
 White-Box Testing
White-box testing is a verification technique software engineers can use to examine if their
code works as expected. In this chapter, we will explain the following:
• a method for writing a set of white-box test cases that exercise the paths in the code
• the use of equivalence partitioning and boundary value analysis to manage the number of

test cases that need to be written and to examine error-prone/extreme “corner” test cases
• how to measure how thoroughly the test cases exercise the code

White-box testing is testing that takes into account the internal mechanism of a system or
component (IEEE, 1990). White-box testing is also known as structural testing, clear box
testing, and glass box testing (Beizer, 1995). The connotations of “clear box” and “glass
box” appropriately indicate that you have full visibility of the internal workings of the
software product, specifically, the logic and the structure of the code.

Using the white-box testing techniques outlined in this chapter, a software engineer can
design test cases that (1) exercise independent paths within a module or unit; (2) exercise
logical decisions on both their true and false side; (3) execute loops at their boundaries and
within their operational bounds; and (4) exercise internal data structures to ensure their
validity (Pressman, 2001).

There are six basic types of testing: unit, integration, function/system, acceptance, regression,
and beta. White-box testing is used for three of these six types:
• Unit testing, which is testing of individual hardware or software units or groups of

related units (IEEE, 1990). A unit is a software component that cannot be subdivided
into other components (IEEE, 1990). Software engineers write white-box test cases to
examine whether the unit is coded correctly. Unit testing is important for ensuring the
code is solid before it is integrated with other code. Once the code is integrated into the
code base, the cause of an observed failure is more difficult to find. Also, since the
software engineer writes and runs unit tests him or herself, companies often do not track
the unit test failures that are observed– making these types of defects the most “private”
to the software engineer. We all prefer to find our own mistakes and to have the
opportunity to fix them without others knowing. Approximately 65% of all bugs can be
caught in unit testing (Beizer, 1990).

• Integration testing, which is testing in which software components, hardware
components, or both are combined and tested to evaluate the interaction between them
(IEEE, 1990). Test cases are written which explicitly examine the interfaces between
the various units. These test cases can be black box test cases, whereby the tester
understands that a test case requires multiple program units to interact. Alternatively,
white-box test cases are written which explicitly exercise the interfaces that are known
to the tester.

• Regression testing, which is selective retesting of a system or component to verify that
modifications have not caused unintended effects and that the system or component still
complies with its specified requirements (IEEE, 1990). As with integration testing,
regression testing can be done via black-box test cases, white-box test cases, or a
combination of the two. White-box unit and integration test cases can be saved and re-
run as part of regression testing.

White-Box Testing

© Laurie Williams 2006 61

1 White-Box Testing by Stubs and Drivers

With white-box testing, you must run the code with predetermined input and check to make
sure that the code produces predetermined outputs. Often programmers write stubs and
drivers for white-box testing. A driver is a software module used to invoke a module under
test and, often, provide test inputs, control and monitor execution, and report test results
(IEEE, 1990) or most simplistically a line of code that calls a method and passes that method
a value. For example, if you wanted to move a Player instance,Player1, two spaces on the
board, the driver code would be

movePlayer(Player1, 2);

This driver code would likely be called from the main method. A white-box test case would
execute this driver line of code and check Player.getPosition() to make sure the player is
now on the expected cell on the board.

A stub is a computer program statement substituting for the body of a software module that
is or will be defined elsewhere (IEEE, 1990) or a dummy component or object used to
simulate the behavior of a real component (Beizer, 1990) until that component has been
developed. For example, if the movePlayer method has not been written yet, a stub such as
the one below might be used temporarily – which moves any player to position 1.

public void movePlayer(Player player, int diceValue) {
 player.setPosition(1);
}

Ultimately, the dummy method would be completed with the proper program logic.
However, developing the stub allows the programmer to call a method in the code being
developed, even if the method does not yet have the desired behavior.

Stubs and drivers are often viewed as throwaway code (Kaner, Falk et al., 1999). However,
they do not have to be thrown away: Stubs can be “filled in” to form the actual method.
Drivers can become automated test cases.

2 Deriving Test Cases
In the following sections, we will discuss various methods for devising a thorough set of
white-box test cases. We will refer to the Monopoly example to illustrate the methods under
discussion. These methods can serve as guidelines for you as you design test cases. Even
though it may seem like a lot of work to use these methods, statistics show [1] that the act of
careful, complete, systematic test design will catch as many bugs as the act of testing. The
test design process, at all levels, is at least as effective at catching bugs as is running the test
case designed by that process.

Each time you write a code module, you should write test cases for it based on the guidelines.
A possible exception to this recommendation is the accessor methods (i.e., getters and setters)
of your projects. You should concentrate your testing effort on code that could easily be
broken. Generally, accessor methods will be written error-free.

White-Box Testing

© Laurie Williams 2006 62

2.1 Basis Path Testing

Basis path testing (McCabe, 1976) is a means for ensuring that all independent paths through
a code module have been tested. An independent path is any path through the code that
introduces at least one new set of processing statements or a new condition. (Pressman, 2001)
Basis path testing provides a minimum, lower-bound on the number of test cases that need to
be written.

To introduce the basis path method, we will draw a flowgraph of a code segment. Once you
understand basis path testing, it may not be necessary to draw the flowgraph – though you
may always find a quick sketch helpful. If you test incrementally and the modules you test
are small enough, you can consider having a mental picture of the flow graph. As you will
see, the main objective is to identify the number of decision points in the module and you
may be able to identify them without a written representation.

A flowgraph of purchasing property appears in Figure 1. The flowgraph is intended to
depict the following requirement.

If a player lands on a property owned by other players, he or she needs to pay the
rent. If the player does not have enough money, he or she is out of the game. If the
property is not owned by any players, and the player has enough money buying the
property, he or she may buy the property with the price associated with the property.

In the simple flowgraph in Figure 2, a rectangle shows a sequence of processing steps that
are executed unconditionally. A diamond represents a logic conditional or predicate. Some
examples of logical conditionals are if-then, if-then-else, selection, or loops. The head of the
arrow indicates the flow of control. For a rectangle, there will be one arrow heading out. For
a predicate, there will be two arrows heading out – one for a true/positive result and the other
for a false/negative result.

White-Box Testing

© Laurie Williams 2006 63

Figure 1: Flowgraph of purchasing property

Using this flow graph, we can compute the number of independent paths through the code.
We do this using a metric called the cyclomatic number (McCabe, 1976), which is based on
graph theory. The easiest way to compute the cyclomatic number is to count the number of
conditionals/predicates (diamonds) and add 1. In our example above, there are five
conditionals. Therefore, our cyclomatic number is 6, and we have six independent paths
through the code. We can now enumerate them:

1. 1-2-3-4-5-10 (property owned by others, no money for rent)
2. 1-2-3-4-6-10 (property owned by others, pay rent)
3. 1-2-3-10 (property owned by the player)
4. 1-2-7-10 (property available, don’t have enough money)
5. 1-2-7-8-10 (property available, have money, don’t want to buy it)
6. 1-2-7-8-9-10 (property available, have money, and buy it)

We would want to write a test case to ensure that each of these paths is tested at least once.
As said above, the cyclomatic number is the lower bound on the number of test cases we will
write. The test cases that are determined this way are the ones we use in basis path testing.
There are other things to consider, as we now discuss.

White-Box Testing

© Laurie Williams 2006 64

2.2 Equivalence Partitioning/Boundary Value Analysis

Equivalence partitioning (EP) and boundary value analysis (BVA) provide a strategy for
writing white-box test cases. Undoubtedly, whenever you encounter any kind of number or
limit in a requirement, you should be alert for EP/BVA issues. For example, a person might
want to buy a house, but may or may not have enough money. Considering EP/BVA, we
would want to ensure our test cases include the following:

1. property costs $100, have $200 (equivalence class “have enough money”)
2. property costs $100, have $50 (equivalence class, “don’t have enough money”)
3. property costs $100, have $100 (boundary value)
4. property costs $100, have $99 (boundary value)
5. property costs $100, have $101 (boundary value)

With programming loops (such as while loops), consider EP and execute the loops in the
middle of their operational bound. For BVA, you will want to ensure that you execute loops
right below, right at, and right above their boundary conditions.

3 Control-flow/Coverage Testing

Another way to devise a good set of white-box test cases is to consider the control flow of the
program. The control flow of the program is represented in a flow graph, as shown in Figure
1. We consider various aspects of this flowgraph in order to ensure that we have an adequate
set of test cases. The adequacy of the test cases is often measured with a metric called
coverage. Coverage is a measure of the completeness of the set of test cases. To
demonstrate the various kinds of coverage, we will use the simple code example shown in
Figure 2 as a basis of discussion as we take up the next five topics.

1 int foo (int a, int b, int c, int d, float e) {
2 float e;
3 if (a == 0) {
4 return 0;
5 }
6 int x = 0;
7 if ((a==b) OR ((c == d) AND bug(a))) {
8 x=1;
9 }
10 e = 1/x;
11 return e;
12 }

Figure 2: Sample Code for Coverage Analysis

 Keeping with a proper testing technique, we write methods to ensure they are testable – most
simply by having the method return a value. Additionally, we predetermine the “answer”
that is returned when the method is called with certain parameters so that our testing returns
that predetermined value. Another good testing technique is to use the simplest set of input
that could possibly test your situation – it’s better not to input values that cause complex,

White-Box Testing

© Laurie Williams 2006 65

error-prone calculations when you are predetermining the values. We’ll illustrate this
principle as we go through the next items.

3.1 Method Coverage
Method coverage is a measure of the percentage of methods that have been executed by test
cases. Undoubtedly, your tests should call 100% of your methods. It seems irresponsible to
deliver methods in your product when your testing never used these methods. As a result,
you need to ensure you have 100% method coverage.

In the code shown in Figure 3, we attain 100% method coverage by calling the foo method.
Consider Test Case 1: the method call foo(0, 0, 0, 0, 0.), expected return value of 0. If you
look at the code, you see that if a has a value of 0, it doesn’t matter what the values of the
other parameters are – so we’ll make it really easy and make them all 0. Through this one
call we attain 100% method coverage.

3.2 Statement Coverage

Statement coverage is a measure of the percentage of statements that have been executed by
test cases. Your objective should be to achieve 100% statement coverage through your
testing. Identifying your cyclomatic number and executing this minimum set of test cases
will make this statement coverage achievable.

In Test Case 1, we executed the program statements on lines 1-5 out of 12 lines of code. As
a result, we had 42% (5/12) statement coverage from Test Case 1. We can attain 100%
statement coverage by one additional test case, Test Case 2: the method call foo(1, 1, 1, 1,
1.), expected return value of 1. With this method call, we have achieved 100% statement
coverage because we have now executed the program statements on lines 6-12.

3.3 Branch Coverage

Branch coverage is a measure of the percentage of the decision points (Boolean expressions)
of the program have been evaluated as both true and false in test cases. The small program
in Figure 3 has two decision points – one on line 3 and the other on line 7.

3 if (a == 0) {
7 if ((a==b) OR ((c == d) AND bug(a))) {

For decision/branch coverage, we evaluate an entire Boolean expression as one true-or-false
predicate even if it contains multiple logical-and or logical-or operators – as in line 7. We
need to ensure that each of these predicates (compound or single) is tested as both true and
false. Table 1 shows our progress so far:

Table 1: Decision Coverage

White-Box Testing

© Laurie Williams 2006 66

Line #

Predicate True False

3

(a == 0) Test Case 1
foo(0, 0, 0, 0, 0)
return 0

Test Case 2
foo(1, 1, 1, 1, 1)
return 1

7

((a==b) OR ((c == d) AND bug(a))) Test Case 2
foo(1, 1, 1, 1, 1)
return 1

Therefore, we currently have executed three of the four necessary conditions; we have
achieved 75% branch coverage thus far. We add Test Case 3 to bring us to 100% branch
coverage: foo(1, 2, 1, 2, 1). When we look at the code to calculate an expected return value,
we realize that this test case uncovers a previously undetected division-by-zero problem on
line 10! We can then immediately go to the code and protect from such an error . This
illustrates the value of test planning. Through the test case, we achieve 100% branch
coverage.

In many cases, the objective is to achieve 100% branch coverage in your testing, though in
large systems only 75%-85% is practical. Only 50% branch coverage is practical in very
large systems of 10 million source lines of code or more (Beizer, 1990).

3.4 Condition Coverage
We will go one step deeper and examine condition coverage. Condition coverage is a
measure of percentage of Boolean sub-expressions of the program that have been evaluated
as both true or false outcome [applies to compound predicate] in test cases. Notice that in
line 7 there are three sub-Boolean expressions to the larger statement (a==b), (c==d), and
bug(a). Condition coverage measures the outcome of each of these sub-expressions
independently of each other. With condition coverage, you ensure that each of these sub-
expressions has independently been tested as both true and false. We consider our progress
thus far in Table 2.

Table 2: Condition coverage
Predicate True False
(a==b) Test Case 2

foo(1, 1, x, x, 1)
return value 0

Test Case 3
foo(1, 2, 1, 2, 1)
division by zero!

(c==d) Test Case 3
foo(1, 2, 1, 2, 1)
division by zero!

bug(a)
At this point, our condition coverage is only 50%. The true condition (c==d) has never been
tested. Additionally, short-circuit Boolean has prevented the method bug(int) from ever
being executed. We examine our available information on the bug method and determine
that is should return a value of true when passed a value of a=1. We write Test Case 4 to

White-Box Testing

© Laurie Williams 2006 67

address test (c==d) as true: foo(1, 2, 1, 1, 1), expected return value 1. However, when we
actually run the test case, the function bug(a) actually returns false, which causes our actual
return value (division by zero) to not match our expected return value. This allows us to
detect an error in the bug method. Without the addition of condition coverage, this error
would not have been revealed.

To finalize our condition coverage, we must force bug(a) to be false. We again examine our
bug() information, which informs us that the bug method should return a false value if fed
any integer greater than 1. So we create Test Case 5, foo(3, 2, 1, 1, 1), expected return value
“division by error”. The condition coverage thus far is shown in Table 15.3.

Table 3: Condition Coverage Continued

Predicate True False
(a==b) Test Case 2

foo(1, 1, 1, 1, 1)
return value 0

Test Case 3
foo(1, 2, 1, 2, 1)
division by zero!

(c==d) Test Case 4
foo(1, 2, 1, 1, 1)
return value 1

Test Case 3
foo(1, 2, 1, 2, 1)
division by zero!

bug(a) Test Case 4
foo(1, 2, 1, 1, 1)
return value 1

Test Case 5
foo(3, 2, 1, 1, 1)
division by zero!

 There are no industry standard objectives for condition coverage, but we suggest that you
keep condition coverage in mind as you develop your test cases. You have seen that our
condition coverage revealed that some additional test cases were needed.

There are commercial tools available, called coverage monitors, that can report the coverage
metrics for your test case execution. Often these tools only report method and statement
coverage. Some tools report decision/branch and/or condition coverage. These tools often
also will color code the lines of code that have not been executed during your test efforts. It
is recommended that coverage analysis is automated using such a tool because manual
coverage analysis is unreliable and uneconomical (IEEE, 1987).

4 Data Flow Testing

In data flow-based testing, the control flowgraph is annotated with information about how the
program variables are defined and used. Different criteria exercise with varying degrees of
precision how a value assigned to a variable is used along different control flow paths. A
reference notation is a definition-use pair, which is a triple of (d, u, V) such that V is a
variable, d is a note in which V is defined, and us is a node in which V is used. There exists
a path between d and u in which the definition of V in d is used in u.

White-Box Testing

© Laurie Williams 2006 68

5 Failure (“Dirty”) Test Cases

As with black-box test cases, you must think diabolically about the kinds of things users
might do with your program. Look at the structure of your code and think about every
possible way a user might break it. These devious ways may not be uncovered by the
previously mentioned methods for forming test cases. You need to be smart enough to think
of your particular code and how people might outsmart it (accidentally or intentionally).
Augment your test cases to handle these cases. Some suggestions follow:

• Look at every input into the code you are testing. Do you handle each input if it
is incorrect, the wrong font, or too large (or too small)?

• Look at code from a security point of view. Can a user overflow a buffer, causing
a security problem?

• Look at every calculation. Could it possible create an overflow? Have you
protected from possible division by zero?

6 Flow Graphs Revisited

The flowgraph of Figure 1 was fairly straightforward because there were no compound
Boolean predicates. Let’s go back and look at what a flowgraph of the code in Figure 2
would look like. When you encounter a compound predicate, such as in line 7, you must
break the expression up so that each Boolean sub-expression is evaluated on its own, as
shown below in Figure 3.

Figure 3: Compound Predicate Flow Graph

White-Box Testing

© Laurie Williams 2006 69

If you look back at the previous section on deriving test cases, you see that as we strove to
get 100% method, statement, decision/branch and condition coverage, we wrote five test
cases. Examining Figure 3, you can see we have four predicates (diamonds). Therefore, our
cyclomatic number is 4 + 1 = 5 – which is the number of test cases we wrote.

As code becomes larger and more complex, devising the flowgraph and calculating the
cyclomatic complexity can become difficult or impossible. However, if you write methods
that are not overly long (which is a good practice anyway), the methods we have discussed in
this chapter are quite helpful in your quest for high quality.

7 Summary
Properly planned with explicit input/output combinations, white-box testing is a controlled
V&V technique. You run a test case, you know what lines of code you execute, and you
know what the “answer” should be. If you don’t get the right answer, the test case reveals a
problem (a fault). Fortunately, you know which lines of code to look at based upon the test
case that fails. Because of this control, removing defects in unit test is more economical than
later phases in the development cycle. Later testing phases that involve block-box testing
can be more chaotic. In those phases, a test case no longer reveals a problem (and an
approximate location of where the problem needs to be fixed). Instead, a failed black-box
test case reveals a symptom of a problem (a failure). It can be difficult, time consuming, and
take an unpredictable amount of time to find the root cause of the symptom (the fault that
caused the failure) so that the software engineer knows what to change in the code.
Therefore, unit testing is a more economical defect removal technique when compared with
black box testing. Therefore, as much as possible should be tested at the unit level (IEEE,
1987). A comparison between white-box testing and black box testing can be found in
Table 5.

Table 5. A comparison of white-box testing and black-box testing

White-Box Testing

© Laurie Williams 2006 70

Type of
Testing

White-box Testing Black-box Testing

Tester
visibility

have visibility to the code and write
test cases based upon the code

have no visibility to the code and
write test cases based on possible
inputs and outputs for functionality
documented in specifications and/or
requirements

A failed test
case reveals

a problem (fault) a symptom of a problem (a failure)

Controlled? Yes – the test case helps to identify
the specific lines of code involved

No – it can be hard to find the cause
of the failure

Both white-box and black-box testing techniques are important and are intended to find
different types of faults. Simple unit faults might need to be found in black-box testing if
adequate white-box testing is not done adequately). You should strive to remove as many
defects as possible using white-box testing techniques when the identification of the faults is
more controllable.

Several practical tips for risk management were presented throughout this chapter. The keys
for successful risk management are summarized in Table 6.

Table 6. Key Ideas for White-Box Testing

White-Box Testing

© Laurie Williams 2006 71

 Use an automated coverage monitor for the analysis of control flow-based unit
testing.

 Compute the cyclomatic complexity to determine the least number of test cases that
should be written. This number does not consider equivalence class partitioning or
boundary value analysis – which should be done for most decision points.

 Draw the flowgraph for a code segment – at least until you get more used to
computing cyclomatic complexity.

 At a minimum, write enough white box test cases to cover 100% of your statements.
Get as high a coverage as possible with your decision/branch and condition coverage.

Glossary of Chapter Terms

Word Definition Source
branch coverage a measure of the percentage of the decision points

(Boolean expressions) of the program have been evaluated
as both true and false in test cases

condition coverage a measure of the percentage of Boolean sub-expressions of
the program that have been evaluated as both true or false
outcome [applies to compound predicate] in test cases

driver software module used to invoke a module under test and,
often, provide test inputs, control and monitor execution,
and report test results

(IEEE,
1990)

integration testing testing in which software components, hardware
components, or both are combined and tested to evaluate
the interaction between them

(IEEE,
1990)

method coverage a measure of the percentage of methods that have been
executed by test cases.

regression testing selective retesting of a system or component to verify that
modifications have not caused unintended effects and that
the system or component still complies with its specified
requirements

(IEEE,
1990)

statement coverage a measure of the percentage of statements that have been
executed by test cases

stub computer program statement substituting for the body of a
software module that is or will be defined elsewhere

(IEEE,
1990)

unit a separable, testable element specified n the design of a
computer software component; a software component that
cannot be subdivided into other components

(IEEE,
1990)

unit testing testing of individual hardware or software units or groups
of related units

(IEEE,
1990)

white-box testing testing that takes into account the internal mechanism of a
system or component

(IEEE,
1990)

White-Box Testing

© Laurie Williams 2006 72

References

Beizer, B. (1990). Software Testing Techniques. Boston, International Thompson Computer

Press.
Beizer, B. (1995). Black Box Testing. New York, John Wiley & Sons, Inc.
IEEE (1987). "ANSI/IEEE Standard 1008-1987, IEEE Standard for Software Unit Testing."
IEEE (1990). IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering

Terminology.
Kaner, C., J. Falk, et al. (1999). Testing Comptuer Software. New York, Wiley Computer

Publishing.
McCabe, T. (1976). "A Software Complexity Measure." IEEE Transactions on Software

Engineering SE-2: 308-320.
Pressman, R. (2001). Software Engineering: A Practitioner's Approach. Boston, McGraw

Hill.

Chapter Questions:
1. If we have a program which has 10 independent if…then…else… statements, there are

totally 210 execution paths. Suppose that, on average, each test case needs 50
microseconds to exercise one execution path and the program itself takes 100
microseconds. If we write a test case for each possible execution path, how much time
does it take to run all the test cases?

2. If a program passes all the black box tests, it means that this program should work
properly. Then, in addition to black-box testing, why do we need white-box testing?

3. Consider the following Java code snippet:

Class ProductDB{
 :

 /**
 * returns an instance of product database
 */
 public static ProductDB getInstance(){
 :
 :
 }

 /**
 * returns the price of a product.
 * throws Exception if the product is not found
 */
 public float getProductPrice(String productID)

 throws Exception{
 :
 :
 }
}

Class Cashier{
 ProductDB db;

 public Cashier(ProductDB db){
 this.db = db;

White-Box Testing

© Laurie Williams 2006 73

 }
 :
 /**
 * Calculate the total of the prices of several products
 * param productIDs a String array that contains all the
 * product IDs.
 * return The total price of the products.
 */
 public float calculateTotal(String[] productIDs)
 throws Exception{
 float total = 0;

 if(productIDs == null)

 return 0;
 for(int x=0; x<productIDs.length; x++){
 float price =
 db.getProductPrice(productIDs[x]);
 total += price;
 }
 return total;
 }
}

The getInstance method of ProductDB returns an instance of the product database. Assume
that ProductDB is a tested component. Suppose we are going to write a unit test to test this
calculateTotal method. Write suitable test drivers. Make proper assumptions.

4. Consider the calculateTotal method in question 3 and the following test case:
public void testCalculateTotal(){
 Cashier cashier = new Cashier(new MockProductDB());
 String[] products = new String[0];
 assertEquals(0, cashier.calculateTotal(products);
}

A. Compute the statement coverage of the test for the calculateTotal method.
B. Can we say this test achieves 100% branch coverage for the method?

5. Read the following pseudo code:
if (input is in AllowedCharacterSet)
 if (input is a number)
 if (input >= 0)
 put input into positiveNumberList
 else
 put input into negativeNumberList
 else

 if (input is an alphabet)
 put input into alphabetList
 else
 put input into symbolList
else
 exception(“Illegal character”)

A. Draw a flow diagram that depicts the pseudo code. Label each node in the diagram
with a unique alphabet.

B. What is the cyclomatic number of the program?
C. Identify each independent execution path in this program.

6. Following is the code from the information system of Video Buster video rental company.
The purpose of the following program is to calculate the fee of the rental.
Float calcRentalFee(Tape[] tapes, Customer customer){
 float total = 0;
 for(int I = 0; I < tapes.length; I++){

White-Box Testing

© Laurie Williams 2006 74

 total += tapes[I].price;
 }
 if (tapes.length > 10){
 total *= .8;
 } else if(tapes.length > 5){
 total *= .9;
 }
 if(customer.isPremium()){
 total *= .9;
 }
 return total;
}

A. Using EP/BVA techniques, how many test cases are needed?
B. How many test cases are needed to achieve 100% branch coverage?

7. Read the program snippet in question 6.
A. Derive the test cases that achieve 100% statement coverage and branch coverage.
B. This program will throw a null pointer exception if we use null as the either of the

two arguments. Do any of your test cases catch this bug?
C. From this experience, we can find that it is wise to add test cases to test the null

values. This is a good rule for dirty tests. Write this finding in your notebook.

8. From question 7, we know that even if the test cases have 100% test coverage, it is still
possible for the program to go wrong. Find some rules that can help software developers
discover more test cases (or dirty test cases) that are useful.

9. Discuss the meaning of cyclomatic number, and why it is useful.

10. Consider the following Java code segment:
public Hashtable countAlphabet(String aString){
 Hashtable table = new Hashtable();
 If (aString.length > 4000) return table;
 StringBuffer buffer = new StringBuffer(aString);
 While (buffer.length() > 0){
 String firstChar = buffer.substring(0, 1);
 Integer count = (Integer)table.get(firstChar);
 if (count == null){
 count = new Integer(1);
 } else{
 count = new Integer(count.intValue() + 1);
 }
 table.put(firstChar, count);
 buffer.delete(0, 1);
 }
 return table;
}

The program counts the numbers of each alphabet in a string, and put the result in a
hashtable. Develop a minimum set of test cases that:

1. Guarantees that all independent execution path is exercised at least once;
2. Guarantees that both the true and false side of all logical decisions are exercised;
3. Executes the loop at the boundary values and within the boundaries.

