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Weyl Fermion

® Massless Dirac fermion with fixed
handedness

® described by a 2-component spinor unlike
4-component (spint+particle/hole) Dirac
spinor



Level repulsion

® von Neumann and
Wigner, 1929

® [n QMs, 3 parameters
must be tuned to
make 2 levels cross

® |ed to a whole field of
statistics of energy
levels, quantum
chaos,...
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Weyl points in band
theory

® |n 3d band structures with non-degenerate
bands - lacking either inversion or TR - this
happens at isolated points

® the non-degeracy of course requires
breaking spin-rotation symmetry -
typically by SOC

For a crystal without an inversion center, the

IIIIIIIIIIIIII ; energy separation 0E(k-+x) in the neigborhood
Aceidentl Degeneraey n the mnergy Bnas ot st of 3 point k where contact of equivalent mani-
B folds occurs may be expected to be of the order

of x as k—0, for all directions of «.



anlrzO7 Pyrochlores

® Series of materials shows systematic MITs

D.Yanagashima,Y. Maeno, 2001
® |r* has A=0.5eV S

200

K. Matsuhira et al, 201 |

0 1 L | | 1
1 1.02 1.04 1.06 1.08 11 112 1.14
L3+ ionic radius (A)



Exotic Possibilities

® TJopological Mott Insulator?

U/t Magnetic Order

D. Pesint+LB, 2010




Exotic Possibilities

® TJopological Mott Insulator?

U/t Magnetic Order

D. Pesint+LB, 2010

28 3.3 A/t
Probably not: commensurate
magnetic order seen in PSR

S.Zhao et al, 201 |



Weyl semimetal?
X.Wan et al, 201 |

® | DA+U calculations find Weyl state!
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® They also pointed out very unusual surface
states



Fermi Arcs

® On most surfaces, metallic Fermi surfaces
which are not closed - “‘arcs”’ - terminate at
the projections of the Weyl points

24 Weyl points
predicted in Y2lr,O7



Heterostructuring

Can we engineer Weyl points

in a heterostructure!

® A:yes! And you can do it with topological
insulators
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T1 to NI transition

Tl NI

in between is a

(quantum) phase

transition

strong ' Tunneling
tunneling We can turn this across Tl
across the critical point into the slabs kills the =
NI “heals” Tl Weyl semimetal by 3dTI I -
breaking(ljor TR A
S. Murakami, 2007 L




TR breaking

® Dope with magnetic impurities (already

achieved in Bi-based Tls)
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model just in terms
of surface states



TR breaking

® Dope with magnetic impurities (already

achieved in Bi-based Tls)
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TR breaking

® Dope with magnetic impurities (already

achieved in Bi-based Tls)
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TR breaking

® Dope with magnetic impurities (already
achieved in Bi-based Tls)
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A, ¢ Tl ks

TR breaking

® Dope with magnetic impurities (already
achieved in Bi-based Tls)

m = exchange energy



TR breaking

® Dope with magnetic impurities (already
achieved in Bi-based Tls)
1

As < Tl kz | Buk)= 8—7r€“w‘d - 0,d x O\d
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{ 0,B,(k) = Z qio(k — k)

m = exchange energy “monopoles” of Berry curvature



Quantum Hall effect

c.f. Haldane 1988
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Quantum Hall effect

c.f. Haldane 1988

K, H = vkyo" +vky,0Y +m(k,)o”
/l/m(kz)
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TR breaking

® Dope with magnetic impurities (already
achieved in Bi-based Tls)
c.f.Volovik, 2005
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TR breaking

® Dope with magnetic impurities (already
achieved in Bi-based Tls)

Aqg i

m = exchange energy

In
general
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TR breaking

® Dope with magnetic impurities (already
achieved in Bi-based Tls)

m = exchange energy

QAHE in finite multilayer



| breaking

® Asymmetric heterostructure, or intrinsic |

breaking
A € Tl

Na

m = exchange energy

electrostatic pot

ential asymmetry

ehs = Vi(lkL]
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| breaking

® Asymmetric heterostructure, or intrinsic |

breaking
A € Tl

Na

m = exchange energy

electrostatic potential asymmetry

err = Vp(lkL] £ V)* + A7

Naively gives nodal ring at
critical point with A=Ay



| breaking

® Asymmetric heterostructure, or intrinsic |

breaking
A € Tl

Na

m = exchange energy

electrostatic potential asymmetry

err = Vp(lkL] £ V)* + A7

Need to include k-
dependence of A,Aq
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Hg.xCdxTe structures

® Checked this with semi-

realistic 10-orbital tight HgTe

binding model for CdTe

(Hg,Cd)Te superlattices

with asymmetry

® Advantage: can be grown

with very high quality

® Disadvantage: strain
must be controlled



Hg | -xCdee

® Checked this with semi-
realistic 10-orbital tight
binding model for
(Hg,Cd)Te superlattices
with asymmetry

® Advantage: can be grown
with very high quality

® Disadvantage: strain
must be controlled
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Graphene-like Physics

® )d graphene physics can already be
achieved in HgTe quantum wells

80k .
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Peak width and mobilities comparable with/better than free standing graphene
Scattering mechanisms: probably mass fluctuations + Coulomb (fit is Kubo model)

L. Molenkamp: HgTe QWs are “better graphene”



“3d graphene”

® The transport behavior of 3d Dirac/VVeyl
fermions is subtle and interesting!

® Naive argument (no disorder or
interactions):

Reo(w, T =0) x w

® insulating?



With impurities

® Usually impurities induce elastic scattering
that dominates at low T

® Here, Born approximation is valid
(disorder is irrelevant in RG sense)

1/7 ~ uimpr

® Contrast graphene: higher order
corrections induce non-zero scattering

rate at zero frequency (SCBA)  1/r ~e “mr



With impurities

® Neutral impurities w/o interactions leads
to non-zero DC conductivity

Reo(w,T) o oo f(w/T?)

. '
///

excited
carriers

1/7 ~ uimpr



With interactions

® Coulomb interactions are marginal -
characterized by dimensionless fine

structure constant X=e2/€vg

® | eads to strong scattering

2 2

/7 ~ a*max(w, T) > Ujmpw

® Then expect

o [ €€\ o kT  power law
Odc 7~ € 3 VpT ~ — .
vl o insulator



Experiment!?

9

® Experiments on Eu2lr,O7 find “weak
insulator
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Donors

® This is likely related to combined effect of
small carrier density and Coulomb
scattering from donors - O vacancies

® Follow ideas of calculation for graphene but
for 3d

c.f. Nomura+MacDonald, 2007



Donors

® Screening

2
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® Scattering

7~ n/dsq d(eq — €r)|V (K +q)*v(k - q)
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c.f. Nomura+MacDonald, 2007



Donors

® Conductivity
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® Mean free path
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c.f. Nomura+MacDonald, 2007




Conclusions

® Weyl semimetals occur in the same sorts of
materials as topological insulators (and
others!), if inversion or time reversal are broken

® They can be designed as intermediate states
between certain Tls and Nls

® They have unique transport properties and
surface states, and in some respects are 3d
analogs of graphene, with interactions and
defects playing crucial roles



