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Chapter 1

Introduction

This work is a tentative to bring the attention of statisticians the parallel work
that has been done by neural network researchers in the area of data analysis.

In this area of application (data analysis) it is important to show that most
neural network models are similar or identical to popular statistical techniques
such as generalized linear models, classification, cluster, projection ..., generalized
additive models, principal components, factor analysis etc. On the other hand,
neural networks algorithms implementations are inefficient because:

1. They are based on biological or engineering criteria such as how easy is to
fit a net on a chip rather than on well-established statistical or optimization
criteria;

2. Neural networks are designed to be implemented on massively parallel com-
puters such as PC. On a serial computer, standard statistical optimization
criteria usually will be more efficient to neural networks implementation.

In an computational process we have the following hierarchical framework.
The top of the hierarchy is the computational level. This attempts to answer the
questions - what is being computed and why? The next level is the algorithm,
which describes how the computation is being carried out, and finally there is
the implementation level, which gives the details and steps of the facilities of the
algorithm.

Research in neural networks involve different group of scientists in neuro-
sciences, psychology, engineering, computer science and mathematics. All these
groups are asking different questions: neuro-scientists and psychologists want to
know how animal brain works, engineers and computer scientists want to build in-
telligent machines and mathematicians want to understand the fundamentals prop-
erties of networks as complex systems.
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CHAPTER 1. INTRODUCTION 2

Mathematical research in neural networks is not specially concerned with
statistics but mostly with non-linear dynamics, geometry, probability and other
areas of mathematics. On the other hand, neural network research can stimulate
statistics not only by pointing to new applications but also providing it with new
type of non-linear modeling. We believe that neural network will become one
of the standard technique in applied statistics because of its inspiration, but also
statisticians have a range of problems in which they can contribute in the neural
network research.

Therefore, in this work we will concentrate on the top of the hierarchy of the
computational process, that is what is being done and why, and also how the neural
network models and statistical models are related to tackle the data analysis real
problem.

The book is organized as follows: some basics on artificial neural networks
(ANN) is presented in Chapters 2 and 3. Multivariate statistical topics are pre-
sented in Chapter 4. Chapter 5 deals with parametric and nonparametric regres-
sion models and Chapter 6 deals with inference results, survival analysis, control
charts and time series. The references and the bibliography is referred to sections
of the chapters. To be fair authors which inspired some of our developments, we
have included them in the bibliography, even if they were not explicitly mentioned
in the text. The first author is grateful to CAPES, an Agency of the Brazilian Min-
istry of Education for a onde year support grant to visit Penn State University and
to UFRJ for a leave of absence.



Chapter 2

Fundamental Concepts on Neural
Networks

2.1 Artificial Intelligence: Symbolist & Connection-
ist

Here we comment on the connection of neural network and artificial intelli-
gence. We can think of artificial intelligence as intelligence behavior embodied in
human-made machines. The concept of what is intelligence is outside the scope of
this guide. It comprises the following components: learning, reasoning, problem-
solving, perception and language understanding.

From the early days of computing, there have existed two different approaches
to the problem of developing machines that might embody such behavior. One
of these tries to capture knowledge as a set of irreducible semantic objects or
symbols and to manipulate these according to a set of formal rules. The rules taken
together form a recipe or algorithm for processing the symbols. This approach is
the symbolic paradigm, which can be described as consisting of three phrases:

- choice of an intelligent activity to study;

- development of a logic-symbolic structure able to imitate (such as “if condition
1 and condition 2... then result”;)

- compare the efficiency of this structure with the real intelligent activity.

Note that the symbolic artificial intelligence is more concern in imitate intel-
ligence and not in explaining it. Concurrent with this, has been another line of
research, which has used machines whose architecture is loosely based on the hu-
man brain. These artificial neural networks are supposed to learn from examples

3



CHAPTER 2. FUNDAMENTAL CONCEPTS ON NEURAL NETWORKS 4

and their “knowledge” is stored in representations that are distributed across of a
set of weights.

The connectionist, or neural network approach, starts from the premise that
intuitive knowledge cannot be captured in a set of formalized rules. It postulated
that the physical structure of the brain is fundamental to emulate the brain func-
tion and the understanding of the mind. For the connectionists, the mental process
comes as the aggregate result of the behavior of a great number of simple com-
putational connected elements (neurons) that exchange signals of cooperation and
competition.

The form how these elements are interconnected are fundamental for the re-
sulting mental process, and this fact is that named this approach connectionist.

Some features of this approach are as follows:

- information processing is not centralized and sequential but parallel and spa-
cially distributed;

- information is stored in the connections and adapted as new information arrives;

- it is robust to failure of some of its computational elements.

2.2 The brain and neural networks
The research work on artificial neural networks has been inspired by our knowl-

edge of biological nervous system, in particular the brain. The brain has features,
we will not be concerned with large scales features such as brain lobes, neither
with lower levels of descriptions than nerve cell, call neurons. Neurons have ir-
regular forms, as illustrated in Figure 2.1.

The cell body (the central region) is called neuron. We will focus on morpho-
logical characteristic which allow the neuron to function as an information pro-
cessing device. This characteristic lies in the set of fibers that emanate from the
cell body. One of these fibers - the axon - is responsible for transmitting informa-
tion to other neurons. All other are dendrites, when carry information transmitted
from other neurons. Dendrites are surrounded by the synaptic bouton of other
neurons, as in Figure 1c. Neurons are highly interconnected. Physical details are
given in Table 1 where we can see that brain is a very complicated system, and a
true model of the brain would be very complicated. Building such a model is the
task that scientists faces. Statisticians as engineers on the contrary, use simplified
models that they can actually build and manipulate usefully. As statisticians we
will take the view that brain models are used as inspiration to building artificial
neural networks as the wings of a bird were the inspiration for the wings of an
airplane.
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Dendrites

Axon

Axon branches

(a) Neurons

Synaptic
bouton

Axon Branch

(b) Sypatic bouton or synapse

Dendrite

Axon
branch

Synaptic
bouton

(c) Synaptic bouton making contact with a dendrite

Synapse

(d) Transmitters and receptor
in the synapse and dendrites

Figure 2.1: Neural network elements
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Table 2.1: Some physical characteristics of the brain

Number of neurons 100 billion

Number of synapses/neurons 1000

Total number of synapses 100000 billion
(Number of processors of a computer) (100 millions)

Operation 100
(Processing speed in a computer) (1 billion)

Number of operations 10000 trillion/s

Human brain volume 300 cm3

Dendrite length of a neuron 1 cm

Firing length of an axon 10 cm

Brain weight 1.5kg

Neuron weight 1.2× 10−9g

Synapse Excitatory and Inhibitory

2.3 Artificial Neural Networks and Diagrams
An artificial neuron can be identified by three basic elements.

• A set of synapses, each characterized by a weight, that when positive means
that the synapse is excitated and when negative is inhibitory. A signal xj in
the input of synapse j connected to the neuron k is multiplied by a synaptic
weight wjk.

• Summation - to sum the input signs, weighted by respective synapses (weights).

• Activation function - restrict the amplitude of the neuron output.

The Figure 2.2 presents the model of an artificial neuron:
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Figure 2.2: Model of an artificial neuron

Models will be displayed as networks diagrams. Neurons are represented by
circles and boxes, while the connections between neurons are shown as arrows:

• Circles represent observed variables, with the name shown inside the circle.

• Boxes represent values computed as a function of one or more arguments. The
symbol inside the box indicates the type of function.

• Arrows indicate that the source of the arrow is an argument of the function
computed at the destination of the arrow. Each arrow usually has a weight
or parameter to be estimated.

• A thick line indicates that the values at each end are to be fitted by same crite-
rion such as least squares, maximum likelihood etc.

• An artificial neural network is formed by several artificial neurons, which are
inspired in biological neurons.

• Each artificial neuron is constituted by one or more inputs and one output.
These inputs can be outputs (or not) of other neurons and the output can
be the input to other neurons. The inputs are multiplied by weights and
summed with one constant; this total then goes through the activation func-
tion. This function has the objective of activate or inhibit the next neuron.

• Mathematically, we describe the kth neuron with the following form:

uk =

p∑
j=1

wkjxj and yk = ϕ(uk − wk0), (2.3.1)
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where x0, x1, . . . , xp are the inputs; wk1, . . . , wkp are the synaptic weights;
uk is the output of the linear combination; wk0 is the bias; ϕ(·) is the activa-
tion function and yk is the neuron output.

The first layer of an artificial neural network, called input layer, is constituted
by the inputs xp and the last layer is the output layer. The intermediary layers are
called hidden layers.

The number of layers and the quantity of neurons in each one of them is de-
termined by the nature of the problem.

A vector of values presented once to all the output units of an artificial neural
network is called case, example, pattern, sample, etc.

2.4 Activation Functions
An activation function for a neuron can be of several types. The most com-

mons are presented in Figure 2.3:

y = ϕ(x) = x

0

f( )x

x

a) Identity function (ramp)

Figure 2.3: Activation functions: graphs and ANN representation
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y = ϕ(x) =

{
1 x ≥ b

−1 x < b

0 X

F( )x

b

b) Step or threshold function

y = ϕ(x) =





1 x ≥ 1/2

z −1/2 ≤ x <
1
2

0 x ≤ −1
2

0
X

F( )x

½-½

c) Piecewise-linear function

y = ϕ1(x) =
1

1 + exp(−ax)

0
X

F( )x

a increasing

d) Logistic (sigmoid)

Figure 2.3: Activation functions: graphs and ANN representation (cont.)
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y = ϕ2(x) = 2ϕ1(x)− 1

=
1− exp(−ax)
1 + exp(−ax)

x

F( )x

1

-1

e) Symmetrical sigmoid

y = ϕ3(x) = tang
(x

2

)
= ϕ2(x)

f) Hyperbolic tangent function

i. Normal ϕ(x) = Φ(x)

ii. Wavelet ϕ(x) = Ψ(x)

g) Radial Basis (some examples)

Figure 2.3: Activation functions: graphs and ANN representation (cont.)
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h) Wavelet Transform

ϕ(x) =
∑∑

2j/2Ψ
(
2jx− k

)

Figure 2.3: Activation functions: graphs and ANN representation (cont.)

The derivatives of the identity function is 1. The derivative of the step function
is not defined, which is why it is not used.

The nice feature of the sigmoids is that they are easy to compute. The deriva-
tive of the logistic is ϕ1(x)(1− ϕ1(x)).

For the hyperbolic tangent the derivative is

1− ϕ2
3(x). (2.4.1)

2.5 Network Architectures
Architecture refers to the manner in which neurons in a neural network are

organized. There are three different classes of network architectures.

1. Single-Layer Feedforward Networks

In a layered neural network the neurons are organized in layers. One input
layer of source nodes projects onto an output layer of neurons, but not vice-
versa. This network is strictly of a feedforward type.

2. Multilayer Feedforward Networks
These are networks with one or more hidden layers. Neurons in each of the
layer have as their inputs the output of the neurons of preceding layer only.

This type of architecture covers most of the statistical applications

The neural network is said to be fully connected if every neuron in each
layer is connected to each node in the adjacent forward layer, otherwise it
is partially connected.

3. Recurrent Network
Is a network where at least one neuron connects with one neuron of the
preceding layer and creating a feedback loop.

This type of architecture is mostly used in optimization problems.
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Figure 2.4: Single-layer network

Figure 2.5: Multilayer network
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Figure 2.6: Recurrent network

2.6 Network Training
The training of the network consists of adjusting the synapses or weight with

the objective of optimizing the performance of the network. From a statistical
point of view, the training corresponds to estimating the parameters of the model
given a set of data and an estimation criteria.

The training can be as follows:

• learning with a teacher or supervised learning: is the case in which to each
input vector the output is known, so we can modify the network synaptic
weights in an orderly way to achieve the desired objective;

• learning without a teacher: this case is subdivided into self-organized (or un-
supervised) and reinforced learning. In both cases, we do not have the out-
put, which corresponds to each input vector. Unsupervised training corre-
sponds, for example, to the statistical methods of cluster analysis and princi-
pal components. Reinforced learning training corresponds to, for example,
the credit-assign problem. It is the problem of assigning a credit or a blame
for overall outcomes to each of the internal decisions made by a learning
machine. It occurs, for example, when the error is propagated back to the
neurons in the hidden layer of a feedforward network of section ??.
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2.7 Kolmogorov Theorem
Most conventional multivariate data analysis procedures can be modeled as a

mapping

f : A → B

where A and B are finite sets. Consider the following examples (Murtagh, 1994):

(i) B is a set of discrete categories, and A a set of m-dimensional vectors charac-
terizing n observations. The mapping f is a clustering function and choos-
ing the appropriate f is the domain of cluster analysis.

(ii) In dimensionality-reduction technique (PCA, FA, etc.), B is a space contain-
ing n points, which has lower dimension than A. In these cases, the problem
of the data analyst is to find the mapping f , without precise knowledge of
B.

(iii) When precise knowledge of B is available, B has lower dimension than A,
and f is to be determined, includes the methods under the names discrimi-
nation analysis and regression.

Most of the neural network algorithm can also be described as method to de-
termine a nonlinear f , where f : A → B where A is a set of n, m-dimensional
descriptive vectors and where some members of B are known a priori. Also,
some of the most common neural networks are said to perform similar tasks of
statistical methods. For example, multilayer perception and regression analysis,
Kohonen network and multidimensional scaling, ART network (Adaptive Reso-
nance Theory) and cluster analysis.

Therefore the determination of f is of utmost importance and made possible
due to a theorem of Andrei Kolmogorov about representation and approximation
of continuous functions, whose history and development we present shortly.

In 1900, Professor David Hilbert at the International Congress of Mathemati-
cians in Paris, formulated 23 problems from the discussion of which “advance-
ments of science may be expected”. Some of these problems have been related to
applications, where insights into the existence, but not the construction, of solu-
tions to problems have been deduced.

The thirteenth problem of Hilbert is having some impact in the area of neural
networks, since its solution in 1957 by Kolmogorov. A modern variant of Kol-
mogorov’s Theorem is given in Rojas (1996, p.265)( or Bose and Liang (1996,
p.158).
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Theorem 1. (Kolmogorov Theorem): “Any continuous function f(x1, x2, . . . , xm)
on n variables x1, x2, . . . , xm on In = [0, 1]m can be represent in the form

f(x1, . . . , xm) =
2m+1∑
q=1

g

(
m∑

p=1

λphq(xp)

)

where g and hq, for q = 1, . . . , 2m + 1 are functions of one variable and λp for
p = 1, . . . , m are constants, and the gq functions do not depend on f(x1, . . . , xm).

Kolmogorov Theorem states an exact representation for a continuous function,
but does not indicate how to obtain those functions. However if we want to ap-
proximate a function, we do not demand exact reproducibility but only a bounded
approximate error. This is the approach taken in neural network.

From Kolmogorov’s work, several authors have improved the representation
to allow Sigmoids, Fourier, Radial Basis, Wavelets functions to be used in the
approximation.

Some of the adaptations of Kolmogorov to neural networks are (Mitchell,
1997, p.105):

• Boolean functions. Every boolean function can be represented exactly by
some network with two layers of units, although the number of hidden units
required grows exponentially in the worst case with the number of network
inputs.

• Continuous functions. Every bounded continuous function can be approxi-
mated with arbitrary small error by a network with two layers. The result
in this case applies to networks that use sigmoid activation at the hidden
layer and (unthresholded) linear activation at the output layer. The number
of hidden units required depends on the function to be approximated.

• Arbitrary functions. Any function can be approximated to arbitrary accuracy
by a network with three layers of units. Again, the output layer uses linear
activation, the two hidden layers use sigmoid activation, and the number
of units required in each hidden layer also depends on the function to be
approximated.

2.8 Model Choice
We have seen that the data analyst’s interest is to find or learn a function f

from A to B. In some cases (dimension reduction, cluster analysis), we don’t
have precise knowledge of B and the term “unsupervised” learning is used. On
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the other hand, the term “supervised” is often applied to the situation where f is
to be determined, but where some knowledge of B is available (e.g. discriminant
and regression analysis).

In the case of supervised learning the algorithm to be used in the determination
of f embraces the phases: learning, where the mapping f is determined using the
training set, B′ ⊂ B; testing of how well f performs using a test set B′′ ⊂ B,
B′′ not identical to B′; and an application. The testing and application phases are
termed generalization.

In a multilayer network, Kolmogorov’s results provide guidelines for the num-
ber of layers to be used. However, some problems may be easier to solve using
two hidden layers. The number of units in each hidden layer and (the number)
of training interactions to estimate the weights of the network have also to be
specified. In this section, we will address each of these problems.

2.8.1 Generalization
By generalization we mean that the input-output mapping computed by the

network is correct for a test data never used. It is assumed that the training is a
representative sample from the environment where the network will be applied.

Given a large network, it is possible that loading data into the network it may
end up memorizing the training data and finding a characteristic (noise, for exam-
ple) that is presented in the training data but not true in the underline function that
is to be modelled.

The training of a neural network may be view as a curve fitting problem and if
we keep improving our fitting, we end up with a very good fit only for the training
data and the neural network will not be able to generalize (interpolate or predict
other sample values).

2.8.2 Bias-variance trade-off: Early stopping method of train-
ing

Consider the two functions in Figure 2.7 obtained from two training of a net-
work.

The data was generated from function h(x), and the data from

y(x) = h(x) + ε. (2.8.1)

The training data are shown as circles (◦) and the new data by (+). The dashed
represents a simple model that does not do a good job in fitting the new data. We
say that the model has a bias. The full line represents a more complex model



CHAPTER 2. FUNDAMENTAL CONCEPTS ON NEURAL NETWORKS 17

Figure 2.7: Network fits: - high variance , . . . high bias

which does an excellent job in fitting the data, as the error is close to zero. How-
ever it would not do a good job for predicting the values of the test data (or new
values). We say that the model has high variance. We say in this case that the
network has memorize the data or is overfitting the data.

A simple procedure to avoid overfitting is to divide the training data in two
sets: estimation set and validation set. Every now and then, stop training and
test the network performance in the validation set, with no weight update during
this test. Network performance in the training sample will improve as long as the
network is learning the underlying structure of the data (that is h(s)). Once the
network stops learning things that are expected to be true of any data sample and
learns things that are true only of the training data (that is ε), performance on the
validation set will stop improving and will get worse.

Figure 2.8 shows the errors on the training and validation sets. To stop over-
fitting we stop training at epoch E0.

Haykin (1999, p.215) suggest to take 80% of the training set for estimation
and 20% for validation.
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Figure 2.8: Model choice: training x validation

2.8.3 Choice of structure
A large number of layers and neurons reduce bias but at the same time increase

variance. In practice it is usual to try several types of neural networks and to use
cross-validation on the behavior in a test data, to choose the simplest network with
a good fit.

We may achieve this objective in one of two ways.

• Network growing

• Network pruning

2.8.4 Network growing
One possible policy for the choice of the number of layers in a multilayer

network is to consider a nested sequence of networks of increasing sequence as
suggest by Haykin (1999, p.215).

• p networks with a single layer of increasing size h′1 < h′2 < . . . < h′p.

• g networks with two hidden layers: the first layer of size hp and the second
layer is of increasing size h′′1 < h′′2 < . . . < h′′g .

The cross-validation approach similar to the early stopping method previously
presented can be used for the choice of the numbers of layers and also of neurons.
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2.8.5 Network pruning
In designing a multilayer perception, we are building a nonlinear model of the

phenomenon responsible for the generation of the input-output examples used to
train the network. As in statistics, we need a measure of the fit between the model
(network) and the observed data.

Therefore the performance measure should include a criterion for selecting the
model structure (number of parameter of the network). Various identification or
selection criteria are described in the statistical literature. The names of Akaike,
Hannan, Rissanen, Schwartz are associated with these methods, which share a
common form of composition:

(
Model-Complexity

criteria

)
=

(
Performance

measure

)
+

(
Model-Complexity

penalty

)

The basic difference between the various criteria lies in the model-complexity
penalty term.

In the context of back-propagation learning or other supervised learning pro-
cedure the learning objective is to find a weight vector that minimizes the total
risk

R(W ) = Es(W ) + λEc(W ) (2.8.2)

where Es(W ) is a standard performance measure which depends on both the net-
work and the input data. In back-propagation learning it is usually defined as
mean-square error. Ec(W ) is a complexity penalty which depends on the model
alone.

The regularization parameter λ, which represents the relative importance of
the complexity term with respect to the performance measure. With λ = 0, the
network is completely determined by the training sample. When λ is large, it says
that the training sample is unreliable.

Note that this risk function, with the mean square error is closely related to
ridge regression in statistics and the work of Tikhonov on ill posed problems or
regularization theory (Orr, 1996, Haykin, 1999, p.219).

A complexity penalty used in neural networks is (Haykin, 1999, p.220)

E{w} =
∑

i

(wi/wo)
2

1 + (wi/wo)
2 (2.8.3)

where w0 is a preassigned parameter. Using this criteria, weight’s wi’s with small
values should be eliminated.
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Another approach to eliminate connections in the network, works directly in
the elimination of units and was proposed and applied by Park et al (1994). It
consists in applying PCA, principal components analysis as follows:

(i) initially train a network with an arbitrary large number P of hidden modes;

(ii) apply PCA to the covariance matrix of the outputs of the hidden layer;

(iii) choose the number of important components P ∗ (by one of the usual crite-
rion: eigenvalues greater than one, proportion of variance explained etc.);

(iv) if P ∗ < P , pick P ∗ nodes out of P by examining the correlation between
the hidden modes and the selected principal components.

Note that the resulting network will not always have the optimal number of units.
The network may improve its performance with few more units.

2.9 Terminology
Although many neural networks are similar to statistical models, a different

terminology has been developed in neurocomputing. Table 2.2 helps to translate
from the neural network language to statistics (cf Sarle, 1996). Some further glos-
sary list are given in the references for this section. Some are quite specialized
character: for the statistician, e.g.: Gurney (1997) for neuroscientists term, Addri-
ans and Zantinge (1996) for data mining terminology.

Table 2.2: Terminology

Neural Network Jargon Statistical Jargon
Generalizing from noisy data and as-
sessment of accuracy thereof

Statistical Inference

The set of all cases one wants to be able
to generalize to

Population

A function of the value in a population,
such as the mean or a globally optimal
synaptic weight

Parameter

Continued on next page
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Neural Network Jargon Statistical Jargon
A function of the values in a sample,
such as the mean or a learned synaptic
weight

Statistic

Neuron, neurocode, unit, node process-
ing element

A simple linear or nonlinear computing
element that accepts one or more inputs,
computes a function thereof, and may
direct the result to one or more other
neurons

Neural Networks A class of flexible nonlinear regression
and discriminant models, data reduction
models, and nonlinear dynamical sys-
tems consisting of an often large number
of neurons interconnected in often com-
plex ways and often organized in layers

Statistical methods Linear regression and discriminant
analysis, simulated annealing, random
search

Architecture Model

Training, Learning, Adaptation Estimation, Model fitting, Optimization

Classification Discriminant analysis

Mapping, Function approximation Regression

Supervised learning Regression, Discriminant analysis

Unsupervised learning,
Self-organization

Principal components, Cluster analysis,
Data reduction

Competitive learning Cluster analysis

Hebbian learning, Cottrell/ Munzo/ Zis-
per technique

Principal components

Training set Sample, Construction sample

Test set, Validation set Hold-out sample
Continued on next page
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Neural Network Jargon Statistical Jargon

Pattern, Vector, Example, Case Observation, Case

Binnary (0/1), Bivalent or Bipolar (-1/1) Binary, Dichotomous

Input Independent variables, Predictors, Re-
gressors, Explanatory variables, Carries

Output Predicted values

Forward propagation Prediction

Training values Dependent variables, Responses

Target values Observed values

Training par Observation containing both inputs and
target values

Shift register, (Tapped) (time) delay
(line), Input window

Lagged value

Errors Residuals

Noise Error term

Generalization Interpolation, Extrapolation, Prediction

Error bars Confidence intervals

Prediction Forecasting

Adaline (ADAptive LInear NEuron) Linear two-group discriminant analysis
(not a Fisher´s but generic)

(No-hidden-layer) perceptron Generalized linear model (GLIM)

Activation function, Signal function,
Transfer function

Inverse link function in GLIM

Softmax Multiple logistic function

Continued on next page
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Neural Network Jargon Statistical Jargon
Squashing function Bounded function with infinitive do-

main

Semilinear function Differentiable nondecreasing function

Phi-machine Linear model

Linear 1-hidden-layer perceptron Maximum redundant analysis, Principal
components of instrumental variables

1-hidden-layer perceptron Projection pursuit regression

Weights Synaptic weights (Regression coefficients, Parameter esti-
mates)

Bias Intercept

The difference between the expected
value of a statistic and the correspond-
ing true value (parameter)

Bias

OLS (Orthogonal least square) Forward stepwise regression

Probabilistic neural network Kernel discriminant analysis

General regression neural network Kernel regression

Topolically distributed enconding (Generalized) Additive model

Adaptive vector quantization Iterative algorithm of doubtful conver-
gence for K-means cluster analysis

Adaptive Resonance Theory 2nd Hartigan´s leader algorithm

Learning vector quantization A form of piecewise linear discrimi-
nant analysis using a preliminary cluster
analysis

Counterpropagation Regressogram based on k-means clus-
ters

Continued on next page
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Neural Network Jargon Statistical Jargon
Encoding, Autoassociation Dimensionality reduction (Independent

and dependent variables are the same)

Heteroassociation Regression, Discriminant analysis (In-
dependent and dependent variables are
different)

Epoch Iteration

Continuous training, Incremental train-
ing, On-line training, Instantaneous
training

Iteratively updating estimates one obser-
vation at time via difference equation, as
in stochastic approximation

Batch training, Off-line training Iteratively updating estimates after each
complete pass over the data as in most
nonlinear regression algorithms

Shortcuts, Jumpers, Bypass connec-
tions, direct linear feedthrough (direct
connections from input to output)

Main effects

Funcional links Iteration terms or transformations

Second-order network Quadratic regression, Response-surface
model

Higher-order networks Polynomial regression, linear model
with iteration terms

Instar, Outstar Iterative algorithms of doubtful conver-
gence for approximating an arithmetic
mean or centroid

Delta-rule, adaline rule, Widrow-Hoff
rule, LMS (Least Mean Square) rule

Iterative algorithm of doubtful conver-
gence for training a linear perceptron by
least squares, similar to stochastic ap-
proximation

Training by minimizing the median of
the squared errors

LMS (Least Median of Square)

Continued on next page
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Neural Network Jargon Statistical Jargon
Generalized delta rule Iterative algorithm of doubtful conver-

gence for training a non-linear percep-
tron by least squares, similar to stochas-
tic approximation

Backpropagation Computation of derivatives for a multi-
layer perceptron and various algorithms
(such as generalized delta rule) based
thereon

Weight decay, Regularization Shrinkage estimation, Ridge regression

Jitter Random noise added to the inputs to
smooth the estimates

Growing, Prunning, Brain damage, self-
structuring, ontogeny

Subset selection, Model selection, Pre-
test estimation

Optimal brain surgeon Wald test

LMS (Least Mean Squares) OLS (Ordinary Least Squares) (see also
”LMS rule” above)

Relative entropy, Cross entropy Kullback-Leibler divergence

Evidence framework Empirical Bayes estimation

2.10 Mcculloch-pitt Neuron
The McCulloch-Pitt neuron is a computational unit of binary threshold, also

called Linear Threshold Unit (LTU). The neuron receive the weighted sum of
inputs and has as output the value 1 if the sum is bigger than this threshold and it
is shown in Figure 2.9.

Mathematically, we represent this model as

yk = ϕ

(
p∑

j=1

ωkj − ωo

)
(2.10.1)
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Figure 2.9: McCullogPitt neuron

where yk is an output of neuron k, ωjk is the weight of neuron j to neuron k. xj is
the output of neuron j, ωo is the threshold to the neuron k and ϕ is the activation
function defined as

ϕ(input) =

{
1 if input ≥ ω0

−1 otherwise
(2.10.2)

2.11 Rosenblatt Perceptron
The Rosenblatt perceptron is a model with several McCulloch-Pitt neurons.

Figure 2.10 shows one such a model with two layers of neurons
The one layer perceptron is equivalent to a linear discriminant:

∑
ωjxj − ω0. (2.11.1)

This perceptron creates an output indicating if it belongs to class 1 or -1 (or 0).
That is

y = Out =

{
1

∑
ωixi − ω0 ≥ 0

0 otherwise
(2.11.2)

The constant ω0 is referred as threshold or bias. In the perceptron, the weights are
constraints and the variables are the inputs. Since the objective is to estimate (or
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Figure 2.10: Two layer perceptron

learn) the optimum weights, as in other linear discriminants, the next step is to
train the perceptron.

The perceptron is trained with samples using a sequential learning procedure
to determine the weight as follows: The samples are presented sequentially, for
each wrong output the weights are adjusted to correct the error. If the output is
corrected the weights are not adjusted. The equations for the procedure are:

ωi(t + 1) = ωi(t) + ∆ωi(t) (2.11.3)
ω0(t + 1) = ω0(t) + ∆ω0(t) (2.11.4)

and

∆ωi(t) = (y − ŷ)xi (2.11.5)
∆ω0(t) = (y − ŷ) (2.11.6)

Formally, the actual weight in true t is ωi(t), the new weight is ωi(t+1), ∆ωi(t) is
the adjustment or correction factor, y is the correct value or true response, ŷ is the
perceptron output, a is the activation value for the output ŷ = f(a) (a =

∑
ωixi).

The initial weight values are generally random numbers in the interval 0 and
1. The sequential presentation of the samples continues indefinitely until some
stop criterion is satisfied. For example, if 100 cases are presented and if there is
no error, the training will be completed. Nevertheless, if there is an error, all 100
cases are presented again to the perceptron. Each cycle of presentation is called
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an epoch. To make learning and convergence faster, some modifications can be
done in the algorithm. For example,

(i) To normalize the data: all input variables must be within the interval 0 and 1.

(ii) To introduce a learning rate, α, in the weight actualization procedure to αωi.
The value of α is a number in the interval 0 and 1.

The perceptron converge theorem states that when two classes are linearly sep-
arable, the training guarantees the converge but not how fast. Thus if a linear
discriminant exists that can separate the classes without committing an error, the
training procedure will find the line or separator plan, but it is not known how long
it will take to find it (Figure 2.11).

Table 2.3 illustrates the computation of results of this section for the example
of Figure 2.11. Here convergence is achieved in one epoch. Here α = 0.25.

Figure 2.11: Two-dimensional example

Table 2.3: Training with the perceptron rule on a two-input example

ω1 ω2 ω0 x1 x2 a y ŷ a(ŷ − y) ∆ω1 ∆ω2 ∆ω0

0.0 0.4 0.3 0 0 0 0 0 0 0 0 0
0.0 0.4 0.3 0 1 0.4 1 0 -0.25 0 -0.25 0.25
0.0 0.15 0.55 1 0 0 0 0 0 0 0 0
0.0 0.15 0.55 1 1 0.15 0 1 0.25 0.25 0.25 -0.25
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2.12 Widrow’s Adaline and Madaline
Another neuron model, using as a training method the method of Least Mean

Square (LMS) error, was developed by Widrow and Hoff and called ADALINE
(ADAptive LINear Element). A generalization which consist of a structure of
many ADALINE is the MADALINE.

The major difference between the Perceptron (or LTU) and the ADALINE is in
the activation function. While the perceptron uses the step or threshold function,
the ADALINE uses the identity function as in Figure 2.12.

Figure 2.12: ADALINE

To a set of samples, the performance measure fo the training is:

DMLS =
∑

(ỹ − y)2 (2.12.1)

The LMS training objective is to feed the weigths that minimize DMLS .
A comparison of training for the ADALINE and Perceptron for a two dimen-

sional neuron with w0 = −1, w1 = 0.5, w2 = 0.3 and x1 = 2, x2 = 1 would
result in an activation value of:

a = 2x0.5 + 1x3− 1 = 0.3 (2.12.2)

Table 2.4 gives the updating results for the sample case.
The technique used to update the weight is called gradient descent. The per-

ceptron and the LMS search for a linear separator. The appropriate line or plane
can only be obtained if the class are linear separable. To overcome this limitation
the more general neural network model of the next chapter can be used.
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Table 2.4: Comparison of updating weights

Perceptron Adaline
ỹ 1 0.3
w1(t + 1) 0.5 + (0− 1).2 = −1.5 0.5 + (0− 0.3) = −0.1
w2(t + 1) 0.3 + (0− 1).2 = −0.7 0.3 + (0− 0.3).1 = 0
w0(t + 1) −1 + (0− 1) = −2 −1 + (0− 0.3) = −1.3



Chapter 3

Some Common Neural Networks
Models

3.1 Multilayer Feedforward Networks
This section deals with networks that use more than one perceptron arranged

in layers. This model is able to solve problems that are not linear separable such
as in Figure 3.1 (it is of no help to use layers of ADALINE because the resulting
output would be linear).

In order to train a new learning rule is needed. The original perceptron learning
cannot be extended to the multilayered network because the output function is not
differentiable. If a weight is to be adjusted anywhere in the network, its effect
in the output of the network has to be known and hence the error. For this, the
derivative of the error or criteria function with respect to that weight must be
found, as used in the delta rule for the ADALINE.

So a new activation function is needed that is non-linear, otherwise non-linearly
separable functions could not be implemented, but which is differentiable. The
one that is most often used successfully in multilayered network is the sigmoid
function.

Before we give the general formulation of the generalized delta rule, called
backpropagation, we present a numerical illustration for the Exclusive OR (XOR)
problem of Figure 3.1(a) with the following inputs and initial weights, using the
network of Figure 3.2.

The neural network of Figure 3.2 has one hidden layer with 2 neurons, one
input layer with 4 samples and one neuron in the output layer.

Table 3.1 presents the forward computation for one sample (1,1) in the XOR
problem.

31
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Table 3.1: Forward computation

Neuron Input Output
3 .1+.3+.2+.6 1/(1 + exp(−.6)) = .65
4 .-2.2+.4-.3-.1 1/(1 + exp(.1)) = .48
5 .5∗.65− .4∗.48 + .4 = .53 1/(1 + exp(−.53)) = .63

Table 3.2 gives the calculus for the backpropagation of the error for the XOR
example.

Table 3.2: Error backpropagation

Neuron Error Adjust of tendency
5 .63∗(1− .63)∗(0− .63) = −.147 -.147
4 .48∗(1− .48)∗(−.147)∗(−.4) = .015 .015
3 .65∗(1− .65)∗(−.147)∗(−.4) = −.017 -.017

Table 3.3 gives the weight adjustment for this step of the algorithm.

Table 3.3: Weight adjustment

Weight Value
w45 −.4 + (−.147)∗.48 = −.47
w35 .5 + (−.147)∗.65 = .40
w24 .4 + (.015)∗1 = .42
w23 .3 + (−017)∗1 = .28
w14 −.2 + (.015)∗1 = .19
w13 .1 + (−.017)∗1 = .08
w05 .4 + (−.147) = .25
w04 −.3 + (.015) = −.29
w03 .2 + (−.017) = .18

The performance of this update procedure suffer the same drawbacks of any
gradient descent algorithm. Several heuristic rules have been suggested to im-
prove its performance, in the neural network literature (such as normalize the
inputs to be in the interval 0 and 1, initial weights chosen at random in the interval
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-0.5 and 0,5; to include a momentum parameter to speed convergence etc.) Here
we only present the general formulation of the algorithm.

The backpropagation algorithm

Let L be the number of layers. The different layers are denoted by L1 (the
input later), L2, . . . ,LM (the output layer). We assume the output has M neurons.
When neurons i and j are connected a weight ωij is associated with the connec-
tion. In a multilayer feedforward network, only neurons in subsequent layers can
be connected:

ωij = 0 ⇒ iεLl+1, j ∈ Ll 1 ≤ l ≤ L− 1.

The state or input or neuron j is characterized by zj . The network operates as
follows. The input layer assigns zj to neurons j in L1. The output of the neurons
in L2 are

zk = f

(∑
j∈L1

ωkjzj

)
k ∈ L2 (3.1.1)

where f is an activation function that has derivatives for all values of the argument.
For a neuron m in an arbitrary layer we abbreviate

am =
∑

j∈Ll−1

ωmjzj 2 ≤ l ≤ L (3.1.2)

and where the outputs of layer l − 1 is known,

zm = f(am) m ∈ Ll. (3.1.3)

We concentrate on the choice of weights when one sample (or pattern) is presented
to the network. The desired output, true value, or target will be denoted by tk, k ∈
LL (k = 1, . . . , M).

We want to adapt the initial guess for the weights so that to decrease:

DLMS =
∑

k∈LL

(tk − f(ak))
2 . (3.1.4)

If the function f is nonlinear, then D is a nonlinear function of the weights, the
gradient descent algorithm for the multilayer network is as follows.

The weights are updated proportional to the gradient of D with respect to the
weights, the weights ωmj is changed by an amount

∆ωmj = −α
∂D

∂ωmj

m ∈ Ll, j ∈ Ll−1 (3.1.5)
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where α is called the learning rate. For the last and next to last layer the updates
are given by substituting (3.1.3) and (3.1.4) in (3.1.5).

∆ωmj = −α
∂

∂ωmj

∑
p∈LL


tp − f


 ∑

q∈LL−1

ωpqzq







2

= −α2
∑
p∈LL

(tp − f(ap)) (−f ′(ap))
∑

g∈%mclL−1

δpmδgjzg

= −α2 (tm − f(am)) f ′(am)zj m ∈ LL, j ∈ LL−1.

(3.1.6)

We assume that the neuron is able to calculate the function f and its derivative
f ′. The error 2α (tm − f(am)) f ′(am) can be sent back (or propagated back) to
neuron j ∈ LL−1. The value zj is present in neuron j so that the neuron can
calculate ∆ωmj . In an analogous way it is possible to derive the updates of the
weights ending in LL−1:

∆ωmj = −α
∂

∂ωmj

∑
p∈LL



tp − f


 ∑

g∈LL−1

ωpgf(ωqrzr)








2

= −α2
∑
p∈LL

[tp − f(ap)] (−f ′(ap))
∑

g∈%mclL−1

δgmδxjzr

= −α2
∑
p∈LL

(tp − f(ap)) f ′(ap)ωpmf ′(am)zj,m ∈ LL−1, j ∈ LL−2.

(3.1.7)

Now, 2α [tp − f(ap)] f
′(ap)ωpm is the weighted sum of the errors sent from layer

LL to neuron m in layer LL−1. Neuron m calculate this quantity using ωpm, p ∈
Lp. Multiply this quantity f ′(am) and send it to neuron j that can calculate ∆ωmj

and update ωmj .
This weight update is done for each layer in decreasing order of the layers,

until ∆mj,m ∈ L2, j ∈ L1. This is the familiar backpropagation algorithm. Note
that for the sigmoid (symmetric or logistic) and hyperbolic activation function
the properties of its derivatives makes it easier to implement the backpropagation
algorithm.

3.2 Associative and Hopfield Networks
In unsupervised learning we have the following groups of learning rules:

• competitive learning
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• Hebbian learning

When the competitive learning is used, the neurons compete among them to
update the weights. These algorithms have been used in classification, signal
extraction, cluster. Examples of networks that use these rules are ART (Adaptive
Resonance Theory) and SOM (Self Organized Maps) networks.

Hebbian learning is based on the weight actualization due to neurophisiolo-
gist Hebb. This algorithm have been used in characteristics extraction, associative
memories. Example of network that use these rules are: Hopfield and PCA (Prin-
cipal Component Analysis) networks. The neural networks we have discussed so
far have all been trained in a supervised manner. In this section, we start with
associative networks, introducing simple rules that allow unsupervised learning.
Despite the simplicity of their rules, they form the foundation for the more pow-
erful networks of latter chapters.

The function of an associative memory is to recognize previous learned input
vectors, even in the case where some noise is added. We can distinguished three
kinds of associative networks:

- Heteroassociative networks: map m input vectors x1,x2, . . . , xm in
p-dimensional spaces to m output vector y1,y2, . . . , ym in k-dimensional
space, so that xi → yi.

- Autoassociative networks are a special subsets of heteroassociative networks,
in which each vector is associated with itself, i.e. yi = xi for i = 1, . . . , n.
The function of the network is to correct noisy input vector.

- Pattern recognition (cluster) networks are a special type of heteroassociative
networks. Each vector is associated with the scalar (class) i. The goal of
the network is to identify the class of the input pattern.

Figure 3.3 summarizes these three networks.

Figure 3.3: Type of associative networks
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The three kinds of associative networks can be implemented with a single
layer of neurons. Figure 3.4 shows the structure of the heteroassociative network
without feedback.

Figure 3.4: Associative network

Let W = (ωij) the p×k weight matrix. The row vector x = (x1, . . . , xp) and
the identity activation produces the activation

y1×k = x1pWp×k. (3.2.1)

The basic rule to obtain the elements of W that memorize a set of n associa-
tions (xiyi) is

Wp×k =
n∑

i=1

xi′
p×1 ◦ yi

1k (3.2.2)

that is for n observations, let X be the n × p matrix whose rows are the input
vector and Y be the n× k matrix whose rows are the output vector. Then

Wp×k = X ′
p×n ◦ Ynk. (3.2.3)

Therefore in matrix notation we also have

Y = XW (3.2.4)

Although without a biological appeal, one solution to obtain the weight matrix
is the OLAM - Optimal Linear Associative Memory. If n = p, X is square matrix,
if it is invertible, the solution of (3.2.1) is

W = X−1Y (3.2.5)

If n < p and the input vectors are linear independent the optimal solution is
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Wp×k =
(
X ′

pnXnp

)−1
X ′

pnY (3.2.6)

which minimizes
∑ ||WX − Y ||2 and (X ′X)−1X ′ is the pseudo-inverse of

X . If the input vectors are linear dependent we have to use regularization theory
(similar to ridge regression).

The biological appeal to update the weight is to use the Hebb rule

W = ηX ′Y (3.2.7)

as each sample presentation where η is a learning parameter in 0 and 1.
The association networks are useful for face, figure etc. recognition and com-

pression, and also function optimization (such as Hopfield network).
We will present some of this association networks using some examples of the

literature.
Consider the example (Abi et al, 1999) where we want to store a set of schematic

faces given in Figure 3.5 in an associative memory using Hebbian learning. Each
face is represented by a 4-dimensional binary vector, denoted by xi in which a
given element corresponds to one of the features from Figure 3.6.

Figure 3.5: Schematic faces for Hebbian learning. Each face is made of four
features (hair,eyes,nose and mouth), taking the value +1 or −1

Suppose that we start with and η = 1.

W0 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 (3.2.8)

The first face is store in the memory by modifying the weights to
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Figure 3.6: The features used to build the faces in Figure 3.5

W1 = W0 +




1
1
1
−1




[
1 1 1 −1

]
=




1 1 1 1
1 1 1 1
1 1 1 1
−1 −1 −1 −1


 , (3.2.9)

the second face is store by

W2 = W1 +




−1
−1
1
1




[−1 −1 1 1
]

=




2 2 0 0
2 2 0 0
0 0 2 −2
0 0 −2 +2


 , (3.2.10)

and so on until

W10 = W9 +




1
1
−1
1




[
1 1 −1 1

]
=




10 2 2 6
2 −10 2 −2
2 2 10 −2
6 −2 −2 10


 . (3.2.11)

Another important association network is the Hopfield network. In its presen-
tation we follow closely Chester (1993). Hopfield network is recurrent and fully
interconnected with each neuron feeding its output in all others. The concept was
that all the neurons would transmit signals back and forth to each other in a closed
feedback loop until their state become stable. The Hopfield topology is illustrated
in Figure 3.7.

Figure 3.8 provides examples of a Hopfiled network with nine neurons. The
operation is as follows:

Assume that there are three 9-dimensional vectors α, β and γ.

α = (101010101) β = (110011001) γ = (010010010). (3.2.12)
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Figure 3.7: Hopfield network architecture

The substitution of −1 for each 0 in these vectors transforms then into bipolar
form α∗, β∗, γ∗.

α∗ = (1− 11− 11− 11− 11)′

β∗ = (11− 1− 111− 1− 11)′

γ∗ = (−11− 1− 11− 1− 11− 1)′.

(3.2.13)

The weight matrix is

W = α∗α∗′ + β∗β∗′ + γ∗γ∗′ (3.2.14)

when the main diagonal is zeroed (no neuron feeding into itself). This becomes
the matrix in Figure 3.8 of the example.
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A B C D E F G H I
From A 0 -1 1 -1 1 1 1 -3 3

B -1 0 -3 -1 1 1 -3 1 -1
C 1 -3 0 1 -1 -1 3 -1 1
D -1 -1 1 0 -3 1 1 1 -1
E 1 1 -1 -3 0 -1 -1 -1 1
F 1 1 -1 1 -1 0 -1 -1 1
G 1 -3 3 1 -1 -1 0 -1 1
H -3 1 -1 1 -1 -1 -1 0 -3
I 3 -1 1 -1 1 1 1 -3 0

Synaptic weight matrix, nodes A− I

Start a b
A = 1 A = 1 A = 1
B = 1 B → 0 B = 0
C = 1 C = 1 C = 1
D = 1 D → 0 D → 1
E = 1 E → 0 E = 0
F = 1 F → 0 F → 1
G = 1 G = 1 G = 1
H = 1 H → 0 H = 0
I = 1 I = 1 I = 1

Example 1

Start a
A = 1 A = 1
B = 1 B = 1
C = 0 C = 0
D = 0 D = 0
E = 1 E = 1
F = 1 F = 1
G = 0 G = 00
H = 0 H = 0
I = 0 I → 1

Example 2

Start a b
A = 1 A = 1 A = 1
B = 0 B = 0 B = 0
C = 0 C → 1 C = 1
D = 1 D = 1 D = 1
E = 0 E = 0 E = 0
F = 0 F → 1 F = 1
G = 1 G = 1 G = 1
H = 0 H = 0 H = 0
I = 0 I → 1 I = 1

Example 3

Figure 3.8: Example of Hopfield network (The matrix shows the synaptic weights be-
tween neurons. Each example shows an initial state for the neurons (representing an input
vector). State transitions are shown by arrows, as individual nodes are updated one at a
time in response to the changing states of the other nodes. In example 2, the network out-
put converges to a stored vector. In examples 1 and 3, the stable output is a spontaneous
attractor, identical to none of the three stored vectors. The density of 1-bits in the stored
vectors is relatively high and the vectors share enough is in common bit locations to put
them far from orthogonality - all of which may make the matrix somewhat quirky, perhaps
contributing to its convergence toward the spontaneous attractor in examples 1 and 3.)
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· # ·
# · #
# # #
# · #
# · #

· # #
# · ·
# · ·
# · ·
· # #

(−1, 1) (1, 1)

The study of the dynamics of the Hopfield network and its continuous exten-
sion is an important subject which includes the study of network capacity (How
many neurons are need to store a certain number of pattern? Also it shows that the
bipolar form allows greater storage) energy (or Lyapunov) function of the system.
These topics are more related to applications to Optimization than to Statistics.

We end this section with an example from Fausett (1994) on comparison of
data using a BAM (Bidirectional Associative Memory) network. The BAM net-
work is used to associate letters with simple bipolar codes.

Consider the possibility of using a (discrete) BAM network (with bipolar vec-
tors) to map two simple letters (given by 5 × 3 patterns) to the following bipolar
codes:

The weight matrices are:

(to store A → −11) (C → 11) (W , to store both)



1 −1
−1 1
1 −1
−1 1
1 −1
−1 1
−1 1
−1 1
−1 1
−1 1
1 −1
−1 1
−1 1
1 −1
−1 1







−1 −1
1 1
1 1
1 1
−1 −1
−1 −1
1 1
−1 −1
−1 −1
1 1
−1 −1
−1 −1
−1 −1
1 1
1 1







0 −2
0 2
2 0
0 2
0 −2
−2 0
0 2
−2 0
−2 0
0 2
0 −2
−2 0
−2 0
2 0
0 2




(3.2.15)

To illustrate the use of a BAM, we first demonstrate that the net gives the cor-
rect Y vector when presented with the x vector for either pattern A or the pattern
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C:

INPUT PATTERN A
[−11 −11 −111111 −111 −11

]
W = (−14, 16) → (−1, 1) (3.2.16)

INPUT PATTERN C
[−1111 −1 −11 −1 −11 −1 −1 −11

]
W = (14, 16) → (1, 1) (3.2.17)

To see the bidirectional nature of the net, observe that the Y vectors can also
be used as input. For signals sent from the Y -layer to the X-layer, the weight
matrix is the transpose of the matrix W , i.e.,

W T =
[
0 0 2 0 0 −2 0 −2 −2 0 0 −2 −2 2 0
0 0 2 0 0 −2 0 −2 −2 0 0 −2 −2 2 0

]
(3.2.18)

For the input vector associated with pattern A, namely, (-1,1), we have

(−1, 1)W T =

(−1, 1)
[
0 0 2 0 0 −2 0 −2 −2 0 0 −2 −2 2 0
0 0 2 0 0 −2 0 −2 −2 0 0 −2 −2 2 0

]

=
[−2 2 −2 2 −2 2 2 2 2 2 −2 2 2 −2 2

]

→ [−1 1 −1 1 −1 1 1 1 1 1 −1 1 1 −1 1
]

(3.2.19)

This is pattern A.
Similarly, if we input the vector associated with pattern C, namely, (1,1), we

obtain

(−1, 1)W T =

(−1, 1)
[

0 0 2 0 0 −2 0 −2 −2 0 0 −2 −2 2 0
−2 2 0 2 −2 0 0 0 2 −2 0 0 0 2

]

=
[−2 2 2 2 −2 −2 2 −2 −2 2 −2 −2 −2 −2 2

]

→ [−1 1 1 1 −1 −1 1 −1 −1 1 −1 −1 −1 1 1
]

(3.2.20)

which is pattern C.
The net can also be used with noisy input for the x vector, the y vector, or

both.
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3.3 Radial Basis Function Networks
The radial basis function is a single hidden layer feed forward network with

linear output transfer function and nonlinear transfer function h(·) in the hidden
layer. Many types of nonlinearity may be used.

The most general formula for the radial function is

h(x) = Φ
(
(x− c)R−1(x− c)

)
(3.3.1)

where Φ is the function used (Gaussian, multiquadratic, etc.), c is the center and
R the metric. The common functions are: Gaussian Φ(z) = e−z, Multiquadratic
Φ(z) = (1 + z)1/2, Inverse multiquadratic Φ(z) = (1 + z)−1/2 and the Cauchy
Φ(z) = (1 + z)−1.

If the metric is Euclidean R = r2I for some scalar radius and the equation
simplifies to

h(x) = Φ

(
(x− c)T (x− c)

r2

)
. (3.3.2)

The essence of the difference between the operation of radial basis function and
multilayer perceptron is shown in Figure 3.9 for a hypothetical classification of
psychiatric patients.

Figure 3.9: Classification by Alternative Networks: multilayer perceptron (left)
and radial basis functions networks (right)

Multilayer perceptron separates the data by hyperplanes while radial basis
function cluster the data into a finite number of ellipsoids regions.
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A simplification is the 1-dimensional input space in which case we have

h(x) = Φ

(
(x− c)2

σ2

)
. (3.3.3)

Figure 3.10 illustrate the alternative forms of h(x) for c = 0 and r = 1.
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Figure 3.10: Radial basis functions h(.)

To see how the RBFN works we consider some examples (Wu and McLarty,
2000). Consider two measures (from questionnaires) of mood to diagnose de-
pression. The algorithm that implemented the radial basis function application
determine that seven cluster sites were needed for this problem. A constant vari-
ability term, σ2 = 1, was used for each hidden unit. The Gaussian function was
used for activation of the hidden layers. Figure 3.11 shows the network.

Suppose we have the scores x′ = (4.8; 1.4). The Euclidean distance from this
vector and the cluster mean of the first hidden unit µ′1 = (0.36; 0.52) is

D =
√

(4.8− .36)2 + (.14− .52)2 = .398. (3.3.4)

The output of the first hidden layer is

h1(D
2) = e−.3982/2×(.1) = .453. (3.3.5)

This calculation is repeated for each of the remaining hidden unit. The final
output is

(.453)(2.64) + (.670)(−.64) + (543)(5.25) + . . . + (−1)(0.0092) = 0.0544.(3.3.6)

Since the output is close to 0, the patient is classified as not depressed.
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Figure 3.11: Radial basis network
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The general form of the output is y = f(x) =
m∑

i=1

wihi(x), that is the function

f is expressed as a linear combination of m fixed functions (called basis function
in analogy to the concept of a vector being composed as combination of basis
vectors).

Training radial basis function networks proceeds in two steps. First the hid-
den layer parameters are determined as a function of the input data and then the
weights in between the hidden and output layer are determined from the output of
the hidden layer and the target data.

Therefore we have a combination of unsupervised training to find the cluster
and the cluster parameters and in the second step a supervised training which
is linear in the parameters. Usually in the first step the k-means algorithm of
clustering is used, but other algorithms can also be used including SOM and ART
(chapter 4).

3.4 Wavelet Neural Networks
The approximation of a function in terms of a set of orthogonal basis func-

tion is familiar in many areas, in particular in statistics. Some examples are: the
Fourier expansion, where the basis consists of sines and cosines of differing fre-
quencies. Another is the Walsh expansion of categorical time sequence or square
wave, where the concept of frequency is replaced by that of sequence, which gives
the number of “zero crossings” of the unit interval. In recent years there has been
a considerable interest in the development and use of an alternative type of basis
function: wavelets.

The main advantage of wavelets over Fourier expansion is that wavelets is a
localized approximator in comparison to the global characteristic of the Fourier
expansion. Therefore wavelets have significant advantages when the data is non-
stationary.

In this section, we will outline why and how neural network has been used to
implement wavelet applications. Some wavelets results are first presented.

3.4.1 Wavelets
To present the wavelet basis of functions we start with a father wavelet or

scaling function φ such that

φ(x) =
√

2
∑

k

lkφ(2x− k) (3.4.1)
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usually, normalized as
∞∫
−∞

φ(x)dx = 1. A mother wavelet is obtained through

ψ(x) =
√

2
∑

hkφ(2x− k) (3.4.2)

where lk and hk are related through

hk = (−1)klk. (3.4.3)

The equations 3.4.1 and 3.4.2 are called dilatation equations, the coefficients
lk, hk are low-pass and high-pass filters, respectively.

We assume that these functions generate an orthonormal system of L2(R),
denoted {φj0,k(x)} ∪ {ψjk(x)}j≥j0,k with φj0,k(x) = 2j0/2φ(2j0x− k), ψj,k(x) =
2j/2ψ(2jx− k) for j ≥ j0 the coarse scale.

For any f ∈ L2(R) we may consider the expansion

f(x) =
∞∑

k=−∞
αkφj0,k(x) +

∑
j≥j0

∞∑

k=−∞
βj,kψj,k(x) (3.4.4)

for some coarse scale j0 and where the true wavelet coefficients are given by

αk =

∫ ∞

−∞
f(x)φj0,k(x)dx βj,k =

∫ ∞

−∞
f(x)ψj,k(x)dx. (3.4.5)

An estimate will take the form

f̂(x) =
∞∑

k=−∞
α̂kφj0,k(x) +

∑
j≥j0

∞∑

k=−∞
β̂j,kψ(x) (3.4.6)

where α̂k and β̂k are estimates of αk and βjk, respectively.
Several issues are of interests in the process of obtaining the estimate f̂(x):

(i) the choice of the wavelet basis;

(ii) the choice of thresholding policy (which α̂j and β̂jk should enter in the ex-
pression of f̂(x); the value of j0; for finite sample the number of parameters
in the approximation);

(iii) the choice of further parameters appearing in the thresholding scheme;

(iv) the estimation of the scale parameter (noise level).
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These issues are discussed in Morettin (1997) and Abramovich et al (2000).
Concerning the choice of wavelet basis, some possibilities includes the Haar

wavelet which is useful for categorical-type data. It is based on

φ(x) = 1 0 ≤ x < 1

ψ(x) =

{
1 0 ≤ x < 1/2

−1 1/2 ≤ x < 1

(3.4.7)

and the expansion is then

f(x) = α0 +
J∑

j=0

,

2J−1∑

k=0

βjkψjk(x). (3.4.8)

Other common wavelets are: the Shannon with mother function

ψ(x) =
sin(πx/2)

πx/2
cos (3πx/2) (3.4.9)

the Mortet wavelet with mother function

ψ(x) = eiwxe−x2/2 (3.4.10)

where i =
√−1 and w is a fixed frequency. Figure 3.12 shows the plots of this

wavelets. Figure 3.13 illustrates the localized characteristic of wavelets.

Figure 3.12: Some wavelets: (a) Haar (b) Morlet (c) Shannon
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Figure 3.13 gives an example of a wavelet transform.

Figure 3.13: Wavelet operation

In figure 3.13 a wavelet (b) is compared successively to different sections of
a function (a). The product of the section and the wavelet is a new function; the
area delimited by that function is the wavelet coefficient. In (c) the wavelet is
compared to a section of the function that looks like the wavelet. The product of
the two is always positive, giving the big coefficient shown in (d). (The product
of two negative functions is positive.) In (e) the wavelet is compared to a slowly
changing section of the function, giving the small coefficients shown in (f). The
signal is analyzed at different scales, using wavelets of different widths. “You
play with the width of the wavelet in order to catch the rhythm of the signal,” says
Yves Meyer.

Figure 3.14: An Example of a Wavelet Transform.
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Figure 3.4.1 shows: (a) The original signal. (b) The wavelet transform of the
signal, over 5 scales, differing by a factor of 2. The finest resolution, giving the
smallest details is at the top. At the bottom is the graph of the remaining low
frequencies.

3.4.2 Wavelet Networks and Radial Basis Wavelet Networks.
We have seen (Section 2.7 - Kolmogorov Theorem) that neural networks have

been established as a general approximation tool for fitting non-linear models
from input/output data. On the other hand, wavelets decomposition emerges as
powerful tool for approximation. Because of the similarity between the discrete
wavelet transform and a one-hidden-layer neural network, the idea of combining
both wavelets and neural networks has been proposed. This has resulted in the
wavelet network which is discussed in Iyengar et al (2002) and we will summarize
here.

There are two main approaches to form wavelet network. In the first, the
wavelet component is decoupled from the estimation components of the percep-
tron. In essence the data is decomposed on some wavelets and this is fed into
the neural network. We call this Radial Basis Wavelet Neural Networks which is
shown in Figures 3.15(a),3.15(b).

In the second approach, the wavelet theory and neural networks are combined
into a single method. In wavelet networks, both the position and dilatation of the
wavelets as well as the weights are optimized. The neuron of a wavelet network
is a multidimensional wavelet in which the dilatation and translations coefficients
are considered as neuron parameters. The output of a wavelet network is a linear
combination of several multidimensional wavelets.

Figures 3.16 and 3.17 give a general representation of a wavelet neuron (wavelon)
and a wavelet network

Observation. It is useful to rewright the wavelet basis as:

Ψa,b = |a|−1

(
x− b

a

)
a > 0,−∞ < b < ∞ with a = 2j, b = k2−j

A detailed discussion of this networks is given in Zhang and Benvensite (1992).
See also Iyengar et al (1992) and Martin and Morris (1999) for further references.
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(a) Function approximation

(b) Classification

Figure 3.15: Radial Basis Wavelet Network

Figure 3.16: Wavelon



CHAPTER 3. SOME COMMON NEURAL NETWORKS MODELS 53

Figure 3.17: Wavelet network - f(x) =
∑N

i=1 wiΨ
(

xi−ai

bi

)

3.5 Mixture of Experts Networks
Consider the problem of learning a function in which the form of the function

varies in different regions of the input space (see also Radial Basis and Wavelets
Networks Sections). These types of problems can be made easier using Mixture
of Experts or Modular Networks.

In these type of network we assigned different expert networks to table each of
the different regions, and then used an extra ”gating” network, which also sees the
input data, to deduce which of the experts should be used to determine the output.
A more general approach would allow the discover of a suitable decomposition as
part of the learning process.

Figure 3.18 shows several possible decompositions
These types of decompositions are related to mixture of models, generalized

additive and tree models in statistics (see Section 5.2)
Further details and references can be seen in Mehnotra et al (2000) and Bishop

(1995). Applications can be seen in Jordan and Jacobs (1994), Ohno-Machodo
(1995), Peng et al (1996), Desai et al (1997), Cheng (1997) and Ciampi and
Lechevalier (1997).
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(a) Mixture with gating (b) Hierarchical

(c) Sucessive refinement (d) Input modularity

Figure 3.18: Mixture of experts networks
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3.6 Neural Network and Statistical Models Interface
The remaining chapters of this book apply these networks to different prob-

lems of data analysis in place of statistical models. It is therefore convenient to
review the statistical bibliography relating neural network and statistical models
and statistical problems in general.

The relationship of Multilayer Feedforward Network with several linear mod-
els is presented by Arminger and Enache (1996). They shown that these net-
works can perform are equivalent to perform: linear regression,linear discrim-
ination, multivariate regression, probit regression, logit regression, generalized
linear model, generalized additive models with known smoothing functions, pro-
jection pursuit, LISREL (with mixed dependent variables). Other related paper
are: Cheng and Titterington (1994) Sarle (1994), Stern (1996), Warner and Misha
(1996), Schumacher et al (1996), Vach et al. (1996), De Veux et al (1998).

Attempts to compare performance of neural networks were made extensively
but no conclusive results seems to be possible; some examples are Balakrishnan
et al (1994), Mangiameli et al (1996) Mingoti and Lima (2006) for cluster anal-
ysis and Tu (1996), Ennis et al (1998) and Schwarzer et al (2000) for logistic
regression.

Statistical intervals for neural networks were studied in Tibshirani (1996),
Huang and Ding (1997), Chryssolouriz et al (1996) and De Veux et al (1998),
For Bayesian analysis for neural networks see MacKay (1992), Neal (1996), Lee
(1998, 2004), and Rios-Insua and Muller (1996), Paige and Butle (2001) and the
review of Titterington (2004).

Theoretical statistical results are presented in Murtagh (1994), Poli and Jones
(1994), Jordan (1995), Faraggi and Simon (1995), Ripley (1996), Lowe (1999),
Martin and Morris (1999), the review papers Cheng and Titterington (1994), Tit-
terington (2004). Asymptotics and further results can be seen in a series of papers
by White (1989a,b,c, 1996), Swanson and White (1995,1997), Kuan and White
(1994). Books relating neural networks and statistics are: Smith (1993), Bishop
(1996), Ripley (1996), Neal (1996) and Lee (2004).

Pitfalls on the use of neural networks versus statistical modeling is discussed
in Tu (1996), Schwarzer et al (2000) and Zhang (2007). Further references on the
interfaces: statistical tests, methods (eg survival, multivariate etc) and others are
given in the correspondingly chapters of the book.



Chapter 4

Multivariate Statistics Neural
Network Models

4.1 Cluster and Scaling Networks

4.1.1 Competitive networks
In this section, we present some network based on competitive learning used

for clustering and in a network with a similar role to that of multidimensional
scaling (Kohonen map network).

The most extreme form of a competition is the Winner Take All and is suited
to cases of competitive unsupervised learning.

Several of the network discussed in this section use the same learning algo-
rithm (weight updating).

Assume that there is a single layer with M neurons and that each neuron has
its own set of weights wj . An input x′ is applied to all neurons. The activation
function is the identity. Figure 4.1 illustrates the architecture of the Winner Take
All network.

The node with the best response to the applied input vector is declared the
winner, according to the winner criterion

Ol = min
j=1...c

{
d2(yj, wj)

}
(4.1.1)

where d is a distance measure of yj from the cluster prototype or center. The
change of weights is calculated according to

wi(k + 1) = wl(k) + α(xi − wi(k)) (4.1.2)

56
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Figure 4.1: General Winner Take All network

where α is the learning rate, and may be decreasing at each iteration.
We now present an example due to Mehrotra et al (2000) to illustrate this

simple competitive network.
Let the set n consists of 6 three-dimensional vectors, x1, x2, . . . , x6,

n = {x1
1 = (1.1, 1.7, 1.8), x2

2 = (0, 0, 0), x3
3 = (0, 0.5, 1.5),

x4
4 = (1, 0, 0), x5

5 = (0.5, 0.5, 0.5), x6
6 = (1, 1, 1)}. (4.1.3)

We begin a network containing three input nodes and three processing units (out-
put nodes), A, B, C. The connection strengths of A,B, C are initially chosen
randomly, and are given by the weight matrix

W (0) =




w1 : 0.2 0.7 0.3
w2 : 0.1 0.1 0.9
w3 : 1 1 1


 (4.1.4)

To simplify computations, we use a learning rate η = 0.5 and update weights
equation 4.1.2. We compare squared Euclidean distances to select the winner:
d2

j.l ≡ d2(wj, il) refers to the squared Euclidean distance between the current
position of the processing node j from the lth pattern.

t = 1 : Sample presented x1
1 = (1.1, 1.7, 1.8). Squared Euclidean distance

between A and x1
1 : d2

1.1 = (1.1 − 0.2)2 + (1.7 − 0.7)2 + (1.8 − 0.3)2 = 4.1.
Similarly, d2

2.1 = 4.4 and d2
3.1 = 1.1.
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C is the “winner” since d2
3.1 < d2

1.1 and d2
3.1 < d2

2.1. A and B are therefore
not perturbed by this sample whereas C moves halfway towards the sample (since
η = 0.5). The resulting weight matrix is

W (1) =




w1 : 0.2 0.7 0.3
w2 : 0.1 0.1 0.9
w3 : 1.05 1.35 1.4


 . (4.1.5)

t = 2 : Sample presented x2
2 = (0, 0, 0), d2

1.2 = 0.6, d2
2.2 = 0.8, d2

3.2 = 4.9,
hence A is the winner. The weights of A is updated. The resulting modified
weight vector is w1 : (0.1, 0.35, 0.15).

Similarly, we have:
t = 3 : Sample presented x3

3 = (0, 0.5, 1.5), d2
2.3 = 0.5 is least, hence

B is the winner and is updated. The resulting modified weight vector is w2 :
(0.05, 0.3, 1.2).

t = 4 : Sample presented x4
4 = (1, 0, 0), d2

1.4 = 1, d2
2.4 = 2.4, d2

3.4 = 3.8, hence
A is the winner and is updated: w1 : (0.55, 0.2, 0.1).

t = 5 : x5
5 = (0.5, 0.5, 0.5) is presented, winner A is updated: w1(5) =

(0.5, 0.35, 0.3).
t = 6 : x6

6 = (1, 1, 1) is presented, winner C is updated: w3(6) = (1, 1.2, 1.2).
t = 7 : x1

1 is presented, winner C is updated: w3(7) = (1.05, 1.45, 1.5).
t = 8 : Sample presented x2

2. Winner A is updated to w1(8) = (0.25, 0.2, 0.15).
t = 9 : Sample presented x3

3. Winner B is updated to w1(9) = (0, 0.4, 1.35).
t = 10 : Sample presented x4

4. Winner A is updated to w1(10) = (0.6, 0.1, 0.1).
t = 11 : Sample presented x5

5. Winner A is updated to w1(11) = (0.55, 0.3, 0.3).
t = 12 : Sample presented x6

6. Winner C is updated and w3(12) = (1, 1.2, 1.25).
At this stage the weight matrix is

W (12) =




w1 : 0.55 0.3 0.3
w2 : 0 0.4 1.35
w3 : 1 1.2 1.25


 . (4.1.6)

Node A becomes repeatedly activated by the samples x2
2,

4
4, and x5

5, node B by
x3

3 alone, and node C by x1
1 and x6

6. The centroid of x2
2, x

4
4, and i5 is (0.5, 0.2, 0.2),

and convergence of the weight vector for node A towards this location is indicated
by the progression

(0.2, 0.7, 0.3) → (0.1, 0.35, 0.15) → (0.55, 0.2, 0.1) → (0.5, 0.35, 0.3) →
(0.25, 0.2, 0.15) → (0.6, 0.1, 0.1) → (0.55, 0.3, 0.3) . . .

(4.1.7)

To interpret the competitive learning algorithm as a clustering process is attrac-
tive, but the merits of doing so are debatable: as illustrated by a simple example
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were the procedure cluster the number 0, 2, 3, 5, 6 in groups A = (0, 2), (3, 5), (6)
instead of the more natural grouping A = (0), B = (2, 3) and C = (5, 6).

For further discussion on the relation of this procedure to ”k-means clustering”
see Mehrotra et al (2000 pg 168).

4.1.2 Learning Vector Quantization - LVQ
Here again we present the results Mehnotra et al (2000 pg 173).
Unsupervised learning and clustering can be useful preprocessing steps for

solving classification problems. A learning vector quantizer (LVQ) is an applica-
tion of winner-take-all networks for such tasks, and illustrates how an unsuper-
vised learning mechanism can be adapted to solve supervised learning tasks in
which class membership is known for every training pattern.

Each node in an LVQ is associated with an arbitrarily chosen class label. The
number of nodes chosen for each class is roughly proportional to the number
of training patterns that belong to that class, making the assumption that each
cluster has roughly the same number of patterns. The new updating rule may be
paraphrased as follows.

When pattern i from class C(i) is presented to the network, let the winner
node j∗ belong to class C(j∗). The winner j∗ is moved towards the pattern i if
C(i) = C(j∗) and away from i otherwise.

This algorithm is referred to as LVQ1, to distinguish it from more recent vari-
ants of the algorithm. In the LVQ1 algorithm, the weight update rule uses a learn-
ing rate η(t) that is a function of time t, such as η(t) = 1/t or η(t) = a[1− (t/A)]
where a and A are positive constants and A > 1.

The following example illustrates the result of running the LVQ1 algorithm on
the input samples of the previous section.

The data are cast into a classification problem by arbitrary associating the first
and last samples with Class 1, and the remaining samples with Class 2. Thus the
training set is: T = {(x1; 1), (x2, 0), . . . , (x6; 1)}where x1 = (1.1, 1.7, 1, 8), x2 =
(0, 0, 0), x3 = (0, 0.5, 1.5), x4 = (1, 0, 0), x5 = (0.5, 0.5, 0.5), and x6 = (1, 1, 1).

The initial weight matrix is

W (0) =




w1 : 0.2 0.7 0.3
w2 : 0.1 0.1 1.9
w3 : 1 1 1


 (4.1.8)

Since there are twice as many samples in Class 2 as in Class 1, we label the first
node (w1) as associated with Class 1, and the other two nodes with Class 2. Let
η(t) = 0.5 until t = 6, then η(t) = 0.25 until t = 12, and η(t) = 0.1 thereafter.
Only the change in a single weight vector in each weight update iteration of the
network, instead of writing out the entire weight matrix.
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1. Sample x1
1, winner w3 (distance 1.07), w3 changed to (0.95, 0.65, 0.60).

2. Sample x2
2, winner w1 (distance 0.79), w1 changed to (0.30, 1.05, 0.45).

3. Sample x3
3, winner w2 (distance 0.73), w2 changed to (0.05, 0.30, 1.20).

4. Sample x4, winner w3 (distance 0.89), w3 changed to (0.97, 0.33, 0.30).
... ... ...
156. Sample x6, winner w1 (distance 0.56), w1 changed to (1.04, 1.33, 1.38).
157. Sample x1, winner w1 (distance 0.57), w1 changed to (1.05, 1.37, 1.42).
158. Sample x2, winner w3 (distance 0.58), w3 changed to (0.46, 0.17, 0.17).
159. Sample x3, winner w2 (distance 0.02), w2 changed to (0.00, 0.49, 1.48).
160. Sample x4, winner w3 (distance 0.58), w3 changed to (0.52, 0.15, 0.15).
161. Sample x5, winner w3 (distance 0.50), w3 changed to (0.52, 0.18, 0.18).
162. Sample x6, winner w1 (distance 0.56), w1 changed to (1.05, 1.33, 1.38).

Note that associations between input samples and weight vectors stabilize by
the second cycle of pattern presentations, although the weight vectors continue to
change.

Mehrotra et all also mentioned a variation called the LVQ2 learning algorithm
with a different learning rule used instead and an update rule similar to that of
LVQ1.

Some application of the procedure are: Pentapoulos et al (1998) apply a LVQ
network to discriminate benign from malignant cells on the basis of the extracted
morphometric and textural features. Another LVQ network was also applied in
an attempt to discriminate at the patient level. The data consisted of 470 samples
of voided urine from an equal number of patients with urothelial lesions. For the
purpose of the study 45.452 cells were measured. The training sample used 30%
of the patients and cells respectively. The study included 50 cases of lithiasis,
61 case of information, 99 cases of benign prostatic hyperplasia, 5 cases of city
carcinoma, 71 case of grade I transitional cell carcinoma of the bladder (TCCB)
and 184 cases of grade II and grade III TCCB.

The application enable the correct classification of 95.42% of the benign cells
and 86.75% of the malignant cells. At the patient level the LVQ network enable
the correct classification of 100% of benign cases and 95.6% of the malignant
cases. The overall accuracy rate was 90.63% and 97.57%, respectively. Maksi-
movic and Popovic (1999) compared alternative networks to classify arm move-
ments in tetraplegics. The following hand movements were studied: I - up/down
proximal to the body on the lateral side; II - left/right above the level of the shoul-
der; III - internal/external rotation of the upper arm (humerus).

Figure 4.2 presents the correct classification percentual for the neural networks
used.

Vuckovic et al (2002) use neural networks to classify alert vs drowsy states
from 1’s long sequences of full spectrum EEG in an arbitrary subject. The ex-
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Figure 4.2: Success of classification for all ANNs and all tested movement trials

perimental data was collected on 17 subjects. Two expert in EEG interpretation
provided the expertise to train the ANN. The three ANN used in the comparison
are: one layer perceptron with identity activation (Widrow-Hoff optimization),
perceptron with sigmoid activation (Levenberg-Marquart optimization) and LVQ
network.

The LVQ network gives the best classification. For validation 12 volunteers
were used and the matching between the human assessment and the network was
94.37± 1.95% using the t statistics.

4.1.3 Adaptive Resonance Theory Networks - ART
Adaptive Resonance Theory (ART) models are neural networks that perform

clustering and can allow the number of cluster to vary. The major difference
between ART and other clustering methods is that ART allows the user to control
the degree of similarity between members of the same cluster by means of a user-
defined constant called the vigilance parameter.

We outline in this section the simpler version of the ART network called
ART1. The architecture of an ART1 network shown in Figure 4.3 consists of
two layer of neurons. The F1 neurons and the F2 (cluster) neurons together with a
reset unit to control the degree of similarity of patterns or sample elements placed
on the same cluster unit.

The ART1 networks accepts only binary inputs. For continuous input the
ART2 network was developed with a more complex F1 layer to accommodate
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continuous input.

Figure 4.3: Architecture of ART1 network

The input layer, F1 receives and holds the input patters, the second layer, F2

responds with a pattern associated with the given input. If this returned pattern is
sufficient similar to the input pattern then there is a match. But if the difference is
substantial, then the layers communicate until a match is discovered, otherwise a
new cluster of patterns is formed around the new input vector.

The training algorithm is shown in Figure 4.4 (Mehrotra et al (2000) or Fauzett
(1994)).

The following example of Mehnotra et al (2000) illustrates the computations.
Consider a set of vectors {(1, 1, 0, 0, 0, 0, 1), (0, 0, 1, 1, 1, 1, 0), (1, 0, 1, 1, 1, 1, 0),

(0, 0, 0, 1, 1, 1, 0), and (1, 1, 0, 1, 1, 1, 0)} to be clustered using the ART1 algo-
rithm. Let the vigilance parameter be ρ = 0.7.

We begin with a single node whose top-down weights are all initialized to 1,

i.e., tl,1(0) = 1, and bottom-up weights are set to b1,l(0) =
1

8
. Here n = 7 and

initially m = 1. Given the first input vector, (1, 1, 0, 0, 0, 0, 1), we compute

y1 =
1

8
× 1 +

1

8
× 1 +

1

8
× 0 + . . . +

1

8
× 0 +

1

8
× 1 =

3

8
, (4.1.9)

and y1 is declared the uncontested winner. Since
∑7

l=1 tl,1xl∑7
l=1 xl

=
3

3
= 1 > 0.7, (4.1.10)
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− Initialize each top-down weight tl,j(0) = 1;

− Initialize each bottom-up weight bj,l(0) =
1

n + 1
;

− while the network has not stabilized, do

1. Present a randomly chosen pattern x = (x1, . . . , xn) for learning.

2. Let the active set A contain all nodes; calculate yj = bj,lx1 + . . . + bj,nxn for each
node j ∈ A;

(a) Let j∗ be a node in A with largest yj , with ties being broken arbitrarily;
(b) Compute s∗ = (s∗1, . . . , s

∗
n) where s∗l = tl,j∗xl;

(c) Compare similarity between s∗ and x with the given vigilance parameter ρ:

if
∑n

l=1 s∗l∑n
l=1 xl

≤ ρ then remove j∗ from set A

else associate x with node j∗ and update weights:

bj∗,l (new) =
tl,j∗ (old) xl

0.5 +
∑n

l=1 tl,j∗ (old) xl

tl,j∗ (new) = tl,j∗ (old) xl

until A is empty or x has been associated with some node j;

3. If A is empty, then create a new node whose weight vector coincides with the current
input pattern x;

end-while

Figure 4.4: Algorithm for updating weights in ART1
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the vigilance condition is satisfied and the updated weights are

b1,l(1) =





1

0.5 + 3
=

1

3.5
for l = 1, 2, 7;

0 otherwise.
(4.1.11)

Likewise,

tl,1(1) = tl,1(0)xl. (4.1.12)

These equations yield the following weight matrices.

B(1) =

[
1

3.5

1

3.5
0 0 0 0

1

3.5

]T

, T (1) =
[
1 1 0 0 0 0 1

]T (4.1.13)

Now we present the second sample (0,0,1,1,1,1,0). This generates y1 = 0, but
the uncontested winner fails to satisfy the vigilance threshold since

∑
l tl,1xl/

∑
l xl =

0 < 0.7. A second node must hence be generated, with top-down weights identical
to the sample, and bottom-up weights equal to 0 in the positions corresponding
to the zeroes in the sample, and remaining new bottom-up weights are equal to
1/(0.5 + 0 + 0 + 1 + 1 + 1 + 1 + 0).

The new weight matrices are

B(2) =




1
3.5

1
3.5

0 0 0 0
1

3.5

0 0
1

4.5
1

4.5
1

4.5
1

4.5
0




T

and T (2) =




1 1 0 0 0 0 1

0 0 1 1 1 1 0




T

(4.1.14)

When the third vector (1, 0, 1, 1, 1, 1, 0) is presented to this network,

y1 =
1

3.5
and y2 =

4

4.5
(4.1.15)

are the node outputs, and the second node is the obvious winner. The vigilance test

succeeds, because
∑7

l=1 tl,2xl/
∑7

l=1 xl =
4

5
≥ 0.7. The second node’s weights

are hence adapted, with each top-down weight being the product of the old top-
down weight and the corresponding element of the sample (1,0,1,1,1,1,0), while
each bottom-up weight is obtained on dividing this quantity by 0.5 +

∑
l tl,2xl =

4.5. This results in no change to the weight matrices, so that B(3) = B(2) and
T (3) = T (2).
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When the fourth vector (0,0,0,1,1,1,0) is presented to this network,

y1 =
1

3.5
and y2 =

3

4.5
(4.1.16)

are the node outputs, and the second node is the obvious winner. The vigilance test

succeeds, because
∑7

l=1 tl,2xl/
∑7

l=1 xl =
3

3
≥ 0.7. The second node’s weights

are hence adapted, with each top-down weight being the product of the old top-
down weight and the corresponding element of the sample (0,0,0,1,1,1,0), while
each bottom-up weight is obtained on dividing this quantity by 0.5 +

∑
l tl,2xl =

3.5. The resulting weight matrices are

B(4) =




1
3.5

1
3.5

0 0 0 0
1

3.5

0 0 0
1

3.5
1

3.5
1

3.5
0




T

, T (4) =




1 1 0 0 0 0 1

0 0 0 1 1 1 0




T

.

(4.1.17)

When the fifth vector (1,1,0,1,1,1,0) is presented to this network,

y1 =
2

3.5
and y2 =

3

4.5
(4.1.18)

are the node outputs, and the second node is the obvious winner. The vigilance

test fails, because
∑7

l=1 tl,2xl/
∑7

l=1 xl =
3

5
< 0.7. The active set A is hence

reduced to contain only the first node, which is the new winner (uncontested).

The vigilance test fails with this node as well, with
∑

l tl,1xl/
∑7

l=1 xl =
2

5
≤ 0.7.

A third node is hence created, and the resulting weight matrices are

B(5) =




1
3.5

1
3.5

0 0 0 0
1

3.5

0 0 0
1

3.5
1

3.5
1

3.5
0

1
5.5

1
5.5

0
1

5.5
1

5.5
0




T

, T (5) =




1 1 0 0 0 0 1

0 0 0 1 1 1 0

1 1 0 1 1 1 0




T

(4.1.19)

We now cycle through all the samples again. This can performed in random
order, but we opt for the same sequence as in the earlier cycle. After the third
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vector is present, again, the weight matrices are modified to the following:

B(8) =




1
3.5

1
3.5

0 0 0 0
1

3.5

0 0 0
1

3.5
1

3.5
1

3.5
0

1
4.5

0 0
1

4.5
1

4.5
1

4.5
0




T

, T (8) =




1 1 0 0 0 0 1

0 0 0 1 1 1 0

1 0 0 1 1 1 0




T

.

(4.1.20)

Subsequent presentation of the samples do not result in further changes to the
weights, and T (8) represents the prototypes for the given samples. The network
has thus stabilized. For further details see Mehrotra et al (2000).

In that follows we describe some applications of ART neural networks.
Santos (2003) e Santos et al (2006) used neural networks and classification

trees in the diagnosis of smear negative pulmonary tuberculosis (SPNT) which
account for 30% of the reported cases of Pulmonary Tuberculosis. The data con-
sisted of 136 patients from the health care unit of the Universidade Federal do Rio
de Janeiro teaching hospital referred from 3/2001 to 9/2002.

Only symptoms and physical were used for constructing the neural networks
and classification. The covariate vector contained 3 continuous variables and 23
binary variables.

In this application an ART neural network identified three groups of patients.
In each group the diagnostic was obtained from a one hidden layer feedforward
network. The neural networks used had sensibility of 71 to 84% and specificity
of 61 to 83% which has slight better than classification tree. Statistical models in
literature shows sensibility of 49 to 100% and specificity of 16 to 86% but uses
laboratory results. The neural networks of Santos (2003) e Santos et al (2006)
used only clinical information.

Rozenthal (1997,see also Rozenthal et al 1998) applied an ART neural net-
work to analyse a set of data from 53 schizophrenic patients (not addicted, phys-
ically capable and bellow the age of 50) that answered the DSM-IV (Diagnostic
and Statistical Manual for Mental Disorders) and were submitted to neuropsycho-
logical tests. There seems to exit at least three functional patterns in schizophre-
nia. These patterns define such group of symptom or dimension of schizophrenic
patients that are: those who have hallucination and disorderly thoughts and self-
steem (negative dimension) and those with poor speach and disorderly thoughts
(disorganized dimension). This application of neural network (and a classical
statistical method of cluster, for comparison) indicate 2 important clusters. One
of which, low IQ and negative dimension, keeps itself stable when the number
of clusters is increased. It seems to act as an attractor, and also corresponds to
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the more severe cases and more difficult to respond to treatment. Tables 4.1-4.4
presents the results obtained.

Table 4.1: Presentation of the sample according to level of instruction, IQ and age
of onset

Level of Instruction no. Patients IQ age of onset
(n=53) (m ± dp) (m ± dp)

College 22 84.91±07.59 21.64±5.58
High school 19 80.84±0.07 19.5 ±6.13
Elementary 12 75.75±08.88 16.67±3.89

Table 4.2: Cluster patterns according to neuropsychological findings

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 RAVLT
Group I 77.6 7.7 7.0 -0.05 4.2 11.2 2.7 0.05 4.2 -1.8 -4.2 8.3
(n=20)

Group II 84 2.0 24.1 -3.1 4.6 11.6 2.0 100 5.5 -1.8 9.1 11.5
(n=3)

Table 4.3: Three cluster patterns according to neuropsychological findings

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 RAVLT
Group I 77.6 7.7 7.0 -0.05 4.2 11.2 2.7 0.05 4.2 -1.8 -4.2 8.3
(n=20)

Group IIa 84.7 -0.5 57.1 -14.1 4.5 10.9 1.9 1 5.0 -1.7 -9.1 11.4
(n=20)

Group IIb 84.9 3.7 29 -4.0 4.7 12.1 2.1 1 5.8 -1.8 20.8 11.6
(n=13)
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Table 4.4: Four cluster patterns according to neuropsychological findings

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 RAVLT
Group I 77.6 7.7 7.0 -0.05 4.2 11.2 2.7 0.05 4.2 -1.8 -4.2 8.3
(n=20)

Group IIc 80.86 0.81 12.2 6.8 4.7 10.9 2.2 1 6.0 -2.0 0.9 11.4
(n=14)

Group IId 85.1 -1.4 51.90 -12.0 4.9 11.6 2.0 1 4.7 -1.7 -21.2 11.2
(n=11)

Group IIe 90.0 7.7 43.0 -6.7 4.2 12.5 1.7 1 5.6 -1.6 55.4 12
(n=8)

Chiu and al (2000) developed a self-organizing cluster system for the arte-
rial pulse based on ART neural network. The technique provides at least three
novel diagnostic tools in the clinical neurophysiology laboratory. First, the pieces
affected by unexpected artificial motions (ie physical disturbances) can be deter-
mined easily by the ART2 neural network according to a status distribution plot.
Second, a few categories will be created after applying the ART2 network to the
input patterns (i.e minimal cardiac cycles). These pulse signal categories can be
useful to physicians for diagnosis in conventional clinical uses. Third, the status
distribution plot provides an alternative method to assist physicians in evaluat-
ing the signs of abnormal and normal automatic control. The method has shown
clinical applicability for the examination of the autonomic nervous system.

Ishihara et al (1995) build a Kansey Engineering System based on ART neu-
ral network to assist designers in creating products fit for consumers´s underlying
needs, with minimal effort. Kansei Engineering is a technology for translating
human feeling into product design. Statistical models (linear regression, factor
analysis, multidimensional scaling, centroid clustering etc) is used to analyse the
feeling-design relationship and building rules for Kansei Engineering Systems.
Although reliable, they are time and resource consuming and require expertise in
relation to its mathematical constraint. They found that their ART neural network
enable quick, automatic rule building in Kansei Engineering systems. The catego-
rization and feature selection of their rule was also slight better than conventional
multivariate analysis.

4.1.4 Self Organizing Maps - (SOM) Networks
Self organizing maps, sometimes called topologically ordered maps or Koho-

nen self-organizing feature maps is a method closely related to multidimensional
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scaling. The objective is to represent all points in the original space by points in
a smaller space, such that distance and proximity relations are preserved as much
as possible.

There are m cluster units arranged in a one or two dimensional array.
The weight vector for a cluster neuron serves as an exemplar of the input pat-

terns associated with that cluster. During the self-organizing process, the cluster
neuron whose weight vector matches the input pattern most closely (usually, the
square of the minimum Euclidean distance) is chosen as the winner. The winning
neuron and its neighboring units (in terms of the topology of the cluster neurons
update their weights the usual topology in two dimensional are shown in Figure
4.5).

Figure 4.5: Topology of neighboring regions

The architecture of the Kohonen SOM neural network for one and two-dimensional
array and its topology is shown in Figures 4.6-4.7 and Figures 4.8-4.9-4.10 for the
one dimensional and two dimensional array. Figure 4.11 presents the weight up-
dating algorithm for the Kohonen SOM neural networks (from Fausett 1994) and
Figure 4.12, the Mexican Hat interconection for neurons in the algorithm.
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Figure 4.6: Kohonen self-organizing map.
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Figure 4.7: Linear array of cluster units
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Figure 4.8: The self-organizing map architecture

Figure 4.9: Neighborhoods for rectangular grid
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Figure 4.10: Neighborhoods for hexagonal grid

Step 0 Initialize weights wij

Set topological neighborhood parameters.
Set learning rate parameters.

Step 1 While stopping condition is false, do Steps 2-8.
Step 2 For each input vector x, do Steps 3-5.
Step 3 For each j, compute:

D(j) =
∑

i(wij − xi)2

Step 4 Find index J such that D(J) is minimum.
Step 5 For all units within a specified neighborhood of J and for all i:

wij(new) = wij(old) + α[xi − wij(old)]
Step 6 Update learning rate.
Step 7 Reduces radius of topological neighborhood at specified times.
Step 8 Test stopping condition.

Figure 4.11: Algorithm for updating weights in SOM
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Figure 4.12: Mexican Hat interconnections

Braga et al (2000) sampled 1000 samples with equal probability from two
bivariate normal distributions with variances 1 and mean vectors µ1 = (4, 4),µ2 =
(12, 12). The distribution and the data are shown in Figure 4.13 and 4.14.
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Figure 4.13: Normal density function
of two clusters
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Figure 4.14: Sample from normal clus-
ter for SOM training

The topology was such that each neuron had 4 other neighbouring neurons.
The resulting map was expected to preserve the statistical characteristics, ie the
visual inspection of the map should indicate how the data is distributed.

Figure 4.15 gives the initial conditions (weights). Figures 4.16- 4.18 presents
the map after some interactions.



CHAPTER 4. MULTIVARIATE STATISTICS NEURAL NETWORKS 74

Figure 4.15: Initial weights Figure 4.16: SOM weights, 50 itera-
tions

Figure 4.17: SOM weights, 300 iter-
ations

Figure 4.18: SOM weights, 4500 it-
erations
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Lourenço (1998) applied a combination of SOM networks, fuzzy set and clas-
sical forecasting methods for the short-term electricity load prediction. The method
establish the various load profiles and process climatic variables in a linguistic
way, and those from the statistical models. The final model includes a classifier
scheme, a predictive scheme and a procedure to improve the estimations. The
classifier is implemented via an SOM neural network. The forecaster uses statis-
tical forecasting techniques (moving average, exponential smoothing and ARMA
type models). A fuzzy logic procedure uses climatic variables to improve the
forecast.

The complete system is shown in Figure 4.19.

Figure 4.19: Combined forecast system

The classifier used a SOM network with 12 neurons displaced in four rows
and three columns. The classification of patterns are shown in Figures 4.20 and
Figure 4.21 for the year of 1993.

1Sunday 2Sunday 3Saturday
4Saturday 5Saturday 6Monday to Friday
7Monday to Friday 8Monday to Friday 9Monday to Friday
10Monday to Friday 11Monday to Friday 12Monday to Friday

Figure 4.20: Week days associated with the SOM neurons

The proposed method improved the correct method used in the Brazilian Elet-
ric System, which is important specially in the pick hours.
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1 2 3

4 5 6Winter
7Summer 8Spring 9Winter
10Summer 11Autumn 12Winter

Figure 4.21: Seasons associated with the SOM neurons

Draghici and Potter (2003) predict HIV drug resistance using. Since drug
resistance is a important factor influencing the failure of current HIV therapies.
The ability to predict the drug resistance of HIV protease mutants may be useful
in developing more effective and long lasting treatment regimens.

In this work the authors predicted the HIV resistance to two current protease
inhibitors. The problem was approached from two perspectives. First, a predictor
was constructed based on the structural features of the HIV protease-grug inhibitor
complex. A particular structure was represented by its list of contacts between
the inhibitor and the protease. Next, a classifier was constructed based on the
sequence data of various drug resistent mutants. In both cases SOM networks
were first used to extract the important features and cluster the patterns in an
unsupervised manner. This was followed by subsequent labelling based on the
known patterns in the training set.

The prediction performance of the classifiers was measured by cross-validation.
The classifier using the structure information correctly classified previously un-
seen mutants with and accuracy of between 60 and 70 %. Several architectures
were tested on the more abundant sequence of 68 % and a coverage of 69 %. Mul-
tiple networks were then combined into various majority voting schemes. The best
combination yielded an average of 85% coverage and 78% accuracy on previously
unseed data. This is more than two times better than the 33 % accuracy expected
from a random classifier.

Hsu et al (2003) describe an unsupervised dynamic hierarchical self-organizing
approach, which suggests an appropriate number of clusters, to perform class dis-
covery and marker gene identification in microarray data. In the process of class
discovery, the proposed algorithm identifies corresponding sets of predictor genes
that best distinguish one class from other classes. The approach integrates merits
of hierarchical clustering with robustness against noise know from self-organizing
approaches.

The proposed algorithm applied to DNA microarray data sets of two types of
cancers has demonstrated its ability to produce the most suitable number of clus-
ters. Further, the corresponding marker genes identified through the unsupervised
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algorithm also have a strong biological relationship to the specific cancer class.
The algorithm tested on leukemia microarray data, which contains three leukemia
types, was able to determine three major and one minor cluster. Prediction mod-
els built for the four clusters indicate that the prediction strength for the smaller
cluster is generally low, therefore labelled as uncertain cluster. Further analysis
shows that the uncertain cluster can be subdivided further, and the subdivisions
are related to two of their original clusters. Another test performed using colon
cancer microarray data has automatically derived two clusters, which is consistent
with the number of classes in data (cancerous and normal).

Mangiameh et al (1996) provide a comparison of the performance of SOM
network and seven hierarchical cluster methods: single linkage, complete linkage,
average linkage, centroid method, Ward´s method, two stage density and k-nearest
neighbor. A total of 252 empirical data set was constructed to simulate several
levels of imperfections that include dispersion, aberrant observations, irrelevant
variables, non-uniform cluster, more detailed description in shown in Tables 4.5-
4.7.

Data set Design factors # of
data sets

2,3,4 or 5 clusters;
Base data 4,6 or 8 variables; 36

low, med or high dispersion
Irrelevant variables Basic data plus 1 or 2 irrelevant variables 72
Cluster density Basic data plus 10% or 60% density 72
Outliers Basic data plus 10% or 20% outliers 72

Table 4.5: Data set design

Number of Average
clusters distance (units)
2 5.03
3 5.31
4 5.33
5 5.78

Table 4.6: Average distance between cluster

The experimental results are unambiguous; the SOM network is superior to all
seven hierarchical clustering algorithms commonly used today. Furthermore, the
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Level of Avg. cluster Range in
dispersion std. dev. std.dev.

(in units)
High 7.72 3
Medium 3.72 6
Low 1.91 12

Table 4.7: Basis for data set construction

performance of the SOM network is shown to be robust across all of these data
imperfections. The SOM superiority is maintained across a wide range of ”messy
data” conditions that are typical of empirical data sets. Additionally, as the level of
dispersion in the data increases, the performance advantage of the SOM network
relative to the hierarchical clustering methods increases to a dominant level.

The SOM network is the most accurate method for 191 of the 252 data sets
tested, which represents 75.8% of the data. The SOM network ranks first or sec-
ond in accuracy in 87.3% of the data sets. For the high dispersion data sets, the
SOM network is most accurate 90.2% of the time, and is ranked first or second
91.5% of the time. The SOM network frequently has average accuracy levels of
85% or greater, while other techniques average between 35% and 70%. Of the
252 data sets investigated, only six data sets resulted in poor SOM results. These
six data sets occurred at low levels of data dispersion, with a dominant cluster
containing 60% or more of the observations and four or more total clusters. De-
spite the relatively poor performance at these data conditions, the SOM network
did average 72% of observations correctly classified.

These finds seems to contradict the bad performance of SOM network com-
pared to k-means clustering method applyed in 108 data sets reported by Balakr-
ishman et al (1994).

Carvalho et al (2006) applied the SOM network to gamma ray burst and sug-
gested the existence of 5 clusters of burst. This result was confirmed by a feed-
foward network and principal component analysis.

4.2 Dimensional Reduction Networks
In this section we will present some neural networks designed to deal with the

problem of dimensional reduction of data.
In several occasions it is useful and even necessary to first reduce the dimen-

sion of the data to a manageable size, keeping as much of the original information
as possible, and then to proceed with the analysis.



CHAPTER 4. MULTIVARIATE STATISTICS NEURAL NETWORKS 79

Sometimes, a phenomenon which is in appearance high-dimension is actually
governed by few variables (sometimes called ”latent variables” or ”factors”). The
redundance, presented in the data collected related to the phenomenon, can be
due, for example, to:

− Many of the variables collected may be irrelevant .

− Many of the variables will be correlated (therefore some redundant infor-
mation is contained in the data), a new set of uncorrelated or independent
variables should be found.

An important reason to reduce the dimension of the data is that some authors
call: ”the curse of dimensionality and the empty space phenomenon”. The curse
of dimensionality phenomenon refers to the fact that in the absence of simplifying
assumptions, the sample size needed to make inferences with a given degree of
accuracy grows exponentially with the number of variables. The empty space
phenomenon responsible for the curse of dimensionality is that high-dimensional
spaces are inherently sparse. For example, for a one dimensional standard normal
N(0, 1), about 70% of the mass is at points contained in the interval (sphere of
radius of one standard deviation around the mean zero. For a 10-dimensional
N(0, I), the same (hyper) sphere contain only 0, 02% of the mass, and a radius of
more than 3 standard deviations is need to contain 70%.

A related concept in dimensional reduction methods is the intrinsic dimension
of a sample, which is defined as the number of independent variables that explain
satisfactorily the phenomenon. This is a loosely define concept and a trial and
error process us usually used to obtain a satisfactory value for it.

There are several techniques to dimensional reduction and can be classified in
two types: with and without exclusion of variables. The main techniques are:

− Selection of variables:

– Expert opinion.

– Automatic methods: all possible regressions, best subset regression,
backward elimination, stepwise regression, etc.

− Using the original variables:

– Principal Components.

– Factor Analysis.

– Correspondence Analysis.

– Multidimensional Scaling.
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– Nonlinear Principal Components

– Independent Component Analysis

– Others

We are concerned in this book with the latter group of techniques (some of
which have already being described: Projection Pursuit, GAM, Multidimensional
Scaling, etc).

Now we turn to some general features and common operation on the data
matrix to be used in these dimensional reduction methods.

4.2.1 Basic Structure of the Data Matrix
A common operation in most dimensional reduction technique is the decom-

position of a matrix of data into its basic structure.
We refer to the data set, the data matrix as X , and the specific observation of

variable j in subset i, as xij . The dimension of X is (n x p), corresponding to n
observations of p variables (n > p).

Any data matrix can be decomposed into its characteristic components:

Xn x p = Un x pdp x pV
′

p x p (4.2.1)

which is call ”single value decomposition”, i.e. SVD.
The U matrix ”summarizes” the information in the rows of X , the V matrix

”summarizes” information in the columns of X , the d matrix is a diagonal ma-
trix, whose diagonal entries are the singular values and are weigths indicating the
relative importance of each dimension in U and V and are ordered from largest
to smallest.

If X does not contain redundant information the dimension of U , V e d will
be equal the minimum dimension p of X . The dimension is called rank.

If S is a symmetric matrix the basic structure is:

S = UdV
′
= UdU

′
= V dV

′
(4.2.2)

Decomposition of X , X.X
′ or X

′
.X reveals the same structure:

Xnxp = UdV
′

(4.2.3)

XX
′
(nxn) = Ud2U

′
(4.2.4)

XX
′
(pxp) = V d2V

′
(4.2.5)

A retangular matrix X can be made into symmetric matrices (XX
′ and

X
′
X) and their eigenstructure can be used to obtain the structure of X . If

XX
′
= UD and X

′
X = V DV

′ then X = UD
1
2 V .
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The columns of U and V corresponding to the eigenvalues Di are also related
by: If Ui is an eigenvector of XX

′ corresponding to Di then the corresponding
eigenvector of X

′
X corresponding to Di is equal or proportional to U

′
i X .

Some dimensional reduction techniques share the same decomposition algo-
rithm SVD. They differ only in the predecomposition transformation of the data
and their posdecomposition transformation of the latent variables. The following
transformation will be used

− Deviation from the mean:

xij = xij − x̄j (4.2.6)

where xj is the column (variable j) mean.

− Standardization

zij =
xij − x̄j

Sj

(4.2.7)

where x̄j and Sj are the column (variable j) mean and standard deviation.

− Unit length

x∗ij =
xij

(
∑

x2
ij)

1
2

(4.2.8)

− Double-centering

x∗ij = xij − x̄i − x̄j + x̄ij (4.2.9)

obtained by subtracting the row and column means and adding back the
overall mean.

− For categorical and frequency data

x∗ij =
xij

(
∑

i xij

∑
j xij)

1
2

=
xij

(x•jxi•)
1
2

(4.2.10)

From these transformations the following matrices are obtained:

− Covariance Matrix

C =
1

n
(X − X̄)

′
(X − X̄

′
) (4.2.11)

from the mean corrected data.
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− R-Correlation Matrix

R =
1

n
Z
′
cZc (4.2.12)

where Zc indicates the matrix X standardized within columns in the num-
ber of observations.

− Q-Correlation Matrix

Q =
1

p
Z
′
rZr (4.2.13)

where Zr indicates the matrix X standardized within rows, and p is the
number of variables.

4.2.2 Mechanics of Some Dimensional Reduction Techniques
Now we outline the relation of the SVD algorithm to the dimensional reduction

algorithm, some of which can be computed using neural networks.

4.2.2.1 Principal Components Analysis - PCA

When applying PCA in a set of data the object is:

− to obtain from the original variables a new set of variables (factors, latent
variables) which are uncorrelated.

− to hope that a few of this new variables will account for the most of the
variation of the data, that is the data can be reasonably represented in lower
dimension, and keeping most of the original information

− these new variables can be reasonable interpreted.

The procedure is performed by applying a SVD on the C-Correlation Ma-
trix or in the R-Correlation Matrix. Since PCA is not invariant to transformation
usually the R matrix is used.

4.2.2.2 Non-linear Principal Components

Given the data matrix X , this procedure consists in performing the SVD al-
gorithm in some function φ(X).

In the statistical literature an early reference is Gnanadesikan (1999) and is
closely related to Kernel principal components, Principal Curves and Informax
method in Independent Component Analysis. The later will be outlined later.
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4.2.2.3 Factor Analysis - FA

Factor analysis has also the aim of reducing the dimensionality of a variable
set and it also has the objective of representing a set of variables in terms of a
smaller number of hypothetical variables.

The main differences between PCA and FA are:

− PCA decomposes the total variance. In the case of standardized variables, it
produces a decomposition of R. FA on the other hand finds a decomposition
of the reduced matrix R−U , where U is a diagonal matrix of the ”unique”
variances associated with the variables. Unique variances are that part of
each variable’s variance that has nothing in common with remaining p − 1
variables.

− PCA is a procedure to decompose the correlation matrix without regard to
an underlying model. FA, on the other hand, has an underlying model that
rest on a number of assumptions, including normality as the distribution for
the variables.

− The emphasis in FA is in explaining Xi as a linear function of hypothetical
unobserved common factors plus a factor unique to that variable, while the
emphasis in PCA is expressing the principal components as a linear function
of the Xi’s. Contrary to PCA, the FA model does not provide a unique
transformation form variables to factors.

4.2.2.4 Correspondence Analysis - CA

Correspondence analysis represents the rows and columns of a data matrix
as points in a space of low dimension, and it is particularly suited to (two-way)
contingency tables.

Log-linear model (LLM) is also a method widely used for analysing contin-
gency tables. The choice of method, CA or LLM depends of the type of data to
be analysed and on what relations or effects are of most interest. A practical rule
for deciding when each method is to be preferred is: CA is very suitable for dis-
covering the inherent structure of contingency tables with variables containing a
large number of categories. LLM is particularly suitable for analysing multivariate
contingency tables, where the variables containing few categories. LLM analyse
mainly the interrelationships between a set of variables, where as correspondence
analysis examines the relations between the categories of the variables.

In CA the data consists of an array of frequencies with entries fij , or as a
matrix F .



CHAPTER 4. MULTIVARIATE STATISTICS NEURAL NETWORKS 84

− The first step is to consider the transformation:

hij =
fij√
fi•f•j

(4.2.14)

where hij is the entry for a given cell, fij the original cell frequency, fi• the
total for row i and f•j the total for column j.

− The second step is to find the basic structure of the normalized matrix H
with elements (hij) using SVD. This procedure summary row and column
vectors, U and V of H and a diagonal matrix of singular values, d, of H .
The first singular value is always one and the successive values constitute
singular values or canonical correlations.

− The third and final step is to rescale the row (U ) and column (V ) vectors to
obtain the canonical scores. The row (X) and column (Y ) canonical scores
are obtained as:

Xi = Ui

√
f••
fi•

(4.2.15)

Yi = Vi

√
f••
f•j

(4.2.16)

4.2.2.5 Multidimensional Scaling

Here we will describe the classical or metric method of multidimensional scal-
ing which is closely related to the previous dimensional reduction method, since
it also os based on SVD algorithm. Alternative mapping and ordinal methods will
not be outlined.

In multidimensional scaling we are given the distances drs between every para
of observations. Given the data matrix X , there are several ways to measure
the distance between pair of observations. Since many of them produce measure
of distances which do not satisfy the triangle inequality, the term dissimilarity is
used.

For continuous data X , the most common choice is the Euclidean distance:
d2 = XX

′ This depend on the scale in which the variables are measured, One
way out is to use Mahalanobis distance with respect to the covariance matrix Σ̂ of
the observations.

For categorical data a commonly used dissimilarity is based on the simple
matching coefficient, that is the proportion Crs, of features which are common to
the two observations r and s. As this is between zero and one, the dissimilarity is
found to be drs = 1− crs.
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For ordinal data we use the rank as if they were continuous data after rescaling
to the range (0,1) so that every original feature is given equal weight.

For mixture of continuous, categorical and ordinal features a widely used pro-
cedure is: for each feature define a dissimilarity df

rs and an indicator If
rs which is

one only if feature f is recorded for both observation. Further If
rs = 0 if we have

a categorical feature and an absence- absence. Then

drs =

∑
f If

rsd
f
rs∑

If
rs

(4.2.17)

In the classical or metric method of multidimensional scaling, also known as
principal coordinate analysis, we assume that the dissimilarities were derived as
Euclidean distances between n points in p dimensions. The steps are as follows:

− From the data matrix obtain the matrix of distances T (XX
′ or XΣX

′).

− Double centering the dissimilarity matrix T , say T ∗.

− Decompose the matrix T ∗ using the SVD algorithm.

− From the p (at most) non-zero vectors represent the observations in the
space of two (or three) dimensions.

4.2.3 Independent Component Analysis - ICA
The ICA model will be easier to explain if the mechanics of a cocktail party

are first described. At a cocktail party there are partygoers or speaker holding con-
versations while at the same time there are microphones recording or observing
the speakers also called underlying source or component.

At a cocktail party, there are p microphones that record or observe m party-
gower or speaker at n instants. This notation is consistent with traditional Mul-
tivariate Statistics. The observed conversation consists of mixtures of true unob-
served conversations. The microphones do not observe the observed conversation
in isolation. The recorded conversation are mixed. The problem is to unmix or
recover the original conversation from the recorded mixed conversation.

The relation of ICA with other methods of dimension reduction is shown in
Figure 4.22 as discussed in Hyvarinen (1999). The lines show close connections,
and the text next to the lines show the assumptions needed for the connection.

Before we formalize the ICA method we should mention that the roots of basic
ICA can be traced back to the work of Darmois in the 1950 (Darmois 1953) and
Rao in the 1960 (Kagan et al, 1973) concerning the characterization of random
variables in linear structures. Only recently this has been recognized by ICA
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Figure 4.22: (The lines show close connections, and the text next to the lines show
the assumptions needed for the connection.)

researchers (Common, 1994, Jutten and Taleb 2000, Fiori 2003) which regrets
that this may have delayed progress.

For the general problem of source separation we use the statistical latent vari-
ables model. Suppose we have p linear mixtures of m independent components:




xi1

. . .
xip


 =




a11.si1 + . . . + a1m.sim

. . .
ap1.si1 + . . . + apm.sim


 =




a11 . . . a1m

ap1 . . . apm







si1

. . .
sim




xi = Asi (4.2.18)

Actually the more general case of unmixing consider a nonlinear transforma-
tion and an additional error term ie:

xi = f(si) + εi (4.2.19)

the model 4.2.18 is the base for blind source separation method. Blind means that
we know very little or anything on the mixing matrix and make few assumptions
on the sources si.

The principles behind the techniques of PCA and FA is to limit the number of
components si to be small that is m < p and is based on obtaining non-correlated
sources.

ICA consider the case of p = m and obtain estimates of A and to find compo-
nents si that are independent as possible.

After estimating the matrix A, we can compute its inverse, and obtain the
independent component simply by:

s = Wx (4.2.20)

Some of the characteristics of the procedure is:
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− We fix the variances of the components to be one.

− We cannot determine the order of the components.

− To estimate A at most one of the components can be Gaussian. The inde-
pendent components must be Gaussian.

The key to estimating the ICA model is non-Gaussianity and independence.
There are several methods: maximum likelihood and network entropy, mutual
information and Kulback-Leibler divergence, non-linear cross correlations, non-
linear PCA, higher-order cumulants, weighted covariance matrix (Hyvarinen, 1999).

Here we outline the Infomax principle of network entropy maximization which
is equivalent to maximum likelihood (see Hyvarinen and Oja, 2000). Here we fol-
low Jones and Porril (1998).

Consider eq.4.2.20, s = Wx. If a signal or source s has a cdf cumulative
density function g, then the distribution of g(s) by the probability integral trans-
formation, has an uniform distribution ie has maximum entropy.

The unmixing W can be found by maximizing the entropy of H(U) of the joint
distribution U = (U1, . . . , Up) = (g1(s1) . . . gp(sp) where si = Wxi. The correct
gi have the same form as the cdf of the xi, and which is sufficient to approximate
these cdfs by sigmoids:

Ui = tanh(si) (4.2.21)

Given that U = g(Wx), the entropy H(U ) is related to H(x) by:

H(U ) = H(x) + E(log|∂U

∂x
|) (4.2.22)

Given that we wish to find W that maximizes H(U ), we can ignore H(x) in
(4.2.22). Now

∂U

∂x
= |∂U

∂s
|| ∂s

∂x
| =

p∏
i=1

g,(si)|W | (4.2.23)

Therefore 4.2.22 becomes:

H(U) = H(x) + E(

p∑
i=1

g(s,
i)) + log|W | (4.2.24)

The term E = (
∑p

i=1 g(si)), given a sample of size n, can be estimated by:

E(

p∑
i=1

g(si)) ≈ 1

n

n∑
j=1

p∑
i=1

logg,
i(s

(j)
i ) (4.2.25)
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Ignoring H(x), equation 4.2.24 yield a new function which differ from H(U)
by H(x).

h(W ) =
1

n

n∑
j

p∑
i

logg,
i(s

∗
i ) + log|W | (4.2.26)

Defining the cdf gi = tanh and recalling that g, = (1− g2) we obtain:

h(W ) =
1

n

∑
j=1

n

p∑
i=1

log(1− s,2
i ) + log|W | (4.2.27)

whose maximization with respect to W yield:

5W =
∂H(W )

∂W
=

∂h((W ))

∂(W )
= (W ,)−1 + 2.s.x, (4.2.28)

and an unmixing matrix can be found by taking small steps of size η to W

∆W = η((W ,−1 − 2.s.x,) (4.2.29)

After reescaling, it can be shown (see Lee, 1998 p 41,45) that a more general
expression is:

∆W ≈
{

(I − tanh(s)s, − ss,)W super-Gaussian
(I + tanh(s)s, − ss,)W sub-Gaussian (4.2.30)

Super-gaussian random variables have typically a ”spiky” pdf with heavy tails,
ie the pdf is relatively large at zero and at large values of the variable, while
being small for intermediate values. A typical example is the Laplace (or double-
exponential) distribution. Sub-Gaussian random variables, on the other hand, have
typically a ”flat” pdf which is rather constant near zero, and very small for large
values of the variables. A typical example is uniform distribution.

We end this section with two illustrations of the applications of ICA and PCA
to simulated examples from Lee (1998, p 32). The first simulated example in-
volves two uniformly distributed sources s1 e s2.

The sources are linearly mixed by:

x = As (4.2.31)[
x1

x2

]
=

[
1 2
1 1

] [
s1

s2

]

Figure 4.23 shows the results of applying of the mixing transformation and the
application of PCA and ICA. We see that PCA only sphere (decorrelate) the data,
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Figure 4.23: PCA and ICA transformation of uniform sources (Top-left:scatter
plot of the original sources, Top-right: the mixtures, Bottom-left: the recovered
sources using PCA, Bottom-right: the recovered sources using ICA.)
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while ICA not only sphere the data but also rotate it such that ŝ1 = u1 and ŝ2 = u2

have the same directions of s1 and s2.
The second example in Figure 4.24 shows the time series of two speach signals

s1 and s2. The signal are linearly mixed as the previous example in eq. 4.2.31.
The solution indicates that the recovered sources are permutated and scaled.
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Figure 4.24: PCA and ICA transformation of speach signals (Top: the original
sources, second row: the mixtures, third row: the recovere sources using PCA,
bottom: the recovered sources using ICA.)
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4.2.4 PCA networks
There are several neural networks architecture for performing PCA (See Dia-

mantaras and Kung 1996 and Hertz, Kragh and Palmer,1991). They can be:

− Autoassociator type. The network is trained to minimize:

n∑
i=1

p∑

k=1

(yik(x− xik))
2 (4.2.32)

or

||x, − F1(x)|| = ||A,(x− µ)|| (4.2.33)

The architecture with two layer and indentity activation function is as Figure
4.25.

Figure 4.25: PCA networks - Autoassociative

− Networks based on Oja (Hebbian) rule

The network is trained to find W that minimizes
n∑

i=1

||xi −W ,Wxi||2 (4.2.34)

and its architecture is shown in Figure 4.26.
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Figure 4.26: PCA networks architecture - Oja rule.

Several update rules has been suggested, all of each follows the same matrix
equation:

∆Wl = ηlylx
,
l −KlWl (4.2.35)

where xl and yl are the input and output vectors, ηl the learning rate and Wl is
the weight matrix at the l-th iteration. Kl is a matrix whose choice depends on the
specific algorithm, such as the following:

1. William´s rule: Kl = yly
,
l

2. Oja-Karhunen´s rule: Kl = 3D(yly
,
l) + 2L(yny

,
n)

3. Sanger´s rule: Kl = L(yly
,
l)

where D((A)) is a diagonal matrix with diagonal entries equal to those of A,
L(A) is a matrix whose entries above and including the main diagonal are zero.
The other entries are the same as that of A. For example:

D

[
2 3
3 5

]
=

[
2 0
0 5

]
L

[
2 3
3 5

]
=

[
0 0
3 0

]
(4.2.36)

To illustrate the computation involved consider the n = 4 sample of a p = 3
variable data in Table 4.8.
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Table 4.8: Data p = 3, n = 4.

n x1 x2 x3

1 1.3 3.2 3.7
2 1.4 2.8 4.1
3 1.5 3.1 4.6
4 1.1 3.0 4.8

The covariance matrix is:

S2 =
1

5




0.10 0.01 −0.11
0.01 0.10 −0.10
−0.11 −0.10 0.94


 (4.2.37)

the eigenvalues and eigenvectors are shown in Table 4.9.

Table 4.9: SVD of the covariance matrix S2

eigenvalue eigenvectors
V1 V2 V3

d1 0.965 -0.823 0.553 -0.126
d2 0.090 -0.542 -0.832 -0.115
d3 0.084 -0.169 -0.026 -0.985

Now we will compute the first principal component using a neural network
architecture.

Figure 4.27: Oja´s rule
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We choose ηl = 1.0 for all values of l, and select the initial values w1 =
0.3,w2 = 0.4 and w3 = 0.5. For the first input x1 = (0, 0.2,−0.7) we have:

y = (0.3, 0, 4, 0, 5).(0, 0.2,−0.7) = −0.27 (4.2.38)
4W = (−0.27(0, 0.2,−0.7)− (−0.27)2.(0.3, 0.4, 0.5)) (4.2.39)

W = (0.3, 0.4, 0.5) +4W = (0.278, 0.316, 0.652) (4.2.40)

For the next input x2 = (0.1,−0.2,−0.3)

y = −0.231 (4.2.41)
4W = (−0.231(0.10,−0.20,−0.30)− (−0.231)2.(0.278, 0.316, 0.651))

(4.2.42)

W = (0.278, 0.316, 0.652) +4W = (0.240, 0.346, 0.687) (4.2.43)

Subsequent presentation of x3,x4 and x5 change the weight matrix to (0.272, 0.351, 0.697),
(0.238, 0.313, 0.751) and (0.172, 0.293, 0.804), respectively.

This process is repeated, cycling through the input vectors x1,x2,. . ., x5 by
the end of the second iteration, the weights becomes (−0.008,−0.105, 0.989) at
the end of the third interaction it chances to (−0.111,−0.028, 1.004). The weight
adjustment process continues in this manner, resulting in the first principal com-
ponent.

Further applications are mentioned in Diamantaras and Kung (1996). Most of
the applications are in face, vowel, speach recognition. A comparison of the per-
formance of the alternative rules are presented in Diamantaras and Kung (1996)
and Nicole (2000). The later author also compare the alternative algorithms for
neural computation of PCA with the classical batch SVD using the Fisher´s iris
data.

4.2.5 Non-linear PCA networks
The nonlinear PCA networks is trained to minimize:

1

n

n∑
i=1

||xi −W ,ϕ(Wx)||2 (4.2.44)

where ϕ is a non-linear function with scalar arguments.
Since from Kolmogorov theorem, a function ϕ can be approximated by a sum

of sinoidals, the architecture of the non-linear PCA network is as in Figure 4.28.
Application on face recognition is given in Diamantaras and Kung (1996).
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Figure 4.28: Non linear PCA network

4.2.6 FA networks
The application of artificial neural networks to factor analysis has been imple-

mented using two types of architectures:
A) Using autoassociative networks
This network implemented by Sun and Lai (2002) and called SunFA.
The concept consists in representing the correlation matrix R = (rij) by cross-

products (or outer product) of two factor symmetric matrices Fp x m and F ,
p x m.

Here the network architecture is that of Figure 4.25 and when there are m
common factors the network is trained to minimize the function

E =(r12 −
m∑

k=1

f1kf2k)
2 + (r13 −

m∑

k=1

f1kf3k)
2 + . . .

+ (r1p −
m∑

k=1

f1kfpk)
2 + (r23 −

m∑

k=1

f2kf3k)
2 + . . .

(r2p −
m∑

k=1

f2kfpk)
2 + . . . + (rp−1,p −

m∑

k=1

fp−1,kfpk)
2

(4.2.45)

Sun and Lai (2002) report the result of an application to measure ability of 12
students (verbal,numerical,etc) and a simulation result comparing their method
to other four methods (factor analysis, principal axes, maximum likelihood and
image analysis).
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Five correlation matrices were used for samples of size n = 82,164 and 328
with factors matrices A,B an C. Ten sets of correlation submatrices where sam-
pled from each correlation matrix. They found that SunFA was the best method.

B) Using PCA (Hebbian) networks
Here an PCA network is used to extract the principal components of the cor-

relation matrix and to choose the number of factors (components) m that will be
used in the factor analysis. Then a second PCA network extract m factors choosen
in the previous analysis.

This procedure has been used by Delichere and Demmi (2002a,b) and Calvo
(1997). Delichere and Demmi use an updating algorithm call GHA (General-
ized Hebbian Algorithm) and Calvo the APEX (Adaptive Principal Component
Extraction) see Diamantaras and Kung (1996).

We outline Calvo´s application. The data consisted on school grades of 8
students in four subjects (Mathematics, Biology, French and Latin). The first
PCA network shown that the first component explained 73% of the total variance
and the second explained 27%.

The second network used the architecture shown in Figure 4.29.

Figure 4.29: Factor analysis APEX network

Calvo obtained the results in Tables 4.10 and 4.11 and Figures 4.2.6 and 4.31,
he also reported that the eigenvalues were equal within (±0.01) to the results
obtained on commercial software (SPPS).
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Figure 4.31: Students in factor space

Student Math Biology French Latin
1 13 12.5 8.5 9.5
2 14.5 14.5 15.5 15
3 5.5 7 14 11.5
4 14 14 12 12.5
5 11 10 5.5 7
6 8 8 8 8
7 6 7 11 9.5
8 6 6 5 5.5

Table 4.10: Scholl grades in four subjects

Factor 1 Factor 2
Mathematics -0.4759 -0.5554

Biology -0.5284 -0.4059
French -0.4477 0.6298
Latin -0.5431 0.3647

Table 4.11: Loadings for the two factors retained
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4.2.7 Correspondence Analysis Networks - CA
The only reference outlining how neural networks can be used for CA is Lehart

(1997). The obvious architecture is the same for SVD or PCA shown in Figure
4.32. Here we take:

Zij =
fij − fi•f•j√

fi•f•j
(4.2.46)

Figure 4.32: CA network

Unfortunately there does not seem to be any application on real data yet.



CHAPTER 4. MULTIVARIATE STATISTICS NEURAL NETWORKS 99

4.2.8 Independent Component Analysis Networks - ICA
The usual procedure in ICA follows the following steps:

− standardize the data

− whitening (decorrelate i.e apply PCA)

− obtain the independent components (eq. Informax, ie NPCA).

One possible architecture is shown in Figure 4.33 where

x = Qs + ε

and the steps are:

− whitening: vk = V xk

− independent components: yk = W vk.

Figure 4.33: ICA neural network

Now, we present some recent applications of ICA.

i) Fisher iris´s data - Lee (1998) compare classification algorithms with a clas-
sification based on ICA. The data set contains 3 classes, 4 variables and 50 ob-
servations in each class, each class refers to a type of iris plant. The training set
contained 75% of the observation and the testing set 25%. The classification er-
ror in the test data was 3%. A simple classification with boosting and a k-means
clustering gave errors of 4,8% and 4,12% respectively. Figure 4.34 presents the
independent directions (basis vectors).
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Figure 4.34: An example of classification of a mixture of independent compo-
nents. There are 4 different classes, each generated by two independent variables
and bias terms. The algorithm is able to find the independent directions (basis
vectors) and bias terms for each class.
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Draghici et al (2003) implement a data mining technique based on the method
of ICA to generate reliable independent data sets for different HIV therapies. They
consider a coupled model that incorporate three algorithms:
i) ICA model is used for data refinement and normalization. The model accepts a
mixture of CD4+, CD8+ and viral load data to a particular patient and normalizes
it with broather data sets obtained from other HIV libraries. The ICA is used to
isolate groups of independent patterns embedded in the considered libraries.
ii) Cluster (Kohonen Map) networks are used to select those patterns chosen by
ICA algorithm that are close to the considered input data.

These two mechanisms helped to select similar data and also to improve the
system by throwing away unrelated data sets.
iii) Finally a non-linear regression model is used to predict future mutations in the
CD4+,CD8+ and viral loads.

The author points out a series of advantage of their method over the usual
mathematical modelling using a set of simultaneous differential equation which
requires an expert to incorporate the dynamic behaviour in the equations.

Financial applications: the following are some illustration mentioned by Hy-
varinen et al (2001):

i) Application of ICA as a complementary tool to PCA in a study of stock
portfolio, allowing the underline structure of the data to be more readily observed.
This can be of help in minimizing the risk in the investment strategy.

ii) ICA was applied to find the fundamental factor common to all stores that
affect the cashflow, in the same retail chain. The effect of managerial actions
could be analysed.

iii) Time series prediction. ICA has been used to predict time series data
by first predicting the common components and then transforming back to the
original series.

Further applications in finance are Cha and Chan and Chan and Cha (2001).
The book of Girolami (1999) also gives an application of clustering using ICA to
the Swiss banknote data on forgeries.

4.3 Classification Networks
As mentioned before two important tasks in pattern recognition are patter clas-

sification and cluster or vector quantization. Here we deal with the classification
problem, whose task is to allocate an object characterized by a number of mea-
surements into one of several distinct classes. Let an object (process, image, in-
dividual, etc) be characterized by the k-dimensional vector x = (x1, . . . , xk) and
let c1,c2,. . .,cL be labels representing each of the classes.
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The objective is to construct and algorithm that will use the information con-
tained in the components x1,. . .,xk of the vector x to allocate this vector to one of
the L distinct categories. Typically, the pattern classifier or discrimination func-
tion calculates L functions (similarity measures), P1, P2,. . .,PL and allocates the
vectors x to the class with the highest similarity measures.

Many useful ideas and techniques have been proposed for more than 60 years
of research in classification problems. Pioneer works are Fisher (1936) Rao (1949)
and reviews and comparisons can be seen in Randys (2001), Asparoukhov (2001)
and Bose (2003).

Neural network models that are used for classification have already been pre-
sented in previous sections. Figures 4.35 to 4.40 presents a taxonomy and exam-
ples of neural classifiers.

Figure 4.35: Taxonomy and decision regions (Type of decisions regions that can
be formed by single and multi-layer perceptrons with hard limiting nonlineari-
ties. Shading denotes regions for class A. Smooth closed contours bound input
distributions.)
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Figure 4.36: Classification by Alternative Networks: multilayer perceptron (left)
and radial basis functions networks (right)

Figure 4.37: A nonlinear classification problem
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Figure 4.38: Boundaries for neural networks with tree abd six hidden units (note
how using weight decay smooths the fitted surface)
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Here we give some examples of classification problems solved using neural
networks.

We start with an application of PNN - probabilistic neural networks in bankruptcy
prediction. Yang at al (1999) using data from 122 companies for the period 1984
to 1989 built on warning bankrupt model for the US oil and gas industry. The
data consist of five ratios to classify oil and gas companies into bankrupt and non-
bankrupt groups. The five ratios are net cash flow to total assets, total debt to total
assets, exploration expenses to total reserves, current abilities to total reserves,
and the trend in total reserves calculated on the ratio of change from year to year.
The first fou rates are deflated. There are two separate data sets one with deflated
ratios and one without deflation.

The 122 companies are randomly divided into three sets: the training data set
(33 nonbankrupt companies and 11 bankrupt companies), the validation data set
(26 nonbankrupt companies and 14 bankrupt companies) and the testing data (30
nonbankrupt companies and 8 bankrupt companies).

Four methods of classification were tested: FISHER denotes Fisher discrimi-
nant analysis, FF denotes feedforward network, PNN means probabilistic neural
networks, PNN* is probabilistic neural networks without data normalized. The
normalization of data is in the form: x∗ = x/||x||.

Table 4.12 presents the results and we can see that the ranking of the classifi-
cation model is: FISHER, PNN*, PNN and EF.

Table 4.12: Number and percentage of Companies Correctly Classified

Nondeflated data Deflated data
Overall Nonbankrupt Bankrupt Overall Nonbankrupt Bankrupt
n=38 n=30 n=8 n=38 n=30 n=8

FISHER 27 (71 %) 20 (67 %) 7 (88 %) 33 (87 %) 26 (87 %) 7 (88 %)
BP 28 (74 %) 24 (80 %) 4 (50 %) 30 (79 %) 30 (100 %) 0 (0 %)
PNN 25 (66 %) 24 (80 %) 1 (13 %) 26 (68 %) 24 (80 %) 2 (25 %)
PNN* 28 (74 %) 24 (80 %) 4 (50 %) 32 (84 %) 27 (90 %) 5 (63 %)
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Bounds and Lloyd (1990) compared feedforward network, radial basis func-
tions, three group of clinicians and some statistical classification methods in the
diagnostic of low back disorders. The data set referred to 200 patients with low
back disorders.

Low back disorder were classified in four diagnostic category: SLBP (simple
low backpain), ROOTP (nerve root compression), SPARTH (spinal pathology,
due to tumour, inflammation or infection), AIB (abnormal illness behaviour, with
significant psychological overlay).

For each patient the data was collected in a tick sheet that listed all the relevant
clinical features. The pacient data was analysed using two different subset of
the total data. The first data set (full assessment) contained all 145 tick sheet
entries. This corresponds to all information including special investigations. The
second data used a subset of 86 tick sheet entries for each patient. These entries
correspond to a very limited set of symptoms that can be collected by paramedic
personnel.

There were 50 patients for each of the four diagnostic class. Of the 50 patients
in each class 25 were selected for the training data and the remaining for the test
set.

The neural network used were: feedforward network for individual diagnostic
(y = 1) and (y = 0) for remaining three, feedforward with two output (for the four
class diagnostic), a network of individual networks with two outputs, and mean
of 10 feedforward networks runs after training. All this networks had one hidden
layer.

The radial basis networks were designed to recognize all four diagnostic classes.
The effect of the number of centers, positions of the centers and different choice
of basis functions were all explored.

Two other classification methods and CCAD (computed-aided diagnosis) sys-
tem were also tested in these data. A summary of the results is shown in Table
4.13 and 4.14. The performance of the radial basis function, CCAD and MLP is
quite good.
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Table 4.13: Symptomatic assessment: Percentage test diagnoses correct

Abnormal
Classification Simple low Root Spinal illness
Method back pain pain pathology behaviour Mean
Clinicians Bristol
neurosurgeons 60 72 70 84 71
Glasgow orthopaedic
surgeons 80 80 68 76 76
Bristol general
pratictioners 60 60 72 80 68
CCAD 60 92 80 96 82
MLP

Best 50-20-2 52 92 88 100 83
Mean 50-20-2 43 91 87 98 80
Best 50-0-2 44 92 88 96 80
Mean 50-0-2 41 89 84 96 77

Radial basis functions 60 88 80 96 81
Closest class mean (CCM)
(Euclidean)

50 Inputs 56 92 88 96 63
86 Inputs 68 88 84 96 84

Closest class mean (CCM)
(scalar product)

50 Inputs (K=22) 16 96 44 96 63
86 Inputs (K=4) 92 84 60 84 80

K Nearest Neighboor (KNN)
(Euclidean)

50 Inputs (K=22) 88 84 76 84 83
86 Inputs (K=4) 92 80 84 80 84

K Nearest Neighboor (KNN)
(scalar product)

50 Inputs (K=3) 24 100 56 92 68
86 Inputs (K=6) 100 84 56 84 81
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Table 4.14: Full assessment: Percentage test diagnoses correct

Abnormal
Classification Simple low Root Spinal illness
Method back pain pain pathology behaviour Mean
Clinicians Bristol
neurosurgeons 96 92 60 80 82
Glasgow orthopaedic
surgeons 88 88 80 80 84
Bristol general
pratictioners 76 92 64 92 81
CCAD 100 92 80 88 90
MLP

Best 50-20-2 76 96 92 96 90
Mean 50-20-2 63 90 87 95 83
Best 50-0-2 76 92 88 96 88
Mean 50-0-2 59 88 85 96 82

Radial basis functions 76 92 92 96 89
Closest class mean (CCM)
(Euclidean)

85 Inputs 100 92 72 88 88
145 Inputs 100 88 76 88 88

Closet class mean (CCM)
(scalar product)

85 Inputs (K=22) 12 92 48 100 63
145 Inputs (K=4) 100 72 68 80 80

K Nearest Neighbour (KNN)
(Euclidean)

85 Inputs (K=19) 100 84 80 80 86
145 Inputs (K=4) 96 88 80 80 86

K Nearest Neighbour (KNN)
(scalar product)

85 Inputs (K=19) 48 96 52 92 68
145 Inputs (K=4) 92 92 72 76 83
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Santos et al (2005,2006) uses feedforward network in the diagnostic of Hepati-
tis A and Pulmonary Tuberculosis and gives a comparison with logistic regression.

The hepatitis A data (Santos et al 2005), 2815 individuals from a survey sam-
ple from regions in Rio de Janeiro state. The soroprevalence of hepatitis was 36,6.
From the 66 collected variables in the study, seven variables reflecting information
on the individuals, housing environment, and socioeconomic factors.

For a test sample of 762 individual randomly chosen. Table 4.15 presents the
results for the multilayer perceptron and a logistic regression model:

Table 4.15: Sensitivity (true positive) and specificity (true negative)

Errors Model
MLP LR

Sensitivity (%) 70 52
Specificity (%) 99 99

The Pulmonary Tuberculosis data (Santos et al 2006) consisted of data on 136
patients of the Hospital Universitario (HUCFF - Universidade Federal do Rio de
Janeiro). There were 23 variables in total. The test sample had 45 patients. A
comparison was made using multilayer perceptron and CART (Classification and
Regression Tree) model. Table 4.16 summarizes the results in the test data.

Table 4.16: Sensitivity x Specificity

Errors Model
MLP CART

Sensitivity (%) 73 40
Specificity (%) 67 70

A general comparison of classification methods including neural networks us-
ing medical binary data is given in Asparoukhov and Krzanowski (2001). Table
4.17 reproduces one of their three tables to indicate the methods used (They also
have a similar table for large (15-17) and moderate (10) number of variables).

They suggest that:

− all the effective classifiers for large sample are traditional ones (IBM - Inde-
pendent Binary Model Behaviour, LDF - Linear Discriminating Function,
LLM - 2 order loglinear model).
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Table 4.17: Leave-one-out error rate (multiplied by 103 for footnotesize (6) num-
ber of variables1

Discriminant
procedure Data set

Psychology Pulmonary Thrombosis Epilepsy Aneurysm
= 6= = 6= = 6= = 6= = 6=

Linear
classifiers

IBM 239 283 147 139 228 284 168 186 23 21
LDF 244 223 147 139 272 275 147 147 53 46
LD 229 266 147 167 302 343 193 186 28 25
MIP - 139 325 101 23
Quadratic
classifiers

Bahadur(2) 219 201 152 139 243 343 197 155 23 21
LLM (2) 206 207 151 144 250 304 153 116 23 21
QDF 215 207 - - 265 314 153 178 - -
Nearest
neighboor
classifiers

kNN-Hills(L) 273(2) 266(1) 187(1) 185(1) 265(1) 294(1) 153(2) 217(1) 363(1) 306(1)
kNN-Hall(L) 230(2) 217(2) 166(1) 144(1) 257(1) 324(1) 102(2) 124(1) 23(1) 21(1)
Other
non-parametric
classifiers

Kernel 247 234 166 144 243 363 143 124 23 21
Fourier 271 223 166 154 316 373 177 147 23 21
MLP(3) 207 139 284 132 25
LVQ(c) 190(6) 146(6) 226(6) 109(6) 37(4)

1= - equal prior probabilities;

6= = - prior probabilities are equal to the class individuals’ number divided by the design set size;

kNN-Hills(L) and lNN-Hall(L) - L is order of the procedure;

MLP(h)- h is hidden layer neuron number;

LVQ(c)- c is number of codebooks per class.
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− most of the effective classifiers for footnotesize samples are non traditional
ones (MLP - Multilayer Perceptron, LVQ - Learning Vector Quantization
Neural Network, MIP - Mixed Integer Programming).

Arminger et al (1987) compared logistic discrimination regression tree and
neural networks in the analysis of credit risk. The dependent variable is whether
the credit is paid off or not. The predictor variable are sex, true of employment,
marital status, and car and telephone holder. The result on the test data is shown
in Table 4.18.

Table 4.18: Correct Classification - Credit data

MLP LR CART
Good Credit 53 66 65
Bad Credit 70 68 66
Overall 66 67 66

For the lender point of view MLP is more effective.
Desai et al (1997) explore the ability of feedforward network, mixture-of-

expert networks, and linear discriminant analysis in building credit scoring models
in an credit union environmental. Using data from three credit union data, split
randomly in 10 datasets. The data for each credit union contain 962, 918 and
853 observation. One third of each were used as test. The results for the generic
models (all data) and the customized models for each credit union is presented in
Table 4.19 and 4.20 respectively.

Table 4.19: Generic models

Data set
Percentage correctly classified
mlp g mmn g lda g lr g
% total % bad % total % bad % total % bad % total % bad

1 79.97 28.29 80.12 28.95 79.80 27.63 80.30 33.55
2 82.96 35.06 81.80 38.31 80.60 31.82 81.40 35.06
3 81.04 36.44 79.20 47.46 82.40 37.29 82.70 40.68
4 82.88 33.80 83.33 38.03 83.49 40.85 83.49 44.37
5 79.21 32.88 78.59 43.15 80.60 37.67 80.01 39.04
6 81.04 53.69 80.73 35.57 80.58 38.93 81.35 42.95
7 80.73 44.30 79.82 44.97 80.73 36.24 82.57 41.61
8 78.89 50.00 79.82 41.96 80.58 32.88 81.35 39.73
9 81.92 43.87 80.43 32.90 81.04 30.97 81.35 33.55
10 79.51 62.50 80.73 32.64 81.35 33.33 82.42 40.28

average 80.75 42.08 80.46 38.39 81.12 34.76 81.70 39.08
p-value1 0.191 0.197 0.98 0.035 0.83 0.19

1 The p-values are for one-tailed paired t-test comparing mlp g results with the other three methods.

The results indicates that the mixture-of-experts performns better in classify-
ing bad credits.
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Table 4.20: Customized models

Data set Sample Percentage correctly classified
mlp c lda c lr c
% total % bad % total % bad % total % bad

Credit union L:
1 14.88 83.33 32.00 83.30 16.00 82.70 24.00
2 17.26 87.50 31.03 82.70 20.69 81.00 34.48
3 17.26 86.90 41.38 83.90 31.03 82.10 37.93
4 22.02 81.55 37.84 84.52 32.43 82.74 37.84
5 18.45 82.14 29.03 77.40 16.13 78.00 38.71
6 17.26 83.33 41.38 81.55 27.59 82.74 41.38
7 21.43 80.36 16.67 78.50 08.33 80.95 30.56
8 17.86 79.76 56.67 82.14 10.00 81.55 23.33
9 16.67 85.71 32.14 86.31 32.14 86.90 39.29
10 18.45 83.33 29.03 79.76 19.35 80.36 29.03
Credit union M:
1 26.77 85.43 79.71 86.60 70.97 87.40 73.53
2 26.77 88.58 76.47 85.40 18.64 88.20 79.41
3 20.47 85.43 80.77 87.40 31.58 85.80 75.00
4 23.63 90.94 75.00 90.20 35.14 89.00 75.00
5 24.02 89.37 88.52 89.90 22.22 86.60 81.97
6 26.38 88.58 74.63 88.19 12.96 86.22 71.64
7 26.77 85.43 74.63 85.04 28.30 86.22 77.61
8 25.59 88.19 75.38 86.61 28.89 87.40 67.69
9 27.59 87.40 72.86 85.43 31.37 86.61 67.14
10 24.41 90.55 82.26 89.37 21.05 89.37 80.65
Credit union N:
1 25.43 75.86 49.15 75.40 18.64 78.50 27.11
2 24.57 77.15 40.35 ?? 31.58 75.50 24.56
3 15.95 81.90 35.14 83.20 35.14 84.10 35.14
4 19.40 77.15 44.44 78.90 22.22 80.60 28.89
5 23.28 76.72 24.07 75.40 12.96 75.90 18.52
6 22.84 79.31 35.85 75.00 28.30 76.22 26.42
7 19.40 81.90 31.11 80.60 28.89 81.03 28.89
8 21.98 74.13 37.25 74.57 31.37 75.43 31.37
9 24.57 80.17 47.37 77.59 21.05 78.88 21.05
10 21.98 77.59 19.61 77.16 21.57 76.72 19.61

average 83.19 49.72 82.35 38.49 82.67 44.93
p-value1 0.018 5.7E-7 0.109 0.0007

1 The p-values are for one-tailed paired t-test comparing mlp c results with the other two methods.
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West (2000) investigate the credit scoring accuracy of five neural network
models: multilayer perceptron (MLP), mixture-of-experts, radial basis function,
learning vector quantization and fuzzy adaptive resonance. The neural networks
credit scoring models are tested using 10-fold crossvalidation with two real data
sets. Results are compared with linear discriminant analysis, logistic regression,
k-nearest neighbour, kernel density estimation and decision trees

Results show that feedforward network may not be the most accurate neural
network model and that both mixture of experts and radial basis function should be
considered for credit scoring applications. Logistic regression is the most accurate
of the traditional methods.

Table 4.21 summarize the results.

Table 4.21: Credit scoring error, average case neural network models

German credit datab Australian credit datab

Good credit Bad credit Overall Good credit Bad credit Overall
Neural modelsa

MOE 0.1428 0.4775 0.2434 0.1457 0.1246 0.1332
RBF 0.1347 0.5299 0.2540 0.1315 0.1274 0.1286
MLP 0.1352 0.5753 0.2672 0.1540 0.1326 0.1416
LVQ 0.2493 0.4814 0.3163 0.1710 0.1713 0.1703
FAR 0.4039 0.4883 0.4277 0.2566 0.2388 0.2461

Parametric
models

Linear discriminant 0.2771 0.2667 0.2740 0.0782 0.1906 0.1404
Logistic regression 0.1186 0.5133 0.2370 0.1107 0.1409 0.1275

Non-parametric
models

K nearest neighbor 0.2257 0.5533 0.3240 0.1531 0.1332 0.1420
Kernel density 0.1557 0.6300 0.3080 0.1857 0.1514 0.1666
CART 0.2063 0.5457 0.3044 0.1922 0.1201 0.1562

a Neural network results are averages of 10 repetitions.
b Reported results are group error rates averaged across 10 independent holdout samples.

Markham and Ragsdale (1995) presents an approach to classification based
on combination of linear discrimination function (which the label Mahalanobis
distance measure - MDM) and feedforward network. The characteristic of the
data set is shown in Table 4.22. The process of splitting the data in validation and
test set was repeated 30 times. The results are shown in Table 4.23.
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Table 4.22: Data Characteristic

Dataset 1 2
Problem Domain Oil Quality Rating Bank Failure Prediction
Number of groups 3 2
Number of observations 56 162
Number of variables 5 19

Finally, a recent reference on comparisons of classification models is Bose
(2003).
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Table 4.23: Comparison of classification methods on three-group oil quality and
two-group bank failure data set

Percentage of Misclassified Observations
in the Validation Sample

Three-group oil quality Two-group bank failure
Sample MDM NN1 NN2 MDM NN1 NN2
1 22.22 18.52 3.70 10.00 3.75 2.50
2 14.81 18.52 11.11 17.50 10.00 7.50
3 11.11 11.11 0 20.00 11.25 7.50
4 11.11 0 0 15.00 10.00 5.00
5 18.52 22.22 14.81 11.25 6.25 3.75
6 3.70 0 0 11.25 5.00 1.25
7 14.81 0 0 12.50 8.75 5.00
8 29.63 22.22 11.11 13.75 7.50 3.75
9 7.41 0 0 12.50 6.25 5.00
10 18.52 7.41 0 12.50 7.50 2.50
11 3.70 0 0 17.50 8.75 6.25
12 18.52 11.11 0 20.00 11.25 7.50
13 7.41 0 0 15.00 6.25 3.75
14 7.41 0 0 13.75 5.00 5.00
15 11.11 0 0 16.25 6.25 2.50
16 7.41 0 0 18.75 10.00 6.25
17 18.52 7.41 3.70 25.00 13.75 8.75
18 11.11 3.70 0 13.75 10.00 6.25
19 3.70 0 0 16.25 8.75 5.00
20 14.81 7.41 0 13.75 6.25 3.75
21 11.11 0 0 15.00 7.50 3.75
22 14.81 3.70 0 13.75 6.25 2.50
23 25.93 18.52 11.11 15.00 8.75 5.00
24 22.22 11.11 11.11 20.00 10.00 6.25
25 18.52 7.41 0 15.00 11.25 5.00
26 14.81 7.41 0 17.50 8.75 5.00
27 7.41 0 0 18.75 8.75 7.50
28 14.81 3.70 3.70 16.25 5.00 2.50
29 0 0 0 15.00 6.25 3.75
30 14.81 7.41 3.70 16.25 7.50 5.00

Average 13.33 6.42 2.47 15.63 8.08 4.83



Chapter 5

Regression Neural Network Models

5.1 Generalized Linear Model Networks - GLIMN
Generalized (iterative) linear models (GLIM) encompass many of the statis-

tical methods most commonly employed in data analysis. Beyond linear models
with normal distributed errors, generalized linear models include logit and probit
models for binary response variable and log-linear (Poisson-regression) models
for counts.

A generalized linear model consists of three components

• A random component, in the form of a response variable Y with distribution
from the exponential family which includes: the normal, Poisson, binomial,
gamma, inverse-normal, negative-binomial distributions, etc.

• A linear predictor

ηi = α0 + α1xi1 + . . . + αkxik (5.1.1)

on which yi depends. The x′ are independent (covariates, predictors) vari-
ables.

• A link function L(µi) which relates the expectation µi = E(Yi) to the linear
predictor ηi

L(µi) = ηi (5.1.2)

The exponential family of distribution includes many common distributions
and its parameters have some nice statistical properties related to them (suffi-
ciency, attain Cramer-Rao bound). Members of this family can be expressed in
the general form

118
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f(y, θ, φ) = exp

{
yθ − b(θ)

α(φ) + C(y, φ)

}
. (5.1.3)

If φ is known, then θ is called the natural or canonical parameter. When
α(φ) = φ, φ is called the dispersion or scale parameter. It can be shown that

E(Y ) = b′(θ) = µ Var(Y ) = α(φ)b′′(θ) = α(φ) ∨ (θ). (5.1.4)

Fitting a model may be regarded as a way of replacing a set of data values y
∼

=

(yi . . . yn) by a set of fitted values µ̂
∼i

= (µ̂1, . . . , µ̂n) derived from a model involv-

ing (usually) a relative small number of parameters. One measure of discrepancy
most frequently used is that formed by the logarithm of the ratio of likelihoods,
called deviance (D).

Table 5.1 gives some usual choices of link functions for some distributions of
y
∼

for the canonical link θ = η.

Table 5.1: Generalized Linear Models: mean, variance and deviance functions

η ∨(µ) D(µ̂)

Normal µ 1
∑

(y − µ̂)2

Binomial ln[µ/(1− µ)] µ(1− µ) 2Σ {[y ln(y/µ̂)]+
+(n− y) ln[(n− y)/(n− µ̂)]}

Poisson log µ µ 2Σ[y ln(y/µ̂)− (y − µ̂)]

Gamma µ−1 µ2 2Σ [− ln(y/µ̂)− (y − µ̂)/µ̂]

The neural network architecture equivalent to the GLIM model is a perceptron
with the predictors as inputs and one output. There are no hidden layers and the
activation function is chosen to coincide with the inverse of the link function (L).
This network is shown in Figure 5.1.

In what follows we will deal with some particular cases: the logit regression
and the regression models neural networks.
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Figure 5.1: GLIM network

5.1.1 Logistic Regression Networks
The logistic model deals with a situation in which we observe a binary re-

sponse variable y and k covariates x’s. The logistic regression model is a general-
ized linear model with binomial distribution for y1 . . . yn and logit link function.
The equation takes the form

p = P (Y = 1/x
∼
) =

1

1 + exp(−β0 −
∑k

i=1 βixi)
= ∧

(
β0 +

k∑
i=1

βixi

)
(5.1.5)

with ∧ denoting the logistic function. The model can be expressed in terms of log
odds of observing 1 given covariates x as

log tp = log
P

1− β
= β0 +

k∑
i=1

βixi. (5.1.6)

A natural extension of the linear logistic regression model is to include quadratic
terms and multiplicative interaction terms:

P = Λ

(
β0 +

k∑
i=1

βixi +
k∑

i=1

γix
2
i +

∑
i<j

δijxixj

)
. (5.1.7)

Other approaches to model the probability p include generalized additive mod-
els (Section 5.2.3) and feed-forward neural networks.
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For the linear logistic model (5.1.6) the neural network architecture is as in
Figure 5.1 with the sigmoid link k function as activation function of the output
neuron.

A feed-forward network with hidden layer with r neurons and sigmoid activa-
tion function would have the form:

P = Λ

(
w0 +

r∑
j=1

wjΛ(woj +
k∑

j=1

wijxi)

)
. (5.1.8)

This representation of neural network is the basis for analytical comparison
of feed-forward network and logistic regression. For a neural network without a
hidden layer and a sigmoid activation function (5.1.8) reduces to (5.1.6) and this
network is called logistic perceptron in the neural network literature. Therefore
it does not make sense to compare a neural network with hidden layer and linear
logistic regression. For a discussion of this and related measures and other com-
parisons among these two models see Schwarzer et al (2000) and Tu (1996). An
attempt to improve the comparison and to use logistic regression as a staring point
to design a neural network which would be at least as good as the logistic model
is presented in Ciampi and Zhang (2002) using ten medical data sets.

The extension to the polychotomous case is obtained considering K > 1
outputs. The neural network of Figure 5.2 is characterized by weights βij(j =
1, . . . , K) to output yj , obtained by

pj = Λ

(
βoj +

k∑
i=1

βijxi

)
. (5.1.9)

In statistical terms this network is equivalent to the multinomial or polychotomous
logistic model defined as

pj = P (yj = 1/x
∼
) =

Λ(x, βj)∑k
j=1 Λ(x, βj)

(5.1.10)

the weights can be interpreted as regression coefficients and maximum likelihood
obtained by back propagation maximum likelihood.

There is a huge literature, specially in medical sciences, with comparisons
among these two models (LR and ANN). Here we will only give some useful
references mainly from the statistical literature. This section ends with two ap-
plications showing some numerical aspects of the models equivalence as given in
Schumacher et al (1996).
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Figure 5.2: Policholomous logistic network

Applications and comparisons of interest are: personal credit risk scores (Arminger
et al, 1997), country international credit scores (Cooper, 1999), polychotomous lo-
gistic for discrete choice (Carvalho et al, 1998), scores risk of insolvency (Fletcher
and Goss, 1993, Leonard et al, 1995, Brockett et al, 1997) and some medical ap-
plications (Hammad et al, 1997, Ottenbacher et al, 2001, Nguyen et al, 2002, Boll
et al, 2003).

The first illustration is the that of Finney (1947) and the data consists N = 39
binary responses denoting the presence (y = 1) or absence (y = 0) of vasocon-
striction in the finger’s skin after the inspiration of an air volume at a mean rate of
inspiration R.

Table 5.2 presents the results of the usual analysis from two logistic regression
models. The first, considers only one covariate x1 = log R, that is

P (y = 1/x) = Λ(β0 + β1x1). (5.1.11)

The second model considers the use of a second covariate, that is

P (y = /x) = Λ(β0 + β1 + β2x2). (5.1.12)

For x1 = log and x2 = log V , respectively,
In the first case, the results show an effect marginally significant of the loga-

rithm of rate of inspiration in the probability to the presence of vasoconstriction
in the finger’s skin.
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Table 5.2: Results of a logistic regression analysis for the vasoconstriction data
Coefficient Standard Error P -value Neural Network

Variable of Regression
Intercept -0.470 0.439 - -0.469
Log R 1.336 0.665 0.045 1.335

(L = 24543) (E = 24.554)
Intercept -2.924 1.288 - -2.938
Log R 4.631 1.789 0.010 -4.651
Log V 5.221 1.858 0.005 5.240

(L = 14.632) (E = 14, 73)

An ANN equivalent to this model would be a feed-forward network with two
input neurons (x0 = 1, x1 = log R). Using a rate of learning η = 0, 001 to the
last interactions ML-BP, we have w0 = −0, 469 and w1 = 1, 335 with a Kullback-
Leiber measure of E∗ = 24, 554.

For the case of the model with two covariates, the result shows a significant
influence of the two covariates in the probability of vasoconstriction in the fin-
ger’s skin. One Perceptron with three input neurons (x0 = 1, x1 = log R, x2 =
log V ) should give similar results if ML-BP was used. This was almost obtained
(w0 = 2, 938, w1 = 4, 650, w2 = 4, 240) although the algorithm backpropaga-
tion demands several changes in learning rate from an initial value η = 0, 2 to
η = 0, 000001 involving approximately 20000 interaction to obtain a value of
the distance Kullback-Leibler of E∗ = 14, 73 comparable to that of minus the
log-likelihood (L = −14, 632).

The second example is a study to examine the role of noninvasive sonographic
measurements for differentiation of benign and malignant breast tumors. Sonog-
raphy measurements in N-458 women and characteristics (x1, . . . , xp) were col-
lected.

Cases were verified to be 325(y = 0) benign and 133 as (y = 1) malignant
tumor. A preliminary analysis with a logistic model indicates three covariates as
significant, this indication plus problems of collinearity among the six variables
suggests the use of age, number of arteries in the tumor (AT), number of arteries
in the contralateral breast (AC). The results are shown in Table 5.3.

A comparison with others ANN is shown in the Table 5.4.
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Table 5.3: Results of a logistic regression analysis of breast tumor data

Logistic
Variable Coefficients Standard Error P Value Neural Network Weights
Intercept -8,178 0.924 w0 = −8.108
Age 0.070 0.017 0.0001 w1 = 0.069
log AT+1 5.187 0.575 0.0001 w2 = 5.162
log AC+1 -1.074 0.437 0.0014 w3 = −1.081

L=79.99 E=80.003

Table 5.4: Results of classification rules based on logistic regression, CART and
feed-forward neural networks with j hidden units (NN(J)) for the breast tumor
data

Method Sensitivity Specificity Percentage of correct
(%) (%) classification

Logistic regression 95.5 90.2 91.7

CART 97.9 89.5 91.9

NN(1) 95.5 92.0 93.0

NN(2) 97.0 92.0 93.4

NN(3) 96.2 92.3 93.4

NN(4) 94.7 93.5 93.9

NN(6) 97.7 94.8 95.6

NN(8) 97.7 95.4 96.1

NN(10) 98.5 98.5 98.5

NN(15) 99.2 98.2 98.5

NN(20) 99.2 99.1 99.1

NN(40) 99.2 99.7 99.6
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5.1.2 Regression Network
The regression network is a GLIM model with identity link function. The

introduction of hidden layer has no effect in the architecture of the model because
of the linear properties and the architecture remains as in Figure 5.1.

Some authors have compared the prediction performance of econometric and
regression models with feed-forward networks usually with one hidden layer. In
fact, they compared linear models with nonlinear models, in this case a particular
projection pursuit model with the sigmoid as the smooth function. (See Section
5.2.5). An extension for system of equations can be obtained for systems of k
equations by considering k outputs in the neural network as in Figure 5.2. Again
the outputs activation function are the identity function.

In what follows we describe some comparisons of regression models versus
neural networks.

Gorr et al (1994) compare linear regression, stepwise polynomial regression
and a feed-forward neural network with three units in the hidden layer with an
index used for admissions committee for predicting students GPA (Grade Point
Average) in professional school. The dependent variable to be predicted for ad-
missions decision is the total GPA of all courses taken in the last two years. The
admission/decision is based on the linear decision rule.

LDR = math + chem + eng + zool + 10Tot + 2Res + 4PTran (5.1.13)

which are the grades in Mathematics, Chemistry, English, Zoology; and total
GPA. The other variables are binary variables indicating: residence in the area,
a transfer student had partial credits in prerequisites transferred, and a transfer
student had all credits in prerequisites transfer.

Although none of the empirical methods was statistically significant better
than the admission committee index, the analysis of the weights and output of the
hidden units, identifies three different patterns in the data. The results showed
obtained very interesting comparisons by using quartiles of the predictions.

Church and Curram (1996) compared forecast of personal expenditure ob-
tained by neural network and econometric models (London Business School, Na-
tional Institute of Economic and Social Research, Bank of England and a Goldman
Sache equation). None of the models could explain the fall in expense growth at
the end of the eighties and beginning of the nineties.

A summary of this application of neural networks is the following:

• Neural networks use exactly the same covariates and observations used in each
econometric model. These networks produced similar results to the econo-
metric models.

• The neural networks used 10 neurons and a hidden layer, in all models.
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• The dependent variable and the covariates were re-escalated to fall in the inter-
val 0,2 to 0,8.

• A final exercise used a neural network with inputs of all variables from all
models. This network was able to explain the fall in growth, but it is a
network with too many parameters.

• Besides the forecast comparison, a sensitivity analysis was done on each vari-
able, so that the network was tested with the mean value of the data and
each variable was varied to verify the grade in which each variation affects
the forecast of the dependent variable.

Another econometric model comparison using neural network and linear re-
gression was given by Qi and Maddala (1999). They relate economic factors with
the stock market and in their context conclude that neural network model can im-
prove the linear regression model in terms of predictability, but not in terms of
profitability.

In medicine, Lapeer et al (1994) compare neural network with linear regres-
sion in predicting birthweight from nine perinatal variables which are thought to
be related. Results show, that seven of the nine variables, i.e. gestational age,
mother’s body-mass index (BMI), sex of the baby, mother’s height, smoking,
parity and gravidity, are related to birthweight. They found that neural network
performed slightly better than linear regression and found no significant relation
between birthweight and each of the two variables: maternal age and social class.

An application of neural network in fitting response surface is given by Balkin
and Lim (2000). Using simulated results for an inverse polynomial they shown
that neural network can be a useful model for response surface methodology.

5.2 Nonparametric Regression and Classification Net-
works

Here we relate some nonparametric statistical methods with the models found
in the neural network literature.

5.2.1 Probabilistic Neural Networks
Suppose we have C classes and want to classify a vector x

∼
to one of this

classes. The Bayes classifier is based on p(k/x
∼
)απkpk(x∼

), where πk is the prior

probability of a observation be from class k, pk(x∼
) is the probability of x

∼
being

observed among those of class C = k.
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In general, the probability πk and the density p(·) have to be estimated from
the data. A powerful nonparametric technique to estimate these functions is based
on kernel methods and propose by Parzen (Ripley, 1996, p.184).

A kernel K is a bounded function with integral one. Suitable example is the
multivariate normal density function. We use K(x

∼
− y
∼
) as a measure of the prox-

imity of x
∼

on y
∼

. The empirical distribution of x
∼

within a group k gives mass
1

mk

to

each of the samples. A local estimate of the density pk(x∼
) can be found summing

all these contributions with weight K(x
∼
− x

∼2
) that is (Ripley, 1996, p.182)

p̂j(x∼
) =

1

nj

nj∑
i=1

K(x
∼
− x

∼i
). (5.2.1)

This is an average of the kernel functions centered on each example from the class.
Then, we have from Bayes theorem:

p̂(k/x
∼
) =

πkp̂k(x∼
)

∑C
j=1 πj p̂j(x∼

)
=

πk

nk

∑
[i]=k K(x− xk)∑

i

π[i]

n[i]
K(x− xi)

. (5.2.2)

When the prior probability are estimated by nk/n, (5.2.2) simplifies to

p(k/x
∼
) =

∑
[i]=k K(x

∼
− x

∼i
)

∑
i K(x

∼
− x

∼i
)

. (5.2.3)

This estimate is known as Parzen estimate and probabilistic neural network (PNN)
(Patterson, 1996, p.352).

In radial basis function networks with a Gaussian basis it is assumed that the
normal distribution is a good approximation to the cluster distribution. The kernel
nonparametric method of Parzen approximates the density function of a particular
class in a pattern space by a sum of kernel functions, and one possible kernel is the
Gaussian function. As we have seen the probability density function for a class is
approximated by the following equation

pk(x∼
) =

(
1

2πn/2σ2

)
1

nK

nk∑
j=1

e−(x−xkj)
2/2σ2

(5.2.4)

where σ2 has to be decided. Choosing a large value results in overgeneraliza-
tion, choosing a value too small results in overfitting. The value of σ should be
dependent on the number of patters in a class. One function used is

σ = an−b
k a > 0, 0 < b < 1. (5.2.5)
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A three layer network like a RBF network is used with each unit in the hidden
layer centered on an individual item data. Each unit in the output layer has weights
of 1, and a linear output function, this layer adds all the outputs from the hidden
layer that corresponds to data from the same class together. This output represents
the probability that the input data belongs to the class represented by that unit. The
final decision as to what class the data belongs to is simply the unit with the output
layer with the largest value. If values are normalized they lie between 0 and 1. In
some networks an additional layer is included that makes this decision as a winner
takes all, each unit with binary output.

Figure 5.3 shows a network that finds three class of data. There are two input
variables, and for the three classes of data there are four samples for class A, three
samples for class B and two samples for class C; hence the number of neurons in
the hidden layer.

The advantage of the PNN is that there is no training. The values for the
weights in the hidden units (i.e. the centers of the Gaussian functions) are just the
values themselves. If the amount of data is large, some clustering can be done to
reduce the number of units needed in the hidden k layer.

An application of PNN to classification of electrocardiograms with a 46-dimensional
vector input pattern, using data of 249 patients for training and 63 patients for test-
ing is mentioned in Specht (1988).

Figure 5.3: Probabilistic Neural Network - PNN
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5.2.2 General Regression Neural Networks
The general regression neural network was named by Specht (1991) and its

was already known in the nonparametric statistical literature as Nadaraya-Watson
estimator.

The idea of GRNN is to approximate a function given a set of n outputs
y1, . . . , yn and n vector of inputs x

∼1
, . . . x

∼n
using the following equation from

probability theory for the regression of y given x
∼

ȳ(x̄
∼
) = E(y/x

∼
) =

∫
yf(x

∼
, y)dy

∫
f(x
∼
, y)dy

(5.2.6)

where f(x
∼
, y) is the joint probability density function of (x

∼
, y).

As in PNN we approximate the conditional density function by the sum of
Gaussian function. The regression of y on x

∼
is then given by

ŷ(x̂
∼
) =

∑n
j=1 yje

−d2
j/2σ2

∑n
j=1 e−d2

j/2σ2
(5.2.7)

a particular form of the Nadaraya-Watson estimator

ŷ(x) =

∑
yiK(x

∼
− x

∼i
)

∑
K(x

∼
− x

∼i
)

. (5.2.8)

The value of dj is the distance between the current input and the j-th input in
the sample of training set. The radic σ is again given by

σ = an−b/n. (5.2.9)

The architecture of the GRNN is similar to PNN, except that the weights in
the output layer is not set to 1. Instead they are set to the corresponding values
of the output y in the training set. In addition, the sum of the outputs from the
Gaussian layer has to be calculated so that the final output can be divided by the
sum. The architecture is shown in Figure 5.4 for a single output of two variables
input with a set of 10 data points.
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Figure 5.4: General Regression Neural Network Architecture
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5.2.3 Generalized Additive Models Networks
The generalized additive model, GAM relating an output y to a vector input

x
∼

= (x1, . . . , xI) is

E(Y ) = µ (5.2.10)

h(µ) = η =
I∑

i=0

fi(xi). (5.2.11)

This is a generalization of the GLIM model when the parameters βi are here re-
placed by functions fi. Again h(·) is the link function. Nonparametric estimation
is used to obtain the unknown functions fj . They are obtained iteratively by first
fitting f1, then fitting f2 to the residual yi − f1(x1i), and so on. Ciampi and
Lechevalier (1997) used the model

logit(p) = f1(x1) + . . . + fI(xI) (5.2.12)

as a 2 class classifier. They estimated the functions f using B-splines.
A neural network corresponding to (5.2.12) with two continuous input is shown

in Figure 5.5. The first hidden layer consist of two blocks, each corresponding to
the transformation of the input with B-splines. A second hidden layer computes
the f ’s functions, all units have as activation the identity function. The output
layer has a logistic activation function and output p.

Figure 5.5: GAM neural network
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5.2.4 Regression and Classification Tree Network
Regression tree is a binning and averaging procedure. The procedure is pre-

sented in Fox (2000a,b) and for a sample regression of y on x, to average the
values of y for corresponding values of x for certain conveniently chosen regions.
Some examples are shown in Figure 5.6.

(a) The binning estimator applied to the relationship be-
tween infant mortality per 1000 and GDP per capita, in US
dollars. Ten bins are employed.

(b) The solid line gives the estimated regression function
relating occupational prestige to income implied by the
tree, the broken line is for a local linear regression.

Figure 5.6: Regression tree ŷ
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Closely related to regression trees are classification trees, where the response
variable is categorical rather than quantitative.

The solid line gives the estimated regression function relating occupational
prestige to income implied by the tree, the broken line is for a local linear regres-
sion.

The regression and classification tree models can be written respectively as:

Y = α1I1(x∼
) + . . . + IL(x

∼
) (5.2.13)

logit(p) = γ1I1(x∼
) + . . . + IL(x

∼
) (5.2.14)

where the I are characteristics functions of L-subsets of the predictor space which
form a partition.

The following classification tree is given in Ciampi and Lechevalier (1997).

Figure 5.7: Decision Tree

The leaves of the tree represents the sets of the partition. Each leaf is reached
through a series of binary questions involving the classifiers (input); these are
determined from the data at each mode.

The trees can be represented as neural networks. Figure 5.8 shows such rep-
resentation for the tree of Figure 5.7.

The hidden layers have activation function taking value -1 for negative input
and 1 for positive input. The weights linking the second hidden layer to the output
are determined by the data and are given by the logit of the class probability
corresponding to the leaves of the tree.
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Figure 5.8: Classification Tree Network

5.2.5 Projection Pursuit and Feed-Forward Networks
Generalized additive models fits the model

yi = α + f1(x1) + . . . + fI(xI). (5.2.15)

Projection pursuit regression (PPR), fits the model

yi = α + f1(zi1) + . . . + fI(ziI) (5.2.16)

where the z1’s are linear combinations of the x’s

zij = αj1xi1 + αj2xi2 + . . . + ααpxip = α
∼
′
j
x
∼i

. (5.2.17)

The projection-pursuit regression model can therefore capture some interactions
among the x’s. The fitting of this models is obtained by least squares fitting of α̂

∼1
,

then as in GAM fitting f̂1(α̂∼
′
1
x
∼
) from the residual R1 of this model, estimate α̂2

and then f̂2(α̂∼2
x
∼
) and so on.

The model can be written as

yk = f(x
∼
) = αk +

I∑
j=1

fik(αj + α
∼
′
j
x
∼
) (5.2.18)

for multiple output y
∼

.

Equation (5.2.18) is the equation for a feed-forward network, if, for example,
the functions fj are sigmoid function and we consider the identity output.
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Clearly feed-forward neural network is a special case of PPR taking the smooth
functions fj to be logistic functions. Conversely, in PPR we can approximate each
smooth function fi by a sum of logistic functions.

Another heuristic reason why feed-forward network might work well with a
few ridden units, for approximation of functions, is that the first stage allows a
projection of the x

∼
’s onto a space of much lower dimension for the z’s.

5.2.6 Example
Ciampi and Chevalier (1997) analyzed a real data set of 189 women who have

had a baby. The output variable was 1 if the mothers delivered babies of normal
weight and 0 for mothers delivered babies of abnormally low weight (< 2500 g).
Several variables were observed in the course of pregnancy. Two continuous (age
in years and weight of mother in the last menstrual period before pregnancy) and
six binary variables.

They apply a classification tree network, a GAM network, and a combination
of the two. Figure 6 gives their classification network. Their GAM and combined
network are shown in Figures 7 and 8. The misclassification number resulting in
each network was: GAM : 50 - Classification tree : 48 Network of network : 43.

Figure 5.9: GAM network

Figure 5.10: Network of networks



Chapter 6

Survival Analysis, Time Series and
Control Chart Neural Network
Models and Inference

6.1 Survival Analysis Networks
If T is a non-negative random variable representing the time to failure or death

of an individual, we may specify the distribution of T by any one of the probabil-
ity density function f(t), the cumulative distribution function F (t), the survivor
function S(t), the hazard function f(t) or the cumulative hazard function H(t).
These are related by:

F (t) =

∫ t

0

f(u)du

f(t) = F ′(t) =
d

dt
F (t)

S(t) = 1− F (t)

h(t) =
f(t)

S(t)
= − d

dt
[ln S(t)]

H(t) =

∫ t

0

h(u)du

h(t) = H ′(t)

S(t) = exp[−H(t)].

(6.1.1)

A distinct feature of survival data is the occurrence of incomplete observa-
tions. This feature is known as censoring which can arise because of time limits
and other restrictions depending of the study.

136
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There are different types of censoring.

• Right censoring occur if the events is not observed before the prespecified
study-term or some competitive event (e.g. death by other cause) that causes
interruption of the follow-up on the individual experimental unit.

• Left censoring happens if the starting point is located before the time of the
beginning of the observation for the experimental unit (e.g. time of infection
by HIV virus in a study of survival of AIDS patients).

• Interval censoring the exact time to the event is unknown but it is known that
it falls in an interval Ii (e.g. when observations are grouped).

The aim is to estimate the previous functions from the observed survival and
censoring times. This can be done either by assuming some parametric distribu-
tion for T or by using non-parametric methods. Parametric models of survival
distributions can be fitted by maximum likelihood techniques. The usual non-
parametric estimator for the survival function is the Kaplan-Meier estimate. When
two or more group of patients are to be compared the log-rank or the Mantel-
Hanszel tests are used.

General class of densities and the non-parametric procedures with estimation
procedures are described in Kalbfleish and Prentice (2002).

Usually we have covariates related to the survival time T . The relation can be
linear (β

∼
′x
∼
) or non-linear (g(j

∼
; x
∼
)). A general class of models relating survival

time and covariates is studied in Louzada-Neto (1997, 1999). Here we describe
the three most common particular cases of the Louzada-Neto model.

The first class of models is the accelerated failure time (AFT) models

log T = −β
∼
e′x
∼

+ W (6.1.2)

where W is a random variable. Then exponentiation gives

T = exp
(
−β′x

∼

)
eW or T ′ = eW = T exp

(
β′x
∼

)
(6.1.3)

where T ′ has hazard function h0 that does not depend on β. If hj(t) is the hazard
function for the j’th patient it follows that

hj(t) = h0(t exp β′x) exp β′x. (6.1.4)

The second class is the proportional odds (PO) where the regression is on the
log-odds of survival, correspondence to a linear logistic model with “death” or not
by a fixed time t′0 as a binary response.

log
Sj(t)

1− Sj(t)
= β

∼
′x
∼

+ log
S0(t)

1− S0(t)
(6.1.5)
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or

Sj(t)

1− Sj(t)
=

S0(t)

1− S0(t)
exp β

∼
′x
∼
. (6.1.6)

The third class is the “proportional hazard” or Cox regression model (PH).

log ht(t) = β
∼
′x
∼

+ log h0(t) (6.1.7)

hj(t) = h0(t) exp β
∼
′x
∼
. (6.1.8)

Ciampi and Etezadi-Amoli (1985) extended models (6.1.2) and (6.1.7) under
a mixed model and not only extend these models but also puts the three models
under a more general comprehensive model (Louzado Neto and Pereira 2000).
See Figure 6.1.

EPH/EAF

EH

EPH EAF

PH AF

PH/AF

Figure 6.1: Classes of regression model for survival data ( .... Louzada-Neto haz-
ard models, existing models). PH-proportional hazard, AF-accelerated failure,
PH/AM mixed model, EPH-extended PH, EAF-extended AF, EPH/EAF-extended
mixed, EH-extended hazard. Each model can be obtained as particular case of
models on top of each, in the figure.

Ripley (1998) investigated seven neural networks in modeling breast cancer
prognosis; her models were based on alternative implementation of models (6.1.2)
to (6.1.5) allowing for censoring. Here we outline the important results of the
literature.
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The accelerated failure time - AFT model is implemented using the architec-
ture of regression network with the censored times estimated using some missing
value method as in Xiang et al (2000).

For the Cox proportional hazard model, Faraggi and Simon (1995) substitute
the linear function βxj by the output f(xj, θ) of the neural network, that is

Lc(θ) =
∏
i∈...

exp
{∑H

h=1 αh/[1 + exp(−w′
hxi)]

}

∑
j∈Ri

exp
{∑H

h=1 αh/[1 + exp(−w′
hxi)]

} (6.1.9)

and estimations are obtained by maximum likelihood through Newton-Raphson.
The corresponding network is shown below in Figure 6.2.

Figure 6.2: Neural network model for survival data (Single hidden layer neural
network)

As an example (Faraggi and Simon, 1995) consider the data related to 506
patient with prostatic cancer in stage 3 and 4. The covariates are: stage, age,
weight, treatment (0.2; 1 or 5 mg of DES and placebo).

The results are given in the Tables 6.1, 6.2, 6.3 below for the models:
(a) First-order PH model (4 parameters);
(b) Second-order (interactions) PH model (10 parameters);
(c) Neural network model with two hidden nodes (12 parameters);
(d) Neural network model with three hidden nodes (18 parameters).
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Table 6.1: Summary statistics for the factors included in the models

Complete data Training set Validation set

Sample size 475 238 237
Stage 3 47.5% 47.6% 47.4%
Stage 4 52.5% 52.4% 52.6%
Median age 73 years 73 years 73 years
Median wight 98-0 97-0 99-0
Treatment: Low 49.9% 48.3% 51.5%
Treatment: High 50.1% 51.7% 48.5%
Median survival 33 months 33 months 34 months
% censoring 28.8% 29.8% 27.7%

Table 6.2: Log-likelihood and c statistics for first-order, second-order and neural network
proportional hazards models

Model Training data Test data
Number of Log lik c Log lik c
parameter s

First order PH 4 -814.3 0.608 -831.0 0.607
Second-order PH 10 -805.6 0.648 -834.8 0.580
Neural network H = 2 12 -801.2 0.646 -834.5 0.6000
Neural network H = 3 18 -794.9 0.661 -860.0 0.582
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Table 6.3: Estimation of the main effects and higher order interactions using 24 factorial
design contrasts and the predictions obtained from the different models

Effects PH PH Neural network Neural network
1st order 2nd order H = 2 H = 3

Stage 0.300 0.325 0.451 0.450
Rx∗ -0.130 -0.248 -0.198 -0.260
Age 0.323 0.315 0.219 0.278
Weight -0.249 -0.238 -0.302 -0.581
Stage ×Rx 0 -0.256 -0.404 -0.655
State × Age 0 -0.213 -0.330 -0.415
State ×Wt∗ 0 -0.069 -0.032 -0.109
Rx× Age 0 0.293 0.513 0.484
Rx×Wt 0 -0.195 -0.025 0.051
Stage ×Rx× Age 0 0 0.360 0.475
Stage ×Rx×Wt 0 0 0.026 0.345
Stage × Age ×Wt 0 0 -0.024 0.271
Rx× Age ×Wt 0 0 0.006 -0.363
State ×Rx× Age ×Wt 0 0 0.028 -0.128

∗ Rx = Treatment, Wt = Weight

Implementation of the proportional odds and proportional hazard were imple-
mented also by Liestol et al (1994) and Biganzoli at al (1998).

Liestol, Anderson (1994) used a neural network for Cox’s model with covari-
ates in the form.

Let T be a random survival time variable, and Ik the interval tk−1 < t <
tk, k = 1, . . . , K where 0 < t0 < t1 < . . . < tk < ∞.

The model can be specified by the conditional probabilities.

P (T ∈ Ik/T > tk−1, x) =
1

1 + exp
(−β0k −

∑1
i=1 βikxi

) (6.1.10)

for K = 1, . . . , K.
The corresponding neural network is the multinomial logistic network with k

outputs.
The output 0k in the kth output neuron corresponds to the conditional proba-

bility of dying in the interval Ik.
Data for the individual n consist of the regressor xn and the vector (yn

1 , . . . , yn)
where yn

k is the indicator of individual n dying in Ik and kn ≤ K is the number of
intervals where n is observed. Thus yn

1 , . . . , ynkn−1 are all 0 and ynkn = 1 of n
dies in Ikn and
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Figure 6.3: Log odds survival network

0k = f(x,w) = Λ

(
β0k +

1∑
i=1

βikxi

)
(6.1.11)

and the function to optimize

E∗(w) =
N∑

h=1

Kn∑

k=1

− log (1− |yn
k − f(xn, w)|) (6.1.12)

and w = (β01, . . . , β0k, β11, . . . , βIk and under the hypothesis of proportional rates
make the restriction β1j = β2 = β3j = β4j = . . . = βj . Other implementations
can be seen in Biganzoli et al (1998).

An immediate generalization would be to substitute the linearity for non-
linearity of the regressors adding a hidden layer as in the Figure 6.4 below:
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Figure 6.4: Non-linear survival network (Two-layer feed-forward neural nets,
showing the notation for nodes and weights: input nodes (•), output (and hid-
den) nodes (O), covariates Zj , connection weights wij , output values 0

(2)
1 )
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An example from Liestol et al (1994) uses the data from 205 patients with
melanoma of which 53 died, 8 covariates were included.

Several networks were studied and the negative of the likelihood (interpreted
as prediction error) is given in the Table 6.4 below:

Table 6.4: Cross validation of models for survival with malignant melanoma (Col-
umn 1. Linear model; 2. Linear model with weight-decay; 3. Linear model with a
penalty term for non-proportional hazards; 4. Non-linear model with proportional
hazards; 5. Non-linear model with a penalty term for non-proportional hazards;
6. Non-linear model with proportional hazards in first and second interval and in
third and fourth interval; 7. Non-linear model with non-proportional hazards.)

1 2 3 4 5 6 7
Prediction error 172.6 170.7 168.6 181.3 167.0 168.0 170.2
Change -1.9 -4.0 8.7 -5.6 -4.6 -2.4

The main results for non-linear models with two hidden nodes were:

• Proportional hazard models produced inferior predictions, decreasing the test
log-likelihood of a two hidden node model by 8.7 (column 4) when using
the standard weight decay, even more if no weight decay was used.

•A gain in the test log-likelihood was obtained by using moderately non-proportional
models. Adding a penalty term to the likelihood of a non-proportional
model or assuming proportionality over the two first and last time inter-
vals improved the test log-likelihood by similar amounts (5.6 in the former
case (column 5) and 4.6 in the latter (column 6)). Using no restrictions on
the weights except weight decay gave slightly inferior results (column 7,
improvement 2.4).

In summary, for this small data set the improvements that could be obtained
compared to the simple linear models were moderate. Most of the gain could be
obtained by adding suitable penalty terms to the likelihood of a linear but non-
proportional model.

An example from Biganzoli et al (1998) is the application neural networks in
the data sets of Efron’s brain and neck cancer and Kalbfleish and Prentice lung
cancer using the network architecture of Figure 6.5. The results of the survival
curve fits follows in Figures 6.6 and 6.7:
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Figure 6.5: Feed forward neural network model for partial logistic regression
(PLANN) (The units (nodes) are represented by circles and the connections be-
tween units are represented by dashed lines. The input layer has J units for time
a and covariates plus one ... unit (0). The hidden layer has H units plus the ...
unit (0). A single output unit (K = 1) compute conditional failure probability x1

and x2 are the weights for the connections of the ... unit with the hidden and out-
put unit wa and w... are the weights for the connections between input and hidden
units and hidden and output unit, respectively.)
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(a)

(b)

Figure 6.6: Head and neck cancer trial ( (a) estimates of conditional failure proba-
bility obtained with the best PLANN configuration (solid line) and the cubic-linear
spline proposed by Efron 13 (dashed lines); (b) corresponding survival function
and Kaplan-Meyer estimates.)
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(a)

(b)

Figure 6.7: Head and neck cancer trial ( (a) estimates of conditional failure proba-
bility obtained with a suboptional PLANN model (solid line) and the cubic-linear
spline proposed by Efron 13 (dashed lines); (b) corresponding survival function
and Kaplan-Meyer estimates.)
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A further reference is Bakker et al (2003) who have used a neural-Bayesian
approach to fit Cox survival model using MCMC and an exponential activation
function. Other applications can be seen in Lapuerta et al (1995), Ohno-Machodo
et al (1995) and Mariani and al (1997).

6.2 Time Series Forecasting Networks
A time series is a set of data observed sequentially in time; although time can

be substituted by space, depth etc. Neighbouring observations are dependent and
the study of time series data consists in modeling this dependency.

A time series is represented by a set of observations {y
∼
(t
∼
), t
∼
∈ T} where T

is a set of index (time, space, etc.).
The nature of Y and T can be each a discrete or a continuous set. Further, y

∼
can be univariate or multivariate and T can have unidimensional or a multidimen-
sional elements. For example, (Y, Z)′(t,s) can represent the number of cases Y of
influenza and Z of meningitis in week t and state s in 2002 in the USA.

Thee are two main objectives in the study of time series. First, to understand
the underline mechanism that generates the time series. Second, to forecast future
values of it. Problems of interest are:

- description of the behavior in the data,

- to find periodicities in the data,

- to forecast the series,

- to estimate the transfer function v(t) that connects an input series X to the
output series Y of the generating system. For example, in the linear case

Y (t) =
∞∑

u=0

u(t)X(t− u), (6.2.1)

- to forecast Y given v and X ,

- to study the behavior of the system, by simulating X ,

- to control Y by making changes in X .

There are basically two approaches for the analysis of time series. The first,
analyzes the series in the time domain, that is we are interested in the magnitude of
the events that occur in time t. The main tool used is the autocorrelation function
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(and functions of it) and we use parametric models. In the second approach, the
analysis is in the frequency domain, that is we are interested in the frequency in
which the events occur in a period of time. The tool used is the spectrum (which
is a transform of the correlation function ex: Walsh, Fourier, Wavelet transforms)
and we use non-parametric methods. The two approaches are not alternatives but
complementary and are justified by representation theorems due to Wold (1938) in
time domain and Cramer (1939) in the frequency domain. We can say from these
theorems that the time domain analysis is used when the main interest is in the
analysis of non-deterministic characteristic of this data and the frequency domain
is used when the interest is in the deterministic characteristic of the data. Essen-
tially Wold (1938) results in the time domain states that any stationary process Yt

can be represented by

Yt = Dt + Zt (6.2.2)

where Dt and Zt are uncorrelated, Dt is deterministic that is depends only on its
past values Dt−1, Dt−2, . . . and Zt is of the form

Zt = εt + ψ1εt−1 + ψ2εt−2 (6.2.3)
or
Zt = π1Zt−1 + π2Zt−2 + . . . + εt (6.2.4)

where εt is a white noise sequence (mean zero and autocorrelations zero) and
ψ1, π1 are parameters. Expression (6.2.3) is an infinite moving-average process,
MA(∞) and expression (6.2.4) is an infinite autoregressive process AR(∞).

The frequency domain analysis is based on the pair of results:

ρ(t) =

∫ ∞

−∞
eiwtdF (w) (6.2.5)

where ρ(t) is the autocorrelation of Yt and acts as the characteristic function of
the (spectral) density F (w) of the process Z(w) and

Y (t) =

∫ π

−π

eiwtdZ(w). (6.2.6)

Most of the results in time series analysis is based on these results on its exten-
sions.

We can trace in time some developments in time series in the last century:
Decomposition Methods (Economics, thirties to fifties), Exponential Smooth-
ing (Operations Research, sixties), Box-Jenkins (Engineering, Statistics, seven-
ties), State-Space Methods - Bayesian, Structural (Statistics, Econometrics, Con-
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trol Engineering,eighties), Non-Linear Models (Statistics, Control Engineering,
nineties).

It should be pointed out that the importance of Box-Jenkins methodology is
that they popularized and made accessible the difference equation representation
of Wold. Further we can make an analogy between scalar and matrices and the
difference equation models of Box-Jenkins (scalar) and state-space models (ma-
trices). The recent interest in non-linear model for time series is that makes neural
networks attractive and we turn to this in the next Section.

6.2.1 Forecasting with Neural Networks
The most common used architecture is a feed-forward network with p lagged

values of the time series as input and one output. As in the regression model of
Section 5.1.2, if there is no hidden layer and the output activation is the identity
function the network is equivalent to a linear AR(p) model. If there are one or
more hidden layers with sigmoid activation function in the hidden neurons the
neural network acts as non-linear autoregressions.

The architecture and implementation of most time series applications of neu-
ral networks follows closely to the regression implementation. In the regression
neural network we have the covariates as inputs to the feed-forward network, here
we have the lagged values of the time series as input.

The use of artificial neural network applications in forecasting is surveyed in
Hill et al (1994) and Zang et al (1998). Here we will describe some recent and
non-standard applications.

One of the series analyzed by Raposo (1992) was the famous Airline Passenger
Data of Box-Jenkins (Monthly number of international passengers from 1949 to
1960). The model for this series becomes the standard benchmark model for
seasonal data with trend: the multiplicative seasonal integrated moving average
model, SARIMA (0, 1, 1)12(0, 1, 1).

Table 6.5 gives the comparison for the periods 1958, 1959, 1960 in terms of
mean average percentage error of the Box-Jenkins model and some neural net-
work.

The airline data was also analyzed by Faraway and Chatfield (1998) using
neural network.

Another classical time series the Yearly Sunspot Data was analyzed by Park
et al (1996). Their results are presented in Tables 6.6 and 6.7 for the training data
(88 observations) and forecasting period (12 observations). Here they used the
PCA method described in Section 2.8.

A multivariate time series forecasting using neural network is presented in
Chakraborthy et al (1992). The data used is the Indices of Monthly Flour Prices
in Buffalo (xt), Minneapolis (yt) and Kansas City (zt) over the period from August
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Table 6.5: Forecasting for Airline Data

Year MAPE %
(12:2:1) (13:2:1) 14:2:1) SARIMA

1958 7.63 6.44 5.00 7.75
1959 6.32 4.90 7.75 10.86
1960 7.39 7.93 11.91 15.55

(a:b:c) - number of neurons in: a - input, b - hidden, c - output, layer

Table 6.6: Result from network structures and the AR(2) model

Network Structure Mean Square Error Mean Absolute
(MSE) Error7 (MAE)

2:11:1 156.2792 9.8539

2:3:1 154.4879 9.4056

2:2:1∗ 151.9368 9.2865

2:1:1 230.2508 12.2454

2:0:1·· 233.8252 12.1660

AR(2) 222.9554 11.8726

∗ indicates the proposed optimal structure.
·· represents a network without hidden units.
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Table 6.7: Summary of forecasting errors produced by neural network models and the
AR(2) model based on untrained data

Model Mean Square Error (MSE) Mean Absolute Error (MAE)

2:11:1 160.8409 9.2631

2:3:1 158.9064 9.1710

2:2:1∗ 157.7880 9.1522

2:1:1 180.7608 11.0378

2:0:1 180.4559 12.1861

AR(2) 177.2645 11.5624

∗ represents the selected model by the PCA method.

1972 to November 1980, previously analyzed by Tiag and Tsay using an ARMA
(1,1) multivariate model. They used two classes of feed-forward networks: sepa-
rate modeling of each series and a combined modeling as in Figure 6.8 and Figure
6.9.

The results are shown in Tables 6.8 and 6.9.
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Figure 6.8: Separate Architecture

Figure 6.9: Combined Architecture for forecasting xt+1 (and similar to yt+1 and
zt+1)
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Table 6.8: Mean-Squared Errors for Separate Modeling & Prediction ×103

Buffalo Minneapolis Kansas City
Network MSE MSE MSE

2-2-1 Training 3.398 3.174 3.526
One-lag 4.441 4.169 4.318
Multi-lag 4.483 5.003 5.909

4-4-1 Training 3.352 3.076 3.383
One-lag 9.787 8.047 3.370
Multi-lag 10.317 9.069 6.483

6-6-1 Training 2.774 2.835 1.633
One-lag 12.102 9.655 8.872
Multi-lag 17.646 14.909 13.776

Table 6.9: Mean-Squared Errors and Coeffs.of Variation for Combined vs. Tiao/Tsay’s
Modeling/ Prediction ×103

Buffalo Minneapolis Kansas City
Model MSE CV MSE CV MSE CV

6-6-1 Training 1.446 7.573 1.554 7.889 1.799 8.437
Network One-lag 3.101 11.091 3.169 11.265 2.067 9.044

Multi-lag 3.770 12.229 3.244 11.389 2.975 10.850

8-8-1 Training 0.103 2.021 0.090 1.898 0.383 3.892
Network One-lag 0.087 1.857 0.072 1.697 1.353 7.316

Multi-lag 0.107 2.059 0.070 1.674 1.521 7.757

Tiao/Tsay Training 2.549 10.054 5.097 14.285 8.645 18.493
One-lag 2.373 9.701 4.168 12.917 7.497 17.222
Multi-lag 72.346 53.564 137.534 74.204 233.413 96.096
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In previous example, initial analysis using true series methods have helped to
design the architecture of the neural network. More explicit combination of time
series model and neural network are: Tseng et al (2002) that improved the ARIMA
forecasting using a feed-forward network with logged values of the series, its
forecast and the residual obtained from the ARIMA fitting to the series; Coloba et
al (2002) which used a neural network after decomposing the series from its law
and high frequency signals; Cigizoglu (2003) used generated data from a time
series model to train a neural network. Periodicity terms and lagged values were
used to forecast river flow in Turkey.

A comparison of structural time series model and neural network is presented
in Portugal (1995). Forecasting non-inversible time series using neural network
was attempted by Pino et al (2002) and combining forecasts by Donaldson and
Kamstra (1996). Further comparisons with time series models and applications
to classical time series data can be seen in Terasvirta et al (2005), Kajitoni et al
(2005) and Ghiassi et al (2005).

Modeling of non-linear time series using neural network and an extension
called stochastic neural network can be seen in Poli and Jones (1994), Stern
(1996), Lai and Wong (2001) and Shamseldin and O’Connor (2001).

Forecasting using a combination of neural networks and fuzzy set are pre-
sented by Machado et al (1992), Lourenco (1998), Li et al (1999).

Finally, an attempt to choose a classical forecast method using a neural net-
work is shown in Venkatachalan and Sohl (1999).

6.3 Control Chart Networks
Control charts are used to identify variations in production processes. There

are usually two types of causes of variation: chance causes and assignable causes.
Chance causes, or natural causes, are inherent in all processes. Assignable causes
represent improperly adjustable machines, operation error, and defective raw ma-
terials and it is desirable to remove these causes from the process.

The process means (µ) and variance (σ2) are estimated when observed data
are collected in sample of size n and the means X̄1, X̄2, . . . are calculated. It is
assumed that the sample means are mutually independent and that X̄i has distri-

bution N(µj,
σ2

n
), i = 1, 2, . . . and the condition µ = µ0 is to be maintained.

A shift in the process mean occurs when the distribution of the sample changes
(µ 6= µ0). The decision in the control chart is based on the sample mean with a
signal of out-of-control being given at the first stage N such that
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δN =
|X̄N − µ0|

σ/
√

n0

> c (6.3.1)

where usually c = 3 and the sample size of 4 or 5. This procedure is useful to
detect shifts in the process mean. However, disturbances can also cause shifts or
changes in the amount of process variability. A similar decision procedure can be
used for the behavior of ranges of the samples from the process and will signal an
out-of-control variability. Similarly chart for σ is usually based on

|R̄− σR| > 3 (6.3.2)

or

R̄± 3AmR̄ (6.3.3)

where R̄ is average range of a number of sample ranges R and An is a constant
which depends on n, relating σ to E(R) and V (R).

Several kinds of signals based in these statistics and charts have been pro-
posed, for example: more than threes consecutive values more than 2σ from the
mean; eight consecutive values above the mean etc. This rules will detect trends,
sinoidal etc. patters in the data.

These rules can also be implemented using neural network and we will now
describe some of these work. All the them uses simulation results and make com-
parison with classical statistical charts in terms of percentage of wrong decisions
and ARL (average run length) which is defined to be the expected number of sam-
ples that are observed from a process before out-of-control signal is signaled by
the chart.

Prybutok et al (1994) used a feed-forward network with 5 inputs (the sample
size), a single hidden layer with 5 neurons and 1 output neuron. The activation
functions were sigmoid the neural network classifier the control chart as being
“in control” or “out-of-control” respectively according if the output fall in the
intervals (0, 0.5) or (0.5, 1).

Various rules were compared (see Prybutok et al (1994)) such as C4=signal if
eight if the last standardized sample means are between 0 and -3 or if the eight of
the last eight are between 0 and 3. The rules were denoted by Ci and its combina-
tion by Cijkl.

For eight shifts given by |µ − µ0| taking the values (0, 0.2, 0.4, 0.6, 0.8, 1, 2,
3) the ratio of the ARL for the neural network to the standard Shewhart X̄ control
chart without supplemental runs rules are listed in Table 6.10. A further table with
other rules are given in Prybutok et al (1994).
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Table 6.10: Rations of Average Run Lengths: Neural Network Model Cnij to
Shewhart Control Chart without Runs Rules (C1)

Control Shift (µ)
Charts 0.0 0.2 0.4 0.6 0.8 1.0 2.0 3.0
ARL∗ 370.40 308.43 200.08 119.67 71.55 43.89 6.30 2.00
C1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cn54 0.13 0.14 0.16 0.18 0.21 0.24 0.27 0.19
Cn55 0.25 0.27 0.30 0.33 0.38 0.38 0.46 0.32
Cn56 0.47 0.55 0.60 0.67 0.68 0.72 0.71 0.44
Cn57 0.95 0.99 1.31 1.41 1.48 1.44 1.19 0.68
Cn62 0.18 0.19 0.22 0.25 0.30 0.32 0.43 0.34
Cn63 0.24 0.26 0.29 0.32 0.37 0.43 0.50 0.36
Cn64 0.33 0.34 0.36 0.39 0.44 0.48 0.55 0.43
Cn65 0.42 0.40 0.44 0.48 0.53 0.56 0.67 0.53
Cn66 0.56 0.53 0.57 0.60 0.63 0.69 0.76 0.56
Cn67 0.78 0.71 0.72 0.78 0.82 0.79 0.90 0.63
Cn68 1.15 1.02 0.94 1.01 1.02 1.08 1.04 0.75
Cn71 0.25 0.26 0.27 0.33 0.33 0.38 0.44 0.07
Cn72 0.49 0.52 0.52 0.60 0.61 0.63 0.70 0.42
Cn73 0.88 0.92 0.96 1.01 1.02 1.09 0.98 0.63
Cn74 1.56 1.61 1.71 1.72 1.69 1.56 1.47 0.90

ARL = ARLc1(µ) for Shewhart Control Chart.
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Smith (1994) extends the previous work by considering a single model of a
simultaneous X-bar and R chart, and investigating both location and variance
shifts. She applied two groups of feed-forward networks.

The first group with only one output, sigmoid activation function, two hidden
layers, 3 or 10 neurons in each hidden layer, and interpretation as: 0 to 0.3 (mean
shift), 0.3 to 0.7 (under control), 0.7 to 1 (variance shift).

The inputs were either in ten observations (n = 10) and the calculated statis-
tics (sample mean, range, standard deviation), a total of 13 inputs or on the cal-
culated islatistics only, i.e. 3 inputs. Table 6.11 shows the percentage of wrong
decisions for the control chart and the neural networks.

Table 6.11: Wrong Decisions of Control Charts and Neural Networks

Training/ Inputs Hidden Neural Net Shewhart Control
Test Set Layer Size Percent Wrong Percent Wrong
A All 3 16.8 27.5
A All 10 11.7 27.5
A Statistics 3 28.5 27.5
B All 3 0.8 0.5
B All 10 0.5 0.5
B Statistics 3 0.0(None) 0.5

Table 6.12: Desired Output Vectors

Pattern Desired output Note
vector

Upward trend [1,0,0,0,0] –
Downward trend [-1,0,0,0,0] –
Systematic variation (I) [0,1,0,0,0] the first observation is above

the in-control mean
Systematic variation (II) [0,-1,0,0,0] the first observation is below

the in-control mean
Cycle (I) [0,0,1,0,0] sine wave
Cycle (II) [0,0,-1,0,0] cosine wave
Mixture (I) [0,0,0,1,0] the mean of the first distribution

is greater than the in-control mean
Mixture (II) [0,0,0,-1,0] the mean of the first distribution

is less than the in-control mean
Upward shift [0,0,0,0,1] –
Downward shift [0,0,0,0,-1] –

The second group of network deferred from the first group by the input which
now is the raw observations only (n = 5, n = 10, n = 20). These neural networks
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were design to recognize the following shapes: flat (in control), sine wave (cyclic),
slop (trend of drift) and bimodal (up and down shifts). The networks here had two
outputs used to classify patterns with the codes: flat (0,0), sine wave (1,1), trend
(0,1), and bimodal (1,0). A output in (0,0.4] was considered 0 and in (0.6,1) was
considered 1. Table 6.3 gives some of the results Smith (1994) obtained.

Hwarng (2002) presents a neural network methodology for monitoring pro-
cess shift in the presence of autocorrelation. The study of AR (1) (autoregressive
of order one) processes shows that the performance of neural network based mon-
itoring scheme is superior to other five control charts in the cases investigated.
He used a feed-forward network with 50 · 30 · 1 (input·hidden·output) structure of
neurons.

A more sophisticated pattern recognition process control chart using neural
networks is given in Cheng (1997). A comparison between the performance of a
feed-forward network and a mixture of expert was made using simulations. The
multilayer network had 16 inputs (raw observations), 12 neurons in the hidden
layers and 5 outputs identifying the patterns as given in Table 6.13. Hyperbolic
activation function was used.

A mixture of three expert (choice based on experimentation) with the same
input as in the feed-forward network. Each expert had the same structure as the
feed-forward network. The gating network has 3 neurons elements in the output
layer and 4 neurons in a hidden layer.

The results seems to indicate that the mixture of experts performs better in
terms of correctly identified patterns.

Table 6.13: Pattern Recognition Networks

# Input σ # Correct # Missed of 300
Points of Noise of 300 Flat Slope Sine wave Bimodal
5 0.1 288 0 0 10 2
5 0.2 226 39 15 10 10
5 0.3 208 32 39 18 3
10 0.1 292 0 0 5 3
10 0.2 268 3 7 16 6
10 0.3 246 9 17 23 5
20 0.1 297 0 0 0 3
20 0.2 293 0 0 0 7
20 0.3 280 6 1 1 12
Over All Networks 88.8% 3.3% 2.9% 3.1% 1.9%
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6.4 Some Statistical Inference Results
In this section, we describe some inferential procedures that have been devel-

oped for and using neural network. In particular we outline some results on point
estimation (Bayes, likelihood, robust), interval estimation (parametric, bootstrap)
and significance tests (F -test and nonlinearity test).

A more detailed account of prediction interval outlined here see also Hwang
and Ding (1997).

6.4.1 Estimation methods
The standard method of fitting a neural network is backpropagation which is

a gradient descent algorithm to minimize the soma of squares. Here we outline
some details of other alternative methods of estimation.

Since the most used activation function is the sigmoid we present some fur-
ther results. First consider, maximum likelihood estimation, here we follow Schu-
macher et al (1996) and Faraggi and Simon (1995).

The logistic (sigmoid) activation relates output y to input x assuming

Px∼
(Y = 1/x

∼
) = ∧

(
ω0 +

I∑
i=1

ωixji

)
= p(x

∼
, ω) (6.4.1)

where ∧(u) = 1/(1 + eu) is the sigmoid or logistic function.
As seen in Section 5.1, this activation function as a non-linear regression

model is a special case of the generalized linear model i.e.

E(Y/x) = p(x, ω), V (Y/x
∼
) = p(x, ω)(1− p(x, ω)). (6.4.2)

The maximum likelihood estimator of the weights ω’s is obtained from the log
likelihood function

L(ω) =
n∑

j=1

[
yj log p(xi, ω∼

) + (1− yj) log(1− p(xjω)
]

(6.4.3)

where (xj, yj) is the observation for pattern j.
To maximize L(ω) is equivalent to minimize the Kulback-Leiber divergence

n∑
j=1

[
yj log

yj

p(xjω)
+ (1− yj) log

1− yj

1− p(xj, ω)

]
(6.4.4)

It can be written as
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n∑
j=1

− log (1− |yj − p(x, ω)|) (6.4.5)

which makes the interpretation of distance between y and p(y, ω) more clear. At
this point, for comparison, we recall the criteria function used in the backpropa-
gation least square estimation method (or learning rule):

n∑
j=1

(yj − p(xj, ω))2 (6.4.6)

Due to the relation to of maximum likelihood criteria and the Kulback-Leiber,
the estimation based on (6.4.4) is called backpropagation of maximum likelihood.
In the neural network jargon it is also called relative entropy or cross entropy
method.

Bayesian methods for neural networks rely mostly in MCMC (Markov Chain
Monte Carlo). Here we follow Lee (1998) and review the priors used for neural
networks.

All approaches start with the same basic model for the output y

yi = β0 +
k∑

j=1

βj
1

1 + exp(−ωj0 −
∑p

h=1 ωjhxih)
+ εi, (6.4.7)

εi ∼ N(0, σ2) (6.4.8)

The Bayesian models are:

− Müller and Rios Insua (1998)
A direct acyclic graph (DAG) diagram of the model is:

The distributions for parameters and hyperparameters are:
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Figure 6.10: Graphical model of Muller and Rios Issua

yi ∼ N

(
m∑

j=0

βj ∧ (ω′jxi), σ
2

)
, i = 1, . . . , N (6.4.9)

βj ∼ N(µβ, σ2
β), j = 0, . . . , m (6.4.10)

ωj − ωγj ∼ Np(µγ,Sγ), j = 1, . . . , m (6.4.11)
µβ ∼ N(aβ, Aβ) (6.4.12)
µγ ∼ Np(aγ,Aγ) (6.4.13)

σ2
β ∼ Γ−1

(
cβ

2
,
Cβ

2

)
(6.4.14)

Sγ ∼ Wish−1
(
cγ, (cγCγ)

−1
)

(6.4.15)

σ2 ∼ Γ−1

(
s

2
,
S

2

)
. (6.4.16)

There are fixed hyperparameters that need to be specified. Müller and Rios
Insua specify many of them to be of the same scale as the data. As some
fitting algorithms work better when (or sometimes only when) the data have
been re-scaled so that |xih|, |yi| ≤ 1, one choice of starting hyperparameters
is: aβ = 0, Aβ = 1, aγ = 0, Aγ = Ip, cβ = 1, Cβ = 1, cγ = p + 1,

Cγ =
1

p + 1
Ip, s = 1, S =

1

10
.

− Neal Model (1996)
Neal’s four-stage model contains more parameters than the previous model.
A DAG diagram of the model is

Each of the original parameters (β and γ) is treated as a univariate normal
with mean zero and its own standard deviation. These standard deviations
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Figure 6.11: Graphical model of Neal

are the product of two hyperparameters, one for the originating node of the
link in the graph, and one for the destination node.

There are two notes on this model that should be mentioned. First, Neal uses
hyperbolic tangent activation functions rather than logistic functions. These
are essentially equivalent in terms of the neural network, the main difference
being that their range is from -1 to 1 rather than 0 to 1. The second note is
that Neal also discusses using t distributions instead of normal distributions
for the parameters.

− MacKay Model (1992)
MacKay starts with the idea of using an improper prior, but knowing that
the posterior would be improper, he uses the data to fix the hyperparameters
at a single value. Under his model, the distributions for parameters and
hyperparameters are:
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yi ∼ N

(
m∑

j=0

βj ∧ (ω′jxi)(γ
′
jxi),

1

ν

)
, i = 1, . . . , N (6.4.17)

βj ∼ N

(
0,

1

α1

)
, j = 0, . . . , m (6.4.18)

ωjh ∼ Np

(
0,

1

α2

)
, j = 1, . . . , m h = 1, . . . , p (6.4.19)

ωj0 ∼ Np

(
0,

1

α3

)
, j = 1, . . . , m (6.4.20)

αk ∝ 1, k = 1, 2, 3 (6.4.21)
v ∝ 1. (6.4.22)

MacKay uses the data to find the posterior mode for the hyperparametrics
α and ν and then fixes them at their modes.

Each of the three models reviewed is fairly complicated and are fit using
MCMC.

− Lee Model (1998)
The model for the response y is

yi = β0 +
k∑

j=1

βj
1

1 + exp(−γj0 −
∑p

h=1 ωjhxih)
+ εi,

εi
iid∼ N(0, σ2)

(6.4.23)

Instead of having to specify a proper prior, he uses the noninformative im-
proper prior

π(β, ω, σ2) = (2π)−d/2 1

σ2
, (6.4.24)

where d is the dimension of the model (number of parameters). This prior is
proportional to the standard noninformative prior for linear regression. This
model is also fitted using MCMC.

This subsection ends with some references on estimation problems of in-
terest. Belue and Bower (1999) give some experimental design procedures
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to achieve higher accuracy on the estimation of the neural network param-
eters. Copobianco (2000) outlines robust estimation framework for neural
networks. Aitkin and Foxall (2003) reformulate the feedforward neural net-
work as a latent variable model and construct the likelihood which is maxi-
mized using finite mixture and the EM algorithm.

6.4.2 Interval estimation
Interval estimation for feedforward neural network essentially uses the stan-

dard results of least squares for nonlinear regression models and ridge regression
(regularization). Here we summarize the results of Chryssoloures et al (1996) and
De Veux et al (1998).

Essentially they used the standard results for nonlinear regression least square

S(ω) =
∑

(yi − f(X, ω))2 (6.4.25)

or the regularization, when weight decay is used

S(ω) =
∑

(yi − f(X,ω))2 + kα
∑

ω2
i . (6.4.26)

The corresponding prediction intervals are obtained from the t distribution and

tn−ps
√

1 + g′0(JJ)−1g0 (6.4.27)

tn−p∗s
∗√1 + g′0(J ′J + kI)−1(J ′J + kI)−1g0 (6.4.28)

where s = (residual sum of squares)/(n − p) = RSS/(n − p), p is the number
of parameters, J is a matrix with entries ∂f(ω, xi)/∂ωj g0 is a vector with entries
∂f(x0ω)/∂ωj and

k = y − f(Xω∗) + Jω∗, (6.4.29)
s∗ = RSS/(n− tr(2H −H2)) (6.4.30)
H = J(J ′J + αI)−1J (6.4.31)
p∗ = tr(2H −H2). (6.4.32)

where H = J(J ′J + αI)−1J ′, ω∗ is the true parameter value.
The author gives an application and De Veux et al (1998) also shown some

simulated results.
Tibshirani (1995) compared sevens methods to estimate the prediction inter-

vals for neural networks. The method compared were: 1. Delta-method; 2. Ap-
proximate delta: Using approximate to information matrix that ignores second
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derivatives; 3. The regularization estimator; 4. Two approximate sandwich esti-
mators and 5. Two bootstrap estimators.

In this 5 examples and simulations he found that the bootstrap methods pro-
vided the most accurate estimates of the standard errors of the predicted values.
The non-simulation methods (delta, regularization, sandwich estimators) missed
the variability due to random choice of starting values.

6.4.3 Statistical Tests
Two statistical tests when using neural networks are presented here.
Adams (1999) gives the following test procedure to test hypothesis about the

parameters (weights) of a neural network. The test can be used to test nonlinear
relations between the inputs and outputs variables. To implement the test it is first
necessary to calculate the degree of freedom for the network.

If n is the number of observations and p the number of estimated parameters
then the degree of freedom (df) are calculated as

df = n− p. (6.4.33)

With a multilayer feedforward network with m hidden layers, the input layer de-
signed by 0 and the out designed by m + 1. For Lm+1 outputs and Lm neurons in
the hidden layer we have

df = n− p + (Lm+1 − 1)(Ln + 1). (6.4.34)

The number of parameters is

P =
m+1∑
i=1

(Li−1L1 + Li) . (6.4.35)

For a network with 4:6:2, i.e. 4 inputs, 6 hidden neurons and 2 outputs, the degrees
of freedom for each output is

df = n− 44 + (2− 1)(6 + 1) = n− 37. (6.4.36)

For a feedforward network trained by least square we can form the model sum
of squares. Therefore any submodel can be tested using the F test

F =
(SSE0 − SSE)/(df0 − df)

SSE/df
(6.4.37)

where SSE0 is the sum of squares of submodel and SSE is the sum of squares of
full model.
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The above test is based on the likelihood ratio test. An alternative proposed
by Lee et al (1993) uses the Rao score test or Lagrange multiplier test. Blake and
Kapetanios (2003) also suggested a Wald equivalent test. See also Lee (2001).

The implementation of Rao test (see Kiani, 2003) to test nonlinearity of a time
series using a one-hidden layer neural network is

(i) regress yt on intercept and yt−1, . . . , yt−k, save residuals (ût), residual sum of
squares SSE1 and predictions ŷt,

(ii) regress ût on yt−1, . . . , yt−k using neural network model that nests a linear
regression yt = πy

∼t

+ ut(y
∼t

= (yt−1, . . . , yt−k), save matrices Ψ of outputs

of the neurons for principle components analysis.

(iii) regress êt (residuals of the linear regression in (ii)) in Ψ∗ (principal compo-
nents of Ψ) and X matrices, and obtain R2, thus

TS = nR2 ∼ χ2(g) (6.4.38)

where g is the number of principal components used un step (iii).

The neural network in 6.12 clarifies the procedure:

Figure 6.12: One-hidden layer feedforward neural network.

Simulations results on the behaviors of this test can be seen in the bibliography
on references. An application is given in Kiani (2003).
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agnóstico de Tuberculose Pulmonar. Tese D.Sc. Engenharia de Produção,
UFRJ, 2003.

[15] Santos, A.M., Seixas, J.M., Pereira, B.B., Medronho, R.A., Campos, M.R.,
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cerveja na australia. Pesquisa Operacional, 22:347–358, 2002.

[3] Chakraborthy, K., Mehrotra, K., Mohan, C.K., and Ranka, S. Forecast-
ing the behavior of multivariate time series using neural networks. Neural
Networks, 5:961–970, 1992.

[4] Cramer, H. On the representation of functions by certain fourier integrals.
Transactions of the American Math. Society, 46:191–201, 1939.

[5] Donaldson, R.G. and Kamstra, M. Forecasting combining with neural net-
works. Journal of Forecasting, 15:49–61, 1996.

[6] Faraway, J. and Chatfield, C. Time series forecasting with neural networks:
A comparative study using the airline data. Applied Statistics, 47:231–250,
1998.

[7] Ghiassi, M., Saidane, H., and Zimbra, D.K. A dynamic artificial neural
network for forecasting series events. International Journal of Forecasting,
21:341–362, 2005.



BIBLIOGRAPHY AND REFERENCES 188

[8] Ghiassi, M., Saidane, H., and Zimbra, D.K. A dynamic artificial neural
network model for forecasting series events. International Journal of Fore-
casting, 21:341–362, 2005.

[9] Hill, T., Marquez, L., O’Connor, M., and Remus, W. Artificial neural net-
work models for forecasting and decision making. International Journal of
Forecasting, 10:5–15, 1994.

[10] Kajitomi, Y., Hipel, K.W., and Mclead, A.I. Forecasting nonlinear time
series with feed-foward neural networks: a case of study of canadian lynx
data. Journal of Forecasting, 24:105–117, 2005.

[11] Kajitoni, Y., Hipel, K.W., and Mclead, A.I. Forecasting nonlinear time
series with feed-foward neural networks: a case study of canadian lynx
data. Journal of Forecasting, 24:105–117, 2005.

[12] Lai, T.L. and Wong, S.P.S. Stochastic neural networks with applications
to nonlinear time series. Journal of the American Statistical Association,
96:968–981, 2001.

[13] Li, X., Ang, C.L., and Gray, R. Stochastic neural networks with applica-
tions to nonlinear time series. Journal of Forecasting, 18:181–204, 1999.

[14] Lourenco, P.M. Um Modelo de Previsāo de Curto Prazo de Carga Elétrica
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