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A Stiefel complex for the orthogonal group of a field

K. VocTMANN*

In this paper we show that the poset of orthogonal frames in (F", n(1)) with at
most k elements is (k—1)-spherical if n is sufficiently large. Here n(l) is the
identity form, and F may be any field with finite pythagoras number, e.g., a local
or global field, finite field or real-closed field. We then use this poset to show that
for n large with respect to m, the inclusion O, — O,,, induces an isomorphism
H,.(O,)— H,,(O,.1), where homology is taken with integral coefficients.

§0. Introduction

It is often useful, in studying the homology of a group, to have a “‘combinator-
ial representation” of the group, i.e., a simplicial complex with a natural group
action. If this complex has little or no homology, the spectral sequence arising
from the group action will relate the homology of stabilizers of simplices with the
homology of the group in a relatively uncomplicated way. This fact has been used,
for example, to compute the cohomology of special linear groups [1], [3] and to
prove homology stability theorems for the basic groups in algebraic K-theory [4],
[6], [7].

In this paper we discuss a simplicial complex which can be used to study the
orthogonal group of a quadratic form. This is the “Stiefel complex,” i.e., the
geometric realization of a partially ordered set of orthonormal frames in the
underlying vector space of the form. The first part of the paper proves connected-
ness theorems for the complex associated to the identity form n(1) and some of its
subforms. The proof easily generalizes to general forms over a field of characteris-
tic not equal to two, but for large Witt index the degree of connectivity goes
down. As an application, we then use these complexes to prove a homology
stability theorem for the orthogonal group O,. '
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12 K. VOGTMANN

§1. Stiefel complexes

In this section we construct some simplicial complexes (Stiefel complexes)
associated to a quadratic module over a ring, and discuss their homotopy
properties in special cases. ‘

Let R be a commutative ring with unit, and let V be a quadratic R-module,
i.e., a free R-module equipped with a bilinear symmetric form gq.

DEFINITION. An orthonormal k-frame [v,,...,v.] in V is an (unordered)
set of k elements vy, ..., v of V with q(v, v;) =8y

The set of orthonormal k-frames in V is partially ordered by inclusion:
[01, - v <[ug, .., wlif {vg, ..o, ot < {uy, . o0, wh

DEFINITION. The realization of a partially ordered set X, denoted |X], is the
simplicial complex whose i-simplices are totally ordered chains of i+ 1 elements
of X; the simplices are glued together via the natural identifications.

An exposition of notations, definitions and basic techniques pertaining to
partially ordered sets (posets) and their realizations may be found in [5]. We will
use the notions of link, suspension and join (denoted 1k, susp and * respectively)
from simplicial complexes, as well as the following facts:

LEMMA 1.1. If X and Y are two subposets of a poset Z, and x <y for all
xeX,yeY, then | XUY|=|X|=*|Y|.

LEMMA 1.2. If f: X — X is an inclusion preserving (or inclusion reversing)
map from a poset X to itself, then |X| is homotopy equivalent to |im (f)|.

We can now define and study Stiefel complexes.

DEFINITION. The k-th Stiefel complex of a quadratic R-module V (denoted
X, (V)) is the realization of the poset of orthonormal frames in V with at most k
elements.

We first consider the case where R is the ring of integers in a totally real
number field K, V is a free R-module with basis {e,, . . ., e¢,} and the matrix of the
quadratic form in this basis is the identity matrix I,.

LEMMA 1.3. For R and V as above, the only elements in V of length 1 are
{xe}.



A Stiefel complex for the orthogonal group of a field 13

Proof. Let v=rye;+- - +r,e, be an element of V with v-v=Y",r>=1. The
norm from K to Q is a multiplicative homomorphism taking R —{0} to Z—{0};
thus for each i we have either r, =0 or N(r?) =[], or? =1, where the product runs
over all distinct embeddings of K into R which fix Q. But for each such
embedding o,

so or’=1 for each i. Thus, for each i, either r,=0 or or>=1 for all o, which
implies that r, ==1. Since Y-, 17 =1, we must have v ==+¢; for some j. W

PROPOSITION 1.4. Let R and V = R" be as above. Then the Stiefel complex
X.,.(V) is homotopy equivalent to the (n—1)-sphere S™ .

Proof. The proof proceeds by induction on n. For n =1, Lemma 1.3 says that
the only orthonormal frames are [e;] and [—e,]; thus X;(V) consists of two points,
ie. X, (V)~S°.

If n>1, consider the subposet Y,={orthonormal frames in R"~! (=span of
{e4,...,e,_1D}. Then by induction, |Yo|=S""2.

Let Y; = Y,U{orthonormal frames which strictly contain e, or —e, }. Then the
map Y;— Y, which is the identity on Y, and sends [+e,, v;,..., 0] tO
[V, ..., 0] gives a retraction |Y;|=|Y,| by Lemma 1.2.

By Lemma 1.3 again, the only orthonormal frames in V which are not in Y; are
[e.] and [—e,]. The inclusions 1k [+e,] — Y; induce homotopy equivalences, so
X, (V)=susp |Y,|=S""1 '

len]

}kle,]

Y| } ‘Yol =gn-2

l [—e,] | |

Now let F be a field of characteristic #2.

DEFINITION. The pythagoras number of F is the smallest integer p = p(F)
such that every sum of squares in F can be written as a sum of p squares. If there
is no such number, we say p(F) = .
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EXAMPLES. (See [2]). If F is real-closed or pythagorean, p(F)=1.If Fis a
global field or a local field with finite residue field, p(F) =<4. If F is a function field
of transcendence degree n over a real-closed field, then p(F)=<2". If F=
R(x;, x5, . ..), then p(F)=o. If F is not formally real, then p(F)<co.

NOTATION. We will use {(dq, ..., d,) to denote the diagonal quadratic form
on F" with diagonal entries d;,...,d, If (di,...,d,) and (e,...,e,) are
isometric, we write {d,,...,d, )=(eq,...,e,).

PROPOSITION 1.5. Let F be a field with p(F)=p <. Let V=F" with the
identity form n(1), and W™ = V a codimension | nondegenerate subspace. Then if
n>pl, W contains a unit vector.

Proof. Let (dy, ..., d,_,) be a diagonalization of the restriction of the identity
form to W. Since W is nondegenerate, we can extend this diagonalization to all of

V:n<1>§<d1’---:dn—bx1>-"’xl>' )
Since x; is a sum of at most p squares, we have p{1)=({x; yi1,..., Yip—1) for
some y;. Hence if n>pl,

‘ <x1>"°axl7y11"--’ yt,p—la 1’°--91>
=n(1)

=(Xp, .., X dyy ey ).

By Witt cancellation, this gives
<Y119 LR yl,p——b 1: R ] 1>E<d13 L] dn—-l):

so {d,,...,d,_;) represents 1; i.e., W contains a unit vector. W

COROLLARY 1.6. Let F and V be as above, and let E=[e,...,e,] and
F=[fi,..., ;] be two orthonormal frames with | =<m. Then E* N F* contains a unit
vector if n>2pl+m. If F is formally real, E*NF* contains a unit vector if
n>pl+m.

Proof. If F is formally real, E*NF* is a nondegenerate subspace of E=
(F*™™, (n—m){1)), so the result follows immediately from the proposition.

If F is not formally real, the largest possible dimension of a totally isotropic
subspace of E*NF* is . Therefore, there is a nondegenerate subspace of
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dimension at least n—m—2l in E, and the result follows again from the
proposition. W

D. Shapiro has pointed out to me that a field which has the property stated in
the corollary must have finite pythagoras number:

PROPOSITION (Shapiro). Let F be a field. Suppose there is a number n such
that given any two unit vectors e, f € (F", n(1)), e"Nf* contains a unit vector. Then
p(F)=n-2.

Proof. Let ¢ be a sum of squares in F. We must show it can be written as a
sum of n—2 squares. It suffices to assume c is the sum of n—1 squares.

We can write ¢ =x2>—y?, with x, y € F. Replacing ¢ by c/x?, we may assume
c=1—a? with aeF.

Let W=(F"1, (n—1X1)), and let we W be a vector with w-w=c=1—a?.
Define v=W 1 Fe, with e-e=1. Then V=(F", n(l1)). Set f=ae+w; then f-f=
1.

By hypothesis, e* N w* N f* contains a unit vector v. Now diagonalize the form
on V, using e, v and w as the first three basis vectors; you get n{l)=
1,1,¢,d,,...,d,_3). By Witt cancellation, (n—2)1)=(c,d4,...,d,_3), SO C is
the sum of n—2 squares. W

We will now use Corollary 1.6 to prove connectivity results for certain Stiefel
complexes.

THEOREM 1.7. Let F be a field with pythagoras number p = p(F) <. Let
[es,...,e.] and [f1, ..., f;] be two orthonormal frames in (F", n(1)), with |<m,
and let V=|[e,, ..., e, N0[f1,...,ilcF". Then for n>2p(l+k—1)+(m+k—1)
(or, if F is formally real, for n>p(l+k—1)+(m+k—1)), X, (V) is homotopy
equivalent to a wedge of (k—1)-spheres.

COROLLARY 1.8. Let V=(F", n(l)). Then for n>Q2p+1)(k—1) (or
n>(p+1)(k—1) for F formally real), X, (V)=\ S

Proof of Theorem 1.7. The proof proceeds by induction on k. For k=1,
Corollary 1.6 says that X;(V) is non-empty and hence contains at least two
1-frames; therefore, X;(V)=\/ S°.

Now assume k=2. Choose a unit vector g in V and let H=g'NV=
[fi,....fil*N[eq, ..., em gI'. We check that n>2p(l+k—2)+(m+k—1), so by
induction, X, _,(H)=\ S*2. o
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Let

Yo={[xgltU{lhs, ..., h]e X, (H)}
U{[:tg, hl: R hr]:[hls R h’r]EXk—l(H)}

Then, as in the proof of Proposition 1.4, we have
| Y5l =susp (X, _,(H))=V S*.

Let Yi=YoU{[hy,..., h,xg vy,...,0,]=0<r+1+s=<k and [hy,...,h,+tg]le
Y4

Then the map Yy — Y§ which is the identity on Y} and sends [hy,...,h,
+g vy,...,0,] to [hy,...,h, +£g] induces a homotopy equivalence |Y}|=|Y3|.

Let Yo=Y{U{k-frames [hy,..., ] in H}. If [hq, ..., h]e€ Y,— Y}, we have

Ik[hq, ..., K ]IN|Y=1k[h,,..., h]=|{proper subframes of [hy,..., h ]}|. The
set of proper subsets of a finite set with k elements can be identified with the
barycentric subdivision of the boundary of a (k—1)-simplex; thus
Ik[hy, ..., h]1N|Ys=S*"2, which implies that |Y,| is the wedge product

|Y? \ susp (k[hy, ..., K]

[hy,..., hJeYo—Yyg

.....

= \/ Sk,

For 1=i=<k, define Y;=Y,_,U{[vy,...,0]:0,-2g#0 for some 1=r=i}. Then
given [v4,...,v;]e Y;—Y,_,, we have

Ik [vy,...,5,]10]Y;_4]
= |{subframes of [vy,..., 5, FU{[vg, ..., 05 X1, ..., %]:j=1,
i+j=<k and x, € H for some 1=r=<j}|
=82 {[vy,..., 0 %X,...,%]:j=1,i+j=<k, and x, € H for all r}|
=S« X, _;(HN[V,,...,v]).

We now check our induction hypothesis for X,_;(HN[vq,...,u]):||HN
[v, ..., =[f,....fgl"N[es, ..., €mv1,...,0], and we have n>2p(l+
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1+k—i—=1)+(m+i+k—i—1), so the hypothesis is satisfied. Thus

1k [01, ey 'Ui]n lY;—l‘ zsi"z * \/ Sk-—i——l
o~ Sk—-z, SO lxlz V Sk__l.

Since | Y, |= X, (V), this proves the theorem. W

An inspection of the proof shows that the essential problem is to show the
existence of a unit vector in a given subspace. For many fields this can be done
more efficiently than was done above. Suppose there is a number mg such that
every non-degenerate form d,, ..., d,_ with d; a sum of squares, represents 1.
(This is the case for pythagorean and real-closed fields (mz=1), finite fields
(mg=2), global and local fields (mgz=<4). It is not the case for C(xi, x,,...),
though this field has pythagoras number 2 (see [2])). If we use the number mg to
ensure the existence of unit vectors in the proof of Theorem 1.7, we obtain the
following theorem.

THEOREM 1.9. Let F be a field, mg as above, and V=(F",n{1)). If F is
formally real and n=2k +mg—2, then X, (V)=\/ S*7'. If F is not formally real
and n =3k +mg—3, then X, =\/ Sk

EXAMPLES. Let F=F,, the field with three elements, then X,(F3) is the
disjoint union of three 3-spheres, containing the 1-frames [(1,0,0,0)],
[(1,1,1, 1] and [(-1, 1, 1, 1)] respectively. Thus X,(F3) = X,(F3) is not connected,
so n=3-2+2—3=35 is necessary to get connectivity. However, X;(F3) is simply
connected; also X,(F?%) and X,(F3) are connected, showing that the bound. in the
theorem can often be improved.

Let F=R. Then X,(R?) is the disjoint union of uncountably many circles, so is
not connected. It can be shown, using an argument which essentially suspends this
case; that m,,_,(X,(R")) is uncountable. A more complicated combinatorial argu-
ment shows X5(R*) is not simply connected, supporting the bound n =2k +1-2.

We will now produce a chain complex which gives the homology of X. We filter
X by subcomplexes X, =realization of {j-frames, j<i}. Then ¢ = X, - - X, =
X, and X;=V S'"'. The spectral sequence of this filtration shows that the
complex

‘ '_gfli-—l(}(i’ }(i—l)_a)I—Ii—2(IIi—la IIi—z)’§> e
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gives the homology of X; thus the sequence

0— Hy_(X) = Hy. (X, H_y) = - - - = H; (X, H; ;)
> Hy(X) > Z—0

0-C1—>C—>—>C—-—>C;—>Cy—0

1S exact.

§2. Proof of homology stability for O,

THEOREM. Let O, be the orthogonal group of the standard identity form I,
over R, where R =ring of integers in a totally real number field, or R = field with

finite pythagoras number. Then for n sufficiently large with respect to
ja PIj(On—i-ls On) = 0'

The proof follows what is by now a standard pattern (see, e.g., [7]). We outline
it below. '

Let E4 be a free Z[O,]-resolution of Z, and Cy as in the end of §1, where
V =R" with the standard basis and form. Then the double complex E4®o, Cy
gives a spectral sequence with

E!,=H,(O,;C,)=0.

We have (notation as in §1)

Cp = Hp-—-l(Xp) Xpwl) = Hp—l(Xp/Xp—l) = Hp—l( \/ Sp_l)

p-frames

- ® H_(S"Y= & Z.

p-frames p-frames

LEMMA. O, acts transitively on the set of orthonormal p-frames, for any p.

Proof. If p=1, let v and e be any two vectors of length 1. Then either v—e or
v +e is anisotropic, so reflection in the hyperplane perpendicular to this anisot-
ropic vector is an orthogonal transformation taking v to e. By Witt cancellation,
v* is isometric to e*, and we proceed by induction on n. W

Thus & Z=7Z[0,] D Z where stab [ey, . . ., e,] is the stabilizer in

p-frames Z[stable,,..., e, 1]
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O, of the frame [e, ..., e,]. It is easy to check that

stab[ey,...,e,]= (i" OO ),
n—p

where 3, is the symmetric group on p letters.
Our E;, term may now be written

E,} .= H,(0,;Z[0,] ® Z)
2 oto)
- H((%—%O_—) z)

We have the following picture of the spectral sequence:

d, 1 0
H;(0,) H"(O ' On__1>

3 0
Hj_l( 02 O, _2>

—

3 0
H ( j+1 >
° 0 On.-—]'—l

The inclusion map O, — O,., induces an inclusion of simplicial complexes
X, — X, and thus a natural map of spectral sequences for O, and for O, ;.
The mapping cone spectral sequence has

Hq(on+1’ On.): . p :0 N

Epq= 5, 0 <2p| 0 )
H“<(0 |on_,,+1> 0 Io,,_p)’Z p=l
=> 0.

We prove the stability theorem by induction on j; i.e., we assume that for n
sufficiently large with respect to q <j, H,(O,.4, O,)=0.

PROPOSITION. For q<j, E:,=0.
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Proof. Consider the exact sequences

1-0, ,.1— (2" G )——>2,,—>1
n—p+1
[ T
1-0,_, —9(2" 0 ) -3, —1.
n-—p

The relative Leray-Serre spectral sequence for this diagram has

Ez,t = Hs (Ep: Ht(on—p+1’ On—p))

> (o))

By our induction hypothesis, EZ,=0 for n large and ¢ <j; therefore,

Hq(<2p ton_pﬂ)(Ep}On_p)):O for g=s+t<j. N

This proposition implies that

H(O,.1, 0,) <= H,.<(1 { On>(1 { On_1)>

in onto (since the spectral sequence converges to 0). Then a diagram chase of the
following diagram proves the theorem.

H,-("—H)(nur i 1)-9>Hf-1(n_1 1 1)‘” ()

H(l—};)*f@(%>(l e 1)_8> HH(1 = 1)
Lo

H(n+1)—> Iff(n—'-l)(jh)“"’”ffl(%)

f{,.(n+1)—->IJj(n+1)(1—{7)
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' 0 1
where the maps f are induced by conjugation by ( >,

I, 0
0 |1]0
g are induced by conjugation by { I,_, { 0 [0},
0 1011

) . . 0 I,
h are induced by conjugation by (1 0>,

i are induced by inclusion. W
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