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Abstract—This paper defines a multiple resolution representation for
the two-dimensional gray-scale shapes in an image. This representation
is constructed by detecting peaks and ridges in the difference of low-
pass (DOLP) transform. Descriptions of shapes which are encoded in
this representation may be matched efficiently despite changes in size,
orientation, or position.

Motivations for a multiple resolution representation are presented
first, followed by the definition of the DOLP transform. Techniques
are then presented for encoding a symbolic structural description of
forms from the DOLP transform. This process involves detecting local
peaks and ridges in each bandpass image and in the entire three-dimen-
sional space defined by the DOLP transform. Linking adjacent peaks in
different bandpass images gives a multiple resolution tree which de-
scribes shape. Peaks which are local maxima in this tree provide land-
marks for aligning, manipulating, and matching shapes. Detecting and
linking the ridges in each DOLP bandpass image provides a graph which
links peaks within a shape in a bandpass image and describes the posi-
tions of the boundaries of the shape at multiple resolutions. Detecting
and linking the ridges in the DOLP three-space describes elongated forms
and links the largest peaks in the tree.

The principles for determining the correspondence between symbols
in pairs of such descriptions are then described. Such correspondence
matching is shown to be simplified by using the correspondence at
lower resolutions to constrain the possible correspondence at higher
resolutions.
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I. INTRODUCTION

REPRESENTATION is a formal system for making ex-
Aplicit certain entities or types of information, and a
specification of how the system does this [20]. Representa-
tion plays a crucial role in determining the computational
complexity of an information processing problem.

This paper describes a representation for two-dimensional
shape which can be used for a variety of tasks in which the
shapes (or gray-level forms) in an image must be manipulated.
An important property of this representation is that it makes
the task of comparing the structure of two shapes to deter-
mine the correspondence of their components computationally
simple. However, this representation has other desirable prop-
erties as well. For example, the network of symbols that de-
scribe a shape in this representation have a structure which,
except for the effects of quantization, is invariant to the size,
orientation, and position of a shape. Thus a shape can be com-
pared to prototypes without having to normalize its size or
orientation. An object can be tracked in a sequence of images
by matching the largest peak(s) in its description in each image.
This representation can also describe a shape when its bound-
aries are blurred or poorly defined or when the image has
been corrupted by various sources of image noise.

This representation is based on a reversible transform referred
to as the “difference of low-pass” (DOLP) transform. From
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its definition, the DOLP transform of an image appears to be
very costly to compute. However, several techniques can be
used to greatly reduce the computational complexity and
memory requirement for a DOLP transform. These techniques,
together with the definition of the DOLP transform, are pre-
sented in a companion paper [14].

The difference of low-pass (DOLP) transform is a reversible
transform which converts an image into a set of bandpass im-
ages. Each bandpass image is equivalent to a convolution of
the original image with a bandpass filter b;. Each bandpass fil-
ter is formed by a difference of two size-scaled copies of a low-
pass filter g —, and g .

by = 8-1 = 8-
Each low-pass filter g is a copy of the low-pass filter g-,
scaled larger in size. These bandpass images comprise a three-

space (the DOLP space). The representation is constructed by
detecting peaks and ridges in the DOLP space.

A. Motivation: A Multiresolution Structural Description
of Images

Interpreting the patterns in an image requires matching. If
the interpretation is restricted to two-dimensional patterns,
this matching is between descriptions of shapes in the image
and object models. If the interpretation is in terms of three-
dimensional objects, then techniques for matching among
stereo images or motion sequences may be required to obtain
the description of three-dimensional shape. In either case, the
matching problem is simplified if descriptions are compared
at multiple resolutions. Peaks and ridges in a DOLP transform
provide a structural description of the gray-scale shapes in
an image.

The motivation for computing a structural description is to
spend a fixed computational cost to transform the information
in each image into a representation in which searching and
matching are more efficient. In many cases the computation
involved in constructing a structural description is regular and
local, making the computation amenable to fast implementa-
tion in special purpose hardware.

Several researchers have shown that the efficiency of searching
and matching processes can be dramatically improved by per-
forming the search at multiple resolutions. Moravec [21] has
demonstrated a multiresolution correspondence matching al-
gorithm for object location in stereo images. Marr and Poggio
[18] have demonstrated correspondence matching using edges
detected by filters at four resolutions formed from a dif-
ference of Gaussians. Rosenfeld and Vanderbrug [28] have
described a two-stage hierarchical template-matching algorithm.
Hall has reported using a multiresolution pyramid to dramati-
cally speed up correlation of aerial images [15]. Kelly [17],
Pavlidis and Tanimoto [30], Hanson and Riseman [16], and
many others have described the use of multiple resolution
images for segmentation and edge detection.

There is also experimental evidence that the visual systems
of humans and other mammals separate images into a set of
“spatial frequency” channels as a first encoding of visual in-
formation. This “multichannel theory” is based on measure-
ments of the adaption of the threshold sensitivity to vertical
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Fig. 1. A rhomboidal form and its representation. In the upper part
of this figure the rhomboidal form is outlined in solid straight lines.
The description is for such a form which is dark on a light back-
ground. Circles indicate the locations and sizes where the bandpass
filters from a sampled DOLP transform produced 3-space pcaks (M-
nodes), 2-space peaks (P-nodes), and 3-space ridges (L-nodes). The
structure of the resulting description is shown in the lower part of
the figure. The description of the “negative shape” which surrounds
this form is not presented.

sinusoidal functions of various frequencies [10], [29]. Adap-
tion to a sinusoid of a particular frequency affects only the
threshold sensitivity for frequencies within one octave. This
evidence suggests that mammalian visual systems employ a
set of bandpass channels with a bandwidth of about one oc-
tave. Such a set of channels would carry information from
different resolutions in the image. These studies, and physio-
logical experiments supporting the concept of parallel spatial
frequency analysis, are reviewed in [9] and [31].

B. Properties of the Representation

The patterns which are described by this representation are
“gray-scale shapes” or “forms.” We prefer the term “forms,”
because the term shape carries connotations of the outline of
a uniform intensity region. It is not necessary for a pattern to
have a uniform intensity for it to have a well defined descrip-
tion in this representation. In this paper we will use the term
“form” to refer to the patterns in an image.

In this representation, a form is described by a tree of sym-
bols which respresent the structure of the form at every resolu-
tion. There are four types of symbols {M, L, P, R¥ which
mark locations (x, y, k) in the DOLP three-space where a
bandpass filter of radius Ry, is a local “best-fit” to the form.

Fig. 1 shows an example of the use of peaks and ridges for
representing a uniform intensity form. This figure shows the
outline of a dark rhomboid on a light background. Circles illu-
strate the position and radii of bandpass filters whose positive
center lobes are a local “best-fit” to the thomboid. Below the
rhomboid is part of the graph produced by detecting and linking

1 In previous writing about this representation, most notably in [13],
these symbols were referrcd to by the names {M*, L,M,P;.
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peaks a.d ridges in the sampled DOLP transform. The meaning
of the symbols in this graph is described below.

A description is this representation contains a small number
of symbols at the root. These symbols describe the global (or
low-frequency) structure of a form. At lower levels, this tree
contains increasingly larger numbers of symbols which repre-
sent more local details. The correspondence between symbols
at one level in the tree constrains the possible set of corre-
spondences at the next higher resolution level.

The description is created by detecting local positive maxima
and negative minima in one dimension (ridges) and two dimen-
sions (peaks) in each bandpass image of a DOLP transform.
Local peaks in the DOLP three-space define locations and sizes
at which a DOLP bandpass filter best fits a gray-scale pattern.
These points are encoded as symbols which serve as landmarks
for matching the information in images. Peaks of the same
sign which are in adjacent positionsin adjacent bandpass images
are linked to form a tree. During the linking process, the lar-
gest peak along each branch is detected. Thislargest peak serves
as a landmark which marks the position and size of a gray-scale
form. The paths of the other peaks which are attached to such
landmarks provide further description of the form, as well as
continuity with structure at other resolutions. Further infor-
mation is encoded by detecting and linking two-dimensional
ridge points in each bandpass image and three-dimensional
ridge points within the DOLP three-space. The ridges in each
bandpass image link the peaks in that image which are part of
the same form. The three-dimensional ridges link the largest
peaks that are part of the same form and provide a description
of elongated forms.

C. Correspondence Matching

The easiest method for determining the correspondence of
points in a pair of images is to detect landmarks in the two
images and determine the correspondence of these landmarks.
The peaks and ridges in a DOLP transform make excellent
landmarks for such correspondence matching for several rea-
sons. These peaks and ridges provide a compact set of symbols
which denote the presence and describe the shape of forms in
an image. Correspondence of symbols of similar shapes and
resolutions can be found, even as forms change shape due to
motion of an object or the camera. Such peaks and ridges
can also be matched when the image has been corrupted by
blur or high frequency noise. Matching can also be performed
for a shape whose surface is composed of a random texture.

When the DOLP transform is computed with a scale factor
of /2, there is a continuily between peaks at different levels
which provides a description which varies gradually from a
few symbols which describe low resolution information to
the much larger number of symbols that describe high resolu-
tion details. Finding the correspondence between any pair of
peaks constrains the possible correspondences of peaks under
them at higher resolutions.

Segmentation techniques can be used to produce symbols
which represent groupings of pixels and which canact as tokens
for later processing. However, the gray-scale forms that occur
in an image do not, necessarily, correspond to individual ob-
jects, pieces of objects, or surfacesina 3-Dscene. Furthermore,
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forms which are best described as a single entity at one resolu-
tion may be best described as several entities at a higher resolu-
tion. The peaks and ridges in a DOLP transform provide tokens
for matching without the need for assertions about whether
adjacent similar regions be grouped together.

Three-dimensional correspondence matching presents special
problems, because the gray-scale appearence of objects can
change due to photometric effects. Such correspondence
matching is most reliable when the tokens to be matched rep-
resent points which may be detected invariant to photometric
effects. The presence of such invariant points of three-dimen-
sional shapes must themselves be detected in the gray-scale
patterns of the image. These invariant points may be efficiently
detected using the representation described below.

The bandpass images in a DOLP transform provide a multi-
resolution set of symbols for representing the image gray-scale
data. These symbols may be detected in each bandpass image
as either the closed zero-crossing contours or the peaks and
ridges within each contour. In either case, symbols result from
regions where the intensity is either darker or lighter than in
surrounding regions. Each “region” will have one or more
samples which are local “largest peaks” whose position in the
DOLP space provides an estimate of the position and size of
the region. It it not necessary for a region to be uniform to
yield such peaks. Furthurmore, regions which produce a single
peak at one resolution can produce more than one peak at
another resolution. Finally, there is no guarantee that each
peak corresponds to only one physical object, or that a partic-
ular physical object will result in a single peak.

We have observed that this representation is useful for cor-
respondence matching to obtain three-dimensional surface in-
formation from generalized stereo, motion, or shape from
occluding contours. Stereo interpretation assumes that the
gray-level patterns whose shapes are compared result from the
same physical three-dimensional location. This is not strictly
true. Highlights on a shiny surface can move as the position
of the light source or viewing angle changes. The position of
shadows will change as light sources move. Nevertheless, cor-
respondence matching of gray-level patterns can be a useful
source of information about the shape of three-dimensional
surfaces. The representation described above can simplify such
correspondence matching.

D. Contents of this Paper

The following section describes the DOLP transform. The
definition of the DOLP transform is presented, followed by a
description of a fast algorithm for computing the DOLP trans-
form. This fast algorithm is based on two independent tech-
niques which are briefly described. An example of a DOLP
transform of an image which contains a teapot is also provided
in this section. This image will provide the data for examples
in later sections.

Section III describes techniques for converting the signals
from a DOLP transform into a network of symbols. Processes
are described for detecting points in each bandpass image which
are on a ridge, or are a local peak. Techniques forlinking peaks
at adjacent locations in adjacent images are then described,
along with a technique for detecting peaks which are local
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positive maxima and negative minima in the three-dimensional
DOLP space. A process is then described for detecting the
three-dimensional ridge paths in the DOLP space.

Section IV describes the basic principles of matching descrip-
tions of shape by presenting a simple example in which the
lower resolution levels of the descriptions of two teapot im-
ages are matched. The teapots in these two images differ in
size by approximately 1.36. This section illustrates the use of
correspondence between the lowest resolution largest peak to
determine an estimate of the relative sizes and positions of the
two objects. The constraints in correspondence imposed by
lower resolution peaks on higher resolution peaks is then
illustrated. An example of the use of the direction and length
of the ridge lengths between peaks to determine correspon-
dence is also presented.

II. THE DIFFERENCE OF Low-PAss TRANSFORM

This section defines the difference of low-pass (DOLP) trans-
form and demonstrates its reversibility. A fast algorithm is
then described for computing the DOLP transform. This fast
algorithm is described in greater detail in a companion paper
[14].

A. The Purpose of the DOLP Transform

The DOLP transform expresses the image information at a
discrete set of resolutions in 2 manner which preserves all of
the image information. This transform separates local forms
from more global forms in a manner that makes no assump-
tions about the scales at which significant information occurs.
The DOLP filters overlap in the frequency domain; thus there
is a smooth variation from each bandpass level to the next.
This “smoothness™ makes size-independent matching of forms
possible and makes it possible to use the correspondence of
symbols from one bandpass level to constrain the correspon-
dence of symbols at the next (higher resolution) level.

The difference of two low-pass filters is a bandpass filter pro-
vided that:

1) the two filters are not identical;

2) the two filters have both been normalized so that their
coefficients sum to 1.0.

A filter which has a circularly symmetric passband that rises
and then falls monotonically will be sensitive to image infor-
mation at a particular size scale. The DOLP transform em-
ploys a set of such filters which are exponentially scaled in size
and cover the entire two-dimensional frequency spectrum.

B. Definition of the DOLP Transform

The DOLP transform expands an image signal p(x, y) com-
posed of N=M X M samples into logg (V) bandpass images?
B+ (x, ¥). Each bandpass image is equivalent to a convolution
of the image p(x, y) with a bandpass impulse response by (x, y):

$k(xay)=p(x’y)*bk(x’y)' (1)

For k=0, the bandpass filter is formed by subtracting a
circularly symmetric low-pass filter g, (x, ¥) from a unit sam-

28 is the square of the scale factor.
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ple positioned over the center coefficient at the point (0,0).

bo(x,¥)=8(x,») - go(x,»). ¥))

The filter bo (x, y) gives a high-pass image, B¢ (x, y). Thisimage
is equivalent to the result produced by the edge detection
technique known as “unsharp masking” [26]:

Bo(x,»)=p(x,») « 6(x,»)~ go(x, )

=p(x,»)- (p(x,¥) » o (x,»)).

For bandpass levels 1 < k <K the bandpass filter is formed
as a difference of two size-scaled copies of the low-pass filter:

b (x, ) = ge-1(x, ) - 8 (x, ). 4)

In order for the configuration of peaks in a DOLP transform
of a form to be invariant to the size of the form, it is necessary
that each low-pass filter g (x, ¥) be a copy of the circularly
symmetric low-pass filter go(x, y) scaled larger in size by a
scale factor raised to the kth power [13]. Thus for each k%,
the bandpass impulse response by (x, y) is a size-scaled copy
of the bandpass impulse response by, (x, ). For two-dimen-
sional circularly symmetric filters which are defined by sam-
pling a continuous function, size scaling increases the density
of sample points over a fixed domain of the function. In the
Gaussian filter, this increases the standard deviation o, relative
to the image sample rate by a factor of S¥.

The scale factor is an important parameter. For a two-
dimensional DOLP transform, this scale factor, denoted S,,
has a typical value of /2. It is possible to define a DOLP
transform with any scale factor S, for which the difference of
low-pass filter provides a useful passband. Marr, for example,
argues that a scale factor of §; = 1.6 is optimum for a dif-
ference of Gaussian filters [19]. We have found that a scale
factor S, =+/2 yields effectively the same bandpass filter and
provides two other interesting properties [13].

First, resampling each bandpass image at a sample distance
which is a fixed fraction of the filter’s size provides a configu-
ration of peaks and ridges in each bandpass image which is
invariant to the size of the object, except for the effects of
quantization. Thus the resample distance and the scale factor
should be the same value. The smallest distance at which a
two-dimensional signal can be resampled is /2. Second, a
DOLP transform can be computed using Gaussian low-pass fil-
ters. The convolution of a Gaussian filter with itself produces
a new Gaussian filter which is scaled larger in size by a factor
of v/2. These two properties make \/2 a convenient value for
both the scale factor and the resample distance.

In principle the DOLP transform can be defined for any
number of bandpass levels K. A convenient value of K is

3

K =logg (V) 5)
where the value S is the square of the sample distance S, :
S§=53. (6)

This value of K is the number of bandpass images that result
if each bandpass image B, is resampled at a sampling distance
of S%. With this resampling, the Kth image contains only one
sample.
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Fig. 2. The resampled DOLP transform of a teapot image.

The DOLP transform is reversible which proves that no in-
formation is lost. The original image may be recovered by
adding all of the bandpass images, plus a low-pass residue. This
low-pass residue, which has not been found to be useful for
describing the image, is the convolution of the lowest fre-
quency (largest) low-pass filter g (x, y) with the image

s
P, 2) = (00, 2) » gD+ S Bel,y). 7

k=0

C. Fast Computation Techniques: Resampling and
Cascade Convolution

A full DOLP transform of an image composed of NV samples,
produces K = logg (V) bandpass images of NV samples each, and
requires O(N?) multiplies and additions. Two techniques can
be used to reduce the computational complexity of the DOLP
transform: ‘‘resampling” and “cascaded convolution with
expansion.”

Resampling is based on the fact that the filters used in a
DOLP transform are scaled copies of a band-limited filter. As
the filter’s impulse response becomes larger, its upper cutoff
frequency decreases, and thus its output can be resampled with
coarser spacing without loss of information. The exponential
growth in the number of filter coefficients which results from
the exponential scaling of size is offset by an exponential
growth in distance between points at which the convolution is
computed. The result is that each bandpass image may be
computed with the same number of multiplications and addi-
tions. Resampling each bandpass image at a distance of V2
reduces the total number of points in the DOLP space from N
logg (V) samples to 3N samples.

Cascaded convolution exploits the fact that the convolution
of a Gaussian function with itself produces a Gaussian scaled
larger by +/2 . This method also employs “expansion,” in which

the coefficients of a filter are mapped into a larger sample grid,
thereby expanding the size of the filter, at the cost of intro-
ducing reflections of the pass region about a new Nyquist
boundary in the transfer function of the filter. This operation
does not introduce distortion, provided the filter is designed so
that the reflections of the pass region fall on the stop region of
the composite filter and are sufficiently attenuated so as to
have a negligible effect on the composite filter. Thus a se-
quence of low-pass images are formed by repeatedly convolving
the image with each expanded version of the low-pass filter go.
Each expansion of the low-pass filter maps its coefficients onto
a sample grid with a spacing between samples increased V2.
Thus each low-pass image has an impulse response which is
\/2 larger than that of the previous image in the sequence.
Each low-pass image is then subtracted from the previous low-
pass image to form the bandpass images.

Combining these two techniques gives an algorithm which
will compute a DOLP transform of an NV sample signal in O(V)
multiplies, producing 3N sample points. This algorithm is de-
scribed in [14]. In this algorithm, each low-pass image is re-
sampled at /2 and then convolved with the low-pass filter go
to form the next low-pass image. Since each low-pass image
has half the number of samples as the previous low-pass image,
and the number of filter coefficients is constant, each low-pass
image is computed from the previous low-pass image using half
the number of mulitplies and additions. Thus, if Cy is the
number of multiplies required to compute low-pass image 0,
the total number of multiplies needed to compute K bandpass
levels is given by

Ciot=Co(1+1+1/2+1/4+1/8+1/16+---+1/K) (8)
~3 Co.

Each low-pass image is then subtracted from the resampled
version of the previous low-pass image to form the bandpass
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Fig. 3. Levels 5 through 13 of the resampled DOLP transform of a teapot image.

image. Thus each bandpass image has a sample density which
is proportional to the size of its impulse response.

D. An Example: The DOLP Transform of a Teapot Image

Fig. 2 shows a DOLP transform of an image of a teapot that
was produced using the fast computation techniques described
above. In this figure the image at the lower right is the high
frequency image B, (x, y). The upper left corner shows the
level 1 bandpass image, B, (x, ), while the upper right hand
corner contains the level 2 bandpass image 8, (x, ). Under-
neath the level 1 bandpass image are levels 3 and 4, then 5 and
6, etc. Fig. 3 shows an enlarged view of bandpass levels 5
through 13. This enlargement illustrates the unique peaks in
the low frequency images that occur for each gray-scale form.

The use of v/2 resampling is apparent from the reduction in
size for each image from level 3 to 13. Each even numbered
image is actually on a +/2 sample grid. To display these /2
images, each pixel is printed twice, creating the interlocking
brick texture evident in Fig. 3.

III. CONSTRUCTION OF THE REPRESENTATION FROM A
DOLP TRANSFORM

In this section we describe techniques for constructing the
representation for gray-scale forms. This construction process
is described as a sequence of steps in which peaks and ridges
are first detected and linked in each bandpass image, and the
resulting symbols are then linked among the bandpass levels.

A. The Approach

Peaks and ridges mark locations where the DOLP impulse re-
sponses are a “best fit” to the image data. This “best-fit”
paradigm is based on the observation that, for a circularly
symmetric filter, correlation, and convolution are equivalent
operations. Furthermore, a correlation is composed of a se-

quence of inner products between the filter coefficients and
neighborhoods (of the same size as the filter support) in the
image. Thus peaks in the convolution are locations where the
impulse response correlates (is a local best fit) to the image.
Ridges are a sequence of locations where the filters are a “good
fit” to the image data. We may think of the DOLP bandpass
impulse responses as a set of “primitive” functions for repre-
senting forms in an image.

The “local neighborhood” of a DOLP sample is the nearest
eight neighbors on the sample grid at its bandpass level. A
“peak” (or P-node) is a local positive maxima or negative minima
within a two-dimensional bandpass image. A “ridge-node” (or
R-node) is a local one-dimensional positive maximum or nega-
tive minimum within a two-dimensional bandpass image. Peaks
within a form are linked by paths of largest ridge-nodes
(R-paths).

In order for a DOLP sample to be a local positive maximum
or negative minimum in the DOLP three-space, it must also be
a local peak within its bandpass level. Furthermore, for a sam-
ple to be a peak in its bandpass level, it must be a ridge-node in
the four directions given by opposite pairs of its eight neigh-
bors. Peaks and ridge-nodes are first detected within each
bandpass image. Peaks are then linked to peaks at adjacent
levels to form a tree of symbols (composed of a paths of peaks,
or P-paths). During this linking it is possible to detect the
peaks which are local positive maxima and negative minima in
the DOLP three-space. The three-space peaks are referred to
as M-nodes.

The ridge-nodes are also linked to form ridge-paths in each
bandpass image (called R-paths) and in the DOLP three-space
(called L-paths). The ridges in the DOLP three-space (L-paths)
describe elongated forms and connect the largest peaks (M-
nodes) which are part of the same form.

The process for constructing a description is composed of
the following stages.
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Fig. 4. The four direction tests for ridge-nodes. The four pairs of
neighbors for a node in a Cartesian grid (left) and a node in a /2 grid
(right) are show here. Pairs of neighbors, on opposite sides of a DOLP
sample, are numbered O through 3, as illustrated by the arrows. The
magnitude and sign of a DOLP sample is compared to each pair of
neighbors. For each direction, if neither neighbor has a DOLP value
with a larger magnitude and the same sign, then the direction flag for
that direction is set, marking the sample as a ridge-node. '

1) Detect ridge-nodes (R-nodes) and peaks (P-nodes) at each
bandpass level. »

2) Link the largest adjacent ridge-nodes with the same direc-
tion flags in a bandpass level to form ridges (R-paths) which
connect the P-nodes in that level.

3) Link two-dimensional peaks (P-nodes) at adjacent posi-
tions in adjacent levels to form P-paths.

4) Detect local maxima along each P-path (M-nodes).

5) Detect the ridge nodes (R-nodes) which have larger DOLP
values than those at neighboring locations in adjacent images
to detect L-nodes.

6) Link the largest adjacent ridge points with the same direc-
tion among the bandpass levels to form three-dimensional ridge
paths (L-paths).

The result of this process is a tree-like graph which contains
four classes of symbols.

¢ R-nodes: DOLP samples which are on a ridge at a level.

o P-nodes: DOLP samples which are local two-dimensional
maxima at a level.

o L-nodes: DOLP samples which are on a ridge across levels
[i.e., in the three-space (x,y, k)] .

¢ M-nodes: Points which are local maxima in the three-space.

Every uniform (or approximatefy uniform) region will have
one or more M-nodes as a root in its description. These are
connected to paths of L’s (L-paths) which describe the general
form of the region, and paths of P-nodes (P-paths) which branch
into the concavities and convexities. L-paths terminate at
other M-nodes which describe significant features at higher res-
olutions. The shape of the boundaries are described in multi-
ple resolutions by the ridges at each bandpass level (R-paths).
If a boundary is blurry, then the highest resolution (lowest
level) R-paths are lost, but the boundary is still described by
the lower resolution R-paths.

B. Detection of Peak-Nodes and Ridge-Nodes within Each
Bandpass Image

Peak-nodes and ridge-nodes in each bandpass level are de-
tected by comparing the magnitude and sign of each sample
with the magnitude and sign of opposite pairs of its eight nearest
neighbors. This comparison is made in four directions, as indi-
cated by Fig. 4, and can result in one of four “direction flags”
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being set. A direction flag is set when neijther neighbor sample
in a direction has a DOLP value of the same sign and a larger
magnitude.

If any of the four direction flags are set, then the sample is
encoded as a R-node. If all four direction flags have been set
then the sample is encoded as an P-node. The direction flags
are saved to be used to guide the processes for detecting two-
dimensional ridges (R-paths) and three-dimensional ridges
(L-paths).

Two possibilities complicate this rather simple process. When
the amplitude of the signal is very small, it is possible to have a
small region of adjacent samples with the same DOLP sample
value. Such a plateau region may be avoided by not setting
direction flags for samples with a magnitude less then a small
threshold. A value 5 has been found to work well for 8-bit
DOLP samples. Also, it is possible to have two adjacent sam-
ples with equal DOLP values, while only one has a neighbor
with a larger magnitude. Such cases may be easily detected
and corrected by a local two-stage process. The correction in-
volves turning off the direction flag for the neighbor without
a larger neighbor.

Fig. 5 shows the direction flags. detected in a region from
bandpass level 7 of the teapot image. Each direction flag which
is set is represented as a pair of short line segments on both
sides of a sample. These line segments point in the direction
in which the sample is a one-dimensional maxima. Samples
which are two-dimensional peaks (P-nodes) are marked with
a circle. It is possible to implement this detection in parallel
or with a fast serial procedure.

C. Linking of Ridge-Paths at a Bandpass Level

There are two purposes for which ridge paths in a two-
dimensional bandpass level are detected:

1) to provide a link between P-nodes at a level which are part
of the same form, and,

2) to construct a description of the boundary of a form.

Linking P-nodes of the same sign and bandpass level with
ridges provides information about the connectivity of a form
and provides attributes of distance and relative orientation
which can be used in determining correspondences of P-nodes
across levels.

In general, when a boundary is not a straight line, the con-
vexities and concavities are described by a P-path. However,
when the curvature is very gradual P-nodes may not occur for
the concavities and convexities. In either case, a precise de-
scription of the location of the boundary is provided at multi-
ple resolutions by the path of the ridge in a bandpass level.

A ridge is the path of largest R-nodes between P-nodes. This
path can be formed by a local linking process which is exe-
cuted independently at each R-node. The ridge path can be
detected by having each R-node make a pointer to neighboring
R-nodes which meet two conditions:

1) the neighbor R-node has the same sign and direction
flags; and

2) the magnitude of the DOLP sample at the neighboring R-
node is a local maximum in a linear list of DOLP values of
neighbors.

An earlier, more complex algorithm for the same purpose
was described in [13]. The result of this process when applied
to the level 7 bandpass image is shown in Fig. 6.
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Fig. 5. The direction flags in a bandpass level 7 of the teapot image. This figure shows the direction flags detected in a
region of bandpass level 7 of the teapot image. Each direction flag is represented by a pair of bars pointing toward the

smaller valued neighbors.

Ridges tend to run perpendicular to the direction flags. Peaks (P-nodes) are marked with

circles. Note that both the positive and negative peaks and ridges are shown. Note also that direction flags are not de-
tected for nodes where the magnitude of the DOLP response is less than 5.

D. Linking Peaks Between Levels and Detecting the
Largest Peak

The bandpass filters which compose a DOLP transform are
densely packed in the frequency domain. Each filter has a
significant overlap in the passband of its transfer function with
the bandpass filters from neighboring levels. As a result, when
a form results in a two-dimensional peak (or P-node) at one
bandpass level the filters at adjacent levels will tend to cause
a peak of the same sign to occur at the same or adjacent posi-
tions. Connecting P-nodes of the same sign which are at adja-
cent locations in adjacent bandpass images yields a sequence
of P-nodes refered to as a P-path. P-paths tend to converge at
lower resolutions, which gives the description the form of a
tree. The branches at higher resolution of this tree describe
the form of “roundish™ blobs, bar-ends, corners, and pointed
protrusions, and the patterns of concavities and convexities
along a boundary. Descending the tree of P-paths in a de-
scription gives an increasingly more complex and higher resolu-
tion description of the form.

The magnitude of the DOLP filter response of P-nodes along
a P-path tend to rise monotonically to a largest magnitude, and
then drop off monotonically. This largest value is encoded as
an M-node. Such nodes serve as landmarks for matching de-
scriptions. An M-node gives an estimate of the size and position
of a form or a significant component of a form. Determining
the correspondence of parts of forms in two descriptions is
primarily a problem of finding the correspondence between
M-nodes and the L-paths which connect them.

A simple technique may be used to simultaneously link P-
nodes into a P-path and detect the M-node (largest P-node)
along each P-path. This technique is applied iteratively for
each level, starting at the next to the lowest resolution level
of the DOLP transform (level K-2). The technique can be im-
plemented in parallel within each level. This technique works
as follows. Starting at each P-node at level k, the nearest upper
neighbors at level k + 1 are examined to see if they are also P-
nodes of the same sign. If so, a two-way pointer is made be-
tween these two P-nodes.

It is possible for P-nodes that describe the same form at two
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Fig. 6. The ridge paths connecting peaks (P-nodes) in bandpass level 7 in the teapot image. This figure shows the pointers
connecting adjacent DOLP samples along positive and negative ridges in the crop from bandpass level 7 of the teapot
image. Each pointer is represented by an arrow pointing to a neighbor node. A pointer is made from a R-node to a
neighboring R-node if it has a common direction flag and is a local maxima among the nearest eight neighbors. A ridge

may be traced between peaks by following the pointers.

adjacent levels to be separated by as much as two samples.
Thus, if no P-nodes are found in the nearest 4 or 8 neighbors®
at level k + 1 for a P-node at level k, then the nodes in the lar-
ger neighborhood given by the neighbors of the neighbors is
examined. A two-way pointer is made for any P-nodes found
in this larger neighborhood.

During this linking process it is also possible to detect the
largest P-nodes on a P-path by a process referred to as “flag-
stealing.”” This technique requires that P-node linking occur
serially by level. In the flag stealing process, a P-node with
no upper neighbor or with a magnitude greater or equal to all
of its upper neighbors sets a flag which indicates that it is an
M-node. Peaks which are adjacent to it at lower levels can
“steal” this flag if they have an equal or larger magnitude.
When the flag is stolen, the lower node sets its own flag as

3The two possible upper neighborhoods in the DOLP space with
V2 sampling.

well as setting a second flag in the upper P-node which is then
used to cancel the flag. This two stage process permits the M-
flag to propagate down multiple branches if the P-path splits.
Fig. 7 shows the P-paths and the M-node that occur at level
6 through 1 for a uniform intensity square of 11 X 11 pixels,
and gray level 96 on a background of 32. The reader can simu-
late the P-node linking and flag stealing process with this figure.
The process starts at level 6, where the P-node has a value of 19.

E. Detecting the Largest Three-Dimensional Ridge Path

Three-dimensional ridges are essential for describing forms
which are elongated. An elongated form almost always has
an M-node at each end, and a ridge of large DOLP values con-
necting the two M-nodes. The DOLP values along this ridge
tend to be larger than those along the ridges in the bandpass
levels above and below, because the positive center coefficients
of the bandpass for that level “fit” the width of the elongated
form. Where the form grows wider, the largest ridge will move
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Fig. 7. Positive P-paths for square of size 11 X 11 pixels.

to a higher (coarser) bandpass level. Where the form grows
thinner, the largest ridge will move to a lower (smaller resolu-
tion) bandpass level. This ridge of largest DOLP samples is
called an L-path and the nodes along it are called L-nodes.
L-nodes are R-nodes that are larger than their neighbors at
adjacent bandpass levels.

L-nodes may be detected by a process similar to the flag-
stealing process used to detect the largest peak, or M-node
along a P-path. That is, starting at the bandpass level below
the lowest resolution, each R-node examines a neighborhood
in the level above it. An R-node is determined to be an L-
node if is has a larger value than the R-nodes in approximately
the same place in the ridges above and below it.

Thus each R-node scans an area of the bandpass level above
it. This area is above and to the sides of its ridge. The magni-
tudes of DOLP samples of the same sign found in the neigh-
borhood in the upper ridge are compared to that of the R-
node, and a flag is set in the lower R-node and cleared in the
upper R-node if the lower R-node is smaller. In this way, the
L-flags propagate down to the level with the largest DOLP
samples along the ridge. L-nodes are linked to form L-paths,
by having each L-node scan its three-dimensional neighborhood
and link to L-nodes which have the same sign and are local
maxima in the three-dimensional DOLP space neighborhood.

IV. A SiMPLE EXAMPLE OF MATCHING

There are many applications for shape matching, and each
application demands matching algorithms with certain proper-
ties. This section does not provide a matching algorithm. In-
stead, it describes some principles about matching forms that
have been encoded in the representation described above.
Primarily, these principles involve techniques for discovering
the correspondence between “landmark” symbols in the two
descriptions. A fundamental principle is that the correspon-
dence of P-nodes and M-nodes in two descriptions is con-
strained by the correspondence of P-nodes and M-nodes at
coarser resolutions in the same P-path.

As an example of correspondence matching using this repre-
sentation, this section shows the process of discovering the
correspondence between the coarsest resolution P-nodes in
two images of a teapot taken with a change in distance between
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the teapot and the camera by a factor of 1.36. In this example
matching is shown for the P-nodes from the most global level
(level 12) to the second highest level with more than one
P-node.

The first image is referred to as teapot image 1. This is the
image whose sampled DOLP transform is shown in the exam-
ples in Figs. 2 and 3. The P-nodes for levels 12 through 6 of
teapot image 1 were hand matched to those of the second tea-
pot image, referred to below as teapot 2. Other examples of
M-node matching for the teapot images are given in [13].

A. Abstracting the Graph of Connected Peaks at a Level

The algorithms described above are all presented from the
point of view of having data which are “embedded” in the
DOLP space. To obtain a description of gray-scale shape which
is general purpose, it is desirable to construct a graph which
not embedded in the DOLP space. Such a description may be
stored with much less memory.

The primary skeleton of such a description is the tree of P-
paths and the interconnecting L-paths. The P-nodes at each
bandpass level are linked to other P-nodes of the same sign and
level which are part of the same form. This linking is provided
by tracing the R-paths that connect P-nodes at a level. Each
link is encoded as a two-way pointer between P-nodes.

Each P-node and M-node has attributes of its DOLP sample
value and its position (x, y, k) in the DOLP space. Connected
P-nodes are “linked” by two way pointers. Each half of a
pointer may also be assigned the attributes of distance (D)
and orientation (8), which are defined as follows.

Distance: The distance between two P-nodes is the cartesian
distance measured in terms of the number of samples at that
level. In levels with a /2 sample grid, the distance along the
x and y axes are in units of /2 .

Orientation: The orientation between two P-nodes is the
angle between the line that connects them and the x axis in
the positive direction.

The attributes of distance orientation are useful for deter-
mining the correspondence between small groups of P-nodes
from two DOLP transforms.

Example of Abstracted P-Nodes and R-Paths: The P-nodes
and R-nodes from level 7 of the teapot image are shown above
in Fig. 6. Level 7 is the highest level with more than one P-
node describing the teapot. The three positive peaks from
level 7 of the teapot image are shown abstracted from the
bandpass data in Fig. 8. The R-path links between these P-
nodes are illustrated with arrows and labeled with circled num-
bers, called “link numbers.” Links 1 and 2 are examples of
“directly” connected P-nodes. A pair of P-nodes are directly
connected when they are connected by an R-path with no in-
tervening P-nodes between them. The R-path link between the
rightmost and leftmost P-nodes is shown as a dotted arrow
labeled as link 3. Link 3 shows an example of a pair of “in-
directly” connected P-nodes. Including indirect R-path links
in matching P-nodes prevents the matching algorithm from
errors caused by missing or extraneous P-nodes.

In this early matching experiment, special status was given to
the P-nodes along the “principal P-path.” This is the P-path
which includes the highest M-node. Thus arrows and indirect
links are shown emanating from the P-node from this P-path.
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Fig. 8. Positive P-nodes and R-paths for level 7 of the teapot image.
TABLE 1
R-PATH LINKS FOR LEVELS 7 AND 6 OF THE FIRST TEAPOT
R-Path Level dx dy D 0
1 7 -6 -2 6.32 161.5°
2 7 -5 3 5.83 210.92
3 (1&2) 7 -11 1 11.04 185.2°
4 6 -4.02  -2.042 632 153.4°
5 6 -3.25{2 152 5.06 2058
6 6 -3.04Z_ 00 4.24  180°
7 6 0.252 3252 46 265.6°
8 (4&5) 6 -7.252 -0.5v2_ 10.2 176.1°
9 (4&5&6&7) 6 -10/2 2752 146 1953
52P Level 12
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Fig. 9. P-nodes and P-paths for levels 12 to 6 of the smaller teapot image

(teapot 1).

In our more recent experiments, all links are two-way, and in-
direct links are made for all P-nodes which are not at the top
of a P-path.

The link numbers are also used as an index into a table of
attributes. The attributes for these particular links are given
in Table I in the next section. This same set of links is included
in Fig. 9. These numbers are also used to show the correspon-
dence which was assigned by hand matching between these
links and the same links in the larger teapot image.

These attribute tables give the values for dx, dy, D, and 8
for each R-path link. The positive directions for dx and dy
are the same as used in the image: +x points right, +y points
down. Note that 8 increases in the counterclockwise direction.
In these tables, in the levels which are at a /2 sample grid,
the distances dx and dy are recorded in units of /2. In cases
where a P-node spans two adjacent samples, the P-nodes posi-
tion is assigned at the midpoint between them. This results in
values of dx or dy that have fractional parts of 0.5 in the
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TABLE 11
R-PATH LINKS FOR LEVELS 8 AND 7 OF THE SECOND TEAPOT
(SCALED LARGER IN S1ZE BY 1.36)

R-Path Level dx dy D 0

3 8 -715/2  1.5V2 1081 1913°
4 7 -3.5 -6.0 6.94 - 149.7°
5 7 -4.0 1.0 412 194.0°
6 7 -4.5 1.0 461 192.0°
7 7 -0.5 5.0 502  264.3°
8 (4&5) 7 -10.0 -1.5 10.11  171.5°
9(4&5&6&7) 7 -15 35 15.4 193.1°

Cartesian-sampled (odd) levels, and 0.25, 0.5, or 0.75 in the
v/2 -sampled (even) levels.

In Tables I and I, orientation (8) is measured in degrees.
On a Cartesian grid, at distances that are typically 5 to 10
pixels, angular resolution is typically 5 to 10 degrees. Of
course, the longer the distance, the more accurate the estimate
of orientation.

The P-nodes for levels 12 through 6 of the teapot image are
shown in Fig. 9. In levels 12 through 9 of Fig. 9 only a single
P-node occurs in the teapot. These P-nodes all occur within
a distance of two samples of the P-node above them, and
are thus linked into a single P-path.* This P-path is referred
to as the principal P-path. The P-node at level 8 has the larg-
est value along this P-path and is thus marked as an M-node.
This P-node corresponds to a filter with a positive center lobe
of radius R, =~ 18 pixels or a diameter of 37 pixels. This
corresponds to the form in the image that results from the
overlap of the shadow on the right side of the teapot and the
darkly glazed upper half of the teapot.’ At level 7, additional
detail begins to emerge. P-nodes occur over the upper right
corner of the teapot and over the handle region. These P-nodes
are joined to the P-node on the principal P-path by an R-path.

Five P-nodes occur in level 6. Three of these P-nodes occur
underneath (within 2 samples of) P-nodes from level 7. These
three P-nodes are thus part of three P-paths. The remaining
two P-nodes are in fact the highest levels of two more P-paths.
The P-path that begins at level 12 is referred to as the principal
P-path. Only the indirect links between the principal P-path
and a subset of the other P-nodes are shown in this figure and
used in the matching example.

Note that an M-node occurs at level 6. This M-node cor-
responds to the upper left corner of the teapot and marks the
left end of the dark region of glaze on the upper half of the
teapot. The width of the positive center lobe of the filter
which corresponds to this M-node gives an approximation of
the width of the darkly glazed region.

B. Initial Alignment to Obtain Size and Position

In matching two forms it is convenient to designate one
form as a “reference form™ and the other as a “data form.”
One then speaks of rotating, translating, and scaling the ref-
erence form so that its elements are brought into correspon-

4 The P-path links appear as vertical dark lines in Fig. 9 although in
fact there can be a lateral shift of up to two samples between their
positions.

5 The teapot images were digitized from ncgatives. Thus dark forms
appear light in Figs. 2 and 3.
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Fig. 10. P-nodcs and P-paths for levels 12 to 7 of second (scaled larger
in size by 1.36).

dence with the data form. In the examples presented below,
teapot 1 is considered as the reference form which is trans-
formed to match the teapot 2 (the data form}),

Initial estimates of the alignment and relative sizes of two
gray scale forms may be constructed by making a cormespon-
dence between their highest level P-nodes. This is illustrated
hy comparing the P-nodes and links in Fig. 9 to those in Fig.
10 shown below. Fig. 10 shows the P-nodes and P-path links
for a teapot from a second image. This size scaling was ac-
complished by moving the teapot closer to the camera, and
was thus accompanied by some changes in lighting. This
second teapot is scaled larger in size by a factor of 1.36, which
is just less than 4/2. The distance and orientation for each P-
path link in this second teapot levels 12 through 7 is shown in
Table IL.

The highest level M-node in this second teapot occurs at level
9. The fact that this M-node is one level higher than the highest
level M-node for teapet | confirms that this second teapot is
approximately +/2 larger than the first teapot. '

The correspondence of the highest level M-nodes from these
two teapots gives an estimate of the alignment of the two tea-
pots as well as the scaling, The correspondence tells us the
position at which the first teapot, scaled by /2 in size will
match this second teapot. The tolerance of the initial position
alignment is * the sample rate at the level of the M-node in
the data image. If this second teapot is designated as the data
image, then the sample rate at level 9 determines the tolerance.
The positioning tolerance at level 9 is * 84/2 pixels.

The tolerance of the size scaling is less than 24/2. The cor-
respondence of the highest level M-nodes provides an estimate
of the size scaling factor which is a power of v/2. Such an
estimate is sufficient to constrain the correspondence process.
A more accurate estimate can be obtained from the correspon-
dence of higher resolution P-nodes and M-nodes.

C. Determining Further Correspondence and Orientation

The matching process starts by finding the correspondence
for the highest level M-nodes. This provides the process with
an initial estimates of the size and position of the two forms.
The next step is to find the correspondence of lower level P-
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nodes and M-nodes to refine the estimates of relative size and
position, discover the relative orientations, and discover where
one of the forms has been distorted by parallax or other effects,

Let us continue with our example. A P-node for the upper
left corner of this second teapot does not occur. The change
in scale from the first teapot to this second teapot was not
enough to bring this P-node up to level 8. This may also be
a result of the slight difference in shading that resulted from
moving the teapot with respect to the lights and camera in
order to size scale the object. Such errors are a natural result
of changing the relative position between the camera and ob-
jects. A matching algorithm must tolerate them to be useful.
The fact that the Pnode of value 16 in level 8 of this second
teapot corresponds to the P-node of value 14 inlevel 7 of the
first teapot must be discovered from the position relative to
their principal P-nodes and the distance and orientation from
the P-nede on the principal P-path at the same level.

The values for D and & for the link attributes in levels 7 and
6 of teapot 1 are compared to the attributes in the correspond-
ing links from levels 8 and 7 of teapot 2 in Table III. AH of
these links are constrained to begin and end at samples in their
respective levels. Because we are dealing with distances of be-
tween 4 and 15 samples at arbitrary angles, there is quantiza-
tion noise in these attributes. The differences in orientation
are shown in the column labeled 8, - 8,. Except for link 3,
these values show a consistent small rotation in the counter-
clockwise direction for the links from teapot 2. A careful
measurement of the angle between the line connecting two
landmarks and the raster line in the two images confirms that
the two teapots actually have a relative change in orientation
of approximately 3.3°. The actual values of 8 fluctuate more
than this due to quantization error from sampling and changes
in shading.

The ratio D, /D, shows a factor by which the lengths consis.
tently shift when the teapot is scaled by 1.36. Because the
actual values of D, and D, are restricted te distances between
discrete locations, there is some random error built into this
ratio, Since this shift in scale was enough to drive the corre-
sponding R-paths in this second teapot up to a new level, but
less than the /2 = 1.41 scale change between levels, an average
ratio of D,{D, = 136/1.41 = 0.96 was anticipated. In Table
11T we see that this average ratio worked out to 1.02. Qur con-
clusion is that quantization noise and changes in shading ac-
counted for most of this difference. The actual differences in
length, Dy - D, show that the lengths are always within one
sample: except forlink 5, the percentage differences (D, - Dy )/
Dy are penerally small (< 10 percent). The conclusion from
this experiment is that the correspondence between R-nodes
from similar gray-scale forms of different sizes can be found,
provided that the matching tolerates variations of the lengths
of R-paths of up to 25 percent and variations in the relative
angles of up to 12°.

V. COMMENTS

The representation for gray-scale shape which is formed by
detecting peaks and ridges in a resampled DOLP transform re-
sembles the representation provided by a medial axis transform
(MAT) described by Blum [3]. There are, however, several
important differences. It is worth while to compare these two
representations and examine their similarities and differences.
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TABLE III
COMPARISON OF D AND @ ATTRIBUTES FOR TEAPOTS 1 AND 3
Teapot 1 Teapot 2 Difference
R-Path Dl 61 D2 [:2} 61— 6, D2/D1 Dz - Dl 100 X (D2 - Dl)/D2
3 11.09 185° 108 191° -6: 0974 -0.2 -1.8%
4 63 153° 6.9 148° 5 1.095 0.6 8.7%
5 51 206° 4.1 194° 12° 0.804 1.0 24.4%
6 42 180° 46 192° 12° 1.09 0.4 8.7%
7 46 266° 52 264° 2° 1.13  -06 -11.5%
8 102 176° 101 171° §° 099 -0.1 -1.0%
9 146  195° 154 193° 2° 1.05 08 5.2%
Average Error 457° 1.020 0257 43%

A. Comparison with Blum’s Medial Axis Transform

The MAT (or grass fire transform) is a technique for deriving
a spine for a binary shape. The transform is defined as follows:
every point on the boundary of the binary shape simulta-
neously emits a circular wave. The waves propagate in such a
manner that waves do not flow through each other. When
waves meet head on, they cancel. The point at which they
cancel is marked as a point on the MAT spine of the shape. By
propagating the waves in discrete time units, and keeping track
of the time at which waves cancel, the spine may be encoded
with the distance to the boundary. An axis occurs inside every
concave curve, whether it is inside of a shape or not.

Rosenfeld [27] has shown a fast two-pass operator which
will implement the grass fire transform. This operator is sig-
nificant on its own right because it makes possible the matching
technique of “chamfer matching” [6] .

There are at least two fundamental problems which prevent
the spine from a MAT from being useful for describing gray-
scale shape. The first of these is that the transform only exists
for binary shapes. The second problem, first pointed out by
Agin [2], is that a small narrow concavity in the boundary will
significantly alter the shape of the resulting spine. Similar ef-
fects can occur from many other types of noise patterns. Thus
the transform and the spine are very sensitive to noise. ,

In contrast, the representation given by peaks and ridgesin a
DOLP transform is a representation for gray-scale shape in-
stead of binary shape. The DOLP bandpass filters have a cir-
cular positive center lobe which is a best fit to the gray-scale
pattern when the DOLP value is large. Thus, as with the MAT
spine, the DOLP ridges tend to exist where a circle is a best {fit
to the pattern. However, the DOLP bandpass filters have a
smoothing effect; they are only sensitive to patterns at narrow
range of sizes (spatial frequencies). Thus a narrow concavity is
described in detail by small DOLP filters, the concavity has
almost no effect on the ridge given by large DOLP filters.

The representation given by peaks and ridges in the DOLP
transform has many other properties which a MAT spine does
not have: For example, there is the existence of a largest peak
as a landmark for matching, the fact that the representation
can be used to guide matching from course resolution to high
resolution, and the important property that the configuration
of peaks and ridges can be matched when the pattern occurs at
any size.

VI. SUMMARY AND CONCLUSION

The principal topic of this paper is a representation for gray-
scale shape which is composed of peaks and ridges in the DOLP
transform of an image. Descriptions of the shape of an object
which are encoded in this representation may be matched effi-
ciently despite changes in size, orientation, or position by the
object. Such descriptions can also be matched when the ob-
ject is blurry or noisy.

The definition of the DOLP transform was presented, and
the DOLP transform was shown to be reversible. A fast algo-
rithm for computing the DOLP transform based on the tech-
niques of resampling and cascaded convolution with expansion
was then described. This fast algorithm is described in greater
detail in [14]. This section concluded with an example of the
DOLP transform of an image which contains a teapot.

A representation for gray-scale form based on the peaks and
ridges in a DOLP transform was then described. This represen-
tation is composed of four types of symbols: {M,P,L,R}.
The symbols R and P (ridge and peak) are detected within each
DOLP bandpass image. R-nodes are samples which are local
positive maxima or negative minima among three contiguous
DOLP samples in any of the four possible directions. P-nodes
are samples which are local positive maxima or negative minima
in all four directions. P-nodes within the same form in a band-
pass level are connected by a path of largest R-nodes, called an
R-path (or ridge). An R-path is formed by having each R-node
make a pointer to members of its local neighborhood which
are also R-nodes and local maxima within a linear list of the
neighborhood. P-nodes are connected with nearby P-nodes at
adjacent bandpass levels to form P-paths. The skeleton of the
description of a form is a tree composed to P-paths.

The DOLP values along each P-path rise monotonically to a
maximum in magnitude and then decrease. The maximum
magnitude DOLP sample along a P-path is marked as an M-
node. M-nodes serve as landmarks for matching, and provide
an estimate of the position and orientation of a form in an
image. If the values along an R-path are compared to the values
along the R-paths at nearby locations in adjacent bandpass
images, an R-path of largest DOLP samples can be detected.
These samples are marked as L-nodes, and these nodes form
an L-path. L-paths begin and end at M-nodes and describe
elongated forms. Thus, descriptions in this representation
have the structure of a tree composed of P-paths, with a dis-
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tinguished M-node along each. The P-nodes in each level are
connected by R-paths, and the M-nodes are connected by L-
paths which can travel among as well as within the levels.

The teapot image was used to illustrate the construction of a
description in this representation. In this illustration, the R-
nodes and P-nodes from bandpass level 7 from the DOLP
transform of the teapot and the pointers between these R-
nodes were displayed.

The final section of the paper presented a description and
examples of the problem of determining the correspondence
between the M-nodes and P-nodes in two descriptions of the
same object. A description of a second teapot image, in which
the teapot had been moved so as to be scaled larger by 1.36,
was used to illustrate the principles of matching such descrip-
tions. In both teapot images, the P-paths, R-paths, and M-
nodes from the coarsest resolution bandpass images were pre-
sented. Matching to determine the correspondence of L-paths
was not described in this paper. Such matching is described
in [13].

The teapot matching examples first illustrated the correspon-
dence of the coarsest resolution M-nodes in the two descrip-
tions. This correspondence provides an estimate of the position
and size at which the two teapot description best match. The
principle that P-nodes in two descriptions can only correspond
if the P-nodes above them correspond was also illustrated. An
example was then provided for the use of the lengths and di-
rections of the R-paths that connect P-nodes at each level to
further determine correspondence when new P-paths are intro-
duced and the orientation has not been determined.

This example addresses only a small part of the general prob-
lem of matching descriptions of objects. The problem of
matching two descriptions of an object with large differences
in image plane orientation was not iljustrated. An example of
such matching is provided in [13]. The more difficult prob-
lems of matching in the presence of motion of either the
camera or the object was not discussed. Such matching must
be robust enough to accommodate the changes in two-dimen-
sional shape that occur with a changing three-dimensional
viewing angle. Similarly, the problems of forming and matching
to a prototype for a class of objects was not discussed. We
believe that this representation will provide a powerful struc-
tural pattern recognition technique for recognizing objects in
two-dimensional domain and for dynamically constructing a
three-dimensional model of a three-dimensional scene.
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