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Quasi-Fluid-Mechanics-Based Quasi-Bayesian
Cramér–Rao Bounds for Deformed Towed-Array

Direction Finding
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Abstract—New quasi-Bayesian (hybrid) Cramér-Rao bound
(CRB) expressions are herein derived for far-field deep-sea
direction-of-arrival (DOA) estimation with a nominally linear
towed-array that 1) is deformed by spatio-temporally correlated
oceanic currents, which have been previously overlooked in the
towed-array shape-deformation statistical analysis literature,
2) is deformed by temporally correlated motion of the towing
vessel, which is modeled only as temporally uncorrelated in
prior literature, and 3) suffers gain-uncertainties and phase-un-
certainties in its constituent hydrophones. This paper attempts
to bridge an existing literature gap in deformed towed-array
DOA-estimation performance analysis, by simultaneously a)
incorporating several essential fluid-mechanics considerations to
produce a shape-deformation statistical model physically more
realistic than those previously used for DOA performance analysis
and b) rigorously derive a mathematical analysis to characterize
quantitatively and qualitatively the DOA stimation’s statistical
performance. The derived CRB expressions are parameterized in
terms of the towed-array’s physically measurable nonidealities for
the single-source case. The new hybrid-CRB expressions herein
derived are numerically more stable than those in the current
literature.

Index Terms—Acoustical signal processing, array signal
processing, direction-of-arrival estimation, marine telemetry,
parameter estimation, sonar arrays, sonar signal processing,
underwater acoustic arrays.

I. INTRODUCTION

A towed-array consists of an acoustically transparent and
neutrally buoyant cable of hydrophones hauled behind a

surface ship or a submerged vessel. A towed array may extend
for several tens of meters to several hundreds of meters. The
towed array’s nominally linear geometry may be arbitrarily
distorted by the towing vessel’s varying speed and transverse
motion, by the array’s non-neutral buoyance and nonuniform
changes in density, and by hydrodynamic effects plus oceanic
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swells and currents. The resulting snake-like deformation from
the array’s nominal linearity can lead to critical degradation in
the accuracy of arrival angle estimation/tracking, beamforming,
and imaging because all these signal processing operations are
predicated on a sufficiently accurate (a priori or estimated)
model of the array’s inter-hydrophone spacings.

Towed-array deformity has been investigated by researchers
from several complementary perspectives: Towed arrays’ geo-
metric deformation has been empirically measured [13], [24],
[35], computer simulated [39], and theoretically predicted based
on fluid mechanics and oceanic physics [1]–[3], [7], [8], [11],
[12]. A wealth of array-shape calibration algorithms have been
devised using cooperative sources from known arrival-angles (in
“aided calibration”) [23], [34], [38], by exploiting noncoopera-
tive sources from unknown arrival angles (in “self-calibration”)
[9], [10], [14], [18], [22], [25], [29], [36], or by attaching on the
towed-array nonacoustic positioning-devices (such as heading-
sensors, depth-sensors and compasses to estimate the array’s
displacements along the array-length axis, the vertical trans-
verse axis and the horizontal transverse axis, respectively) [8],
[16], [21], [24], [27]. The present work provides a quantitative
analysis of bearing-estimation accuracy for deformed towed-ar-
rays, assuming array shape-deformation information is avail-
able from neither cooperative calibration sources nor from nona-
coustic positioning devices.

A. Literature on Modeling Towed-Array Shape-Deformation

The towed-array shape-deformation modeling literature
generally falls into two categories: 1) fluid-mechanics-inten-
sive models that are physically accurate but mathematically
intractable for statistical signal parameter-estimation perfor-
mance analysis and (2) mathematically simple models that
overlooks most (if not all) fluid-mechanics-based considera-
tions. The present manuscript aims to make one initial step
toward bridging this crucial literature gap between 1) and 2)
above by incorporating certain (admittedly, not all) essential
fluid-mechanics considerations into the statistical measurement
model, while drawing out in detail with rigorous mathematics
a comprehensive (admittedly, not exhaustive) analysis of what
this enhanced model implies in the statistical performance of
direction-of-arrival (DOA) estimation.

1) Fluid-Mechanics-Intensive Models: Transverse defor-
mation/vibration of a thin flexible cylinder, towed by a vessel,
has been shown to obey a fourth-order partial differential
equation known as the Paidoussis equation [1]–[3], [11], [12].
This equation, which was first applied in the towed-array
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context in [7] and [8], describes the mechanical propagation of
array-deformation down the array’s length. The validity of this
theoretical model was verified under field conditions [2].

Fluid-mechanics-based array deformation models have been
used to investigate only array shape calibration in [21], [24],
[36], and [38] but not for the present objective of DOA-es-
timation Cramér-Rao bound (CRB) analysis. Moreover, these
models from [21], [24], [36], and [38] overlook the oceanic cur-
rents’ statistical influence in the Paidoussis equation on array
shape deformation. These earlier works also model the towing
vessel’s movement as temporally uncorrelated, which may be
physically unrealistic for high time-sampling rates. In contrast,
the present analysis offers more realism by allowing arbitrary
temporal correlation (while assuming statistical stationarity) in
the towing vessel’s motion.

2) Mathematically Simple Models With Little Fluid Me-
chanics: A wealth of CRB analysis exists in the antenna-array
signal-processing research literature on DOA estimation with
uncertainties in the inter-antenna spacings. However, this
antenna-array literature presumes spatially1 uncorrelated and
spatially stationary locational uncertainties from sensor to
sensor. Unfortunately, such assumptions are manifestly invalid
for a towed array, whose elements are strung up on a cable.
Spatial decorrelation, in the towed array context, would imply
rather implausibly that an upstream hydrophone’s positional
deviation has no effect on the downstream hydrophones’
positional deviations. Spatial stationarity would unrealistically
imply that the hydrophone secured at the tow point likely has a
positional deviation comparable with those hydrophones at the
tow cable’s unsecured free end.

Among all DOA estimation CRB work accounting for spa-
tial correlation among the sensors’ dislocation (see [4], [5], [9],
[10], [14], [17], [18], [20], [25], [26], [28], [29], [40]), none uses
an array-deformation model rigorously derived from fluid me-
chanics. Ad hoc statistical models for array-shape deformation
include [4], [9], [10], and [17], which assume as statistically
uncorrelated the transverse and array-length axis positional per-
turbations. In [4], the transverse perturbations to be spatially
correlated from hydrophone to hydrophone with a dependence
inversely exponential to the cable length connecting the two hy-
drophones, but without rigorous justification, are modeled. In
[9] and [10], the prior distribution for both the transverse un-
certainties and the array-length axis uncertainties is assumed
to be spatially uncorrelated Gaussian, which is an assumption
that unrealistically implies that hydrophones near the tow point
have positional variances comparable with those at the cable’s
free end. The rudimentary model of [17] postulates nothing be-
yond the aforementioned uncorrelated condition between the
transverse and array-length axis positional perturbations. An-
other ad hoc deformation model is used in [28], without any
physics-based justification, involving a transverse perturbation
whose standard deviation increases quadratically downstream
and a linearly increasing perturbation along the array-length
axis. The spatial correlation and the transverse/array-length cor-
relation in [28] are both 100% correlated.

The more sophisticated deterministic piecewise-linear model
presumes the relative angles between adjoining piecewise-linear
segments to be deterministic unknown constants. For example,

1“Space” as spanned by the array’s geometrical axes.

[22], [23], [29], [33], [34], and [38] use the deterministic piece-
wise linear shape deformation model for array shape calibra-
tion performance analysis. A stochastic piecewise-linear model,
assuming the relative angle between adjoining piecewise-linear
segments to be Gaussian and (implausibly2 as) spatially uncor-
related, is used in [29] for DOA estimation.

Moreover, much of the above-mentioned deformed-array
bearing-estimation literature (all except [17], [28], and [29]
and unlike the present work) unrealistically assumes that no
uncertainty exists in the hydrophone’s gain and phase re-
sponses. This work attempts to be comprehensive in accounting
simultaneously for diverse array nonidealities.

B. CRB Literature on Deformed-Array DOA Estimation

The DOA estimation lower bounds herein derived are quasi-
Bayesian (hybrid) CRBs that characterize the best standard de-
viation obtainable using any unbiased estimator of a vector pa-
rameter. The CRB may serve as a performance metric in towed-
array design with any required level of bearing estimation accu-
racy.

The terms “quasi-Bayesian” and “hybrid” aim to contrast
against the standard CRB to signify that the vector-parameter
here has a deterministic subvector and a random nuisance-pa-
rameter subvector. The former consists of the incident sources’
unknown but to-be-estimated angles of arrival. The latter does
not need to be estimated but characterizes the array-shape defor-
mations, the phase/gain uncertainties of the individual acoustic
sensors, and other factors. The “hybrid” (quasi-Bayesian)
CRB may be defined as a proper submatrix of the overall
vector-parameter’s CRB matrix, which is equal to the inverse
of the corresponding Fisher information matrix. The bound
depends on the a priori distribution (uncertainty) of the random
subvector. It depends only on the signal/noise statistical model
but not the particular estimation algorithm method used; how-
ever, the quasi-Bayesian CRB may be attained by an maximum
a posteriori (MAP) estimator of the parameter-estimation
problem [29].

The present analysis allows a broad class of Bayesian-like
statistical models parameterized with physically measurable
quantities. For example, certain independent parameters
[describing the tow-point induced (TPI) motion and oceanic
currents] in the Paidoussis equation are herein characterized
as stochastic with known prior distributions instead of as
deterministic unknowns. This quasi-Bayesian approach is
advantageous because the underlying fluid mechanical and
oceanic physical processes (that cause the array’s geometric
deformation) can be neither exactly measured nor precisely
estimated. Hence, they would best be modeled as stochastic
phenomena. As oceanic engineers gather new data and up-
date the statistics of such TPI-motion and oceanic current,
the statistical properties of the Bayesian parameters may be
estimated and substituted in the CRB formulas presented
in this paper. Lower bounds of the deformed towed-array’s
DOA-estimation variance can then be obtained along with the
general expressions for the quasi-Bayesian Cramér-Rao lower
bound, which is derived in [29]. Among all prior work cited
in the preceding paragraphs, only [4], [9], [10], [17], [28],

2See further discussion in the following paragraphs.
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and [29] also use a Bayesian approach, but (as discussed in
the preceding subsection) none of these papers model array
shape deformation based on rigorous fluid mechanics, as in the
present work.

This paper is partly based on the generic CRB expression
derived in [29] for sensor-array estimation under array uncer-
tainties. Because this expression might be numerically unstable
when the data-length approaches infinity or when the covari-
ance matrices of array dislocations are small, this present paper
derives an alternative expression that is numerically more stable.
This new expression allows easy computation of the limit-CRB
for approaching infinity. As an example, the CRB is herein
computed in the case of a single source. The main contribution
of the paper, however, consists of computing physically mean-
ingful covariance matrices of array dislocations, which was dis-
cussed in the previous subsection.

II. MATHEMATICAL DATA MODELS FOR FAR-FIELD SOURCES

PROPAGATING THROUGH A DEEP-SEA CHANNEL

This section introduces the mathematical and statistical data
models involved in far-field deep-sea direction finding. far-
field narrowband sources impinge on an -hydrophone array as
plane waves without time-delayed multipaths to produce at time

the measured data vector:

(1)

The th column of the matrix represents
the th source’s steering vector, which has as components3

(2)
where ( ) represent the Cartesian direction-cosines
of the th incident source, and , respectively, denote
the th sensor’s unity-mean gain-perturbation and zero-mean
phase-perturbation, ( ) symbolize the three-dimen-
sional (3-D) Cartesian position coordinates of the th sensor,
and denotes the wavelength. The th element in the
vector represents the th frequency-down-converted
incident temporal signal and is modeled as a temporally uncor-
related zero-mean complex-valued circular-Gaussian stochastic
process with having the a priori unknown covariance
matrix . The th element in the vector refers to the
spatio-temporally uncorrelated complex-valued additive noise
at the th hydrophone, with a priori unknown variance .

The vector contains as its elements the to-be-es-
timated unknown deterministic signal parameters, e.g., the az-
imuth and/or elevation angles or, equivalently, the Cartesian di-
rection cosines. The nuisance vector consists of the
nuisance parameters — . Fur-
ther, define , ,

, , and .
These stochastic parameter vectors are modeled as mutually in-
dependent and real-valued Gaussian distributed, with a priori
known nominal means , , , , , and a priori known
covariance matrices , , , , and . Hence,

3The index k will be dropped in the case of a single source.

may be represented as a real-valued, Gaussian, stochastic vector
with a priori known mean and a priori known covariance ma-
trix . To summarize, the present data model involves the un-
known stochastic entities of , and , plus the unknown
deterministic entities of , , and . However, only needs
to be estimated.

III. NEW CRB EXPRESSION COMPATIBLE WITH VARIOUS

TO-BE-SPECIFIED QUASI-BAYESIAN MODELS OF ARRAY

NONIDEALITIES

In [29], there is a “generic” quasi-Bayesian CRB expression
applicable to far-field deep-sea nonideal array direction finding.
Building on [29], this section will develop CRB expressions that
1) are numerically more stable and applicable to any number of
incident sources, 2) reveal the multisource CRBs asymptotic be-
havior as the data-length approaches infinity, and 3) link to
the physical quantities parameterizing various array nonideali-
ties in the single-source case. From [29]:

CRB

(3)

where

Re

real-valued in size (4)

Re

real-valued in size (5)

Re

real-valued in size (6)

vec vec

complex-valued in size (7)

vec vec

complex-valued (8)

complex-valued in size (9)

complex-valued in size (10)

complex-valued in size (11)

where denotes the Kronecker product, represents the theo-
retical value of , and the derivatives in (7) and (8) are evaluated
for and .

The CRB expression in (3) might be numerically unstable
because is rank-deficient, as represents a projection op-
erator such that . This means that and

are both rank-deficient, and consequently, the to-be-inverted
term might be ill-conditioned for large .
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Assume that has full column rank. Then, the projection
operator has rank and

(12)

where consists of the linearly independent columns
of that span the column space of . Usually, can be
formed from the first columns of , i.e., ,
where

(13)

Put

(14)

so that of (9) may be written as . Then

Re Re

Re

Re

Re Im

Re Im
Im Re

Re

Im

(15)

where denotes the identity matrix of size , and

Re Im (16)

Re Im
Im Re

(17)

Similarly, it can be shown that

(18)

(19)

where

Re Im (20)

Inserting (15), (18), and (19) in (3) and applying the ma-
trix inversion lemma

, which holds for any size-compatible
matrices , , and , and providing all relevant inverses exist

CRB

(21)

Note that of (17) is regular, provided that in (14) is
regular because would then be regular as well.
Thus, the new CRB expression in (21) is numerically stable for
large , unlike (3).

Fig. 1. Coordinate system for a towed-array of hydrophones with one far-field
incident source.

The limit-CRB for going to infinity easily follows:

CRB CRB

(22)
The limit has the interpretation that it describes the best achiev-
able residual variance of the DOA-estimate due to array uncer-
tainties.

To detail the impact of array-shape uncertainties and of the
gain-phase uncertainties on direction-finding accuracy, the
subsequent analysis assumes a single incident source (i.e.,

) for mathematical simplicity. Without loss of generality,
the nominally linear towed array is assumed to align along
the -axis; hence, the -axis Cartesian direction-cosine needs
be estimated. That is, ; see Fig. 1. From (2),

, where denotes the element-wise product,
and .

Further assume that uncertainties in the hydrophones’ gains,
phases, and locations are mutually independent. Then, random
deviations of around its nominal value have the a priori
covariance matrix

diag (23)

For the above-defined

(24)

where denotes the element-wise product, and

diag diag (25)

where

(26)

Note that of (14) becomes the scalar

(27)
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In (27), the matrix inversion lemma is used along with
. The matrix , containing the basis of the column-space of
, may be chosen arbitrarily. However

diag (28)

would be a convenient choice,4 giving

diag
diag

diag

diag
(29)

where

(30)

diag (31)

After some algebra, (20), (17), and (16) can be rewritten as

(32)

(33)

(34)

Combining (32) and (23)

(35)

where the blocks denoted by the asterisks are not displayed, and

(36)

Inserting (32)–(35) in (21) gives

CRB

(37)

The CRB depends on the hydrophones’ gains by means of the
matrix defined in (31). It is independent of the uncertainties
in the hydrophones’ gain but depends only on , which
combines the hydrophones’ phase uncertainties and location un-
certainties. This is because all arrival-angle information is con-
tained in the phase of the data; cf. (2). For multiple sources (i.e,

), these uncertainties have more complex interactions;
and the general formula in (21) would be necessary.

gives the asymptotic CRB

CRB (38)

4The exponential term in (28) is allowed because the scaling of the columns
of B is arbitrary due to the projection in (12)

As expected, the limit-CRB is independent of the additive
noise’s variance , which drops out along with of (27).
The CRB does depend on the array geometry not only through
the vector of sensor coordinates but through the error co-
variance matrix as well, which incorporates the sensor
location uncertainties.

IV. NEW FLUID-MECHANICS-BASED STATISTICAL MODELS OF

A NOMINALLY LINEAR TOWED ARRAY’S SHAPE DEFORMATION

The derivation of the Paidoussis equation in [21] is herein re-
visited in order to incorporate a new term for the fluid flow’s
transverse speed and normal speed caused by oceanic streams
and swells. The fluid flow’s instantaneous normal speed is mod-
eled as an homogenous stationary Gaussian random field with
known space-time correlation structure, which may be mea-
sured offline and tabulated for different field conditions. This
Gaussian assumption is for mathematical simplicity and is not
unreasonable because statistical distributions with longer “tails”
(thereby implying a higher probability for very high fluid-flow
speeds) can hardly be observed here due to fluid viscosity.

The towing vessel transversal motion represents another
cause of array deformation. Already accounted for in the
original Paidoussis equation, the towing vessel’s transversal
motion is herein assumed to be due to the vessel’s small random
maneuvers and is modeled as a Gaussian random field with
known space-time correlation structure (which may be mea-
sured and tabulated off-line) and as stochastically independent
of the fluid flows along the array.

The Paidoussis equation is discretized both in time and in
space and consequently used to derive physically meaningful
covariance matrices of the sensor location uncertainties, ,

, and for use in the quasi-Bayesian CRB. The fol-
lowing developments will consider only small array-shape de-
formations. Since the tow-cable is assumed neutrally buoyant,
the horizontal deformation and the vertical deformation obeys
the same differential equation (but possibly with different con-
stants for the two directions). Hence, with no loss in generality,
the subsequent analysis will express only the horizontal defor-
mation’s in terms of physically measurable constants. Sub-
sequent simulation examples will assume that . Fi-
nally, relative longitudinal contractions of the array can be ne-
glected thanks to the small array-shape deformation assumption.
It follows that .

A. Generic Model of Towed Array Fluid Mechanics

Two causes exist for towed-array deformation: 1) the
towing-vessel’s transverse motion or varying speed and 2)
oceanic swells and currents. The Paidoussis equation [1]–[3],
[7], [8], [11], [12] describes the fluid mechanics through which
the two above-mentioned factors affect the shape of a towed
array. More precisely, the Paidoussis equation describes the
dynamical behavior of a flexible and cross-sectionally thin
cable towed through a certain fluid:

(39)
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Fig. 2. Enlarged segment of the deformed towed array.

The notation is as follows:
towed-array’s transverse displacement at time and
location along the array’s length;
towed-array’s per-unit-length mass;
tow-cable’s spatially variable tension;
inviscid force due to the acceleration of the tow-
cable’s virtual mass;
per-unit-length viscous force acting on the
tow-cable in the normal direction;
similar force acting in the tangential direction;
tow-cable’s bending stiffness.

From [11] and [38],

(40)

(41)

(42)

(43)

with these notations:
displaced fluid’s per-unit-length mass;
towed-array’s cross-sectional diameter;
towed-array’s normal drag coefficient;
towed-array’s tangential drag coefficient;
form drag at the trailing end ( for a free end);
tow-vessel’s speed along the positive -axis;
tow-cable’s speed relative to distant fluid;
angle between the relative velocity of the sur-
rounding fluid flow and the local tangent of the
cable.

depends on but also on the fluid flow’s transverse
speed and normal speed due to the ocean
streams and swells (see Fig. 2).

To summarize, the inputs to the fourth-order partial differ-
ential equation in (39) are , , and , under the
TPI-motion defined boundary condition , and the output
is : the towed-array’s space-time deformed geometry.

Prior researchers (to the best of the authors’ knowledge) have
overlooked the statistical influence of oceanic currents on array
shape deformation in the Paidoussis equation. One contribution

of the present work is to rigorously characterize the statistical
effects of and in the Paidoussis equation on the
hydrophones’ dislocation.

Under the reasonable assumption that the tow-speed
greatly exceeds the surrounding water’s flow velocity (i.e.,

, ), it holds that and
. The latter approximation means that hydrophone

dislocation is substantial only perpendicular to, but not along,
the array axis. Referring to Fig. 2

(44)

(45)

(46)

Assuming that the tow-cable is sufficiently flexible to neglect
the bending stiffness term in (39), the fourth-
order Paidoussis equation in (39) may be reduced to second-
order:

(47)

Moreover, because , the subsequent analysis will ignore
those terms in the above equations that are not inversely propor-
tional to . This second approximation results in the small-di-
ameter Paidoussis equation5 [21]:

(48)

The subsequent analysis will model as a two-di-
mensional random field of Gaussian distribution, with zero
mean and an a priori known spatio-temporal covariance
function. This random field is modeled as statistically sta-
tionary over space (i.e., array length) and time; hence,

, the mathemat-
ical form of which reflects oceanic conditions and may be
empirically determined. Moreover, this random field may be
statistically correlated over time; an illustrative case of AR(1)
will be analyzed in detail.

B. Discretizing the Small-Diameter Paidoussis Equation

Toward solving the above partial differential equation, the
space-time discretization in [21] and [38] is herein adopted to
represent array shape deformation as a finite-dimensional state-

5The small-diameter Paidoussis equation in [21] does not include the
�v (t; x � tU) term in (48) because [21] neglects the effects of oceanic
currents.
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space, with the towed-point induced temporal motion and the
oceanic currents’ space-time behavior as the system’s driving
inputs. Referring to Appendix A for details

...
...

...
...

(49)

where represents the transition matrix, denotes the dis-
crete-time index, symbolizes the number of discretization
steps along the array’s length, and and

, respectively, represent the discretization step
sizes in space and time. The stochastic vector stands for
tow-point induced (TPI) motion, where is a
statistically stationary random sequence. Although [21] and
[38] model as a temporally uncorrelated noise
sequence, this present work will model in the
mathematically more general and physically more realistic
form of a temporally correlated random sequence. The sto-
chastic vector , which is not included in [21] and [38]6

but is newly introduced in this present work, represents the sea
water’s spatio-temporally correlated currents.

This above discretization scheme serves only as a mathemat-
ical technique to solve the partial differential equation in (47)
but imposes no presumption on the physical behavior of the
towed array. This discretization is to be distinguished from the
piecewise linear model of array deformation [22], [23], [29],
[33], [34], [40]. The latter array model assumes the towed array
to behave like a concatenation of rigid linear segments, jointed
at arbitrary angles. The above discretization makes no piecewise
assumption regarding array deformation.

Although the transition matrix is strictly speaking a tridiag-
onal matrix (see Appendix A), empirical researchers [21], [24],
[36] find it useful to use the first-order approximation

(50)

where (with ) denotes the damping over
a length for TPI motion propagating down the array’s length,
and

(51)

With respect to the formulation of (50) and (51) developed in
[21], [36], and [38], the present paper offers the following new

6Instead, [21] and [38] have a statistically stationary and spatio-temporally
uncorrelated driving input as a “catch-all” function to include all modeling er-
rors.

insight: The length-dependent damping coefficient is physi-
cally related to such that for
any arbitrary positive numbers and ; hence, must
take on the mathematical form of an exponential function of ,
i.e.,

(52)

when represents an empirically measurable constant depen-
dent only on the sea water’s and the array’s physical properties,
namely, on and . A smaller means less damping of
towed-point induced or ocean-induced transverse motion along
the array’s length. For notational simplicity, the argument
will be omitted from wherever possible.

C. Solving for the Towed-Array’s Space-Time Shape
Deformation

This subsection advances an original solution to (49) for
and that is stationary and stochastically independent. Note
that the tow-point’s transverse displacement has been empiri-
cally determined to propagate down the array at close to the
tow-boat’s speed with little damping [21], [36]. Equation (49)
has a bounded (in the least square sense) solution , provided
that for some matrix norm . Hence

(53)

For the in (50), the condition is equivalent to .
From the independence assumption for and , the

hydrophones’ location uncertainties have the following spatio-
temporal covariance

cov cov cov (54)

The hydrophones’ dislocation covariances may thus be deter-
mined once the specific form of the above two right-hand-side
terms are known, perhaps from empirical measurements or
databases. The above entities are not functions of because of
the temporal stationarity assumption.

The towing-vessel’s motion and the oceanic currents repre-
sent statistically independent inputs to the towed-array system
in (47) and (53); hence, the system’s output equals (as expected)
a sum of the system outputs due separately to either input. The
main problem solved in the section is to express the above terms

and in terms of the covariance of the TPI motion
and covariance matrices of instantaneous fluid speeds ,

which are assumed to be known.
For hydrophones nominally at from the tow-

point, where for integers ,

define cov for .
Notice that is the th element of the desired ma-
trix . Under assumption (54), may be expressed
as , where the first term is due to TPI
motion, and the second term is due to oceanic currents. The
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form of remains to be derived from the spatio-tem-
poral statistics of as well as from the spatio-tem-
poral statistics of . Each term is to be studied separately
below, with detailed attention given to the particular illustra-
tive case of first-order autoregressive auto-covariances for the
TPI motion and of oceanic current velocities. The resulting co-
variances turn out to be largely independent of the
space-time discretization, assuming the discretization to be suf-
ficiently fine.

D. New Statistical Modeling of Tow-Point Induced
Towed-Array Shape-Deformation

The towing-vessel’s motion has been modeled in [21] as tem-
porally uncorrelated, which may be physically unrealistic for
high time-sampling rates. Instead, the analysis here allows arbi-
trary temporal correlation (but requires statistical stationarity)
in the towing-vessel’s motion. The following expresses in
terms of the spatio-temporal statistics of , first for the gen-
eral case of any statistically stationary (but otherwise arbitrary)
spatio-temporal covariance and then for the special case of a
first-order auto-regressive temporal covariance. All subsequent
expressions will turn out to be independent of the discretization
grid used earlier.

Assume that is statistically stationary, zero-
mean, and with a Toeplitz covariance matrix containing el-
ements for .
Hence

(55)

and has the spatial covariance matrix ,
where diag . Thus

(56)

The above equation constitutes this subsection’s main contribu-
tion, relating the positional uncertainty’s covariance function to
the TPI motion’s spatio-temporal covariance function.

For the special case where the TPI motion may be represented
as an AR(1) temporally random process,7

(57)

where and represent constants that may be empirically
measured: denotes the variance of the TPI motion, and
characterizes the time correlation of the TPI motion. Given ,
the time delay [in which the correlation between and

decays to 1/10] equals . Combining (52),
(56), and (57)

(58)

and may be substituted into (54) to give the towed-array’s
space-time shape-deformation covariance. The expression on

7For covariance functions of the general AR(i) form or the general
ARMA(i; j) form, see [37].

the right-hand side of (58) is the covariance element for an
infinitely fine discretization grid.

E. Statistical Modeling of Ocean-Induced Array Shape
Deformation

The following will express in terms of the spatio-tem-
poral statistics of , first for the general case stipulating
only statistical stationarity and then for the special case where
the auto-correlation of is AR(1) in both space and time.

Define , for .
With the spatio-temporal covariance function of the
space-time random field characterizing fluid flow, (49)
implies for

. Define

(59)

The last equality holds because for , given
defined in (50). As is Toeplitz, some straightforward

manipulation gives

(60)

Referring to (50), (53), and (59)

(61)

The above equation represents this subsection’s key contribu-
tion, relating the positional uncertainty’s covariance function to
the oceanic flow’s space-time covariance function.

Consider the illustrative case of being AR(1) in both
space and time

(62)

where , , and are physical constants that may be em-
pirically measured. is the total variance of oceanic flows,
whereas and determine the correlation length of the
random field in reference to, respectively, time and
space; cf. (57).
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Referring to Appendix B for details, for ,
, , and ,

(63)

and may be substituted into (54) to give the towed-array’s
space-time shape-deformation covariance.

F. Summary of Notations of Constants

For easy reference, the following summarizes the notations
used in the above two subsections to describe the AR(1,1)
oceanic-current model and the AR(1) TPI-motion model.

variance of the TPI motion;
constant characterizing the temporal correlation of
the TPI motion (57);
variance of the oceanic flows;
constant characterizing the temporal correlation of
the oceanic flows (62);
constant characterizing the per-unit-length correla-
tion of the TPI motion (62);
constant in the exponential dumping model (52).

V. NUMERICAL EXAMPLES

A. Example 1: Variance of Positional Deviation Along the
Towed-Array

Fig. 3 plots and along the array’s length
when the towing-vessel’s motion is an AR(1) temporal sto-

chastic process and when the oceanic currents may be modeled
as a spatio-temporal AR(1) space-time stochastic process. The
simulation parameters are as follows: The towed-array has the
damping parameter (m ) (corresponding to a
damping factor per 6.25 m of tow-array length [24]),
the TPI-motion has the variance (m ) and
(s ), the ocean-induced motion has variance (m )
and (m ) and (s ).

As increases (i.e., further from the tow point), the TPI mo-
tion becomes less significant, but the oceanic flow becomes
more important. A faster tow speed does not affect ,
which is intuitively reasonable as the angle between the
array and surrounding fluid’s relative velocity also decreases
with increasing tow-speed, thereby diminishing the influence of
the oceanic currents.

The following examples illustrate the dependence of the CRB
of on various physical parameters in the far-field deep-sea
single-source scenario, where the towed-array has uniform half-
wavelength spaced hydrophones moving along the -axis.

Fig. 3. Standard deviation of positional deviation along the towed-array.
Dashed line: Influence from TPI motion. Solid line: Influence from fluid-flows
for tow-speeds shown. Referring to (52), (57), and (62), C = 0:008 � = 1

(m ), C = 1 (m ), � = 0:01 (m ), C = 1 (s ), and C = 1

(m ). The tow speed is U = 1, 3 and 5 (m/s), respectively.
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Fig. 4. Square root of CRB (in degrees) versus the number of observation
snapshots N and versus the SNR 
 =� .

B. Example 2: CRB versus the SNR and Number of
Snapshots

Fig. 4 plots the square root of the CRB (in degrees) versus the
SNR and the number of snapshots . The array has

hydrophones, equispaced at 6.25 m (corresponding to
a frequency of 120 Hz [24]) and towed with speed 3 m/s.
The hydrophones’ phase uncertainties are uncorrelated with a
3 standard deviation, implying (rad ). All
other simulation parameters remain the same as in Example 1.
Fig. 4 shows that for SNR 0 dB, the CRB approximates the
large- limit-CRB, even at . Moreover, the limit-CRB
does not depend on the SNR.



TICHAVSKÝ AND WONG: QUASI-FLUID-MECHANICS-BASED QUASI-BAYESIAN CRAMÉR-RAO BOUNDS 45

0
2

4
6

8
10

12

0

10

20

30

40

50

0

5

10

15

20

25

UL

S
Q

R
T

(C
R

B
) 

[d
eg

re
es

]

Fig. 5. Square root of the limit-CRB (with N ! 1) versus the number of
hydrophones L and versus the tow-speed U .

C. Example 3: CRB Versus Number of Hydrophones and
Tow-Speed

Fig. 5 plots the large- limit-CRB versus the towed-array’s
number of constituent hydrophones and the tow-speed
(m/s ). All other simulation parameters remain identical
as in Example 2. As expected, the CRB in Fig. 5 decreases
(i.e., the potentially achievable accuracy improves) with more
hydrophones and a faster tow-speed.

With at least 30 hydrophones in the towed-array and at
low tow-speed, adding more hydrophones to the towed-array
(while maintaining the towed-array’s half-wavelength inter-hy-
drophone spacing) will offer more improvement in the
direction-finding’s CRB when the tow-speed is faster than
when the tow-speed is slower.

D. Example 4: CRB versus the TPI Parameters

Fig. 6 plots the large- limit-CRB versus the TPI-motion pa-
rameter (s ) and the damping parameter (m ) in the
absence of oceanic currents and hydrophone gain/phase uncer-
tainties. The TPI motion is statistically independent but identi-
cally distributed along the - and -axes. The limit-CRB, which
is plotted in Fig. 6, is proportional to the TPI transversal mo-
tion’s variance but is independent of the SNR. The CRB also
depends significantly on but only slightly on . Recall that

(m ) means low-frequency TPI-motions (say, due to
the towing vessel’s slow maneuvers) and a moderate corre-
sponds to TPI-motions similar to white noise. For fixed , the
CRB has a broad plateau with respect to .

E. Example 5: CRB Versus the Oceanic-Current Parameters

Fig. 7 plots the large- limit-CRB in the absence of TPI mo-
tion and hydrophone gain/phase uncertainties versus the oceanic
current parameters and for oceanic current that is sta-
tistically independent and identically distributed in the vertical
and horizontal directions. All other simulation parameters re-
main the same, as in the previous example. The CRB, which
is plotted in Fig. 7, decreases with increasing and with in-
creasing , as expected. For (m ) and
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Fig. 6. Limit-CRB (with N ! 1) per unit TPI-motion’s variance (in the
absence of oceanic currents) versus the TPI-motion parameter C and versus
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Fig. 7. Limit-CRB (with N ! 1) per unit oceanic current’s variance
(assuming no TPI motion) plotted versus oceanic motion’s AR(1) space-time
parameters C and C .

(s ), the oceanic current’s velocities are more correlated over
space and over time, implying that the instantaneous velocities

and are more likely to have the
same sign, and array deformation would consequentially have a
larger variance.

VI. CONCLUSION

This work represents an initial step to bridge a serious
literature gap in deformed towed-array direction-finding
performance analysis by incorporating into the statistical
measurement model several essential fluid-mechanics consid-
erations while deriving mathematically rigorous quantitative
expressions and qualitative insights into how DOA estimation
may depend on physically measurable sources of array de-
formation. Among various derived properties of the far-field
deep-water single-source CRB, especially noteworthy is its
independence from the hydrophones’ gain uncertainties.
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(70)

APPENDIX A

Discretization of the Paidoussis equation is achieved [21],
[36] by substituting and in the Euler ap-
proximation

(64)

(65)

(66)

where denotes the ( )th element of in (49). After
some manipulations

(67)

The last equation may be written in matrix form as (49), where

(68)

where is defined in (51), and diag is
a diagonal matrix with

(69)

In [21], [24], and [36] replacing (68) by with a scalar
correcting factor is suggested.

APPENDIX B

Let and , . Then, we have (70),
shown at the top of the page. Further simplification is obtained
by the Taylor series expansion, which is valid for small

and for an arbitrary , it holds that
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