3laf0 86c2efl8
86be2bc0

ii. Try the “Idevobj’ command on the entries in the “Device Object List”. What do you
see?

iv. Do a “dd” on the driver object + 20 bytes. Record this address. This is the address of
the linked list of drivers.

v. Next, do a dd or two on the address you just figured out. Somewhere around there lies
a Unicode string which tells you what the pathname of this driver is. What offset is it?
Try the “du” command to see what the pathname is.

vi. Claim: That address indeed holds a linked list, you should be able to see two entries —
the PREV and the next. Follow the linked list by applying (iii-iv) iteratively and figuring
out the names of the next drivers in sequence.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 41

Lecture Notes on Windows Kernel Programming - Excerpt

Kernel Survival Guide

This section discusses the constraints of Kernel Mode programming: The
APIs exposed by the Kernel executive, memory allocation, IPC &
synchronization objects, outputting messages to user space, and crashing.

Key Concepts :Rtl functions, Ex Functions, Mutexes, Events, Timers,
Spinlocks, DbgPrint, Event Logging, Bug Check

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco

42

me!

Lecture Notes on Windows Kernel Programming - Excerpt

Kernel Survival Guide

— See below table

— Few from HAL.DLL

Kernel APls

* Kernel APIs prefixed by “subsystem” identifier

* Most are directly exported from NTOSKRNL.exe

» Fairly well documented in the MSDN

Kernel Survival Guide

This table lists some of the Kernel API
identifiers in Windows XP. These are

very closely tied to the various Kernel

“Subsystems” that we discussed in the
architectural overview. The exception to
this are the Rtl functions, which serve as

basic “Run Time Library” support the

Kernel offers in the absence of a full
fledged C-level API.

Aux Auxiliary Library

Clfs Common Log File System

Cc Cache Manager

Cm Configuration Manager

Ex Executive (Memory Allocation wrappers, etc)
Flt Filter Manager

Hal Hardware Abstraction Layer

lo I/0 Manager

Ke Kernel Core

Mm Memory Manager

Nt Native Services (User Mode)

Ob Object Manager

Po PnP/Power Manager

Ps Processes and Threads

Rtl Run Time Library

Se Security Reference Monitor

Wmi Windows Management Instrumentation
w

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but plecse=-cem-=

43

I
saa~—2a-a-g e

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Survival Guide

Windows Version

* Always useful to know what you’re running in:

‘NTSTATUS RtlGetVersion (IN OUT PRTL OSVERSIONINFOW IpVersionInfo) ;

» Optionally, use RtlVerifyVersioninfo()

NTSTATUS RtlVerifyVersionInfo (IN PRTL OSVERSIONINFOEXW lpVerInfo,
IN ULONG TypeMask,
IN ULONGLONG CondMask) ;

Most drivers need to tweak their functionality to the exact version of Kernel they are running in.
Microsoft Operating Systems do differ in their Kernel implementations in between Windows
Versions and even Service Packs. Therefore it's standard practice to call RTLGetVersion (), or
the now deprecated PsGetVersion() (used prior to Windows XP). This function is essentially the
Kernel equivalent of GetWindowsVersion() , but operates slightly differently: It accepts a pointer
to a struct of RTL_OSVERSIONINFO, or a slightly more advanced RTL_OSVERSIONINFOEX.
Which looks as follows:

typedef struct _OSVERSIONINFOEXW {
ULONG dwOSVersioninfoSize;
ULONG dwMajorVersion;
ULONG dwMinorVersion;
ULONG dwBuildNumber;
ULONG dwPlatformld;
WCHAR szCSDVersion[128 J;
USHORT wServicePackMajor;
USHORT wsServicePackMinor;
USHORT wSuiteMask;
UCHAR wProductType;
UCHAR wReserved;

} RTL_OSVERSIONINFOEXW,;

The function relies on the first field, dwOsVersioninfoSize, to be set to the sizeof() the structure
before the call. It can use the size to tell which of the two structs was passed to it.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

44

Lecture Notes on Windows Kernel Programming - Excerpt

Kernel Survival Guide

It is then possible to verify what version of Windows you are in with something like the following code:

RTL_OSVERSI ONl NFOAEX o0sv;

NTSTATUS status;

switch (osv. dwiVhj or Ver si on)

{

case 5:

break;
case 6:

break;
default:

} I* end Switch */

osv. dwOSVer si onl nf0Si ze =sizeof(RTL_OSVERSI ONI NFOAEX);

status = Rt | Get Ver si on((RTL_OSVERSI ONI NFOW *) &0sv);

if (osw. dwM nor Version ==1) {/*XP *}
if (osw. dwM nor Ver si on ==2) {/* 2003 */ }

if (osw. dwM nor Ver si on ==0) {/* 2008 */ }

Listing 1 :

(C) 2009 JL@HisOwn.com - Feel free to use, replicate

Verifying Windows Kernel Version

, but please don't modify. Questions/Comments welco

45

me!

Lecture Notes on Windows Kernel Programming - Excerpt

Kernel Survival Guide

— File and directory access
— Registry access

Kernel Survival Guide

Kernel File and Dir Access

* Win32 CreateFile and friends are still available — As Zw*

* These are Kernel mode wrappers to the Nt* versions
— Nt* cannot be called directly (return to User mode)

« Zw* functions allow for most operations, including:

While the Kernel does not allow calling system calls from within Kernel space, sometimes there
has to be a method to access user space objects, most notably files and registry keys. For this,
the Kernel offers the Zw* API, which is a set of wrappers over the NT apis. These calls are
actually faster than their Nt* counterparts, as they bypass parameter validation and access right

checks.

OPTI ONAL
ULONG
ULONG
ULONG
ULONG
PVva D
ULONG

2Z2zZ2Z2Z2Z

NTSTATUS ZwCr eat eFi | e(OUT PHANDLE FileHandle
IN ACCESS MASK DesiredAccess ,
IN POBJECT_ATTRI BUTES Attributes
QUT PI O_STATUS BLOCK

loStatusBlock

IN PLARCE_| NTEGER AllocSize ,

FileAttributes ,
ShareAccess ,
CreateDisposition ,
CreateOptions
EaBuffer OPTI ONAL,
EalLength) ;

(C) 2009 JL@HisOwn.com - Feel free to use, replicate
46

, but please don't modify. Questions/Comments welco

me!

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Registry Access

+ ADVAPI's Registry interface is implemented:

Kernel Survival Guide

IN PCWSTR Path,

IN PVOID Context,
IN PVOID Environment

IN PCWSTR Path,

IN PCWSTR ValueName,
IN ULONG ValueType,

IN PVOID ValueData,

IN ULONG ValueLength) ;

NTSTATUS RtlCheckRegistryKey (IN ULONG RelativeTo,

NTSTATUS RtlCreateRegistryKey (IN ULONG RelativeTo,

NTSTATUS RtlQueryRegistryValues (IN ULONG RelativeTo,

IN PRTL QUERY REGISTRY TABLE QueryTable,

NTSTATUS RtlWriteRegistryValue (IN ULONG RelativeTo,

IN PWSTR Path);

IN PWSTR Path);

OPTIONAL) ;

The Windows Registry.. Can't live with it, can’

t live without it. The Kernel's RunTime Library

exports an API that is nearly 1:1 that of ADVAPI32's RegXXX functions. The Kernel also offers an
executive interface, via Zw functions, but since these work with keys as objects, the approach
requires interaction with the Object Manager by creating and initializing an

OBJECT_ATTIRBUTES structure.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

47

Lecture Notes on Windows Kernel Programming - Excerpt

Kernel Survival Guide

Object Access

User mode HANDLESs can be used in the Kernel

Kernel Survival Guide

NTSTATUS ObReferenceObjectByHandle (

IN HANDLE Handle,

IN ACCESS_MASK DesiredAccess,

IN POBJECT_ TYPE ObjectType OPTIONAL,
IN KPROCESSOR_MODE AccessMode,

OUT PVOID *Object,

OUT POBJECT HANDLE INFORMATION HandleInfo OPTIONAL) ;

Win32 “Handles” are actually implemented as void pointers, that are opague and manipulated by
the Kernel. Objects from user mode can thus be accessed in Kernel mode, by using the Object

Manager’'s ObReferenceObjectByHandle

function. The “Handle” is the user mode handle.

The AccessMode enum, KPROCESSOR_MODE, may be UserMode or KernelMode

ObjectType may be one of the following:

*loFileObjectType - PFILE_OBJECT (File Handle)

*ExEventObjectType - PKEVENT (Event Handle)

*ExSemaphoreObjectType — PKSEMAPHORE (Sempahore)
*PsProcessType PEPROCESS or PKPROCESS (Handle from OpenProcess)
*PsThreadType PETHREAD or PKTHREAD (Handle from OpenThread)

And AccessMode should be KernelMode. HandleInfo is left NULL.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate

48

, but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming Kernel Survival Guide

Kernel Survival Guide

Memory Copy/Move

* Memcpy(), memset() are implemented as:

VOID RtlCopyMemory (IN VOID UNALIGNED *Destination,
IN CONST VOID UNALIGNED *Source,
IN SIZE T Length);

VOID RtlFillMemory (IN VOID UNALIGNED *Destination,

IN SIZE_T Length,
IN UCHAR Fill);
Pool Type Purpose
NonPagedPool Memory that is always resident and never paged out.

Always accessible — but considered scarce. Call may fail .

NonPagedPoolMustSucceed | As NonPaged, but if call fails system blue screens with
code 0x41.

PagedPool Normal system memory — not guaranteed to be accessible.
May trigger a pagefault. Must be running at a lower priority

than dispatcher to access this memory.
(C) 2009 JL@HisOwn.com - Feel free to use, replicate _, but please don't modify. Questions/Comments welco mqg]!

(C) 2009 JL@HisOwn.com 49

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Survival Guide

Kernel String Manipulation

* The Kernel offers full ANSI and Unicode String support

OID RtlInitString(IN OUT PSTRING DestinationString,
IN PCSZ SourceString) ;

» Strepy(), stremp() are supported as:

VOID RtlCopyString(IN OUT PSTRING DestinationString,
IN const STRING * SourceString) ;

LONG RtlCompareString (IN PSTRING Stringl,
IN PSTRING String2,
BOOLEAN CaseInSensitive);

* Unicode can only be manipulated at passive IRQLs

The Windows Kernel, unlike Linux, has surprisingly advanced string manipulation functions. The
Kernel RunTime is not only string-capable, but can also handle Unicode, as well.

To initialize a String, you'd use RtlInitString(), which automatically resolves to the ANSI or
UNICODE variant, depending on the string initializer value (Unicode strings have an uppercase
“L” right before them.

Strcpy and Strcmp are also available, although under different names.

The only caveat to string manipulation in the Kernel is, that Unicode operations cannot take place
when running at a higher IRQL level. IRQL is discussed later, but for now we can “get away” with
saying that the Unicode functions can only be used in “standard” Kernel scenarios, i.e. when
running as a normal priority thread under the dispatcher, and not in any elevated context such as
that of an Interrupt Handler.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

50

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Survival Guide

Interfacing with HAL

» Hardware access is performed via the HAL:
— READ_REGISTER and WRITE_REGISTER
— READ_PORT and WRITE_PORT

» Most other functionally obsoleted by I/0O Manager

The Hardware Abstraction Layer provides the only interface to the physical, or hardware layer.
Kernel components may still usse direct calls to I1/O and hardware ports, but not using inline
assembly sequences.

Most of the HAL exported functionality has been rendered obsolete as the 1/0 manager has
picked up more and more responsibilities, but the HAL still exports macros to read and write
register values and/or port values. Specific macros exist for the specific datatypes. For example:

USHORT READ_REG STER USHORT(| N PUSHORT Register);
UCHAR READ REG STER UCHAR(I N PUCHAR Register);

And, for string:

VO D READ_REG STER _BUFFER_UCHAR(I N PUCHAR Register
I N PUCHAR Buffer
IN ULONG Count);

And similarly for ports:

UCHAR READ _PORT_UCHAR (I N PUCHAR Port);
VO D VRl TE_PORT_ULONG(I N PULONG Port , | N ULONG Value);

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

51

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Survival Guide

Synchronization - Mutexes

» The Kernel exports three types of Mutexes
— “classic” mutexes: non performant, effectively deprecated

VOID KelInitializeMutex (IN PRKMUTEX mMutex, IN ULONG Reserved) ;

— Fast Mutexes

VOID ExInitializeFastMutex (IN PFAST MUTEX fmMutex) ;
VOID ExAcquireFastMutex (IN PFAST MUTEX fmMutex) ;
BOOLEAN ExTryToAcquireFastMutex (IN PFAST MUTEX fmMutex) ;
VOID ExReleaseFastMutex (IN PFAST MUTEX fmMutex) ;

— Guarded Mutexes (Windows 2003 and later)

VOID KeInitializeGuardedMutex (IN PKGUARDED MUTEX gmMut ex) ;
VOID KeAcquireGuardedMutex (IN PKGUARDED MUTEX gmMut ex) ;
BOOLEAN KeTryToAcquireGuardedMutex (IN PKGUARDED MUTEX gmMutex) ;
VOID KeReleaseGuardedMutex (IN PKGUARDED MUTEX gmlMu tex) ;

The Kernel supports several synchronization mechanisms for drivers and modules to use. The
first is the classic Mutex object, which is available in three varieties:

* Mutexes: Using KelnitializeMutex, and KeWaitForMutexObiject().

 Fast Mutexes : Which are implemented by “bumping up” a special thread priority value
known as the IRQL to a higher level (APC_LEVEL) rather than usual (PASSIVE_LEVEL).
The exact meaning of this is discussed shortly (as IRQLs deserve their own notes) — but
suffice it to say a Mutex holder will run at a higher priority so long as the mutex remains in
its possession. If the mutex is unavailable (i.e. owned by another thread) the requesting
thread is suspended until the mutex is released.

» Guarded Mutexes : Which have exactly the same interface, but are implemented with
“Guarded Sections” which are quicker to enter and leave than the IRQL level raising.

The Mutex objects are defined globally in non-paged memory, as FAST_MUTEX or
KGUARDED_MUTEX, respectively. A driver or Kernel component usually follows the
Initialize>Acquire->Release pattern, but may also opt to use the TryToAcquire functions, that
return immediately, if it cannot or will not block execution.

Caution : Attempting to acquire a Mutex object you already own will result in a Bug Check
(= Blue Screen of Death) OxBF: MUTEX_ALREADY_OWNED.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

52

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Survival Guide

Synchronization - Events

» Like the Win32 API, the Kernel also supports Events

VOID KeInitializeEvent (IN PRKEVENT Event,
IN EVENT TYPE Type,
IN BOOLEAN State);
/* To signal an event: */
LONG KeSetEvent (IN PRKEVENT Event,
IN KPRIORITY Increment,
IN BOOLEAN Wait) ;

* Synchronization events auto-reset. Notification needs:

VOID KeClearEvent (IN PRKEVENT Event) ;
LONG KeResetEvent (IN PRKEVENT Event) ;

« Wait for one or more events with KeWaitForXXX

The Kernel enables Drivers and components to use Event based synchronization, in an API that is
virtually identical to the Win32 API — with good reason — The User mode calls are simply pass
through calls to their Kernel implementations.

Two types of events are defined, and the Type parameter of KelnitializeEvent can be either:

< SynchronizationEvent: _ for events that are auto resetting “flags”, that may be signalled
once (by KeSetEvent()) before being reset. These allow a single consumer to awaken,
and service consumers one at a time.

« NotificationEvent _: for events/flags which do not reset. As soon as they are signaled,
all waiting consumers awaken, and the flag remains until explicitly cleared by
KeClearEvent() or KeResetEvent() (The latter being a slower function, that also
recovers the value prior to reset).

Consumers wait for one or more events simultaneously by calling KeWaitForSingleObject() or
KeWaitForMultipleObjects() , respectively.

When signaling an event, it is possible to specify a two parameters: A priority increment for
threads that have been waiting on it, and a Boolean wait Value if the signaling thread immediately
wishes to enter a wait state (i.e. call KeWaitForXXX()).

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

53

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Survival Guide

Synchronization - Timers

* For delayed execution, or watchdogs, use timers:

VOID KeInitializeTimerEx (IN PKTIMER Timer,
IN TIMER TYPE Type); /* Synch/Notif. */

BOOLEAN KeSetTimer (IN PKTIMER Timer,
IN LARGE INTEGER DueTime, /* (x 100ns) */
IN PKDPC Dpc OPTIONAL) ;

* |/O Manager offers an automatic, 1HZ timer*:

NTSTATUS IoInitializeTimer (IN PDEVICE OBJECT DeviceObject,
IN PIO_TIMER ROUTINE TimerRoutine,
IN PVOID Context) ;

* May be stopped/resumed (loStopTimer/loStartTimer)

* - Limit one timer per device, please.

Timers are another useful mechanism the Kernel offers. A driver may set a timer by
defining a (global) KTIMER object. This object is opaque, and can be manipulated by calls
to the Kernel timer functions. The first, KelnitializeTimer , does just that. The Ex variant
(shown above) allows to select one of two timer types: NotificationTimer or
SynchronizationTimer , which follow the same principle as Notification and
Synchronization Events, discussed previously.

The timer may be set by calling KeSetTimer and providing a DueTime argument. The
argument may be positive (in which case it is interpreted as an absolute timestamp), or
negative (in which case it is considered an offset from the current time when KeSetTimer
was called). The Deferred Procedure Call (DPC) supplied as the third argument will be
called upon expiry. KeSetTimerEx inserts another argument in the third position, Period,
which is a value in milliseconds the timer will fire at, periodically.

The I/O Manager offers a simple, watchdog oriented timer. Each device object may register
a single timer function. The timer function will be called by the I/O manager once every
second. This is useful for making sure the driver is still functional, and threads in it have not
deadlocked.

The PIO_TIMER_ROUTINE is a pointer to a function implementing the following interface:

VOID loTimer(IN struct DEVICE_OBJECT * DeviceObject,
IN PVOID Context);

With Context being the argument set in the 3 parameter to lolnitializeTimer .

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

54

Lecture Notes on Windows Kernel Programming - Excerpt

Kernel Survival Guide

Kernel Survival Guide

Synchronization - Spinlocks

» Effective Synchronization objects for SMP

VOID KeAcquireSpinlock() ;
VOID KeReleaseSpinLock() ;

VOID KeAcquireInStackQueuedSpinLock

VOID KeReleaseInStackQueuedSpinLock

VOID KelInitializeSpinLock (IN PKSPIN LOCK SpinLock) ;

/* XP and later - There are preferred */

(IN PKSPIN LOCK SpinLock,

IN PKLOCK QUEUE HANDLE gslHandle);
(IN PKLOCK QUEUE HANDLE gslHandle) ;

* Initialize Spinlocks from non-paged areas only

» Consider Try functions, whenever possible

Spinlocks are thus called because threads “spin” while trying to acquire them —that is, run in a
tight loop. In an SMP environment, this makes sense, as the spinlocks are generally held for very
short time periods, which do not merit having the thread lose execution rights.

In Windows XP and later, Queued Spin Locks were introduced. These, allegedly, provide for
better performance, and deprecate the “classic” SpinLocks. Queued Spin Locks work are also
fairer than their predecessors — as they are implemented in a FIFO, guaranteeing acquisition in

the order of calls to Acquire..().

Acquiring a queued SpinLock is only slightly more troublesome than a normal one: The driver
needs to additionally allocate and pass a KLOCK_QUEUE_HANDLE structure.

As with all synchronization objects, all Spinlock data must be allocated on non paged data, as a
Spinlock absolutely cannot trigger a page fault This means the memory should be allocated from
the NonPagedPool using ExAllocatePoolWithTag..

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco

55

me!

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Survival Guide

IRQLs

* The Kernel maintains Interrupt Request Levels for threads
* Threads with low IRQL may be preempted for higher ones

» Each processor maintains its own IRQL

IRQL x86 | x64 Use
PASSIVE 0 0 User threads & default Kernel mode
__________ APC 1 1 APC, Page faults
DISPATCH |2 2 Thread scheduler & DPC
: : : : : : : : : DIRQL 3-26 | 3-11 | Devices (= Interrupt handlers)
CLOCK2 28 - Clock timer
SYNCH 28 13 SMP — Instruction Stream Sync
IPI 29 14 SMP - Interprocessor (Cache)
POWER 30 15 UPS Power Failure notification
HIGH 31 15 XP Profiling timer; System failure

A key concept in Kernel mode programming is that of Interrupt Request Levels , or IRQLS: This
is a range of values each processor uses when running threads, in either Kernel or User mode, to
enable or disable preemption as necessary. The values start at the basic PASSIVE level (0) and
go all the way up to the HIGH level (31), with a simple but important policy: A thread running at a
given IRQL, call it n, will be preempted for any thread that becomes runnable with an IRQL of n+1.

Most threads run in the PASSIVE level. Being at level 0, this means they can be preempted for
pretty much any other thread on the system that is non-Passive. However, since most Kernel
mode threads also run at PASSIVE, this doesn’t happen all too much.

The levels above PASSIVE are reserved for very specific use cases:

APC: is reserved for Asynchronous Procedure Calls (callbacks) and page faults. The former must
be handled as soon as possible, and will temporarily preempt other threads. The latter also need
“immediate gratification”, as the appropriate page must be fetched for the thread to continue its
proper execution. Fast Mutexes are also implemented by an IRQL change to this level.

DISPATCH: is the level in which the Thread Scheduler itself executes. Deferred procedure calls
(DPCs) also execute at this level, since they are handled by the scheduler. Code here CANNOT
wait for objects since the code will not be preempted by the dispatcher if it blocks.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

56

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Caution : Code running at IRQL_DISPATCH or above CANNOT:
* Block
» Wait for any non zero amount of time
* Trigger a page fault (because the Page swap occurs at IRQL_APC)
* Release a spinlock (KeReleaseSpinLock) not acquired (i.e. called KeAcquireSpinLock)
* Acquire a spinlock if already running at this level — use KeAcquireSpinLockAtDpcLevel()
or KeAcquirelnStackQueuedSpinLockAtDpcLevel() instead.
» Format Unicode (this includes calling DbgPrint/DbgPrintEx with Unicode % specifiers)

DIRQL: is reserved for Interrupt Handlers (also called Interrupt Service Routines, or ISRs). These
are architecture dependent, and for the x86 architecture are reserved at 3-26 (mapping to IRQs 0-
15 and then some), or when the driver calls KeSynchronizeExecution (which, in turn, calls
SynchCritSection).

Higher IRQLs are usually dangerous territory you do not want to find yourself in. 28+ interferes
with the system timer itself, SMP and power management. Most Kernel code runs at
IRQL_PASSIVE, and that’'s the recommended way of going about things.

A Good reference on IRQLs can be found in the Microsoft White Pater “Scheduling, Thread
Context, and IRQL” (downloadable from Microsoft.com).

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

57

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Changing your IRQL

* You really shouldn’t need this.. But..

KIRQL KeGetCurrentIrql (VOID) ;
VOID KeRaiseIrql (IN KIRQL NewIrgl,
OUT PKIRQL 01dIrgl);

VOID KelowerIrqgl (IN KIRQL NewIrqgl) ;

» Play at your own risk, but remember you CANNOT:
— RaiselRQL to a lower IRQL than current
— Call LowerlRQL on an IRQL that was not previously raised

- IRQL_NOT_LESS_OR_EQUAL is a common BSOD

— Caused by memory faults (paged/non paged)
— Buggy Drivers messing with their IRQLs.

Normally, you should be happy at your own IRQL, and would not need to change it in any way.
That said, the Kenel does expose interfaces to get and set the IRQL if required.

Caution : Raising your IRQL can have severe impact on system performance and stability,
especially when raised above IRQL_DISPATCH - since this, effectively disables any scheduling by
the Thread Scheduler — which will not get to execute, as it would be of lesser IRQL and priority!

The IRQL_NOT_LESS OR_EQUAL Blue Screen of Death is commonly the result of executing in the
wrong IRQL — greater than APC_LEVEL (i.e. DISPATCH_LEVEL or above) and accessing paged (or

invalid) memory. The Page fault that occurs cannot be serviced by the system pager, that is designed
to run as the lower APC_LEVEL.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

58

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Survival Guide

SpinLocks €=» DeadlLocks

* Incorrect usage of Spinlocks leads to deadlocks, or worse

Initialize Spinlocks ONLY on non-paged data

Don't trigger page faults, hardware or software exceptions
You cannot release a SpinLock you have not acquired

IRQL = DISPATCH_LEVEL requires AcquireAtDPC() calls
Queued/Classic calls cannot be combined

Spinlocks are NOT recursive

Multiple Spin Locks, if needed, should be called in same order

* Holding a Spinlock will mutually exclude:
— Other code waiting for same spinlock — on all CPUs
— Code at a lower IRQL than that of spinlock holder on same CPU

» Hold spinlocks for as little as required (< 25mS)

Naturally, all these rules also apply to calling external functions. A common mistake made by
Kernel coders is adhering to these rules, but calling some external function that does not.

Good references on using Spinlocks properly: http://go.microsoft.com/fwlink/?Linkld=57456
and http://msdn.microsoft.com/en-us/library/aa490225.aspx.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

59

Lecture Notes on Windows Kernel Programming - Excerpt

Kernel Survival Guide

DbgPrint

* Kernel drivers can print debug output, when required

Kernel Survival Guide

ULONG DbgPrint (IN PCHAR Format,
[arguments]) ;

ULONG DbgPrintEx (IN ULONG ComponentId,
IN ULONG Level,
IN PCHAR Format,
. [arguments]) ;

* Usable at IRQL <= DIRQL — unless formatting Unicode
* Use KdPrint, KdPrintEx for both checked/free builds
* View output with Kernel Debugger, or DbgView

+ XP/Vista need registry enablement for each component

Much like Linux has its “printk” for printf() like output in the Kernel, so does Windows with
DbgPrint()/DbgPrintEx(). DbgPrint is used to print out messages that are normally ignored, unless
a Kernel Debugger is attached — in which case the messages can be read. The usage is
straightforward — use it exactly as you would printf(). DbgPrintEx() adds two arguments —

Componentld and Level. DbgPrint(Format, arguments) is exactly equivalent to

DbgPrintEx (DPFLTR_DEFAULT_ID, DPFLTR_INFO_LEVEL, Format, arguments);

Component IDs are defined as follows:

Constant Purpose
IHVVIDEO Video driver
IHVAUDIO Audio driver
IHVNETWORK Network driver
IHVSTREAMING Kernel streaming driver
IHVBUS Bus driver
IHVDRIVER Any other type of driver

Level is anywhere between 0-31 (which is actually bit-shifted by the OS), or 32-OxFFFFFFFF.

Setting the Component and the Level is useful for Kernel Debuggers with filtering capabilities.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

60

Lecture Notes on Windows Kernel Programming - Excerpt

DbgPrint()s are available in most Kernel code — for IRQLs less than or equal to than DIRQL.
Looking back at the IRQL notes, you can see that this would cover almost all Kernel code —
including Interrupt Handlers — but not SYNCH, CLOCK2, POWER, IPI or HIGH. Chances are,
however, your Kernel code won’'t go anywhere near these IRQLs anyway, so you should be fine.
Calling at an IRQL greater than DIRQ risks causing a Kernel deadlock — so be warned.

Caution : DbgPrint() is that it is so like printf() you could find yourself printing out debug messages
that contain Unicode strings (%S, %ls, %C, %lc, %ws, %wc and %wZ) — and that's something you
can do only if the IRQL is IRQL_PASSIVE.

If you compile the same code for a Checked and a Free build, use KdPrint and KdPrintEx,
respectively. These are macros that expand normally in a checked build, but compile out in a free
build.

In XP, Vista and later, a specific registry key needs to be created:
HKLM\SYSTEM\CurrentControlSet\Contro\Session Manage r\Debug Print Filter

In which a DWORD value needs to be further be defined for each component ID (usually
DEFAULT suffices) and mask (usually OxFFFFFFFF) to enable DbgPrint messages to be sent.

To view Debug messages, either attach a Kernel Debugger, or — better yet — use DebugView from
the former Sysinternals (http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx).

e |
Ele Edt Caphwe Options Remote Help

BEE | & &=+ 3R EBT| 7 | &

[# [Tine [Debug Print =

00000014 2.49999797 JSI0: MEM1API: :Receive: cmd = 2, endECK = 0

00000015 2.50021120 JSIO: MEMIAPI::Poll: Sending STATREQ

00000016 2.50058796 JSIO: Write thread running

00000017 3.27454789%9 JSI0: MEM]_ReadindWriteThread: k = §

00000018 3.27477327 JSI0: MEM1::CtlMessage: Control Type = 0

0000001% 327500713 JSIO: MEM1 CTLTYPE_CEM: UNUSED

00000020 3.27525056 JSIO: MEH1: n-»ControlBytes = 3. len = 207

00000021 327549111 JSIO: MEM1: :HUXMESSAGE START len = 196

00000022 3.27574365 JSIO: RCVS: 40x12 xV40x12 =V0x00 0x00 0=00 0x00 0x00 Ox
00000023 3.49998471 JSI0: MEMI1API: Receive: cmd = 2, cadECK = 0

00000024 3.50022889 JSIO: FOLL: 40x12 xV40x12 xV0x00 0x00 0=00 0x00 0x00 Ox...
00000025 4.75002498 JSI0: MEM1API: :Receive: cmd = 2, cadECK = 0

00000026 4.75024636 JSIO: MEMIAPI: :Poll: Sending STATREQ

00000027 4.75067296 JSIO: Write thread running

00000028 5. 00004104 JSI0: MEW1API: :Recsive: cmd = 2, cmdECK = 0

00000029 5.00026009 JSIO: MEM1API::Poll: Sending STATREQ

00onon3n 5. 00061820 JSI0: Write thread running

00000031 5.29005423 JSIO: MEH1 ResdAndWriteThread: k = 7

00000032 5.29028005 JSI0: MEM1: :CtlMessage: Control Type = 0

00000033 5.29051358 JSIO: MEM1 CTLTYPE_OEM: UNUSED

00000034 5.29075722 JSI0: MEM1: n-»ControlBytes = 3, len = 207

Q0000035 5.29099304 JSIO: MEM1: :HUZXMESSAGE START len = 196 L
00000036 5 29124975 JSTO: RCVS: 40x12 xV40x12 x¥0x00 0x00 0x00 0x00 0x00 Ox. . %

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

61

Kernel Survival Guide

(C) 2009 JL@HisOwn.com - Feel free to use, replicate

Lecture Notes on Windows Kernel Programming - Excerpt

Kernel Survival Guide

* Drivers may also write to the system log:

Kernel Survival Guide

Writing to the Event Logs

PVOID IoAllocateErrorLogEntry (IN PVOID

IoObject,
IN UCHAR EntrySize);

VOID IoWriteErrorLogEntry (IN PVOID ElEntry);

* PVOID is actually a PIO_ERROR_LOG_PACKET
* |oAllocate(..), populate fields, then loWrite(..)

* If not writing, must free by calling loFreeErrorLogEntry

‘VOID IoFreeErrorLogEntry (IN PVOID ElEntry);

Another option for communicating with the outside world is by writing to the System’s Event Log.

This is almost as simple as user-mode’s LogEvent API:

Begin by allocating an Error Log Entry. This is done by calling loAllocateErrorLogEntry. The
arguments here are the PDEVICE_OBJECT or PDRIVER_OBJECT reporting the error, and a size

for the entry (as a UCHAR — up to 255 bytes and under ERROR_LOG_MAXIMUM_SIZE).

Despite the API definition, the pointer returned is actually a PIO_ERROR_LOG_PACKET:

typedef struct |0 ERROR_LOG_PACKET (
UCHAR MajorFunctionCode;
UCHAR RetryCount;
USHORT DumpDataSize;
USHORT NumberOfStrings;
USHORT StringOffset;
USHORT EventCategory;
NTSTATUSEr r or Code;
ULONG UniqueErrorValue;
NTSTATUS FinalStatus;
ULONG SequenceNumber;
ULONG loControlCode;
LARGE_INTEGER DeviceOffset;
ULONG DumpData[1];

} 10_ERROR_LOG_PACKET, *PIO_ERROR_LOG_PACKET]

62

, but please don't modify. Questions/Comments welco

me!

Kernel Survival Guide

The IO_ERROR_LOG_PACKET fields are initialized by the driver, as shown in the following
example:

VOID LogEvent(NTSTATUS code, PWSTR userString, PDEVICE_OBJECT fdo)

{
ULONG packetlen = (wcslen(userString) + 1) * sizeof(WCHAR)

+ sizeof(I0_ERROR_LOG_PACKET);

PIO_ERROR_LOG_PACKET p = (PIO_ERROR_LOG_PACKET)
loAllocateErrorLogEntry(fdo, (UCHAR) ERROR_LOG_MAXIMUM_SIZE);

if ('p) {
DEBUGP (MP_ERROR, ("Can't write to Event Log\n"));
return; }

memset(p, 0, sizeof(I0_ERROR_LOG_PACKET));
p->ErrorCode = code;

/* Optional “Dump Data my be set */

p->DumpDataSize = 1;

p->DumpData[0] = "\0';

[* Strings may be set — these correlate to Message file “%1” entries.
p->StringOffset = sizeof(I0_ERROR_LOG_PACKET) + p->DumpDataSize;
p->NumberOfStrings = 1;

[* Copy strings — This example demonstrates only one user supplied String */
wescpy((PWSTR) ((PUCHAR) p + p->StringOffset), userString);

loWriteErrorLogEntry(p); /* No need to free */

} /* end LogEvent */

The real trick, however, is to prepare a “message file” for the driver. This is a separate file, with a
“.mc” extension, that looks something like the example on the next page. This file is compiled into
a resource script using the “mc” tool, which in turn creates an .rc file, and a corresponding .h file.

The .rc is then added to the driver SOURCES.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Kernel Survival Guide

The MC file format is described in http://msdn.microsoft.com/en-us/library/aa489593.as px. Here
is a sample file:

MessageldTypedef = NTSTATUS

SeverityNames = (

Success = 0x0:STATUS_SEVERITY_SUCCESS
Informational = Ox1:STATUS_SEVERITY_INFORMATIONAL
Warning = 0x2:STATUS_SEVERITY_WARNING

Error = 0x3:STATUS_SEVERITY_ERROR

)

FacilityNames = (
System =0x0
Eventlog = Ox2A:FACILITY_EVENTLOG_ERROR_CODE

)

LanguageNames = (
English = 0x0409:msg00001
French = 0x040C:msg00003

)

Messageld = 0x0001

Facility = Eventlog

Severity = Informational

SymbolicName = DRIVER_MSG_INIT

Language = English

NdisCom Driver is loaded. Embed strings with %1, %2, %3. End with a “.” on a line by itself

Messageld = 0x0002

Facility = Eventlog

Severity = Error

SymbolicName = DRIVER_MSG_SOME_OTHER
Language = English

Example of another message

Finally, to enable the Windows NT Event Log Viewer to display the messages, add a registry value for
your driver, under:

HKLM\SYSTEM\CurrentControlSet\Services\Eventlog\Sys tem\<driverName>\EventMessageFile
pointing to your .sys file. Otherwise, The Event Log viewer will display messages like:

“The description for Event ID (10) in Source (driverName) cannot be found. The local computer may
not have the necessary registry information or message DLL files to display messages from a remote
computer. You may be able to use the /AUXSOURCE-= flag to retrieve this description; see Help and
Support for details.”

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Kernel Survival Guide

Crash and Burn

* To crash the system with a BSOD:

VOID KeBugCheckEx (IN ULONG BugCheckCode,
IN ULONG PTR BugCheckParameterl,
IN ULONG _PTR BugCheckParameterZ2,
IN ULONG PTR BugCheckParameter3,
IN ULONG_PTR BugCheckParame terd) ;

* Codes 0x01-0x12C (as well as 0OXDEADDEAD ©)
— Manual crash: OxE2 — Ctrl-ScriLk/ScriLk

+ List of Bug Check Codes:
— http://msdn.microsoft.com/en-us/library/ms789516.aspx

* May also register a bug check Call Back

You are encouraged to handle exceptions in your driver by usign structured exception handling
(i.e. __try/ __except/__finally blocks) whenever possible. But when a driver detects some
horrendous, catastrophical, uncorrectable error that compromizes system integrity, sometimes the
only way to go is down — by crashing the system. In the UNIX world this is a panic situation — and
Windows calls this a BugCheck.

BugChecks are more commonly known as Windows “Blue Screens of Death”, and probably need
no introduction (you're truly exceptional if you've never seen one ©). These screens are the last
thing Windows displays before the system is halted, and usually rebooted.

The only required argument for a BugCheck is the BugCheckCode, which is usually one of the
documented MSDN codes (at http://msdn.microsoft.com/en-us/library/ms789516.aspx). The code
will be translated to its #define name and displayed in the Blue Screen, with an additional line for
the four parameters. There are over 250 codes, and more are added with every release of
Windows, so any attempt to explain them all would almost immediately be outdated. Still, the
following table lists some of the common ones you're likely to encounter:

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

65

Lecture Notes on Windows Kernel Programming - Excerpt Kernel Survival Guide

Code #define Meaning
Ox0A IRQL_NOT_LESS OR_EQUAL Attempt by Kernel (or by device driver) to access
0xD1 DRIVER_IRQL_NOT_LESS OR_EQUAL paged/invalid memory at an

IRQL >= DISPATCH_LEVEL.

Parameters are:
(Addr, IRQL, O=read/1=write, EIP at fault)

Ox1E KMODE_EXCEPTION_NOT_HANDLED Exception that wasn’t caught in a __try/__catch.
E.g. from ProbeForRead()

0x24 NTFS_FILE_SYSTEM Error in NTFS.sys. Usually due to bad sectors

0x41 MUST_SUCCEED_POOL_EMPTY A Must Succeed Allocation didn't..Parameters:

(Request Size, # Pages, .., # pages avail)

0x50 PAGE_FAULT IN_NON_PAGED_AREA Attempt to access invalid system memory.Parameters:
(Addr, O=read/1=write, EIP at fault, Reserved)

OX7E ..THREAD_EXCEPTION_NOT_HANDLED Usually, your driver’s fault: Arguments:
(Exc Code, Address of Exc, Exc Rec, Context Rec)
(use .exr on arg3, .cxr on arg4)

0xC8 IRQL_UNEXPECTED_ VALUE IRQL changed by some driver, but not restored.

OxE2 USER_GENERATED User pressed Ctrl-ScriLk (twice) and registry is
configured for dumps
(HKLM\System\CCS\i8042prt\Parameters]
"CrashOnCitrlScroll"=dword:00000001

0x109 CRITICAL_STRUCTURE_CORRUPTION PatchGuard (Vista) reporting suspected patching of
Kernel.

Parameters are: (0,0,0,corruption) where:
0 = Generic Data 2=IDT 3=GDT 4,5=Process List
6=Debug Routine 7=MSR

It's also possible for a driver to register a Bug Check callback function, for post-dump processing.
This is done by the following steps:

1. Initialize a CallBack Record
VOID KelnitializeCallbackRecord(IN PKBUGCHECK_ CALLBACK _RECORD CallbackRecord);
2. Register the call back:

BOOLEAN KeRegisterBugCheckCallback

(IN PKBUGCHECK_CALLBACK_RECORD CallbackRecord,
IN PKBUGCHECK_CALLBACK_ROUTINE CallbackRoutine,
IN PVOID Buffer,

IN ULONG Length,

IN PUCHAR Component);

3. Implement the call back:

VOID BugCheckCallback(IN PVOID Buffer,
IN ULONG Length);

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

66

Lecture Notes on Windows Kernel Programming - Excerpt Device Driver Concepts - Exercises

Exercises

1. Inthis exercise we will utilize SysiInternals’ “LiveKD” extension to The Windows Debugger to
view the behind-the-scenes implementation of Kernel IRQLs and Spinlocks, thereby learning
one or two important things.. Follow these steps:

i. Start LiveKD:

a) Make sure you are running as an Admininstrator. If not, use the “runas”
command to start a command prompt (cmd.exe)

b) Make sure to set your Symbol path correctly, using the environtment variable
_NT_SYMBOL_PATH. The easiest way to do that is to use the DOS “subst”
command to assign a logical drive, say K:, to the LiveKD directory, and set
_NT_SYMBOL_PATH to K:\Symbols.

ii. Unassemble HAL's KeRaiselrgl and KeLowerlrgl. How are they implemented?
Specifically, Where is the IRQL value stored in memory? Make note of this address.
Verify this by unassembling KeGetCurrentlrg|l.

iii. Unassemble hallKeAcquireSpinLock, and follow the trace. How is the spin lock
acquired? How does that affect the IRQL?

iv. Next, Unassemble NT’s function for SpinLocks at the IRQL of Dispatch -
nt'KeAcquireSpinLockAtDpcLevel and nt!KeReleaseSpinLockFromDpcLevel. How are
they implemented? Can you explain why?

v. Why are the IRQL function implemented inside HAL, with the exception of the
DPCLevel ones? How would a different HAL, e.g. SMP vs UP, be different?

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

67

Lecture Notes on Windows Kernel Programming - Excerpt Device Driver Concepts - Exercises

Exercises (cont)

2. In this exercise we will examine the difference between the Zw* functions and their Rtl
counterparts. Again, using LiveKD, Unassemble RtlDeleteRegistryValue and
nt'ntDeleteValueKey:

kd> u nt! ZwDel et eVal ueKey
nt!ZwDeleteValueKey:

804dcbd0 b841000000 mov eax,4lh
804dchd5 8d542404 lea edx,[esp+4]

804dcbd9 9c pushfd

804dcbda 6a08 push 8

804dcbdc €8501a0000 call nt!KiSystemService (804de631)
804dcbel c20800 ret 8

kd> u ntdl 'Rt | Del et eRegi st ryVal ue
ntdll!RtIDeleteRegistryValue:
7¢933da0 8bff mov edi,edi
7c933da2 55 push ebp
7c¢933da3 8bec mov ebp,esp
7c¢933da5 51 push ecx
7c¢933dab 51 push ecx
7c933da7 8d450c lea eax,[ebp+0Ch]
7c933daa 50 push eax
7c¢933dab 6a01 push 1
kd>u

(.. More)

What's the difference between the two functions? Unassemble several lines to figure this out.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

68

Lecture Notes on Windows Kernel Programming

Memory Management

This section describes the Windows Memory Management mechanism,
and explains how low level operations using the Mm* API work

Key Concepts :Virtual Memory, MDL

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 69

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

Virtual Memory Addressing

Page Descriptor Offset Page Table Offset Page Offset
RN T TTTTIITTTTT
CR1
CR2 Virtual Address (32-bit)
CR3 PDE # Page Table

0000000000

Points to the
Global Page
DirectoryTable 1111111111
4G
PTE# Page
0000000000
1111111111

4aMm

4K Page

The translation of Virtual Addresses into physical ones is a three staged process. Given a 32-bit
address, The CPU segments the address into three separate parts:

The first 10 bits - point to one of 210 entries in a global Page Directory Table. This table is, in
effect, a table of page tables, and the 10 bits select a specific page table index by a Page
Directory Entry or PDE. This table is defined per process, and maintained in a Page Descriptor
Base Register, which on the Intel architectures is Control Register #3 (CR3). This register is
reloaded on each process context switch from the KPROCESS object, since each process has a
different virtual memory image.

The next 10 bits — point to a specific page (a.k.a Page Table Entry - PTE) in the Page Table
that was selected by the previous 10 bits. 10 bits again mean 21° — so each page table maintains
the addresses of 4 MB (=210 * 4KB) of memory.

The last 12 bits_— are the specific offset in the page itself. Since the page itself is 4KB (=4096
bytes) this works out perfectly with 4096 being 212. However, most addresses are aligned on a
DWORD boundary, which allows the system to reserve the last two bits for its own internal use.

Each page table maintains 4MB, and there are 21° tables in the Page Descriptor Table — so 210*
4MB = 4GB, which is the size of the virtual address space of the process. Things look somewhat
different when Physical Address Extensions* (PAE) are employed, but are sufficiently similar — as
is shown next.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 70

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

Virtual Memory Addressing - PAE

Page Descriptor Offset Page Table Offset Page Offset
[NNNNNNNNNEEENEEEEEEEN
el .
CR2 Virtual Address (32-bit)
CR3 PDE # Page Table

000000000

Points to
Page Directory
Table 111111111

64-bit entry here!

16 PTE# Page
PDPE PDT 000000000
01 111111111
10

2M

4G 4K Page

Intel’s Physical Address Extensions (PAE) extend Virtual Memory addressing to systems with
more than 4GB of physical memory. Because of the limitations of 32-bits, this isn’'t as simple as it
seems. Given a 32-bit address, The CPU now segments the address into four, not three separate
parts:

R3 — Now points to a table of 4 (=22) entries, called the Page Directory Pointer Table.

The first 2 bits _— point to one of the four entries in the Page Directory Pointer Table — which
will serve as the usual Page Descriptor Table.

The next 9 bits — point to one of 29 entries in the Page Descriptor Table. Remember that this
is one of four tables. However, each PDE is now 64-bits. Note the size of the table is the same,
because 29*26 = 210%25

The next 9 bits - point to a specific page (this is the Page Table Entry - PTE) in the Page
Table that was selected by the previous 9 bits. This page is, again, 64-bits — and 9 bits again
mean 2° — so each page table maintains the addresses of 2 MB (=2° * 4KB) of memory. However,
the address here can be up to 64-bits — allowing for physical address es over 4GB.

The last 12 bits_— are the specific offset in the page itself. Since the page itself is 4KB (=4096
bytes) this works out perfectly with 4096 being 212. However, most addresses are aligned on a
DWORD boundary, which allows the system to reserve the last two bits for its own internal use.

Each page table maintains 2MB, and there are 2° tables in the Page Descriptor Table — so 2°*

2MB = 1GB - But there are 4 PDE tables — so we're back to the 4GB of memory.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 71

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

Virtual Memory Addresses

» Revisit the last page, and you'll see a waste of 12 bits
» Those 12-bits are redefined by the OS for valid pages:

. EENCEDNETE

Flag Meaning

Global Page belongs to Kernel, and is thus global across all processes
Dirty Page has been modified and cannot be reused until committed
Accessed Page has been recently accessed (for LRU “clock” algorithm)

Cache Disable | Page may not be cached

Write Through | Write this page to disk (disables write caching)

Owner User-mode (Ring 3) page or Kernel-Mode (Ring 0) page
Wiritable Is page writable or read only
Valid Page is a valid page, mapping to a physical. Always set to “1”

If you did the math on the last pages, you might have noticed something a little bit troubling:

« Page addresses must start on a page boundary.
» Pages are 4KB in size
e 4KB=4,096 = 212,
= Page addresses have their 12 lowermost bits always set to 0
= Page Table Entries are effectively only 20 bits out of the 32-bits.

This means that, indeed, using 32-bits for the Page Table Entries would be wasteful — after all, the
last 12 bits would be unused! The system therefore redefines the Page Table Entry to be two
parts: The first 20-bits, which are the actual physical address of the page (called “Page Frame
Number” or PFN), and the last 12 bits, that are used as flags, as shown above.

When using PAE, page directory entries have two more bits: 63 — NX (No Execute) — to defeat
buffer overflow attacks, and bit 7- PS — to allow for 2MB pages rather than Page table entries.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 72

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

64-bit Addressing

+ 16TB/16EB Address space, 128GB System PTEs

» 64-bit addressing extends PAE:
— Page sizes are 4K, 2M, or 1G(!)
— 4 Levels:
* PDPE - from 2 bits to 9
* New Level 4 table — also 9 bits

» Actual addresses are currently 48 bits:

— Addresses: User mode: 0-7FFFFFFFFFFF
Kernel mode: FFFF80000000-FFFFFFFFFFFFFFFF

(leaving a “hole” in the middle due to sign-extension)

From http://support.microsoft.com/kb/294418:

Limitation On 32-bits On 64-bits
VM 4GB 16TB
PTEs 660MB 128GB
Cache 1GB 1TB
Paged Pool 470MB 128GB
Non Paged Pool 256MB 128GB

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 73

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

Memory Management APIs

» The Kernel offers two memory management APIs:

— High level allocation, using “Pools”
* No Physical/Virtual mess.
+ Limited types of memory, pre-allocated and managed by system

— Direct allocation — using “Memory Descriptor Lists”
+ Finer, low-level control of pages
* More complicated

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 74

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

Memory Operations

* Windows Defines several “Pools” of memory for allocations:

— Non Paged Pools: Memory pages are always resident. Small.

— Paged Pools: Larger pool, but pages may be swapped out.

* Memory allocated from pools, and may be “tagged”

PVOID ExAllocatePoolWithTag (IN POOL_TYPE PoolType,
IN SIZE T NumberOfBytes,
IN ULONG AscII7BitTaq) ;

VOID ExFreePool (IN PVOID pPool) ;
VOID ExFreePoolWithTag (IN PVOID pPool, IN UNLONG AscII7BitTag) ;

The Kernel stack is extremely limited: 12K in size. Therefore, most allocation of memory is done
explicitly, from one of two “Pools” of memory.

ExAllocatePoolWithTag() is the Windows Kernel version of Linux’s kmalloc(). It is very much like
any other malloc() — in that the Number of Bytes is specified (second parameter), and a void
pointer is returned. There are a couple of subtle differences, however:

» The Number Of Bytes should be very close to a multiple of the page size. Otherwise, the
request is rounded up to the nearest multiple. Windows does not have a slab allocator like
Linux for allocations of under a single page.

» Memory may be “tagged” by up to four 7-bit ASCII characters (hence the parameter is
defined as a ULONG).. This is useful for debugging only, and has no effect on the
memory. In fact, you can just call ExAllocatePool() , which tags the last argument as
“656E6F4E” (None). Microsoft keeps track of all its drivers’ pools in a file called
“pooltag.txt”. WinDBG can use this file when analyzing Kernel dumps.

« Last, but most important, the POOL_TYPE parameter is an enum, containing several
values — of which the following are usable by drivers:

Pool Type Purpose

NonPagedPool Memory that is always resident and never paged out.
Always accessible — but considered scarce. Call may fail .

NonPagedPoolMustSucceed | As NonPaged, but if call fails system blue screens with
code 0x41.

PagedPool Normal system memory — not guaranteed to be accessible.
May trigger a pagefault. Must be running at a lower priority

than dispatcher to access this memory.
(C) 2009 JL@HisOwn.com - Feel free to use, replicate _, but please don't modify. Questions/Comments welco mqg]!

(C) 2009 JL@HisOwn.com 75

Lecture Notes on Windows Kernel Programming

Memory Management

Values in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management -

“NonPagedPoolSize” and “PagedPoolSize” control the size of the pools. At any rate, the
NonPaged may not exceed 256MB, and the PagedPool - ~492MB (2000/XP) or 650MB (2003).

Windows Vista and beyond have dynamic

Experiment:

pool sizes.

You can see the two pools by opening up Performance Monitor, and selecting the counters under

“Memory”. You'll have to play with the scal

e and graph minimum/maximum settings for best

visibility. Then, press ALT-TAB every once in a while to switch between applications, noting what

happens.

Add Counters

(™ Use local computer counters
(@ Select countars from computer;

Explain Text - WEVOLVED\Memory\Pool Paged Bytes m

Pool Paged Bytes is the size, in bytes. ofthe paged pool, an area of system -
memaory (physical memony used by the operating system) for objects that can

bie written to disk when they are nat being used. MemonAiPool Paged Bytes is
calculated differently than Process\Pool Paged Bytes. so it might not egual
ProcessiiPool Paged Bytesh,_Tatal. This counter displays the last obsenved j

[WEVOLVED =]
Performance ghject
IMemDry ﬂ
(" All counters) Alllinstances
@ Select counters from list (8 Selectihetances fimm)lish

Pool Nonpaged Bytes
Pool Paged Allocs
Pool Paged Bytes —

Pool Paged Resident Bytes
Swstem Carhe Resident F‘\ﬁns _lﬂ
1 »

add [Epan |

Close |

Explain Text - WEVYOLVED\MemoryiPool Nonpaged Bytes m

Fool Monpaged Bytes is the size, in kbvtes, ofthe nonpaged poal, an area of -
aystern memory (physical memory used by the operating system) for objects

that cannot be written to disk, but must remain in physical memary as lang as

theny are allacated. MemonAiPool Nonpaged Bytes is calculated differently

than Processy\Pool Monpaged Bytes, so it might not equal FrocessPaoal j

';_: Performance
i Fle Adion View Fmvortes Window Help == x|
= B@E &

3 Canscle ool M EElE EEEEEEEEE

S4E00000

S4400000

SHH00000

SE000000

eI

SO0

Lixst

S3067TTE Awerege SH51433 Minimum 520932608 MWecdmum 53276672 Duration 1:40

Color | Scale Counter Insta.. | Par.. ... | Computer

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com

76

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

Debugging Pool Allocations

» Debugger Commands:
— lpool [Address [flags]] — Display pool headers for Address
Flags Ox1 — Contents 0x2 — This pool only

— Ipoolused’ [flags [Tag]] — Display pool allocation by Pool Tag
Flags: Ox1 — verbose 0x2 — Sort NonPaged 0x4 Sort Paged 0x8: Session

— lpoolfind Tag [PoolType] — Find pages matching Pool Tag
Pooltype: 0: NonPaged 1: PagedPool 2: Special 4: Session

+ OSR'’s PoolTag: www.osronline.com/article.cfm?article=98

* Requires GFlags Pool Tagging on XP and earlier

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 77

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

Memory Descriptor Lists

* MDLs show the physical representation of virtual buffers
— Contiguous in Virtual Address, may be fragmented physically

MDL Header
Page Array

Virtual Memory

MDL

Physical Memory

» Structure is documented, but should be treated as opaque
— Structure defines the header only. Pages are in adjacent array
— All manipulation of MDL should be through Mm functions/macros

The Windows Kernel maintains and manages its virtual memory by using “Memory Descriptor

Lists " or MDLs. An MDL is a descriptor of a single, virtually contiguous buffer of virtual memory,
and its mapping to physical memory pages.

By “virtually contiguous” we mean that, even though the buffer can be treated as a single
contiguous range of addresses, this range may be spread over non-contiguous pages in physical
memory. Conceptually, this means an MDL might look something like the illustration above. The
MDL contains the mapping from the virtual pages to the locked-in-memory physical pages.

The pages are in an array that immediately follows the MDL in memory. |.e. to access them, one
can simply increment the MDL header pointer, and cast to a PPFN_NUMBER. This can be done
“quick and dirty” in code, but the recommended way is to call MmGetMdIPfnArray() .

/* Quick and dirty, as per DDK header file */
PPFN_NUMBER Pages = (PPFN_NUMBER) (Mdl + 1);

/* Recommended way, preserving opacity */
PPFN_NUMBER pPageDesc = MmGetMdIPfnArray(pMdl);

The structure is listed in the WinDDK header files. But here, too, are macros used in the interest
of opacity.The definition below, annotated, shows the fields and their macros:

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 78

Lecture Notes on Windows Kernel Programming Memory Management

typedef struct _MDL {

struct _MDL *Next;

CSHORT Size;

CSHORT MdIFlags;

struct _EPROCESS *Process; /* Owning process of thi
PVOID MappedSystemVa,;

PVOID StartVa; /* Beginning of Buffer — use MmGet
ULONG ByteCount; /* sizeof buffer — use MmGetMdIByt
ULONG ByteOffset; /* First address in buffer — use M

s MDL */

MdIVirtualAddress */
eCount */
mGetMdIByteOffset */

} MDL, *PMDL;

[* Pages immediately follow this header — use MmGetM diPfnArray here.. */

The virtual memory buffer may or may not be aligned on
a page boundary. Further, it may span any number of

pages, and not necessarily fill its last page. The MDL Next

thus contains two properties, shown in the structure

above: ByteCount (accessible by Size MdIFlags
MmGetMdIByteCount()) — which is the size of the O
buffer, and ByteOffset (accessible by

MmGetMdIByteOffset()), which is the offset of the MappedSystemVa
buffer start from the first page boundary. In a sense, the Startva
virtual address this MDL describes can be though of as

StartVa | ByteOffset, since StartVa is guaranteed to be a ByteCount
20-bit address — as it is the address of a page, and

ByteOffset is necessarily inside a page, thus under the ByteOffset

size of one, which — if you recall — is 4KB on intel
architectures, and thus in the least significant 20 bits.

A ByteOffset of 0 means the address is aligned on a page boundary. Similarly, a ByteCount divisible by
4KB means that the buffer spans an integer multiple of whole pages. Since more often than not, however,
that is not the case, the ADDRESS_AND_SIZE_TO_SPAN_PAGES macro can be used to calculate the
number of the entries in the array.This macro takes two arguments (surprisingly enough, the address and
size):

ULONG ADDRESS_AND_SIZE_TO_SPAN_PAGES (IN PVOIDVa,
IN ULONG Size);

And returns a ULONG which is the size of the array. So using it on a particular MDL would look like so:

arraySize = ADDRESS_AND_SIZE_TO_SPAN_PAGES (MmGetMdlVirtualAddress(pMdl),
MmGetMdIByteCount(pMdl));

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 79

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

Working with MDLs

|. Creating MDLs
* Create an MDL with:

PMDL IoAllocateMdl (IN PVOID VirtualAddress,
IN ULONG Length,
IN BOOLEAN SecondaryBuffer,
IN BOOLEAN ChargeQuota,
IN OUT PIRP Irp OPTIONAL) ;

* An MDL may be reused:

VOID MmInitializeMdl (IN PMDL MemoryDescriptorList,
IN PVOID BaseVa,
IN SIZE T Length);

 And, eventually, freed: |VvoID IoFreeMdl (IN PMDL Mdl);

MDLs may be allocated by calling loAllocateMdI() . This function (exported by the I/O Manager) is
the preferred way of creating a new MDL (the other, deprecated way being MmCreateMdI()). The
MDL is allocated from non-paged memory (since it, itself, describes paged memory and therefore
cannot be paged). The function takes the following arguments:

PMDL | oAl | ocat eMll (IN PVOID VirtualAddress , I* start addr of buffer */
IN ULONG Length , /* Length of buffer */
IN BOOLEAN SecondaryBuffer ,/* for IRPs, else FALSE */
IN BOOLEAN ChargeQuota , /* charge user memory quota? */
IN OUT PIRP Irp OPTIONAL); /* IRP to assoc. MDL with */

The first two parameters are straightforward: VirtualAddress and Length initialize the MDL's StartVa
and ByteCount fields, respectively. The fourth parameter, ChargeQuota, is used to charge the MDL
virtual memory to the owning process/thread’s quota allowance.

The third parameter, SecondaryBuffer, only has meaning if the fifth parameter (Irp) is not null. If this
MDL is associated with an I/O Request Packet (IRP), it may be a primary buffer, or (one of
potentially several) secondary buffers. Every IRP has a list of MDLs, and the I/O manager adds the
MDL to the IRP’s list — at the head of the list (for a primary buffer) or at its tail (for a secondary).

Even though the MDL typedef only accounts for the header, recall that the actual structure allocated
in memory is comprised of the header and the list of physical pages, that follows it. This means that
the actual memory allocation by the I/O manager accounts for that, satisfying the following formula:

(sizeof(MDL) + sizeof(PFN_NUMBER) *ADDRESS_AND_SIZE_TO_SPAN_PAGES(BaseVa, Length))

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 80

Lecture Notes on Windows Kernel Programming Memory Management

That is, the size of the MDL header, plus the size of the page lists that follow. In the interest of
opacity, the function MmSizeOfMdl() can be used to perform this calculation, and will return the
size of the MDL required to hold the address.

ULONGMSi zeOf Mil (IN PVOID Base,
IN SIZE_T Length);

We can now attempt to construct the pseudo code for loAllocateMdl():

PMDL | oAl | ocat eMdl (IN PVOID VirtualAddress , [* start addr of buffer */
IN ULONG Length , /* Length of buffer */
IN BOOLEAN SecondaryBuffer ,/* for IRPs, else FALSE */
IN BOOLEAN ChargeQuota , /*charge user memory quota? */
IN OUT PIRP Irp OPTIONAL); /* IRP to assoc. MDL with */
{
ULONG sizeAllocated = MSi zeOf Ml (VirtualAddress, Length);
PMDL returned = (PMDL) ExAl | ocat ePool Wt hTag(NonPagedPool,
sizeAllocated,
“Tag”);
/* Initialize fields */
returned->Size = sizeAllocated;
returned->StartVa = VirtualAddress & OxFFFFFOQO;
returned->ByteOffset = VirtualAddress & 0xO0000FFF;
returned->ByteCount = Length;
returned->Process = PsGet Curr ent Process();
if (ChargeQuota)
{
/* Charge Length bytes to process quota */
}
if (Irp)
{
if (SecondaryBuffer)
/* Add to end of MDL list */
PMDL listMDL = Irp->MdIAddress;
while (listMDL->Next) { listMDL = listMDL->Next); }
listMDL->Next = returned;
}
else
/* Add at head */
Irp->MdIAddress = returned,;
}
}
return (returned);
}

Of course, MDLs must be freed using the inverse function, loFreeMdI() . Instead of freeing MDLs
and allocating new ones, however, it often makes sense to reuse the existing MDLs and just
reinitialize their page lists. This can be done by calling MminitializeMdl() with new values for
VirtualAddress and Length.

Note: If an MDL is reused, by calling MminitializeMdl, special care must be taken to ensure that the size
of the buffer pomted to also accounts for the phyS|caI page table! Remember to venfy W|th MmS|zeOfMdI()

(C) 2009 JL@HisOwn.com 81

Lecture Notes on Windows Kernel Programming Memory Management

Memory Management

Working with MDLs

. Allocating Pages

For non paged memory:

VOID MmBuildMdlForNonPagedPool (IN OUT PMDL pMDL) ;

For pageable memory:

VOID MmProbeAndLockPages (IN OUT PMDL pMDL,
IN KPROCESSOR MODE AccessMode,
IN LOCK OPERATION Operation) ;

» Function may throw exception
+ Caller must remember to MmUnlockPages()

Map into Kernel Space:

PVOID MmGetSystemAddressForMdlSafe (IN PMDL pMDL,
IN MM PAGE PRIORITY Priority) ;

MDLs may describe memory originally allocated from either pool: Paged or Non-Paged. To work
with the MDLs, they must be initialized by one of two functions:

« MmBuildMdIForNonPagedPool() : which takes the MDL and initializes it with the
appropriate flags corresponding to Non Paged Pool values.

« MmProbeAndLockPages() : which attempts to lock the pages described by the MDL, so
they may be safely used, if they are from the Paged Pool.

Special care must be taken when locking pages, as a lock is an inherently risky operation — when
a driver locks a given MDL'’s pages, with MmProbeAndLockPages() , it must be aware of two
major caveats:

« A page fault may be triggered (since MmProbeAndLock() calls ProbeFor..) which, in
turn, may throw the exception. As such, calls to this function must be made within a
__try/__catch block

* The caller must remember to also unlock the pages, i.e. call MmUnlockPages() when
done. The calls must match exactly 1:1, however: Forgetting to call MmUnlockPages()
will result in a DRIVER_LEFT_PAGES_IN_MEMORY bugcheck, whereas calling it one
time too many will corrupt the system Page Frame Number Database (PFN Database),
resulting in a PFN_LIST_CORRUPT bugCheck.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

(C) 2009 JL@HisOwn.com 82

Lecture Notes on Windows Kernel Programming - Excerpt

...If you liked this course, consider...

Networking Protocols — OSI Layers 2-4:
Focusing on - Ethernet, Wi-Fi, IPv4, IPv6, TCP, UDP and SCTP

Application Protocols — OSI Layers 5-7:
Including - DNS, FTP, SMTP, IMAP/POP3, HTTP and SSL

Networking:
VoIP:
In depth discussion of H.323, SCCP, SIP and RTP/RTCP, down to the [meket
Windows Networking Internals:
NetBIOS/SMB, CIFS, DCE/RPC, Kerberos, NTLM, and networlanchitecture
Linux Survival and Basic Skills:
Graceful introduction into the wonderful world of Linux for the non-commamg driented user. Basic
skills and commands, work in shells, redirection, pipes, fidladsscripting
Linux Administration:
Follow up to the Basic course, focusing on advanced subjects suchi admggstration, software
Linux : management, network service control, performance monitoring and tuning
Linux User Mode Programming:
Programming POSIX and UNIX APIs in Linux, including processeggils, IPC mechanisms and
networking. Linux User experience required.
Linux Kernel Programming:
Guided tour of the Linux Kernel, 2.4 and 2.6, focusing on design, archéeetriting device drivers
(character, block), performance and network devices
Embedded Linux Kernel Programming:
Similar to the Linux Kernel programming course, but with a stranghasis on development on non-
intel and/or tightly constrained embedded platforms
Windows Programming:
Windows Application Development, focusing on Processes, Threads,, Mdmsory Management,
) and Winsock
Windows:

Windows Kernel Programming (this course):

Windows Kernel Architecture and Device Driver development — focush Network Device Drivers
(in particular, NDIS) and the Windows Driver Model. Updated toudelNDIS 6 and Winsock Kernel

Cryptography:

From Basics to implementations in 5 days: foundations, Symmdgarithms, Asymmetric
Algorithms, Hashes, and protocols. Design, Logic and implementation

Security: Application Security

Writing secure code — Dealing with Buffer Overflows, Codel. $Qd command
Injection, and other bugs... before they become vulnerabilities thatisackn exploit.

(C) 2009 JL@HisOwn.com - Feel free to use, replicate , but please don't modify. Questions/Comments welco me!

258

