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Outline

• Weyl fermions

• Where to find them

• TR-breaking and Hall effects

• I-breaking

• Graphene-like physics



Weyl Fermion

• Massless Dirac fermion with fixed 
handedness 

• described by a 2-component spinor unlike 
4-component (spin+particle/hole) Dirac 
spinor

H = v�σ · �k



Level repulsion

• von Neumann and 
Wigner, 1929

• In QMs, 3 parameters 
must be tuned to 
make 2 levels cross

• led to a whole field of 
statistics of energy 
levels, quantum 
chaos,...



Weyl points in band 
theory

• In 3d band structures with non-degenerate 
bands - lacking either inversion or TR -  this 
happens at isolated points

• the non-degeracy of course requires 
breaking spin-rotation symmetry - 
typically by SOC
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For crystals with an inversion center, contacts
of equivalent manifolds M'(k), 3f'(k) may occur
at all points k of an endless curve, or of a number
of such curves, in k-space. These contact curves
cannot be destroyed or broken by any infini-
tesimal change in the potential U which pre-
serves the inversional symmetry. It is vanishingly
improbable for such curves to lie in planes of
symmetry in the B-Z; however a contact curve
may pass through a symmetry axis at a point
where necessary degeneracy or contact of
inequivalent manifolds occurs.
Suppose that for a crystal with an inversion

center a contact of inequivalent manifolds
3E'(k), M'(k) occurs at a point k on a sym-
metry axis, and suppose that m'(k) and m'(k)
are each one-dimensional. Then if the vector g
(proportional in the Hartree case to (P„', iVPq, &))'
does not vanish, a curve of contact must pass
through k. This curve may be a curve of contact
of equivalent manifolds of the type just described,
or it may be a curve of contact of inequivalent
manifolds in a plane of symmetry. Naturally if
there is no such symmetry plane in the space
group, the former alternative must hold.
For a crystal whose space group consists only

of its translation group plus an inversion, three
types of contact curves may occur, which are
most easily described when energy is considered
as a trebly periodic function of wave vector in
the infinite reciprocal lattice space. The first
type is a simple closed circuit which is distinct
from the circuit obtained from it by the inversion
k~—k. The second type is a simple closed circuit
which either coincides with the inverse circuit
or can be brought into coincidence with it by 2x
times a translation of the reciprocal lattice. The
third type is a curve extending periodically to
infinity. Now consider any energy band i, and
the band j next above it. For each of the eight
distinct points k„(r=1 to 8) of the B-Z whose
G~" contain the inversion let the numbers

X+(k„,i), E (k„ i), of odd and' of even eigen-
functions fs, ' be counted which have energies
E'(k,) ~& E'(k„). Now the quantity

is an integer, and according to whether this
integer is odd or even the number of circuits of
the second type along which contact between the
bands i and j occurs must be odd or even. Since
any crystal with an inversion center can be made
by an infinitesimal change in the form of U into
one whose space group is merely its translation
group plus the inversion, this implies certain
restrictions on the numbers of contact curves
which may occur for crystals of higher sym-
metry. Prediction of the existence of curves of
contact of equivalent manifolds may therefore
be possible from a knowledge merely of the
energies of the different M'(k, ) at the eight
points k„.
For a crystal without an inversion center, the

energy separation 8E(k+x) in the neigborhood
of a point k where contact of equivalent mani-
folds occurs may be expected to be of the order
of ~ as ~—+0, for all directions of x.
For a crystal with an inversion center, the

energy separation 8E(k') at a point k' near a
curve of contact of equivalent manifolds may be
expected to be of the order of the distance of k'
from the curve.
All kinds of contacts of equivalent manifolds

except the ones described above are vanishingly
improbable. In particular, the occurrence of
isolated points of contact of equivalent manifolds
for crystals with an inversion center is vanish-
ingly improbable.

I should like to express my gratitude to Pro-
fessor E.Wigner for his interest in this work, and
to Dr. L. P. Bouckaert and Dr. R. Smoluchowski
for some interesting discussions.
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G' has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.
It is a pleasure for me to express my thanks to

Professor E.Wigner, who suggested this problem.
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Accidental Degeneracy in the Energy Bands of Crystals
CONYERS HERRING
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(Received June 16, 1937)

The circumstances are investigated under which two wave functions occurring in the Hartree
or I'ock solution for a crystal can have the same reduced wave vector and the same energy, It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

"N previous papers, by Bouckaert, Smoluchow-
- - ski, and Wigner, ' and by the author, ' certain
properties of the wave functions and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:
(1) In the solution of Hartree's or Fock's

equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By "accidental"
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.
(2) If the energies of two or more bands

coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?
' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,

58 (1936), hereafter referred to as BSW.' Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands. 3
The notation to be used is the same as in I.

In addition, the symbol LM', 3P] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M' and M'.
' Calculations for a simple cubic lattice have been made

by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).



Ln2Ir2O7 Pyrochlores

• Series of materials shows systematic MITs

• Ir4+ has λ≈0.5eV

Introduction
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Ir4+: 5d5 Conduction electrons

Ln3+: (4f)n Localized moment
Magnetic frustration

Itinerant electron system 
on the pyrochlore lattice 

Ir[t2g]+O[2p] conduction band

Metal Insulator Transition
(Ln=Nd, Sm, Eu, Gd, Tb, Dy, Ho)

K. Matsuhira et al. : J. Phys. Soc. Jpn. 76 (2007) 043706.
(Ln=Nd, Sm, Eu)

IrO6

Ln

O!

pyrochlore oxides

1

B

A

T -linear contribution in CðT Þ is known to be attributed to
spin wave excitations for one-dimensional antiferromagnets;
it is difficult for the pyrochlore lattice to induce a T -linear
contribution. As another possible origin for T -linear
contribution in CðT Þ in the insulating state, Anderson
localization may be considered.35) Further investigation is
required to reveal the origin of the T -linear contribution.

Now we will discuss the Ln dependence of the entropy
associated with the MIT (!S). To estimate !S, a smooth
polynomial was fitted to the data outside the region of the
anomaly; these fitting lines (broken line) for Ln = Nd, Sm,
and Eu are shown in Figs. 5(a), 6(a), and 6(b), respectively.
The background contribution was subtracted from the raw
data; the electronic portions of the C=T (!C=T ) for
Ln = Sm and Eu are shown in the inset. By integrating
!C=T , we obtained !S ¼ 0:47, 2.0, and 1.4 J/(K$mole) for
Ln = Nd, Sm, and Eu, respectively. !S is much smaller
than 2R ln 2. If we assume that a localized 5d electron from
Ir4þ ions with S ¼ 1=2 causes a conventional magnetic
transition, we can expect a change in entropy of 2R ln 2 ¼
11:5 J/(K$mole). The reduction in the amount of change in
entropy is considered to be caused by a short-range ordering
due to frustration or a reduction in magnetic moment due to
the itinerancy of 5d electrons. Next, recently, the Raman
scattering spectra of Ln2Ir2O7 for Ln = Nd, Sm, and Eu
have been measured.36) Below TMI, new peaks appear for
Ln = Sm and Eu, but no remarkable change is seen for
Ln = Nd. The result indicates that Sm2Ir2O7 and Eu2Ir2O7

accompany a structural change with MIT, but this does not
occur with Nd2Ir2O7. Therefore, the !S for Ln = Sm and
Eu involve the lattice contribution. Indeed, !S for Ln = Nd
is smaller than those for Ln = Sm and Eu. If we consider
this !S in Ln = Nd to be caused by only the electronic
contribution without the lattice contribution, we can estimate
the electronic specific heat coefficient above TMI ! ¼ 14mJ/
(K2$mole) by the relation ! ¼ !S=TMI. As Sm2Ir2O7 and
Eu2Ir2O7 are both semimetallic from the behaviors of their
"ðT Þ and SðT Þ, it is speculated that the ! for Ln = Sm and
Eu are smaller than that for Ln = Nd.

3.5 Phase diagram
Figure 7 shows the phase diagram of Ln2Ir2O7, which is

based on the Ln3þ ionic radius dependence of TMI; the ionic
radius of Ln3þ is for an 8-coordination-number site. TMI

monotonically increases as the ionic radius of Ln3þ

decreases. Obviously, TMI does not depend on the de Gennes
factor ðgJ & 1Þ2JðJ þ 1Þ or the magnetism of Ln3þ. This
MIT is not associated with the magnetic ordering of Ln3þ.
For T > TMI, Ln = Pr and Nd are metallic. Then, Ln = Sm,
Eu and Gd are semimetallic and Ln = Tb, Dy, and Ho are
semiconducting. Ln = Pr is a unique metal located near the
critical point of MIT. In this figure, the extrapolation
between Ln = Nd and Pr is based on a recent result for
resistivity in the solid solution (Pr1&xNdx)2Ir2O7.

37) From
the result, the substitution of Pr by 20% Nd leads to MIT
at around 3K; below TMI, the increasing resistivity in this
sample is suppressed, and resistivity reaches a finite value at
lower temperatures.

Next, we discuss the phase diagram of Ln2Ir2O7 in
comparison with that of other rare-earth pyrochlore oxides.
The phase diagrams of Ln2Mo2O7 [Mo4þ: (4d)2] have

already been reported.38–40) Now, we point out the difference
in the phase diagram between Ir and Mo pyrochlore oxides.
As is described in the introduction, as the ionic radius of
Ln3þ decreases, the electrical conductivity in Ln2Mo2O7

becomes semiconducting. Interestingly, the magnetic transi-
tion of Ln2Mo2O7 goes from the spin glass insulating state
(Ln = Gd, Tb, Dy, and Ho) to the ferromagnetic metallic
state (Ln = Eu, Sm, and Nd) as the ionic radius of Ln3þ

increases; the ferromagnetic transition comes from 4d
electrons. Although the spin glass transition temperature Tg
is independent of Ln (Tg ' 20K), the ferromagnetic
transition temperature increases as the ionic radius of Ln3þ

increases. In addition, semiconducting Ln2Ru2O7 [Ru4þ:
(4d)4] shows the frustrated AFM transition originating from
4d electrons.41) The Néel temperature TN monotonically
increases from TN ¼ 84K for Ln = Yb to TN ¼ 160K for
Ln = Pr as the ionic radius of Ln3þ increases. The present
result shows that the magnetic transition (or MIT) in
Ln2Ir2O7 decreases as the ionic radius of Ln3þ increases.
Then, the opposite dependence of the ionic radius of Ln3þ on
the magnetic transition temperature is realized in Ln2Ir2O7.
It is speculated that the difference in their phase diagrams is
due to the feature of the 5d electron system, which has a
strong spin–orbit interaction and a reduced on-site Coulomb
repulsion in comparison with the 4d electron system.21)

Further theoretical study is needed to understand this phase
diagram in Ln2Ir2O7.

4. Conclusions

We report the physical properties (resistivity, thermo-
electric power, magnetization, and specific heat) of Ln2Ir2O7

for Ln = Nd, Sm, Eu, Gd, Tb, Dy, and Ho. Ln2Ir2O7 for
Ln = Nd, Sm, and Eu show MITs at 33, 117, and 120K,
respectively. In this study, we revealed that Ln2Ir2O7 for
Ln = Gd, Tb, Dy, and Ho exhibit MITs at 127, 132, 134,
and 141K, respectively. These MITs in Ln2Ir2O7 has
some common features: They are second-order transitions
since no thermal hysteresis or no discontinuous change
in their physical properties is observed at TMI. Under
the FC condition, a weak ferromagnetic component
('10&3 #B/f.u.) caused by 5d electrons from Ir is observed
below TMI. The entropy associated with MIT supports the

Fig. 7. (Color online) Phase diagram of Ln2Ir2O7 based on Ln3þ ionic
radius dependence of TMI.
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Exotic Possibilities

• Topological Mott Insulator?

D. Pesin+LB, 2010



Exotic Possibilities

• Topological Mott Insulator?

D. Pesin+LB, 2010

Probably not: commensurate 
magnetic order seen in μSR

S. Zhao et al, 2011



Weyl semimetal?

• LDA+U calculations find Weyl state!

• They also pointed out very unusual surface 
states

WAN, TURNER, VISHWANATH, AND SAVRASOV PHYSICAL REVIEW B 83, 205101 (2011)

it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin

205101-2
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FIG. 4. (Color online) Semimetallic nature of the state at U =
1.5 eV according to the LSDA + U + SO method. (a) Calculated
energy bands in the plane Kz = 0 with band parities shown; (b) energy
bands in the plane kz = 0.6π/a, where a Weyl point is predicted to
exist. The lighter-shaded plane is at the Fermi level. (c) Locations
of the Weyl points in the three-dimensional Brillouin zone (Ref. 29)
(nine are shown, indicated by the circled + or − signs).

the parity eigenvalues. Note that all the magnetic structures
considered above preserve inversion (or parity) symmetry. In
the Brillouin zone [see Fig. 4(c)] of the fcc lattice the TRIMs
correspond to the " = (0, 0, 0), and X, Y,Z [=2π/a(1, 0, 0)
and permutations] points and four L points [π/a(1, 1, 1) and
equivalent points]. The TRIM parities of the top four occupied
bands, in order of increasing energy, are shown in Table II.
Note that, although by symmetry all L points are equivalent,
the choice of inversion center at an iridium site singles out one
of them, L′. With that choice the parities at L′ and the other
three L points are the opposite of one another. The parities
of the all-in/all-out state remains unchanged above U > Uc ∼
1.8 eV and is shown in the top row under U = 2 eV. This
pattern of parities helps to understand the nature of the phase:
The parities are the same as for a site-localized picture of this
phase, where each site has an electron with a fixed moment
along the ordering direction. Due to the possibility of such a
local description of this magnetic insulator, we term it the Mott
phase.

Intermediate correlations. For the same all-in/all-out mag-
netic configuration, at smaller U = 1.5 eV, the band structure

TABLE II. Calculated parities of states at TRIMs for several
electronic phases of the iridates. Only the top four filled levels are
shown, in order of increasing energy.

Phase " X, Y,Z L′ L (×3)
U = 2.0, all-in (Mott) ++++ + − − + + − − − −+++
U = 1.5, all-in (Dirac) ++++ + − − + + − − + −++ −

along high-symmetry lines [see Fig. 3(b)] also appears to be
insulating, and at first sight one may conclude that this is
an extension of the Mott insulator. However, a closer look
using the parities reveals that a phase transition has occurred.
At the L points, an occupied level and an unoccupied level
with opposite parities have switched places. It can readily
be argued that only one of the two phases adjacent to the
U where this crossing happens can be insulating (see the
Appendix). Since the large U phase is found to be smoothly
connected to a gapped Mott phase, it is reasonable to assume
the smaller U phase is the noninsulating one. This is also
borne out by the LSDA + U + SO band structure. A detailed
analysis perturbing about this transition point (also in the k · p
subsection) allows us to show that this phase is expected to be
a Weyl semimetal with 24 Weyl nodes in all.

Indeed, in the LSDA + U + SO band structure at U =
1.5 eV, we find a three-dimensional Dirac crossing located
within the "-X-L plane of the Brillouin zone. This is illustrated
in Fig. 4 and corresponds to the k vector (0.52,0.52,0.3)2π/a.
There also are five additional Weyl points in the proximity of
the point L related by symmetry (three are just inside each of
the two opposite hexagonal faces of the Brillouin zone, which
are identified with one another) When U increases, these points
move toward each other and annihilate all together at the L
point close to U = 1.8 eV. This is how the Mott phase is born
from the Weyl phase. Since we expect that for Ir 5d states the
actual value of the Coulomb repulsion should be somewhere
within the range 1 eV < U < 2 eV, we thus conclude that the
ground state of the Y2Ir2O7 is most likely the semimetallic
state with the Fermi surface characterized by a set of Weyl
points but in proximity to a Mott insulating state. Both phases
can be switched to a normal metal if Ir moments are collinearly
ordered by a magnetic field.

Possible axion insulator phase. At lower values of U a
second gapped phase with special properties may appear. This
phase can be characterized in terms of its magnetoelectric re-
sponse. Recall that in the presence of time-reversal symmetry,
topological insulators are nonmagnetic band insulators with
protected surface states.6 When the surface states are elimi-
nated by adding, for example, magnetic moments only on the
surface, a quantized magnetoelectric response is obtained:13

A magnetic field induces a polarization, P = θ e2

2πh
B, with the

coefficient θ only defined modulo 2π . The values of θ are
limited by time reversal, which transforms θ → −θ . Apart
from the trivial solution θ = 0, the ambiguity in the definition
of θ allows also for θ = π , and this occurs in topological
insulators θ = π . In magnetic insulators, θ is in general no
longer quantized.30 However, when inversion symmetry is
retained, θ is quantized again. An insulator with the value
θ = π may be termed an axion insulator.

What is the appropriate description of the pyrochlore
iridates? As described elsewhere,21 the condition for θ = π
insulators with only inversion symmetry, when deduced from
the parities, turns out to be the same as the Fu-Kane formula,
for time-reversal symmetric insulators;31,32 that is, if the total
number of filled states of negative parity at all TRIMs taken
together is twice an odd integer, then θ = π . Otherwise, θ = 0.

For the Mott insulator, at large U , the charge physics must
be trivial and so we must have θ = 0. Next, since the Weyl

205101-5
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Fermi Arcs
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state for this subsystem [see Fig. 5(b)]. Hence, this surface state
crosses zero energy somewhere on the surface Brillouin zone
kλ0 . Such a state can be obtained for every curve enclosing
the Weyl point. Thus, at zero energy, there is a Fermi line in
the surface Brillouin zone, that terminates at the Weyl point
momenta [see Fig. 5(c)]. An arc beginning on a Weyl point
of chirality c has to terminate on a Weyl point of the opposite
chirality. Clearly, the net chirality of the Weyl points within
the (λ, kz) torus was a key input in determining the number of
these states. If Weyl points of opposite chirality line up along
the kz direction, then there is a cancellation and no surface
states are expected.

In the calculations for Y2Ir2O7, at U = 1.5 eV, a Dirac
(or Weyl) node is found to occur at the momentum
(0.52,0.52,0.30)2π/a (in the coordinate system aligned with
the cubic lattice of the crystal) and equivalent points (see
Fig. 4). They can be thought of as occurring on the edges of a
cube, with a pair of Dirac nodes of opposite chirality occupying
each edge, as, for example, the points (0.52,0.52,0.30)2π/a
and (0.52,0.52,−0.30)2π/a. For the case of U = 1.5 eV, the
sides of this cube have the length 0.52(4π/a). Thus, the (111)
and (110) surfaces would have surface states connecting the
projected Weyl points [see Fig. 6 for the (110) surface states
and the theoretical expectation for the (111) surface]. If, on
the other hand, we consider the surface orthogonal to the (001)
direction, Weyl points of opposite chirality are projected to the
same surface momentum along the edges of the cube. Thus,
no protected states are expected for this surface.

To verify these theoretical considerations, we have con-
structed a tight-binding model which has features seen in our
electronic structure calculations for Y2Ir2O7. The calculated
(110) surface band structure for the slab of 128 atoms together
with the sketch of the obtained Fermi arcs is shown in Fig. 6.
This figure shows Fermi arcs from both the front and the back
face of the slab, so there are twice as many arcs coming out of
each Weyl point as predicted for a single surface.

The tight-binding model considers only t2g orbitals of Ir
atoms in the global coordinate system. Since Ir atoms form
a tetrahedral network (see Fig. 2), each pair of nearest-
neighboring atoms forms a corresponding σ -like bond whose
hopping integral is denoted as t and another two π -like
bonds whose hopping integrals are denoted as t ′. To sim-
ulate the appearance of the Weyl point it is essential to
include next-nearest-neighbor interactions between t2g orbitals
which are denoted as t ′′. With the parameters t = 0.2, t ′ =
0.5t , t ′′ = −0.2t , the value of the on-site spin-orbit coupling
equal to 2.5t and the applied on-site “Zeeman” splitting of 0.1t
between states parallel and antiparallel to the local quantization
axis of the all-in/all-out configuration we can roughly model
the bulk Weyl semimetal state; when this model is solved on a
lattice with a boundary, the surface states shown in the figure
appear.

V. DISCUSSION

We now discuss how the present theoretical description
compares with experimental facts. We propose that the low-
temperature state of Y2Ir2O7 (and also possibly of A =
Eu, Sm, and Nd iridates) is a Weyl semimetal, with all-
in/all-out magnetic order. This is broadly consistent with the

FIG. 6. (Color online) Surface states. The calculated surface
energy bands correspond to the (110) surface of the pyrochlore
iridate Y2Ir2O7. A tight-binding approximation has been used to
simulate the bulk band structure with three-dimensional Weyl points
as found by our LSDA + U + SO calculation. The plot corresponds
to diagonalizing 128 atoms slab with two surfaces. The upper inset
shows a sketch of the deduced Fermi arcs connecting projected
bulk Weyl points of opposite chirality. The inset below sketches the
theoretically expected surface states on the (111) surface at the Fermi
energy (surface band structure not shown for this case).

interconnection between insulating behavior and magnetism
observed experimentally.9,10 It is also consistent with being
proximate to a metallic phase on lowering the correlation
strength, such as A = Pr (Ref. 17). In the clean limit, a three-
dimensional Weyl semimetal is an electrical insulator and can
potentially account for the observed electrical resistivity. The
noncollinear magnetic order proposed has Ising symmetry
and could undergo a continuous ordering transition. The
observed “spin-glass”-like magnetic signature could perhaps
arise from defects like magnetic domain walls. A direct probe
of magnetism is currently lacking and would shed light on this
key question. At lower values of U , the system may realize
an “axion insulator” phase with a magnetoelectric response
θ = π , although within our calculations (which are known to
underestimate stability of such gapped phases) a Fermi surface
appears before this happens.

In summary, a theoretical phase diagram for the physical
system is shown in Fig. 1 as a function of U and applied
magnetic field, which leads to a metallic state beyond a critical
field. The precise nature of these phase transformations is not
addressed in the present study.

Note: An experimental paper35 appeared recently in which
it is found that the spins in a related compound (Eu2Ir2O7) form
a regularly ordered state rather than a spin-glass, consistent
with our results. It would be interesting to learn whether this
compound is a Weyl metal or not.

205101-7
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Figure 5. Phase diagram for the QSH and ordinary insulating (I) phases for (a)
2D and (b) in 3D. m is a control parameter which drives the phase transition, and
δ represents a parameter which describes the breaking of I-symmetry. δ = 0 is
the case with I-symmetry.

phase appears between the two phases which are gapful in the bulk. The difference of the Z2
topological numbers ν between the two sides of the phase transition can also be calculated as
in the 2D case [19]. When the band crossing occurs at ki = 1

2(n1b1 + n2b2 + n3b3), the factor
δi=(n1n2n3) in (4) changes sign, and some of the four Z2 topological numbers, ν0; (ν1ν2ν3) in
(4), change accordingly. This applies to the I-symmetric systems. The I-asymmetric cases are
similarly treated because they can be associated with the I-symmetric cases with perturbation.

3. Towards materials search for QSH systems

3.1. Bismuth thin film and 2D QSH system

In [15], the bilayer bismuth is studied as a candidate for the 2D QSH phase. From the 2D bilayer
tight-binding model, truncated from the 3D tight-binding model [27], the bilayer bismuth is
proposed to be a 2D QSH system [15]. Bilayer antimony is studied in a similar way, and it is an
ordinary insulator. It is predicted from the calculation of Z2 topological number and from a band
structure calculation for the geometry with edges (i.e. the strip geometry). The Z2 topological
number is calculated in [15] by the Pfaffian of the matrix for the time-reversal operator proposed
in [8].

The calculation of the Pfaffian involves fixing of phases of the wavefunction as an analytic
function of the wavenumber k, which is numerically a challenging problem, even for a simplified
model presented in [15]. It can be tackled by discretizing the k space and counting the vortex
of the Pfaffian matrix [28, 29]. Instead, for I-symmetric systems, the method of calculating
parity eigenvalues (3) proposed in [18] is much easier. For bilayer bismuth, we checked that
this method leads us also to the same conclusion that the Z2 topological number is odd and
nontrivial, and it is in the QSH phase.

For the system to be in the QSH phase, it should have a gap in the bulk. The 3D
bulk bismuth is semimetallic, and has a small band overlap between the conduction and
the valence band, while the direct gap is finite for all wavenumbers. By making it into
a thin film, the perpendicular motion is quantized and tends to open a band gap. Earlier
theoretical estimates [30, 31] and experiments [32, 33] (see also [34]) show that thin-film

New Journal of Physics 9 (2007) 356 (http://www.njp.org/)
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TR breaking
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2

TI

d
TI
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FIG. 1. Schematic drawing of the proposed multilayer struc-
ture. Unhashed layers are the TI layers, while hashed layers
are the ordinary insulator spacers. Arrow in each TI layer
shows the magnetization direction. Only three periods of the
superlattice are shown in the figure, 20-30 unit cells can per-
haps be grown realistically.

bottom surface of each layer. k⊥ is the momentum in

the 2D surface BZ (we use h̄ = 1 units), σ is the triplet

of Pauli matrices acting on the real spin degree of free-

dom and τ are Pauli matrices acting on the which sur-
face pseudospin degree of freedom. The indices i, j label

distinct TI layers. The second term describes exchange

spin splitting of the surface states, which can be induced,

for example, by doping each TI layer with magnetic im-

purities, as has been recently demonstrated experimen-

tally [10]. The remaining terms in Eq.(2) describe tun-

neling between top and bottom surfaces within the same

TI layer (the term, proportional to ∆S), and between

top and bottom surfaces of neighboring TI layers (terms,

proportional to ∆D). Longer-range tunneling is assumed

to be negligible. We will regard m and ∆S,D as tunable

parameters and study the phase diagram of Eq.(2) as a

function of these parameters.

Let us initially assume that the spin splitting is ab-

sent, i.e. set m = 0. Diagonalizing Eq.(2) one finds the

following band dispersion:

�2k± = v2F (k
2
x + k2y) +∆2

(kz), (3)

where ∆(kz) =
�
∆2

S +∆2
D + 2∆S∆D cos(kzd), and d is

the superlattice period (i.e. TI layer plus spacer layer

thickness) in the growth (z) direction. This bandstruc-

ture is fully gapped when |∆S | �= |∆D|, but contains

Dirac nodes when ∆S/∆D = ±1. The nodes are lo-

cated at kz = π/d when ∆S/∆D = 1 and at kz = 0

when ∆S/∆D = −1 (kx = ky = 0 always). While both

cases are possible, we will assume the former for concrete-

ness and will take both tunneling matrix elements to be

positive (this choice does not affect any of our results).

Expanding the band dispersion near the Dirac point at

kx = ky = 0, kz = π/d to leading order in the momentum

one obtains:

�2k± = v2F (k
2
x + k2y) + ṽ2F k

2
z , (4)

where ṽF = d
√
∆S∆D. The momentum-space Hamilto-

nian near the Dirac node has the form:

H(k) = vF τ
z
(ẑ × σ) · k+ ṽF τ

ykz, (5)

TI

Ins

ΔS

ΔD

QAH

Ins

Ins

Weyl
semimetal

ΔS

ΔD

m

m

0000

(a) m=0 (b) m≠0

FIG. 2. (Color online) Phase diagrams for (a) m = 0 and
(b) m �= 0. In (a), the red line represents the phase bound-
ary between topological insulator (TI) and ordinary insulator
(Ins). In (b), due to TR symmetry breaking, the distinction
between topological and ordinary insulators is moot, so the TI
in (a) has been converted to Ins. QAH denotes the quantum
anomalous Hall phase.

which can be brought to a block-diagonal form, explic-

itly revealing a pair of two-component Weyl fermions

with opposite chirality, by a π/2 rotation around the x-
axis in the pseudospin space. Alternatively, in total this

is a conventional 4-component massless Dirac fermion.

As discussed above, since the two Weyl fermions are lo-

cated at the same point in momentum space, they are

topologically unstable. Any perturbation, for example

any deviation of the ratio ∆S/∆D from unity, immedi-

ately eliminates the degenerate Dirac node and produces

a fully gapped spectrum. With m = 0, the massless

Dirac point can be understood [5] as a critical point be-

tween topological (∆D > ∆S) and ordinary (∆D < ∆S)

insulators with both inversion and time-reversal symme-

try preserved (see Fig. 2a). To produce a topologically

stable phase with 3D Dirac nodes, the nodes have to be

separated in momentum space. As mentioned above, this

can generally be accomplished by breaking either TR or

I symmetries and there are in principle many ways to do

this. Here we will focus on one particular way, which is

perhaps the simplest from the point of view of a practi-

cal realization. Namely, as already mentioned above, we

will assume that each TI layer is doped with magnetic

impurities, producing a ferromagnetically-ordered state

within each layer, with magnetization along the growth

direction of the heterostructure. This leads to spin split-

ting of the surface states of magnitude m, described by

the second term in Eq.(2). The band dispersion is now

given by:

�2k± = v2F (k
2
x + k2y) + [m±∆(kz)]

2 . (6)

This dispersion has two nondegenerate Dirac nodes, sepa-

rated along the z-axis in momentum space, with locations

given by kz = π/d± k0, where:

k0 =
1

d
arccos

�
1− (m2 − (∆S −∆D)

2
)/2∆S∆D

�
. (7)

Δs

Δd

m = exchange energy

TI



TR breaking

• Dope with magnetic impurities (already 
achieved in Bi-based TIs)

Δs

Δd

m = exchange energy

kz

k0

+

-

TI



TR breaking

• Dope with magnetic impurities (already 
achieved in Bi-based TIs)

Δs

Δd

m = exchange energy

kz

k0

+

-

TI Bµ(k) =
1

8π
�µνλd̂ · ∂ν d̂× ∂λd̂

∂µBµ(k) =
�

i

qiδ(k − ki)

“monopoles” of Berry curvature



Quantum Hall effect

H = vkxσ
x + vkyσ

y +m(kz)σ
zkz

m(kz)

c.f. Haldane 1988



Quantum Hall effect

H = vkxσ
x + vkyσ

y +m(kz)σ
zkz

m(kz)

σxy = 0

c.f. Haldane 1988



Quantum Hall effect

H = vkxσ
x + vkyσ

y +m(kz)σ
zkz

m(kz)

σxy =
e2

h

c.f. Haldane 1988



TR breaking

• Dope with magnetic impurities (already 
achieved in Bi-based TIs)

Δs

Δd

m = exchange energy

kz

k0

σxy =
e2

h

k0
2π

+

-

semi-quantum AHE

TI
c.f. Volovik, 2005



TR breaking

• Dope with magnetic impurities (already 
achieved in Bi-based TIs)

Δs

Δd

m = exchange energy

kz

k0

+

-

σµν =
e2

2πh
�µνλQλ

�Q =
�

i

�kiqi + �QRLV

in 
general

TI



TR breaking

• Dope with magnetic impurities (already 
achieved in Bi-based TIs)

Δs

Δd

m = exchange energy

TI

0.5 1.0 1.5
m
�S

0.2
0.4
0.6
0.8
1.0
Σxy

QAHE in finite multilayer



I breaking

TI

• Asymmetric heterostructure, or intrinsic I 
breaking

Δs

Δd

m = exchange energy

+V
-V

electrostatic potential asymmetry

�2k± = v2F (|k⊥| ± V )2 + |∆(kz)|2



I breaking

TI

• Asymmetric heterostructure, or intrinsic I 
breaking

Δs

Δd

m = exchange energy

+V
-V

electrostatic potential asymmetry

�2k± = v2F (|k⊥| ± V )2 + |∆(kz)|2

Naively gives nodal ring at 
critical point with Δs=Δd



I breaking

TI

• Asymmetric heterostructure, or intrinsic I 
breaking

Δs

Δd

m = exchange energy

+V
-V

electrostatic potential asymmetry

�2k± = v2F (|k⊥| ± V )2 + |∆(kz)|2

Need to include k-
dependence of Δs,Δd



I breaking

TI

• Asymmetric heterostructure, or intrinsic I 
breaking

Δs

Δd

m = exchange energy

+-

+ -

no AHE

kx

ky



I breaking

TI

• Asymmetric heterostructure, or intrinsic I 
breaking

Δs

Δd

m = exchange energy

+-

+-

kx

ky

Δs-ΔdTI NI

σxx σyy



Hg1-xCdxTe structures

• Checked this with semi-
realistic 10-orbital tight 
binding model for 
(Hg,Cd)Te superlattices 
with asymmetry

• Advantage: can be grown 
with very high quality

• Disadvantage: strain 
must be controlled

HgTe
CdTe



Hg1-xCdxTe structures

• Checked this with semi-
realistic 10-orbital tight 
binding model for 
(Hg,Cd)Te superlattices 
with asymmetry

• Advantage: can be grown 
with very high quality

• Disadvantage: strain 
must be controlled

5

the choice presented in Table III, the most general contribu-
tion to the Hamiltonian takes the form

HD = τx [βxky�σx + βykx�σy + βzkzσ
z] , (14)

where the coefficients β(l)
x,y,z are again to be determined from

a comparison with the full model. The reduced Hamiltonian
finally reads H = H0+HS+HD. It is a considerable simpli-
fication with respect to H , and it only contains seven parame-
ters that need to be extracted from the full model.

C. Conditions for robust band touching

Band touching between the HOB and the LUB occurs in
the full model when the two middle eigenvalues are equal in
the simplified model. It can be shown that for a 4 × 4 ma-
trix of the form H, this is only possible if the direction of the
vector �B = (βxky� ,βykx� ,βzkz) lies halfway between the di-
rections of the vectors �A(1,2) = (α(1,2)

x kx� ,α(1,2)
y ky� , 0). The

two bands then cross each other as |�k| is increased without
changing the direction of �k, whereas anti-crossing happens
otherwise. Since the above condition requires the three vec-
tors to lie in the same plane, the third component of �B has to
vanish. Due to βz �= 0 in general, we find that robust band
touching can only occur in the kz = 0 plane.

Restricting our attention to this plane simplifies the problem
because �A(1,2) and �B become 2D vectors. If we change the
ratio ky�/kx� gradually from 0 to ∞, the ratios of the corre-
sponding components in �A(1,2) change in the same direction,
while those in �B change in the opposite direction between 0
and ±∞. This means that whether band touching happens at
any �k is determined entirely by the signs of the different pa-
rameters. Since we always choose α(1,2)

x,y > 0, the condition
becomes straightforward: band touching occurs if and only if
βx and βy have the same sign.

Let us now consider the special case of the symmetric po-
tential with δ0 = 0. By repeating the symmetry considerations
in Section II B and taking into account the additional four-fold
roto-reflection symmetry around the z axis, we find that the
seven parameters from the full model are no longer indepen-
dent because α(1,2)

x = α(1,2)
y and βx = −βy . This shows that

band touching can only occur in this scenario if at least one of
these parameters vanishes. However, the corresponding band
touching is not robust because it requires the fine-tuning of
a parameter. We conclude that robust band touching requires
the asymmetry characterized by δ0 �= 0, and expect that it
becomes easier to observe as U0 and δ0 increase.

D. The Weyl semimetal phase

The detailed behavior of the system is determined by how
the seven coefficients from the full model depend on the ex-
ternal parameters. Since this dependence is affected by the

complexity of the full model, its understanding requires a nu-
merical treatment. In perspective of this, we numerically in-
vestigate the phenomenon of robust band touching in the func-
tion of the layer thicknesses N1,2, the strain �0 ≡ �(HgTe) in
the multilayer structure, the amplitude U0 of the superlattice
potential, and the asymmetric displacement δ0.

We first consider the dependence on �0. If U0 �= 0 and
δ0 �= 0, there is a range in �0 close to zero where band touch-
ing is observed. This band touching is robust because it re-
mains intact for an infinitesimal change in any of the external
parameters �0, U0, and δ0. The upper and lower limits of the
range are functions of U0 and δ0 as illustrated in Fig. 2, and
we verify the expectation from Section II C that the range in-
creases with both U0 and δ0. For the reasonable values of
U0 ∼ 0.1 eV and δ0 ∼ a/2, this range is ∆�0 ∼ 0.002.
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FIG. 2. Critical strains �0 against U0 at constant δ0 = a/2 (left) and
against δ0 at constant U0 = 0.1 eV (right). The phase boundaries
separate three phases: the normal insulator (NI), the topological in-
sulator (TI), and the Weyl semimetal (W). The layer thicknesses are
N1 = N2 = 4 in both subfigures.

Now we turn our attention to the layer thicknesses. Keeping
the HgTe thickness N1 = 4 constant and increasing the CdTe
thickness N2 between 4 and 8 reveals that such an increase
decreases ∆�0. This is understandable because δ0 becomes
smaller with respect to the superlattice periodicity. Keeping
the CdTe thickness N2 = 4 constant and increasing the HgTe
thickness N1 between 3 and 7 shifts the range in �0 towards
more negative values. By arguing on physical grounds that
the system is in the NI phase when the HgTe layers are thin
and in the TI phase when the HgTe layers are thick, we can
distinguish between the NI and TI phases around the phase
with robust band touching in between.

To conclude that this phase is indeed a Weyl semimetal, it
needs to satisfy one more condition: the lack of band overlap.
Even if there is robust band touching between the HOB and
the LUB, the band structure becomes metallic when the high-
est overall energy of the HOB is larger than the lowest overall
energy of the LUB. It is an empirical observation that band
overlap never occurs when �0 is sufficiently positive, while it
always occurs when �0 is sufficiently negative. The boundary
between the Weyl semimetal phase and the metallic phase is
at �0 = 0 in the limit of U0 → 0 or δ0 → 0, while it becomes
slightly negative at larger values of U0 and δ0. In particular,
the boundary is always at |�0| < 0.002 in the reasonable cases
of U0 ≤ 0.2 eV and |δ0| ≤ a/2.

The phase diagram of the system against the strain �0 and
the HgTe thickness N1 is presented in Fig. 3. Since its bound-
aries are interpolated from only 5 points corresponding to in-
teger values of N1, the phase diagram is only correct on the

st
ra

in

asymmetry

6

qualitative level. Nevertheless, it provides useful guidelines

for the realization of the Weyl semimetal phase in this multi-

layer structure. The strain �0 has to be positive to avoid band

overlap but not too large because that would be hard to achieve

experimentally. This gives a restriction on the thickness of the

HgTe layers: the ideal dimensionless thickness of 4 ≤ N1 ≤ 5
corresponds to an actual thickness of 2 nm < d1 < 3 nm,

which is on the border of experimental reasonability.
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Ε
0

FIG. 3. Phase diagram of the system against the strain �0 and the

HgTe thickness N1. The other parameters are constant: U0 = 0.2
eV, δ0 = a/2, and N2 = 4. The phase boundaries separate four

phases: the normal insulator (NI), the topological insulator (TI), the

band overlap metal (M), and the Weyl semimetal (W).

Finally, we discuss the arrangement of the Weyl points in

the Weyl semimetal phase. There are 4 Weyl points which are

related to each other by the symmetries of the system. As �0
is gradually increased, and the transition from the NI phase

to the TI phase happens through a Weyl semimetal, the Weyl

points first appear at the kx� = 0 line, move on approximately

circular curves, and finally disappear at the ky� = 0 line. This

is in perfect agreement with the corresponding arrangement

for the superlattice model in Section I D. Since the two models

obey the same symmetries, we expect that their characteristics

governed by low-energy physics are equivalent.

III. PHYSICAL CHARACTERISTICS

A. Conductivity anisotropy

It was shown in Ref. [1] that the Weyl semimetal phase is

metallic in the sense that its conductivity is finite in the limit

of zero temperature. This is a characteristic experimental fea-

ture, especially in contrast with the neighboring NI and TI

phases. In this subsection, we demonstrate that the finite con-

ductivity at T → 0 becomes highly anisotropic when the Weyl

semimetal phase occurs due to broken inversion symmetry.

To achieve this, we consider the model in Section I D, and

derive an expression for the conductivity tensor in the limit of

small δT − δN . When the condition of the Weyl semimetal

phase is satisfied, there are 4 Weyl points at angles θ1 = θ,

θ2 = −θ, θ3 = π + θ, and θ4 = π − θ. Due to the convention

0 ≤ θ ≤ π/2 we find that θ gradually decreases from π/2 to

0.0 1.0

0.0

1.0

NI TIW

Μ

Σ ! Σ
0

ΣxxΣyy

FIG. 4. (Color online) Variation in the principal conductivities σxx

(red solid line) and σyy (blue dashed line) during a transition between

the normal insulator (NI) and the topological insulator (TI) phases

through the Weyl semimetal phase (W). The transition parameter is

µ = v2F (∆
(0)
N −∆(0)

T )/[V 2(δT − δN )], while the conductivities are

measured in units of σ0 = 2e2v2F /3πγ.

0 during a transition from the NI phase to the TI phase. For

each Weyl point labeled by l, the conductivity tensor in the

(x, y, z) basis takes the form [1]

σl =
e2

6πγ




v2r cos

2 θl v2r cos θl sin θl 0

v2r cos θl sin θl v2r sin
2 θl 0

0 0 v2z



 , (15)

where we exploit vt � vr relating the effective Fermi veloci-

ties. Adding the contributions of all 4 Weyl points, there is a

cancelation in the off-diagonal terms, and we obtain

σ =
4�

l=1

σl =
2e2

3πγ




v2r cos

2 θ 0 0

0 v2r sin
2 θ 0

0 0 v2z



 . (16)

As the transition between the NI and the TI phases takes place

through the Weyl semimetal phase, the conductivity in the z
direction is approximately a constant, while those in the x and

y directions change in a complementary fashion. In particular,

σxx vanishes on the NI side, while σyy vanishes on the TI

side of the Weyl semimetal phase (see Fig. 4). Such a strong

conductivity anisotropy that depends sensitively on the system

parameters is a potential hallmark of a Weyl semimetal with

broken inversion symmetry.

B. Surface states

Since Weyl semimetals are topological phases of matter,

they are characterized by topological surface states [1]. In

this subsection, we consider the model in Section I D, and

demonstrate the existence of these surface states. Although

we choose a specific situation and also make a couple of sim-

plifying assumptions in the following, the topological nature

of the surface states ensures that they exist under more generic

circumstances as well.

In our specific situation, the interface is in the {x, z} plane,

therefore any spatial variation is in the y direction only. This

HgTe thickness

st
ra

in



Graphene-like Physics

• 2d graphene physics can already be 
achieved in HgTe quantum wells
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B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

Dirac peak at B=0

Peak width and mobilities comparable with/better than free standing graphene
Scattering mechanisms: probably mass fluctuations + Coulomb (fit is Kubo model)

L. Molenkamp: HgTe QWs are “better graphene”



“3d graphene”

• The transport behavior of 3d Dirac/Weyl 
fermions is subtle and interesting!

• Naive argument (no disorder or 
interactions):

• insulating?

Reσ(ω, T = 0) ∝ ω



With impurities

• Usually impurities induce elastic scattering 
that dominates at low T

• Here, Born approximation is valid 
(disorder is irrelevant in RG sense)

• Contrast graphene: higher order 
corrections induce non-zero scattering 
rate at zero frequency (SCBA)

1/τ ∼ uimpω
2

1/τ ∼ e
− c

uimp



With impurities

• Neutral impurities w/o interactions leads 
to non-zero DC conductivity

Reσ(ω, T ) ∝ σ0f(ω/T
2)

3

surface, not normal to the z-axis. For more details on
this we refer the reader to Ref. [9].

In the rest of this section we will focus on diagonal
transport characteristics of the Weyl semimetal, namely
its optical conductivity. Some of the results, presented
here, were quoted in [9], but not derived in detail. As we
will demonstrate, the frequency dependence of the opti-
cal conductivity of the Weyl semimetal is very unusual,
and can be used for experimental characterization of this
phase of matter.

To calculate the optical conductivity, we assume a
model with short-range impurity scattering potential of
the form:

V (r) = u0

�

a

δ(r− ra), (8)

where ra label the impurity positions. For simplicity we
will assume that the impurity potential is diagonal in
both the spin and the pseudospin indices. We will con-
sider a single Weyl fermion in the 3D BZ for simplicity:
generalization to any number of distinct Weyl fermions is
trivial, as they contribute additively to transport (we will
assume that the impurity potential does not mix Weyl
fermions at different points in the BZ). In the first Born
approximation, the impurity scattering rate is given by:

1

τ(�)
= −γ Im

�
d3k

(2π)3

�

λ

GR
λ (�,k) = 2πγg(�), (9)

where

GR
λ =

1

�− λvF k + iη
, (10)

is the retarded Green’s function of the Weyl fermion,
λ = ± labels the helicity of the positive and negative
energy Dirac cones, γ = u2

0ni, where ni is the impurity
concentration, and the density of states g(�) is given by:

g(�) =
�2

2π2v3F
. (11)

Thus 1/τ(�) ∼ �2 � �, which means that the conduc-
tivity can be calculated semiclassically, using Boltzmann
equation. Solving linearized Boltzmann equation with
the energy-dependent momentum relaxation rate (9) in
the standard way, we obtain:

Re σxx(ω) = −e2v2F
3

� ∞

−∞
g(�)

dnF (�)

d�

1/τ(�)

ω2 + 1/τ(�)2
,

(12)
where nF is the Fermi distribution function at temper-
ature T . Introducing dimensionless integration variable
x = �/2T and restoring explicit h̄, we obtain:

Re σxx(ω) =
e2v2F
6γh

� ∞

−∞
dx

x4 sech2(x)

x4 + (h3v3Fω/32π
2γT 2)2

,

(13)
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FIG. 1. (Color online). Optical conductivity of the Weyl

semimetal, in units of the DC conductivity σDC . The ω/T 2

ratio on the horizontal axis is in units of 32π2γ/h3v3F .

This gives a DC conductivity:

σDC =
e2v2F
3γh

, (14)

and a Drude-like peak in the optical conductivity, but
with a temperature-dependent width, scaling as T 2. This
is a very unusual property of the optical conductivity
in a metal and can be used to characterize the Weyl
semimetal phase experimentally.
The Drude peak also has a highly unusual shape, with

a divergent first derivative, as can be seen from Fig. 1.
This can be obtained explicitly from Eq. (13). The first
derivative of the optical conductivity with respect to the
frequency is given by:

dRe σxx(ω)

dω
= −e2v2Fω

3γh

�
h3v3F

32π2γT 2

�2

×
� ∞

−∞
dx

x4 sech2(x)

[x4 + (h3v3Fω/32π
2γT 2)2]2

. (15)

The integral above diverges when ω → 0 and at small
frequencies is dominated by the contribution near x = 0.
Then we can set sech(x) ≈ 1 and obtain:

Re σxx(ω) ≈
e2v2F
3γh



1− 1

8

�
ω v3Fh

3

2 γT 2



 . (16)

At high frequencies, on the other hand:

Re σxx(ω) ≈
7π4e2v2F
720γh

�
32π2γT 2

h3v3Fω

�2

. (17)

III. LINE NODE SEMIMETALS

In this section we will describe a realization, in the
same physical system of a TI multilayer, of a line-node
semimetal: a distinct topological semimetal phase, with
zeros in the spectrum, forming continuous lines in mo-
mentum space.

σ

σ0

ω

∝ T 2
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excited 
carriers

1/τ ∼ uimpω
2



With interactions

• Coulomb interactions are marginal - 
characterized by dimensionless fine 
structure constant α=e2/εvF

• Leads to strong scattering

• Then expect

1/τ ∼ α2max(ω, T ) � uimpω
2

power law 
insulatorσdc ∼ e2

�
�2

v3F

�
v2F τ ∼ kBT

α



Experiment?

• Experiments on Eu2Ir2O7 find “weak” 
insulator
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FIG. 1. Resistivity as a function of temperature at P = 2.06 to
12.15 GPa. The approximate location of TMI , corresponding
to a peak in the second derivative of ρ(T ), is indicated by
arrows for the three lowest pressure curves. The inset is an
expanded view of the higher pressure curves (P ≥ 7.88GPa).

ical pressure [9], however there are important differences
in detail. The main features of our data are summarized
in Fig. 2. Our phase diagram can be viewed as four quad-
rants, corresponding to four distinct regimes of electronic
transport, at high and low pressure and temperature.
In the top left quadrant (P < 6GPa, T ! 100K), the

system is an “incoherent metal” characterized by a neg-
ative ρ(T ) slope (Fig. 1). A broad MIT at TMI separates
the incoherent metallic phase from the “insulating” phase
(P < 6GPa, T " 100 K), characterized by a tempera-
ture dependent gap. Note that the resistivity does not
diverge at T → 0, however, ρ(0) shows a strong sample
dependence, so this behaviour may imply the existence of
conducting surface channels, impurity states in the bulk,
or small residual Fermi pockets.
In the top-right quadrant (P > 6GPa, T ! 100K), the

system is a “conventional metal” characterized by a posi-
tive ρ(T ) slope (Fig. 1, inset). A cross-over at Tmin sepa-
rates the conventional metal and the “diffusive metal”
(P > 6GPa, T " 100K), whose resistivity increases
with decreasing temperature in a non-Fermi liquid (NFL)
power law fashion (Fig. 1, inset).
At intermediate pressures, P = 6.06 and 7.88GPa, a

cross-over appears between the incoherent and the con-
ventional metallic phases at a temperature T ∗ > 100K at
which the negative ρ(T ) slope becomes positive (Fig. 3).
T∗ = 180 and 270K at P = 6.06 and 7.88GPa respec-
tively. At higher pressures, T ∗ seems to be pushed above
room temperature (Fig. 2).
Our phase diagram suggests a strong connection be-

tween the high and low temperature phases of Eu2Ir2O7:
the incoherent metal becomes insulating below TMI ; the
conventional metal crosses over to the diffusive metal
below Tmin; and the transition between the insulat-
ing and the diffusive metallic ground states at Pc =
6.06 ± 0.60GPa coincides with the appearance of the
coherent-incoherent cross-over at T ∗ > 100K.

FIG. 2. The phase diagram for Eu2Ir2O7 constructed from
our resistivity data. At low pressures, P < 6GPa, the fi-
nite temperature MIT is indicated by red squares. At high
pressures, P > 6GPa, the transition between conventional
and diffusive metallic states is indicated by blue circles. The
T ∗ cross-over is shown by orange triangles. All the lines are
guides to the eye. The quantum critical point (QCP) lies on
the P axis at Pc = 6.06± 0.60GPa. Notice the weak temper-
ature dependence of both TMI and Tmin.

To discuss our results, we start with the incoher-
ent metallic phase whose negative ρ(T ) slope is sup-
pressed by increasing pressure. Eu2Ir2O7 is located
right at the metal-insulator boundary in the R2Ir2O7 se-
ries. Gd2Ir2O7 is an insulator at all temperatures, while
Eu2Ir2O7 is the first compound in the series to support a
metallic phase at high temperatures. Metallic phases in
the vicinity of localization transitions are usually subject
to strong fluctuations in the spin, charge and orbital de-
grees of freedom, resulting in unconventional transport
properties. The negative ρ(T ) slope in the incoherent
metallic regime of Eu2Ir2O7 is likely to be the result of
incoherent scattering of electrons off spin and/or charge
fluctuations.
Since the residual resistivity of the incoherent metallic

phase is two orders of magnitude higher than the Ioffe-
Regel limit (ρ

IR
= 1.3 mΩ cm), the MIT at TMI cannot

be a simple disorder driven Anderson localization. In
fact, disorder wipes out the insulating phase and leaves
the system metallic at all temperatures [9]. Frustration
induced localization [13] may be relevant to the MIT in
the pyrochlore lattice of Eu2Ir2O7. The recent revelation
of a commensurate AFM order in Eu2Ir2O7 from µSR
measurements raises the possibility of a Slater transition
[14].
The broad peaks at T ∗ (Fig. 3) mark a coherent-

incoherent cross-over of the quasiparticle dynamics
generic to correlated oxides in proximity to a Mott transi-
tion [15, 16]. The T ∗ cross-over has not been observed in
the previous chemical pressure measurements by replac-
ing the R site with larger atoms. Moreover, it probably
cannot be realized by alloying the Eu site with larger
lanthanides either, because of the extreme sensitivity of
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FIG. 1. Resistivity as a function of temperature at P = 2.06 to
12.15 GPa. The approximate location of TMI , corresponding
to a peak in the second derivative of ρ(T ), is indicated by
arrows for the three lowest pressure curves. The inset is an
expanded view of the higher pressure curves (P ≥ 7.88GPa).

ical pressure [9], however there are important differences
in detail. The main features of our data are summarized
in Fig. 2. Our phase diagram can be viewed as four quad-
rants, corresponding to four distinct regimes of electronic
transport, at high and low pressure and temperature.
In the top left quadrant (P < 6GPa, T ! 100K), the

system is an “incoherent metal” characterized by a neg-
ative ρ(T ) slope (Fig. 1). A broad MIT at TMI separates
the incoherent metallic phase from the “insulating” phase
(P < 6GPa, T " 100 K), characterized by a tempera-
ture dependent gap. Note that the resistivity does not
diverge at T → 0, however, ρ(0) shows a strong sample
dependence, so this behaviour may imply the existence of
conducting surface channels, impurity states in the bulk,
or small residual Fermi pockets.
In the top-right quadrant (P > 6GPa, T ! 100K), the

system is a “conventional metal” characterized by a posi-
tive ρ(T ) slope (Fig. 1, inset). A cross-over at Tmin sepa-
rates the conventional metal and the “diffusive metal”
(P > 6GPa, T " 100K), whose resistivity increases
with decreasing temperature in a non-Fermi liquid (NFL)
power law fashion (Fig. 1, inset).
At intermediate pressures, P = 6.06 and 7.88GPa, a

cross-over appears between the incoherent and the con-
ventional metallic phases at a temperature T ∗ > 100K at
which the negative ρ(T ) slope becomes positive (Fig. 3).
T∗ = 180 and 270K at P = 6.06 and 7.88GPa respec-
tively. At higher pressures, T ∗ seems to be pushed above
room temperature (Fig. 2).
Our phase diagram suggests a strong connection be-

tween the high and low temperature phases of Eu2Ir2O7:
the incoherent metal becomes insulating below TMI ; the
conventional metal crosses over to the diffusive metal
below Tmin; and the transition between the insulat-
ing and the diffusive metallic ground states at Pc =
6.06 ± 0.60GPa coincides with the appearance of the
coherent-incoherent cross-over at T ∗ > 100K.

FIG. 2. The phase diagram for Eu2Ir2O7 constructed from
our resistivity data. At low pressures, P < 6GPa, the fi-
nite temperature MIT is indicated by red squares. At high
pressures, P > 6GPa, the transition between conventional
and diffusive metallic states is indicated by blue circles. The
T ∗ cross-over is shown by orange triangles. All the lines are
guides to the eye. The quantum critical point (QCP) lies on
the P axis at Pc = 6.06± 0.60GPa. Notice the weak temper-
ature dependence of both TMI and Tmin.

To discuss our results, we start with the incoher-
ent metallic phase whose negative ρ(T ) slope is sup-
pressed by increasing pressure. Eu2Ir2O7 is located
right at the metal-insulator boundary in the R2Ir2O7 se-
ries. Gd2Ir2O7 is an insulator at all temperatures, while
Eu2Ir2O7 is the first compound in the series to support a
metallic phase at high temperatures. Metallic phases in
the vicinity of localization transitions are usually subject
to strong fluctuations in the spin, charge and orbital de-
grees of freedom, resulting in unconventional transport
properties. The negative ρ(T ) slope in the incoherent
metallic regime of Eu2Ir2O7 is likely to be the result of
incoherent scattering of electrons off spin and/or charge
fluctuations.
Since the residual resistivity of the incoherent metallic

phase is two orders of magnitude higher than the Ioffe-
Regel limit (ρ

IR
= 1.3 mΩ cm), the MIT at TMI cannot

be a simple disorder driven Anderson localization. In
fact, disorder wipes out the insulating phase and leaves
the system metallic at all temperatures [9]. Frustration
induced localization [13] may be relevant to the MIT in
the pyrochlore lattice of Eu2Ir2O7. The recent revelation
of a commensurate AFM order in Eu2Ir2O7 from µSR
measurements raises the possibility of a Slater transition
[14].
The broad peaks at T ∗ (Fig. 3) mark a coherent-

incoherent cross-over of the quasiparticle dynamics
generic to correlated oxides in proximity to a Mott transi-
tion [15, 16]. The T ∗ cross-over has not been observed in
the previous chemical pressure measurements by replac-
ing the R site with larger atoms. Moreover, it probably
cannot be realized by alloying the Eu site with larger
lanthanides either, because of the extreme sensitivity of
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Donors

• This is likely related to combined effect of 
small carrier density and Coulomb 
scattering from donors - O vacancies

• Follow ideas of calculation for graphene but 
for 3d

c.f. Nomura+MacDonald, 2007



Donors

• Screening

• Scattering

c.f. Nomura+MacDonald, 2007

V (q) ∼ e2

q2 + ξ−2 ξ−2 ∼ αk2F

τ−1 ∼ n

�
d3q δ(�q − �F )|V (k + q)|2v(k · q)

∼ e2kFα

�
d cos θ 1−cos2 θ

[2(1+cos θ)+α]2



Donors

• Conductivity

• Mean free path

c.f. Nomura+MacDonald, 2007

σ ∼ e2
�
k2F
vF

�
v2F τ

∼ f(α)e2n1/3

σ ∼ e2kF · kF � kF � ∼ f(α)

f(α) ∼ 1 +
1

α2 lnα



Conclusions

• Weyl semimetals occur in the same sorts of 
materials as topological insulators (and 
others!), if inversion or time reversal are broken

• They can be designed as intermediate states 
between certain TIs and NIs

• They have unique transport properties and 
surface states, and in some respects are 3d 
analogs of graphene, with interactions and 
defects playing crucial roles


