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Abstract

Wright’s F-statistics, and especially Fs, provide important insights into the evolutionary processes
that influence the structure of genetic variation within and among populations, and they are among
the most widely used descriptive statistics in population and evolutionary genetics. Estimates of Fgr
can identify regions of the genome that have been the target of selection, and comparisons of Fs; from
different parts of the genome can provide insight into the demographic history of those populations.
For these reasons and others, Fs; plays a central role in population and evolutionary genetics, and Fsr
has wide applications in fields from disease association mapping to forensic science. This article
clarifies how Fs; is defined, how it should be estimated, how it is related to similar statistics, and how
estimates of Fsr should be interpreted.

Nearly every plant or animal species includes many partially isolated populations. Whether as a result of
GENETIC DRIFT or divergent natural selection, such populations become genetically differentiated over
time. For example, recent analyses based on more than 370 SHORT TANDEM REPEAT LocI® (microsatellites)
and 600,000 SNPs” suggest that only 5-10% of human genetic diversity is accounted for by genetic
differences among populations from major geographical regions. These results indicate that there are
far more similarities among geographically distinct human populations than differences. But what does
it really mean to say that 5-10% of diversity is accounted for by differences among populations? And
how is that figure derived? The short answer is that the estimate of Fsy among human populations
sampled from these regions is 0.05 for the microsatellite data and 0.10 for the SNP data but that answer



helps only if you understand what Fsris and how it is estimated from data, and what it means to get two
different estimates for the same set of populations when we use different genetic markers.

Working independently in the 1940s and 1950s Sewall Wright® and Gustave Malécot” introduced F-
statistics as a tool for describing the partitioning of genetic diversity within and among populations. In
his remarkable 1931 paper,” Wright had already provided a comprehensive account of the processes
leading to genetic differentiation among populations. He showed that the amount of genetic
differentiation among populations has a predictable relationship to the rates of important evolutionary
processes (migration, mutation, and drift). Large populations between which there is much migration,
for example, tend to be little differentiated whereas small populations between which there is little
migration tend to be greatly differentiated. Fsris a convenient measure of this differentiation, and as a
result Fsr and related statistics are among the most widely used descriptive statistics in population and
evolutionary genetics.

But Fsris more than a descriptive statistic and measure of genetic differentiation. Fsris directly related
to the VARIANCE in allele frequency among populations and conversely to the degree of resemblance
among individuals within populations. If Fsris small, it means that allele frequencies within each
population are very similar; if it is large, it means that allele frequencies are very different. If natural
selection favors one allele over others at a particular locus in some populations, Fsr at that locus will be
larger than at loci where among-population differences are purely a result of genetic drift. Thus,
genome scans that compare single-locus estimates of Fsr with the genome-wide background may
identify regions of the genome that have been subjected to DIVERSIFYING SELECTION.®® Alternatively, if the
demographic history of populations affects genetic variation on sex chromosomes differently from that
on autosomes, then estimates of Fsr derived from sex-chromosome markers may be very different from
those derived from autosomal markers.’

Estimates of Fsrare also important in association mapping of human disease genes and in forensic
science. The same evolutionary processes that increase differentiation among populations also increase
the similarity among individuals within populations. Thus, Fsy must be considered when allele
frequencies are compared between “cases” and “controls” to ensure that differences between them are
greater than expected by chance. Similarly, the match probability between a suspect and a crime scene
sample is specific to the set of people who might reasonably be expected to be sources of the sample.
But defining this set is difficult, so a “6 correction” is applied to population frequencies to accommodate
variation among subpopulations. The “8 correction” depends on the value of Fsr.

In this review we discuss how Fsris defined, describe approaches for estimating it from data, and
illustrate several ways in which analysis of Fsr can provide insight into the genetic structure and
evolutionary dynamics of populations. In addition, we discuss four statistics that are related to Fsr (Gsr,
Rs7, Dst, and Qs7), clarify the differences among them, and recommend when each should be used.

These additional statistics partition genetic diversity into within- and among-population components. Of
the four, Gsris most closely related to Fs7, and it has been widely used as a measure of genetic
differentiation among populations. As we describe below, however, Gsris an appropriate measure of



genetic differentiation only when the contribution of genetic drift to among population differences is
not of interest. As a result, the contexts in which it is useful may be relatively limited. In contrast, Rsr (for
microsatellite data) and @ (for molecular sequence data) may be useful in a wide variety of contexts
where it is important to account for the mutational “distances” among alleles, and Qsr may be useful in
analysis of continuously varying traits.

Wright® introduced Fsr as one of three interrelated parameters used to describe the genetic structure of
diploid populations: Fj;, the correlation between gametes within an individual relative to the entire
population, F;s, the correlation between gametes within an individual relative to the subpopulation in
which it occurs, and Fsr, the correlation between gametes chosen randomly from within the same
subpopulation relative to the entire population. We describe here how these parameters are defined in
terms of the departure of genotype frequencies from Hardy-Weinberg expectations.

It may be easiest to understand F-statistics if we first think of statistics that describe departures from
Hardy-Weinberg expectation. To make the discussion more concrete, consider two populations
segregating for two alleles at a single locus. Label the frequency of allele A; in population 1 p;, and its
frequency in population 2 p,. Also label the frequency of genotype A;A; in the first population x;; ;, of
genotype AjA; in the first population x;5 5, and so on. Then the genotype frequencies in the two
populations are given by the following set of equations:

Xig = p12 + fip(d=p)
KXoy = 2p (1= p)- 1)
Xy == P1)2 + fip(-p)

Xip = p; + fop,(1=-p,)
X, =2p,(1=p,)(1-f,)
Xypp=(1- p2)2 + [0, (1= p,)

Here f; and f, are what are often referred to as the within-population inbreeding coefficient, but that
term can be misleading. In practice, f is a measure of the frequency of heterozygotes compared to that
expected when genotypes are in Hardy-Weinberg proportions. Inbreeding leads to a deficiency of
heterozygotes relative to Hardy-Weinberg expectations, so when there is inbreeding in both
populations, f; and f, will be positive. But if individuals avoid inbreeding or if there is HETEROZYGOTE
ADVANTAGE, then heterozygotes will be more common than expected under Hardy-Weinberg and f; and
f> will be negative. In short, f; and f, are measures of how different genotype proportions within
populations are from Hardy-Weinberg expectations, with positive values indicating a deficiency of
heterozygotes and negative values indicating an excess.

Now consider genotype frequencies in a combined sample consisting of a proportion c of individuals
from the first population and a proportion 1-c of individuals from the second population. Just as



genotype frequencies in each population differ from Hardy-Weinberg expectations based on the allele
frequency in each population, genotype frequencies in the combined sample will differ from Hardy-
Weinberg expectations based on the average allele frequency. Specifically:

X, ="+ Fr(l-m)
x, =27(1-7)(1-F) ,

Xy, =(1=m)* + Fr(1 - )

where 7w =cp;+ (1-c)p, is the average allele frequency for A; in the combined sample and F is the total
inbreeding coefficient.'’ A little algebra shows that F can be expressed as

1-F)=01-Had-6 ., (1)

where f = c¢f; + (1-c)f, is the average within-population departure from Hardy-Weinberg expectations
and Bis a measure of allele frequency differentiation among populations (see Box 1 for a summary of
the mathematical notation used in this paper). More generally, we can define fas

0_2

=2 (2
a(l-m) 2)

where ¢, is the variance in allele frequency among populations. (1-7) is the variance in allelic state for
an allele chosen randomly the entire population, so it may be regarded as a measure of genetic diversity
in the entire population. Thus, 8 can be interpreted as the proportion of genetic diversity that is due to

allele frequency differences among populations.

Wright first developed these ideas in the context of a model of discrete populations with each
population having the same size and receiving immigrants from all other populations at the same rate,’
but the statistical argument just developed applies to any partitioning in which populations differ in
allele frequency, whether or not those populations are discrete.!! Thus, when we use @ as a purely
descriptive statistic describing the partitioning of genetic diversity among “populations”, we need make
no assumptions about whether the “populations” we sample are discrete or about the evolutionary
processes that may have led to differences among them. Nonetheless, other methods of analysis may be

more informative in continuously-distributed populations.****

Using a different approach, Cockerham®®*®

showed that f, 6, and F can also be thought of as intraclass
correlation coefficients. Using this approach he showed that fis the correlation between alleles within
individuals relative to the population to which they belong, @is the correlation between alleles within
populations relative to the combined population, and F is the correlation between alleles within an
individuals relative to the combined population. These are precisely the definitions Wright gave for Fs,
Fs7, and Fy;, respectively. In short, f and F;s can be thought of either as the average within-population
departure from Hardy-Weinberg frequencies or as the correlation between alleles within individuals
relative to the population to which they belong. 8 and Fsr can be thought of either as the proportion of

genetic diversity due to allele frequency differences among populations or as the correlations between



alleles within populations relative to the entire population. F and F;; can be thought of either as the
departure of genotype frequencies in the combined sample from Hardy-Weinberg expectations or as the
correlation between alleles within individuals relative to the combined sample.

In Wright’s notation, subscripts refer to a comparison between levels in a hierarchy: IS refers to
“individuals within subpopulations”, ST to “subpopulations within total”, and IT to “individuals within
total.”* The hierarchy in (1) may be extended indefinitely to accommodate such structure. For example,
Wright'® describes variation in the frequency of the Standard chromosome in Drosophila pseudoobscura
in the western United States at the level of demes (local populations: D), regions (groups of several
demes: R), subdivisions (groups of several regions: S), and the total range (T). The corresponding F-
statistics are related in the same multiplicative way as f, 6, and F:

(1-Fpr) = (1-Fpr)(1-Frs)(1-Fs7)

In this scheme, Fpr measures the amount of differentiation among demes within region, Fgs
differentiation among regions within subdivisions, and Fsr among subdivisions within the total range.

Returning to the examples of genetic differentiation among human populations mentioned in the
introduction, we can now see that an estimate for Fsy or 8 of 0.05 (from microsatellites) and 0.10 (from
SNPs) suggests that only 5-10% of human genetic diversity is a result of genetic differentiation among
human populations. What may be surprising is that both estimates are derived from the same set of
populations — this indicates that the amount of genetic differentiation among human populations is
greater at SNP loci than at microsatellites.

When Wright and Malécot introduced F-statistics, they did not distinguish between the parameters
defined in the preceding section and the estimates of those parameters that we make from data. Not
making this distinction is similar to confusing the mean height of the human population with an estimate
of the mean height calculated from a sample of the population. Estimates of height must account for the
variation associated with taking a finite sample from a population. New samples from the same
population will have different characteristics. We refer to this variation as statistical sampling (Box 2)."’
In the context of F-statistics, statistical sampling refers to variation associated with collecting genetic
samples from a fixed set of populations that have fixed but unknown genotype frequencies. The
magnitude of variation associated with statistical sampling can be reduced by increasing the size of
within-population samples.

There is an important difference between estimates made by F-statistics and estimates of height. In
addition to accounting for statistical sampling, F-statistics must also account for differences among the
set of populations that might have been sampled. These differences may arise either because the
populations from which we sample are only a subset of all populations that could have been sampled
(statistical sampling of populations rather than statistical sampling of genotypes within populations) or
because the populations from which we sample represent only one possible outcome of an underlying



stochastic evolutionary process. Even if we could take the set of populations we sampled back to a
previous point in time and re-run the evolutionary process with all of the same conditions (population
sizes, mutation rates, migration rates, and selection coefficients), the genotype frequencies in our new
set of populations would differ from those in the populations we actually sampled.™® This genetic
sampling"’ is an unavoidable consequence of genetic drift. The magnitude of variation associated with
genetic sampling cannot be reduced by increasing either the number of individuals sampled within
populations or the number of populations sampled. Indeed, it is the characteristics of genetic sampling
that estimates of F-statistics reveal.

In simple cases, it may make sense to estimate statistical parameters using simple functions of the data,
like the sample mean. In more complicated cases, like those presented by F-statistics, it is useful to have
well-defined approaches to constructing those estimates. Statisticians have developed several different
approaches to estimate parameters from data.'® Three widely used approaches are the method of
moments, the method of maximum likelihood, and Bayesian methods.

The method of moments produces an estimate by finding an algebraic expression that makes the
expected value of certain sample statistics equal to simple functions of the parameters we are trying to
estimate (as explained in more detail below)."® Method of moments estimates are designed to have low
bias in the sense that if samples are taken repeatedly from the same population, the average of the
corresponding sample variances will be close to the unknown population variance. They have the
additional advantages that they are easy to calculate and that they do not require us to assume anything
about the shape of the distribution from which our sample is drawn, other than that it has a mean and
variance.

For F-statistics, method of moments estimates'”***

are based on an analysis of variance (ANOVA) of
allele frequencies. ANOVA is a statistical method that tests whether the means of two or more groups
are equal, and can therefore be used to assess the degree of differentiation between populations.
Briefly, if the variance among populations is the same as the variance within populations then there is
no population substructure. ANOVA calculations are framed in terms of mean squares. Therefore, in
practice, one calculates the expected mean square among populations (i.e., the variance of sample allele
frequencies about the mean allele frequency over all populations), and the expected mean square
within populations (the heterozygosity within populations when genotypes are in Hardy-Weinberg
proportions) averaged over all possible samples (statistical sampling) from all possible populations with
the same evolutionary history (genetic sampling). These expected values are then equated to observed
mean squares calculated from a sample, and the resulting set of equations is solved for the

10,22

corresponding variance components. Following Cockerham, F-statistics are defined in terms of these

variance components (see Box 3).

In contrast, likelihood and Bayesian estimates are more difficult to calculate and require us to specify
the probability distribution from which our sample was drawn. They first require us to specify a



probability distribution from which our sample was drawn. We then calculate a quantity called the
LIKELIHOOD that is proportional to the probability of our observed data given those parameters. A
maximume-likelihood estimate for the parameters is obtained by finding values of the unknown
parameters that maximize that likelihood.™ In most cases, maximum-likelihood estimates are biased.
Nonetheless, they typically have a smaller variance and deviate less from the unknown population
parameter than the corresponding method of moments estimates.'® For these and other reasons, the
method of maximum-likelihood is the most widely used technique for deriving statistical estimators. 24
Bayesian estimates share many of the advantages associated with maximum-likelihood estimates,
because they use the same likelihood to relate the data to unknown parameters. They differ from
maximume-likelihood estimates, however, because the likelihood is modified by placing PRIOR
DISTRIBUTIONS on unknown parameters, and estimates are based on the POSTERIOR DISTRIBUTION, which is
proportional to the product of the likelihood and the prior distributions. Both maximum-likelihood and
Bayesian methods suffer the disadvantage that simple algebraic expressions for the estimates are rarely
available. Instead, the estimates are obtained through computational methods. Because the mcmc
METHODS used for analysis of Bayesian models do not require that a unique point of maximum likelihood
be identified, Bayesian estimates can be obtained even in complex models with thousands or tens of
thousands of parameters when numerical maximization of the likelihood would be difficult or
impossible.”®

For F-statistics, the likelihood approach®”*® specifies a probability distribution to describe the variation
in allele frequencies among populations and a MULTINOMIAL DISTRIBUTION for genotype samples within
populations. Bis related to the variance of the probability distribution describing the among-population
distribution of allele frequencies, and genotype frequencies are determined by the allele frequencies in
each population and f. Estimates are obtained by maximizing the likelihood function with respect to 6, f,
and the allele frequencies. The Bayesian approach uses the same likelihood function, and after placing
appropriate prior distributions on f, 6, and allele frequencies, MCMC methods are used to sample from
the posterior distributions of fand 6.

With more than 5000 citations, the moment method described by Weir and Cockerham?® has been
widely used, partly because of its robustness and partly because it is simple to implement. The
maximume-likelihood methods also give simple equations when the distribution of allele frequencies
among populations is assumed to be normal,”’ but only if sample sizes are equal.?® Bayesian methods
allow probability statements to be made about F-statistics and extensions allow the relationship
between F-statistics and demographic or environmental covariates to be explored in the context of a
single model,*® but implementations may be computationally demanding.

Box 3 uses a simple dataset to illustrate an analysis and the slightly different estimates obtained from
each approach. Extensive comparisons of moment and Bayesian estimates of Fsr have not been done,
but our experience suggests that differences are small when (1) the average number of individuals per
population is moderate to large (> 20), (2) the number of populations is moderate to large (> 10-15), and
(3) most populations are polymorphic. When differences arise they reflect differences in the treatment



of allele frequency estimates when alleles are rare or sample sizes are small. The Bayesian approach
“smooths” population allele frequencies toward the mean,* and does so more aggressively when alleles
are rare or sample sizes are small. The moment approach treats the sample frequencies as fixed
quantities without such smoothing. Simulation results in Levsen et al.** are consistent with this
interpretation, although they compare Bayesian estimates with estimates of Gsz,>? which does not
account for genetic sampling.

Population geneticists have proposed several statistics related to Fsr. Here we describe four of them: Gsr,
Rsr, @51, and Qsr. Nei*? introduced Gsy as a measure of population differentiation. We discuss its
relationship to Fsrin Box 2. Haplotype and microsatellite data contain information not only about the
frequency with which particular alleles occur but also on the evolutionary distance among them.
Statistics like @sr (for haplotype data) and Rsr (for microsatellite) data are intended to take advantage of
this additional information and to provide greater insight into patterns of relationship among
populations. While Fsr, @51, and Rsr all apply to discrete genetic data, Qsris an analogous statistic for
continuously varying traits. Comparing an estimate of Qsr with an estimate of Fs; may provide
investigators with evidence that natural selection has shaped the pattern of variation in the quantitative
trait if the markers used to estimate Fsr can be presumed to be selectively neutral.

The methods for estimating f, 6, and F described above are appropriate for multiallelic data when the
alleles are regarded as equivalent to one another. When the data consist of variation at microsatellite
loci or of nucleotide sequence (haplotype) information, however, related methods that allow mutation
rates to differ between different pairs of alleles may be more appropriate. Excoffier et al.** introduced
the Analysis of Molecular Variance (AMOVA) for analysis of haplotype variation. AMOVA is based on an
analysis of variance framework analogous to the one developed by Weir and Cockerham®. The mean
squares in an AMOVA analysis are based on a user-specified measure of the evolutionary distance
between haplotypes, and AMOVA leads to quantities analogous to classical F-statistics (Box 1). Similarly,
the mean squares used to calculate Rs;>>2® are based on the number of repeat differences between
alleles at each microsatellite locus. While the result of both analyses is a partitioning of genetic variance
into within- and among-population components analogous to Fsr, neither has a direct interpretation as a
parameter of a statistical distribution. Rather they estimate an index derived from two different
statistical distributions: the distribution of allele (haplotype or microsatellite) frequencies among
populations and the distribution of evolutionary distances among alleles. Nonetheless, such measures
may be thought of as estimating the additional time to common ancestry of randomly chosen alleles

that is the result of populations being subdivided,*”*®

provided that the measure of evolutionary
distance between any two alleles is proportional to the time since their most recent common ancestor.
Extensive simulation studies have shown that estimates of Rsy may be unreliable unless a large number
of loci are used, ***! but unlike Fg the expected value of Rsr does not depend on the rate of mutation.
Estimates of @sr or Rsr may be useful when mutations have contributed substantially to allelic
differences among populations, but their usefulness may be limited by the extent to which the

mutational model underlying the statistics matches the actual mutational processes in the system.*



Qsr and polygenic variation
Spitze® pointed out that another quantity analogous to 6 can be estimated for continuously varying
traits. Specifically, we can define
2
Ocp

o

=" 2
Ogp + 203,

where O‘éP is the ADDITIVE GENETIC VARIANCE among populations and Oél is the additive genetic variance
within populations. O‘éP can be estimated from between-population crosses, and Oél can be estimated

from within-population crosses. Since the total variance in between-population crosses is aéP+062¥1 , Qst
is the proportion of additive genetic variance in a trait that is due to among-population differences. If
the trait is selectively neutral, if all genetic variation is additive, and if mutation rates at loci contributing
to the trait are the same as those at other loci, then we expect Qsr and Fsr to be equal.‘B'44 Thus,
comparing the magnitude of Qsr and Fsr may indicate whether a particular trait has been subject to
stabilizing (Qsr < Fs7) or diversifying (Qsr > Fs7) selection. Because of the large uncertainties associated
with estimates of both Qs and Fsr, however, such comparisons are likely to be useful only when they are
available for a moderately large number of populations (> 20).*”> Furthermore, caution is necessary when
suggesting that a Qs;/Fsr comparison provides evidence for stabilizing selection, because non-additive
genetic variation tends to change Qsr, even for a trait that is neutral.*®

Applications

F-statistics include both Fsr, which measures the amount of genetic differentiation among populations
(and simultaneously the extent to which individuals within populations are similar to one another), and
Fis, which measures the departure of genotype frequencies within populations from HARDY-WEINBERG
PROPORTIONS. Here we focus on applications of Fsr for several reasons (see Box 4).

Estimating migration rates
Wright® showed that if all populations in a species are equally likely to exchange migrants and if
migration is rare, then

I
Fogm~—,
AN m+1

where m is the fraction of each population composed of migrants (the backward migration rate)* and
N, is the EFFECTIVE POPULATION SIZE of local populations. * Because of this simple relationship, it is
tempting to use estimates of Fs; from population data to estimate N.m.

Unfortunately, it has been recognized for many years that this simple approach to estimating migration
rates may fail.** The most obvious reason is that populations are rarely structured so that all populations
exchange migrants at the same rate, causing some populations to resemble one another more than
others. If differentiation is solely a result of isolation by distance,*® for example, then the slope of the
regression of Fs;/(1-Fs7) on either the logarithm of between-population distance (for populations

distributed in 2 dimensions) or the between population distance alone (for populations in a linear



habitat) is proportional to D.&, where D, is the effective density of the population (D, = N./area) and &
is the mean squared dispersal distance.’® But if differentiation is the result not only of isolation by
distance but also of natural selection, or if the drift-migration process has not reached stationarity, then
the slope of this relationship cannot be interpreted as an estimate of migration. Moreover, either a pure
migration-drift process or a pure drift-divergence process or a combination of the two could produce
the same distribution of allele frequencies. Indeed, either migration-drift or drift-divergence or a
combination of the two can account for any pattern of allele frequency differences among
populations.52 Thus, while pairwise estimates of Fs; (or @sr or Rsr) provide some insight into the degree

37,38
d,

to which populations are historically connecte they do not allow us to determine whether that

connection is a result of ongoing migration or of recent common ancestry.

And the difficulty goes even deeper than that. Different genetic markers may give different estimates of
Fsrfor a variety of reasons, and to derive an estimate of migration rates from Fs; we must assume that
the particular set of markers we happen to have chosen bear the expected relationship with N.m. This
may often be problematic. Differences between Fsr estimates from human microsatellites (0.05) and
SNPs (0.10), for example, cannot reflect differences in migration rate, because both estimates are
derived from the same set of individuals and the same set of populations — the HGDP-CEPH sample.***?
By incorporating models of the mutational process, COALESCENT-BASED APPROACHES are one way to escape

this difficulty.>*>°

On the other hand, population-specific or pairwise estimates of Fs; may provide insight into the
demographic history of populations when estimates are available from many loci. For example, Keinan
etal’ report pairwise estimates of Fsr for 13,600-62,830 autosomal SNP loci and 1100-2700 X-
chromosome SNP loci in human population samples from northern Europe, east Asia, and west Africa.
Because there are four copies of each autosome in the human population for each three copies of the X
chromosome, we expect greater differentiation at X chromosome loci than at autosomal loci.
Specifically, for two populations that diverged t generations ago we expect

1 t
it

e

where N, is the effective size of the local populations. Thus, if we define Q as In(1 - F&)/In(1 - F3;.)

we see that Q is approximately N /N =0.75.

While Q is approximately 0.75 for comparisons between east Asians and northern Europeans (Q =
0.72+0.05), it substantially smaller for comparisons between west Africans and other populations in the
sample (Q = 0.58+0.03 for the comparison with northern Europeans; Q = 0.62+0.03 for the comparison
with east Asians). These results suggest either sex-biased dispersal (long-range immigration of males
from Africa after non-African populations were initially established) or selection on X-chromosome loci
after divergence of African and non-African populations.

10



Similarly, locus-specific estimates of Fs; may identify genomic regions that have been subject to
selection. The logic is straightforward. The pattern of genetic differentiation at a neutral locus is
completely determined by the demographic history of those populations (i.e., the history of population
expansions and contractions), the mutation rates at the loci concerned, and the rates and patterns of

migration among those populations.®*”°

In a typical multilocus sample, it is reasonable to assume that
all autosomal loci have experienced the same demographic history and the same rates and patterns of
migration. If the loci also have comparable mutation rates and if variation at each locus is selectively
neutral, then the allelic variation at each locus represents a separate sample from the same underlying
stochastic evolutionary process. Loci showing unusually large amounts of differentiation may mark
regions of the genome that have been subject to diversifying selection, while loci showing unusually
small amounts of differentiation may mark regions of the genome that have been subject to STABILIZING
SELECTION.”® Several groups have used such genome scans to examine patterns of differentiation in the

human genome.

By comparing locus-specific estimates of Fsr with the genome-wide distribution, Akey et al. © identified
174 regions (out of 26,530 examined) that exhibited what they call “signatures of selection” in the
human genome. Of these loci, 156 showed unusually large amounts of differentiation (suggesting
diversifying selection) and 18 showed unusually small amounts of differentiation (suggesting stabilizing
selection). In contrast, when Weir et al.” examined the high resolution Perlegen (ca. 1 million SNPs) and
Phase | HapMap (ca. 0.6 million SNPs) data sets in humans to examine locus-specific estimates of Fsr
they also found large differences in Fs; among loci, but their analyses suggested that the very high
variance associated with single-locus estimates of Fsr precluded using them to detect selection. Both
sets of investigators noted a particular problem with single-locus estimates in high-resolution SNP maps:
the high correlation between Fsr estimates when loci are in strong gametic disequilibrium makes it
difficult to determine whether the Fs; at any particular SNP is markedly different from expectation.

Even though single-locus estimates of Fsr are highly uncertain, simulation studies suggest that when loci
are inherited independently, background information at a few hundred loci is sufficient to allow reliable
identification of loci subject to selection when a suitable criterion for detecting “outliers” is used. #*%%!
While few loci are falsely identified as subject to selection when they are neutral, genome scans using
Fsr may often fail to detect selection when it is present. For example, when a single allele is strongly
favored in all populations not only is Fs;r expected to be nearly zero, but variation is also expected to be
nearly non-existent, rendering estimates of Fsr either highly unreliable or unobtainable. Similarly, when
selection is weak, data from a very large number of loci are needed to recognize Fsr at the locus involved
as being unusual. More importantly, as mentioned above, high-resolution genome scans must account
for the statistical association between closely linked loci. Guo et al.2 illustrate the use of a CONDITIONAL
AUTOREGRESSIVE SCHEME that identified 57 loci showing unusually large amounts of among-population
differentiation in a sample of 3000 SNP loci on human chromosome 7 separated by only 860 nucleotides
on average. Sixteen of these markers are associated with LEP, a gene encoding a leptin precursor

associated with behaviors that influence the balance between food intake and energy expenditure®
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(Figure 1). Moreover, association studies in one French population had previously suggested a
relationship between one of the SNPs identified as an outlier in this study and obesity.*

In forensic science, matching genetic profiles from a suspect and a stain left at a crime scene serve as
evidence linking the suspect to the crime. To quantify the strength of this evidence it is useful to
determine the random match probability, i.e., the probability that the crime scene genetic profile
matches the suspect’s if the suspect was not the source of the stain. In some cases two people, the
suspect and the person who left the crime sample, may belong to a subpopulation for which there is no

784 t0 calculate the

specific allele frequency information. In such a case, we can use the “6-correction
match probability based on allele frequency information from a larger population of which this
subpopulation is a part. The match probability takes into account allele frequency variation among
subpopulations within the wider population for which allele frequencies are available. For example, if
the matching profile consisted of a homozygote AA at a single locus, and if p, is the population
frequency of allele A, then the probability that the crime profile is AA given that the suspect is AA and

the suspect is not the source of the stain is®

(30+(1-6)p, )26+ (1-6)p,)
(1+ 0)(1+20)

P(AA|AA) =

There is a similar equation for heterozygotes, and these “6-correction’ results are multiplied over loci.
The 1996 National Research Council report® recommended using 6= 0.01 except for very small, isolated
subpopulations for which they suggested a value of 8= 0.03 was more appropriate. The practical effect
of the “6-correction” is that the numerical strength of the evidence against a suspect is reduced. If ps =
0.01, for example, the uncorrected match probability is 0.0001. With 6= 0.01, on the other hand, the
match probability is an order of magnitude larger — 0.0012. With 8= 0.03 it is even larger — 0.0064. Thus,
it is much less surprising to see a match when we take account of the population substructure than

when we ignore it.

In association mapping, case-control studies compare allele frequencies at genetic markers, generally
SNPs, between groups of people with a disease and those who do not have the disease. When
frequencies at a marker locus differ between the groups, it is interpreted as evidence for gametic
disequilibrium between the marker and a disease-related gene. This, in turn, suggests that the marker
and disease-related genes are in close proximity on the same chromosome. As many authors have
pointed out, however, population substructure unrelated to disease status could cause exactly the same

67-70

kind of allele frequency difference. The genomic control method is one way to account for

population substructure. It uses background estimates of Fs; to control for subpopulation differences

that are unrelated to disease status.®”®

If cases and controls have different marker allele frequencies for
reasons unconnected with the disease, as would be shown by frequency differences across the whole

genome, an uncorrected case-control test would give spurious indications of marker-disease association.

12



When Kingman introduced the coalescent process to population genetics a little more than 25 years
ago,”"”? it revolutionized the field. Many approaches to analysis of molecular data, particularly
molecular sequence and SNP data, now take advantage of the conceptual, computational, and analytical
framework that the coalescent provides.”>” While F-statistics provide only limited insight into rates and
patterns of migration, for example, statistics based on the coalescent process can provide insight into
rates of mutation, migration, and other evolutionary processes. Coalescent analysis is based on
maximizing the likelihood of a given sample configuration or sampling from the corresponding Bayesian
posterior distribution. The likelihood is constructed from genealogical histories for the sample that are
consistent with the unknown evolutionary parameters of interest, e.g., the size of the population or
populations from which the sample was taken, the history of population size changes, mutation rates,

recombination rates, or migration rates.>>80%

Coalescent analyses are likely to provide relatively precise
estimates of effective population size, mutation rates, and migration rates when certain conditions are
met: when the model used for analysis is consistent with the actual demographic history of populations
from which samples are collected, the actual migration patterns among populations in the sample, and
the mutational processes that generated allelic differences in the sample, and when it is reasonable to

54,73
"7 But

presume that the drift-mutation-migration process has reached an evolutionary equilibrium.
when these assumptions are not reasonable it may not be reasonable to estimate the related
evolutionary parameters, and the examples presented above show that analyses based on F-statistics

may still provide considerable insight.

Sewall Wright® provided a comprehensive account of processes leading to differentiation among
populations nearly 80 years ago, but he did not provide the tools empirical population geneticists

needed to apply his insights to understanding variation in wild populations. With work on isolation by

50,87

distance in the plant Linanthus parryae in the 1940s, the theory of F-statistics that he and Gustave

Malécot later developed®*'®®® began to emerge. Because of the insight F-statistics can provide about
processes of differentiation among populations, in the last 50 years they have become the most widely

used descriptive statistics in population and evolutionary genetics. From the time population geneticists

first began to collect data on allozyme variation®>**

genome®?®>¥ F_statistics, and Fsrin particular, have been used to investigate processes influencing the

to recent analyses of SNP variation in the human

distribution of genetic variation within and among populations. Unfortunately, neither Wright nor
Malécot distinguished carefully between the definition of F-statistics and the estimation of F-statistics. In
particular, until Cockerham introduced his indicator formalism'®** few, if any, population geneticists
understood that estimators of F-statistics must take into account both statistical sampling and genetic
sampling.

The statistical methodology for estimating F-statistics is now well established. With the availability of

methods to estimate locus- and population-specific effects on Fgp,%27°8/6198

geneticists now have a set
of tools to identify genomic regions or populations with unusual evolutionary histories. Through further
extensions of the approach, it is even possible to determine the relationship between the recent

evolutionary history of populations and environmental or demographic variables.”® The fundamentals of
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how population size, mutation rates, and migration are related to the genetic structure of populations
have been well understood for nearly 80 years. Analyses of F-statistics in populations of plants, animals,
and microorganisms have broadened and deepened that understanding, but those analyses have mostly
been applied to data sets with a relatively small number of loci. The age of population genomics is now

upon us.'% The 1000 genomes project (http://www.1000genomes.org) and the HapMap project

(http://www.hapmap.org) give a hint of what is to come. In spite of the scale of these projects, much of

the data can be understood fundamentally as allelic variation at individual loci. As a result, we expect F-
statistics to be at least as useful in understanding these massive datasets as they have been in
population and evolutionary genetics for most of the last century.

Box 1

Mathematical notation

In this box we summarize provide definitions for the mathematical symbols used throughout the paper.

Among-population allele frequency distribution:

T Mean allele frequency

afr Variance in allele frequency

F-statistics
Wright'’s F-statistics and Cockerham’s 6 statistics

Parameter Definition

Correlation of alleles within an individual relative to the subpopulation in which it occurs;
Fis equivalently the average departure of genotype frequencies from Hardy-Weinberg

expectations within populations

Correlation of randomly chosen alleles within the same subpopulation relative to the entire
Fsr population; equivalently the proportion of genetic diversity due to allele frequency

differences among populations

Correlation of alleles within an individual relative to the entire population; equivalently the

Fir departure of genotype frequencies from Hardy-Weinberg expectations relative to the
entire population
Co-ancestry for alleles within an individual relative to the subpopulation in which it occurs;

f equivalent to Fjs

0 Co-ancestry for randomly chosen alleles within the same subpopulation relative to the
entire population; equivalent to Fsr

p Co-ancestry for alleles within an individual relative to the entire population; equivalent to

FIT

@-statistics and Rsr
@gr from Analysis of Molecular Variance (AMOVA) is used for haplotype data (nucleotide sequence data,
mapped restriction site data) and requires a measure of evolutionary distance among all pairs of
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haploytpes. Rsr for microsatellite data and requires that alleles be labeled according to the number of
repeat units they contain.

Parameter Definitions

@, Excess similarity of alleles within an individual relative to the subpopulation in which it
occurs; analogous to Fis
Excess similarity among randomly chosen alleles within the same subpopulation relative to
o, the entire population, or equivalently the proportion of genetic diversity (measured as the
expected squared evolutionary distance between alleles) attributable to differences among
populations; analogous to Fsr
Excess similarity of alleles within an individual relative to the entire population; analogous
to Fir

Excess similarity among randomly chosen alleles within the same subpopulation relative to

@I T

R the entire population, or equivalently the proportion of genetic diversity (measured as the
St expected squared difference in repeat numbers between alleles) attributable to

differences among populations; analogous to Fsr

Measuring genetic differentiation among populations in quantitative traits:

Parameter Definition

0c2;1 Additive genetic variance within populations
Gép Additive genetic variance among populations
Qst Proportion of additive genetic variation in

entire population due to differences among
populations; analogous to Fsr
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Box 2

Genetic sampling versus statistical sampling

A L
Allele frequency distribution
B
T T T T T T T
0 00 02 04 06 08 1.0
Population frequency
C
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i — ]
o

] T T T T T 1
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sample frequency

Genetic drift leads to differences among populations that are described by the distribution of allele
frequencies among populations. The variance of this distribution is directly related to Fsr (see equation
2), but in a typical study only a subset of populations are sampled. Thus, in addition to accounting for
variation associated with sampling from populations, estimates of F-statistics must also account for
variation associated with sampling sets of populations from the allele frequency distribution.

Genetic (or evolutionary) sampling
Panel A shows the distribution of allele frequencies among populations corresponding to a mean allele
frequency of w=0.5 and Fsr= 8= 0.1. If two sets of populations (represented by filled and open circles)
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are sampled from this distribution, allele frequencies in the first set of populations (open circles) will
differ from those in the second set (closed circles). Panel B shows an example in which two different sets
of 5 population frequencies are drawn randomly from the distribution of allele frequencies illustrated in
Panel A.

The variation in allele frequencies illustrated in panel A reflects the effect of genetic or evolutionary
sampling. The differences between the sets of samples in panel B reflect the effect of sampling
particular populations from the distribution of allele frequencies in panel A and are analogous to those
that would be expected in an empirical study if it were repeated on a different set of populations.

Statistical sampling

Panel Cillustrates the more familiar idea of statistical sampling. It shows the distribution of sample
allele frequencies obtained in 1000 samples of size 20 from the population with the largest allele
frequency in the population sample on the left in Panel B. Statistical sampling refers to the variation in
sample composition expected under repeated sampling of alleles from a population with a particular
allele frequency.

Investigators can control the amount of variation associated with statistical sampling by increasing the
number of individuals sampled within populations: the larger the number of individuals sampled, the
less sample allele frequencies will differ from the underlying population frequencies. In contrast,
investigators cannot control the amount of variation associated with genetic sampling: the variation
associated with genetic sampling is an intrinsic property of the underlying stochastic evolutionary
process contributing to differentiation among populations.

The relationship between Fsy and Gsr

Nei*® introduced the statistic Gsr as a measure of genetic differentiation among populations. It is defined
in terms of the population frequencies in panel B, not the allele frequency distribution in panel A. In
contrast, estimates of Fsraccount for genetic sampling, and they are intended to reflect properties of the
allele frequency distribution in A. As a result, Fsy and Gsr measure different things. Thus, Gsr will be an
appropriate measure only when interest focuses on characteristics of particular samples illustrated in
panel B. In a typical population study, 8 will be a more appropriate measure of differentiation.

It might seem that similar arguments would apply to exact tests of population differentiation.’® After
all, they use permutations of sample configurations to determine whether populations are
differentiated from one another. Nonetheless, the permutation test is equivalent to determining
whether the allele frequency distribution in A has a variance greater than zero so that exact tests
implicitly consider both statistical and genetic sampling effects.

Box 3

Comparing methods for estimating Fsr

To illustrate the differences the calculations involved in method of moment, maximum likelihood, and
Bayesian estimates of F-statistics, we use data from a classic study on human populations investigating
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allele frequency differences at blood group loci. We use a subset of the data originally reported by

Workman and Niswander.*®

Their data consists of genotype counts at several loci in native American
Papago, and the data were collected from 10 political districts in southwestern Arizona. We report
estimates of Fj5, Fst and Fir derived from the MN blood group locus that suggest little departure of
genotype frequencies from Hardy-Weinberg expectations within each district and little genetic

differentiation among the districts.

Methods of moment analysis
Analysis of variance on the indicator variable y;;x, where y;;,=1 if allele i in individual j of population k is
M, produces the table illustrated here gives moment estimates for the variance components of

0. =0.160, o7 =0.00511, and o} =0.0.000667. Following Cockerham™

2 2
Fo_9t0
) 2 2
O, + 0] +0g,
2
g 9r
) 2 2
O, +0; +0g
2
-9
2 2
O'[+O’G

Thus, the moment estimates are F= 0.0348, é =0.00402, and JA‘ =0.0309. As expected for human

populations, there is little evidence that genotype proportions within each political district differ from

Hardy-Weinberg expectations (JA‘ =~ (). Similarly, there is little evidence of genetic differentiation among

political districts (é =0).

Bayesian and likelihood analysis

In contrast, current implementations of a Bayesian approach to analyzing these data typically assume
independent uniform [0,1] prior distributions for both f and 6. The posterior mean of f and 6 for these
data are 0.050 and 0.019, respectively. The posterior distribution of f has a mode near 0, but posterior
distribution is relatively broad (95% credible interval 0.0033-0.123), causing the posterior mean of f to
be larger than the method of moments estimate. Similarly, allele frequency estimates within each
population are uncertain, and the estimate of 6 takes this uncertainty into account, suggesting that
there is slightly more among-population differentiation than detected with moment estimates. For

comparison, the maximum-likelihood estimates are F= 0.0408, é =0.00640, and JA‘ =0.0346

(obtained by estimating variance components in Gaussian mixed model applied to the indicator
variables and using Cockerham’s definitions of F, f, and @in terms of the variance components).

Parameter Method of moments Maximum likelihood Bayesian
f 0.0309 0.0346 0.0503
0 0.00402 0.00640 0.0189
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F 0.0348 0.0408 0.0683

Table 1. Comparison of point estimates for F-statistics derived from the Workman and Niswander
data.

To extend the method of moments approach to multiple alleles and multiple loci, calculations are done
separately for every allele at every locus and the sums of squares are combined.'””’ To extend the
likelihood or Bayesian approaches, we make the assumption that f and 8 have the same value at every

locus and that genotype counts are sampled independently across loci and populations.'®**%

Box 4

Why focus on Fsr?

We focus our discussion on Fsr for several reasons. First, Fs is easier to interpret. It is defined with
respect to the populations that are included in the sample, either through population-specific estimates
or through the average of those estimates. In contrast, Fsris defined and interpreted with respect to the
distribution of allele frequencies among all populations that could have been sampled, not merely those
that happen to have been included in the sample. As a result, estimates of Fsr have to account for
genetic sampling, introducing a level of complexity and subtlety that requires extra attention.

Second, the application of F-statistics to problems in population and evolutionary genetics often centers
on estimates of Fsr. Whether attempting to interpret aspects of demographic history like sex-biased
dispersal out of Africa in human populations,’ to detect regions of the genome that may have been

subject to stabilizing or diversifying selection,***®*

or correcting match probabilities in a forensic
application for genetic substructure within populations,'®® estimates of Fsr often play a crucial role in
interpreting genetic data. Estimates of F;s reveal important properties of the mating system within
populations, but estimates of Fs; reveal properties of the evolutionary process leading to divergence

among populations.

Finally, in many populations of animals, and in human populations in particular, within-population
departures from Hardy-Weinberg proportions are small. Where present, such departures may reveal
more about genetic substructuring within populations than about departures from random mating.
Moreover, while estimates of F;s may reveal something about patterns of mating in inbred populations
of plants or animals, direct analysis of mother-offspring genotype combinations will usually be more

informative and reliable.*®”*%®
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Figure 1
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Locus-specific estimates of Fsr on human chromosome 7

Locus-specific estimates of Fsr on human chromosome 7 as inferred from the phase Il HapMap data
set.” Bars indicate the location of known genes. Dark black circles are posterior means for SNPs with
estimates detectably different from the genomic background (gray circles). All “outliers” show
significantly more differentiation among the four populations in the sample than is consistent with the
level of differentiation seen in the genomic background. The excess differentiation suggests that these
SNPs are associated with genomic regions in which loci have been subject to diversifying selection
among populations. From Guo et al.?

Glossary

ADDITIVE GENETIC VARIANCE: The part of the total genetic variation that is due to the main (or additive)
effects of alleles on a phenotype. The additive variance determines the degree of resemblance between
relatives and therefore the response to selection.

COALESCENT-BASED APPROACHES: Coalescent-based approaches use statistical properties of the genealogical
relationship among alleles under particular demographic and mutational models to make inferences
about the effective size of populations and about rates of mutation and migration.

CONDITIONAL AUTOREGRESSIVE SCHEME: A statistical approach developed for analysis of data in which a
random effect is associated with the spatial location of each observation and the magnitude of the
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random effect is determined by a weighted average of random effects of nearby positions. In most
applications, weights are inversely related to the spatial distance between two sample points.

DIVERSIFYING SELECTION: Selection in which different alleles are favored in different populations. It is often
a consequence of LOCAL ADAPTATION.

EFFECTIVE POPULATION SIZE (N,): Formulated by Wright in 1931, N, reflects the size of an idealized
population that would experience drift in the same way as the actual (census) population. N, can be
lower than census population size due to various factors, including a history of population bottlenecks
and reduced recombination.

GENETIC DRIFT: The random fluctuations in allele frequencies over time that are due to chance alone.

HARDY-WEINBERG PROPORTIONS: A state in which the frequency of each diploid genotype at a locus equals
that expected from the random union of alleles. That is: genotypes AA, Aa and aa will be at frequencies

p’, 2pg, and g".

HETEROZYGOTE ADVANTAGE: A pattern of natural selection in which heterozygotes are more likely to survive
than homozygotes.

LIKELIHOOD: A mathematical function that describes the relationship between the unknown parameters of
a statistical distribution, e.g., the mean and variance of the allele frequency distribution among
populations or the allele frequency in a particular population, and the data. It is directly proportional to
the probability of the data given the unknown parameters.

LOCAL ADAPTATION: The situation in which genotypes from different populations have higher fitness in
their home environments owing to historical natural selection.

MCMC METHODS: Monte Carlo Markov Chain (MCMC) methods are a computational technique widely used
for approximating complex integrals and other functions. In this context MCMC methods are used to
approximate the posterior distribution of a Bayesian model.

MULTINOMIAL DISTRIBUTION: A statistical distribution that describes the probability of obtaining a sample
with a specified number of objects in each of several categories. The probability is determined by the
total sample size and the probability of drawing an object from each category. The binomial distribution
is a special case of the multinomial distribution in which there are two categories.

PRIOR DISTRIBUTION: A statistical distribution used in Bayesian analysis to describe the probability that
parameters take on a particular value prior to examining any data. It expresses the level of uncertainty
about those parameters before the data has been analysed.

POSTERIOR DISTRIBUTION: A statistical distribution used in Bayesian analysis to describe the probability that
parameters take on a particular value after the data have been analysed. It reflects both the likelihood
of the data given particular parameters and the prior probability that parameters take on particular
values.
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SHORT TANDEM REPEAT LOCI: Loci consisting of short (2-6 nucleotide) sequences that are repeated multiple

times. Alleles at STR loci differ from one another in the number of repeats.

STABILIZING SELECTION: Selection in which either the same allele or the same genotype is favored in

different populations.

VARIANCE: A measure of the amount of variation around a mean value.

We are indebted to Rachel Prunier, Kathryn Theiss, and three anonymous reviewers for helpful

comments on earlier versions of this paper. The work in the laboratories of the authors was supported
in part by grants from the U.S. National Institutes of Health (1 R0O1 GM 068449-01A1 to K.E.H; 1 R0O1 GM
075091 to B.S.W).

N e

owuv kW

10.
11.

12.

13.

14.
15.

16.

17.

18.

Rosenberg, N.A. et al. Genetic structure of human populations. Science 298, 2381-2385 (2002).
Li, J.Z. et al. Worldwide Human Relationships Inferred from Genome-Wide Patterns of Variation.
Science 319, 1100-1104 (2008).

Wright, S. The genetical structure of populations. Annals of Eugenics 15, 323-354 (1951).
Malécot, G. Les mathématiques de I'hérédié, (Masson, Paris, France, 1948).

Wright, S. Evolution in Mendelian populations. Genetics 16, 97-159 (1931).

Akey, J.M., Zhang, G., Khang, K., Jin, L. & Shriver, M.D. Interrogating a high-density SNP map for
signatures of natural selection Genome Research 12, 1805-1814 (2002).

Weir, B.S., Cardon, L.R., Anderson, A.D., Nielsen, D.M. & Hill, W.G. Measures of human
population structure show heterogeneity among genomic regions. Genome Research 15, 1468-
76 (2005).

Guo, F., Dey, D.K. & Holsinger, K.E. A Bayesian hierarchical model for analysis of SNP diversity in
multilocus, multipopulation models. Journal of the American Statistical Association 164, 142-154
(2009).

Keinan, A., Mullikin, J.C., Patterson, N. & Reich, D. Accelerated genetic drift on chromosome X
during the human dispersal out of Africa. Nature Genetics 41, 66-70 (2009).

Cockerham, C.C. Variance of gene frequencies. Evolution 23, 72-84 (1969).

Wahlund, S. Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt
der Vererbungslehre aus betrachtet. Hereditas 11, 65-106 (1928).

Sokal, R.R., Oden, N.L. & Thomson, B.A. A simulation study of microevolutionary inferences by
spatial autocorrelation analysis. Biological journal of the linnean society. 60, 73 (1997).

Sokal, R.R. & Oden, N.L. Spatial autocorrelation analysis as an inferential tool in population
genetics. American Naturalist 138, 518-521 (1991).

Epperson, B.K. Geographical Genetics, (Princeton University Press, Princeton, NJ, 2003).

Weir, B.S. & Cockerham, C.C. Mixed self- and random-mating at two loci. Genetical Research 21,
247-262 (1973).

Wright, S. Evolution and the Genetics of Populations. Vol. 4. Variability within and among
Natural Populations, (University of Chicago Press, Chicago, IL, 1978).

Weir, B.S. Genetic Data Analysis Il: Methods for Discrete Population Genetic Data, (Sinauer
Associates, Sunderland, MA, 1996).

Rousset, F. Inbreeding and relatedness coefficients: what do they measure? Heredity 88, 371-
380 (2002).

22



19.
20.

21.
22.
23.
24,

25.
26.

27.
28.
29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Casella, G. & Berger, R.L. Statistical Inference, (Duxbury, Pacific Grove, CA, 2002).

Weir, B.S. & Cockerham, C.C. Estimating F-statistics for the analysis of population structure.
Evolution 38, 1358-1370 (1984).

Excoffier, L. Analysis of population subdivision. in Handbook of Statistical Genetics (eds. Balding,
D.J., Bishop, M. & Cannings, V.) 271-307 (John Wiley & Sons, Ltd., Chichester, 2001).
Cockerham, C.C. Analyses of gene frequencies. Genetics 74, 679-700 (1973).

Berger, J.0. Statistical Decision Theory and Bayesian Analysis, (Springer Verlag, New York, 1985).
Robert, C.P. The Bayesian Choice: From Decision-Theoretic Foundations to Computational
Implementation, (Springer-Verlag, New York, NY, 2001).

Lee, P.M. Bayesian Statistics: An Introduction, (Edward Arnold, London, 1989).

Gelfand, A.E. & Smith, A.F.M. Sampling-based approaches to calculating marginal densities. J.
Amer. Statist. Assoc. 85, 398-409 (1990).

Weir, B.S. & Hill, W.G. Estimating F-statistics. Annual Review of Genetics 36, 721-750 (2002).
Wehrhahn, C. Proceedings of the ecological genetics workshop. Genome 31, 1098-1099 (1989).
Samanta, S., Li, Y.J. & Weir, B.S. Drawing inferences about the coancestry coefficient. Theoretical
Population Biology 75, 312-319 (2009).

Gaggiotti, O.E. et al. Patterns of colonization in a metapopulation of grey seals. Nature 13, 424-
427 (2002).

Levsen, N.D., Crawford, D.J., Archibald, J.K., Santos-Geurra, A. & Mort, M.E. Nei's to Bayes":
comparing computational methods and genetic markers to estimate patterns of genetic
variation in Tolpis (Asteraceae). Am. J. Bot. 95, 1466-1474 (2008).

Nei, M. & Chesser, R.K. Estimation of fixation indices and gene diversities. Annals of Human
Genetics 47, 253-259 (1983).

Nei, M. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70, 3321-
3321 (1973).

Excoffier, L., Smouse, P.E. & Quattro, J.M. Analysis of molecular variance inferred from metric
distances among DNA haplotypes: application to human mitochondrial DNA restriction data.
Genetics 131, 479-491 (1992).

Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies.
Genetics 139, 457-462 (1995).

Rousset, F. Equilibrium values of measures of population subdivision for stepwise mutation
processes. Genetics 142, 1357-1362 (1996).

Slatkin, M. Inbreeding coefficients and coalescence times. Genetical Research 58, 167-175
(1991).

Holsinger, K.E. & Mason-Gamer, R.J. Hierarchical analysis of nucleotide diversity in
geographically structured populations. Genetics 142, 629-639 (1996).

Balloux, F. & Lugon-Molin, N. The estimation of population differentiation with microsatellite
markers. Molecular Ecology 11, 155-165 (2002).

Balloux, F., Brunner, F. & Goudet, J. Microsatellites can be misleading: an empirical and
simulation study. Evolution 54, 1414-1422 (2000).

Gaggiotti, O.E., Lange, O., Rassman, K. & Gliddon, C. A comparison of two indirect methods for
estimating average levels of gene flow using microsatellite data. Molecular Ecology 8, 1513-1520
(1999).

Spitze, K. Population structure in Daphnia obtusa: quantitative genetic and allozymic variation.
Genetics 135, 467-374 (1993).

Lande, R. Neutral theory of quantitative genetic variance in an island model with local extinction
and colonization. Evolution 46(1992).

23



44,

45.

46.

47.

48.

49.

50.
51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

McKay, J.K. & Latta, R.G. Adaptive population divergence: markers, QTL and traits. Trends in
Ecology & Evolution 17, 285 (2002).

O'Hara, R.B. & Merila, J. Bias and Precision in QST Estimates: Problems and Some Solutions.
Genetics 171, 1331-1339 (2005).

Goudet, J. & Martin, G. Under Neutrality, QST <= FST When There Is Dominance in an Island
Model. Genetics 176, 1371-1374 (2007).

Notohara, M. The coalescent and the genealogical process in geographically structured
population. J Math Biol 29, 59-75 (1990).

Charlesworth, B. Fundamental concepts in genetics: Effective population size and patterns of
molecular evolution and variation. Nat Rev Genet 10, 195-205 (2009).

McCauley, D.E. & Whitlock, M.C. Indirect measures of gene flow and migration Fst (does not
equal) 1/(ANm+1). Heredity 82, 117-125 (1999).

Wright, S. Isolation by distance. Genetics 28, 114-138 (1943).

Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation
by distance. Genetics 145, 1219-28 (1997).

Felsenstein, J. How can we infer geography and history from gene frequencies? Journal of
Theoretical Biology 96, 9-20 (1982).

Cann, H.M. et al. A Human Genome Diversity Cell Line Panel. Science 296, 261b-262 (2002).
Beerli, P. Comparison of Bayesian and maximume-likelihood estimation of population genetic
parameters. Bioinformatics 22, 341-345 (2006).

Kuhner, M.K. Coalescent genealogy samplers: windows into population history. Trends Ecol Evol
24, 86-93 (2009).

Kuhner, M.K. LAMARC 2.0: maximum likelihood and Bayesian estimation of population
parameters. Bioinformatics 22, 768-770 (2006).

Fu, R., Gelfand, A. & Holsinger, K.E. Exact moment calculations for genetic models with
migration, mutation, and drift. Theoretical Population Biology 63, 231-243 (2003).

Beaumont, M.A. & Balding, D.J. Identifying adaptive genetic divergence among populations from
genome scans. Molecular Ecology 13, 969-980 (2004).

Vitalis, R., Dawson, K. & Boursot, P. Interpretation of variation across marker loci as evidence of
selection. Genetics 158, 1811-1823 (2001).

Beaumont, M.A. & Nichols, R.A. Evaluating loci for use in the genetic analysis of population
structure. Proceedings of the Royal Society of London. Ser 263, 1619 (1996).

Foll, M. & Gaggiotti, 0. A Genome-Scan Method to Identify Selected Loci Appropriate for Both
Dominant and Codominant Markers: A Bayesian Perspective. Genetics 180, 977-993 (2008).
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature
372, 425-432 (1994).

Mammes, O. et al. Association of the G-2548A polymorphism in the 5' region of the LEP gene
with overweight. Annals of Human Genetics 64, 391-394 (2000).

Balding, D.J. & Donnelly, P. How convincing is DNA evidence? Nature 368, 285-6 (1994).
Balding, D.J. & Nichols, R.A. DNA match probability calculation: how to allow for population
stratification, relatedness, database selection, and single bands. Forensic Science International
64, 125-140 (1994).

Council, N.R. The evaluation of forensic DNA evidence, (National Academy Press, Washington,
DC, 1996).

Devlin, B., Roeder, K. & Wasserman, L. Genomic Control, a New Approach to Genetic-Based
Association Studies. Theoretical Population Biology 60, 155-166 (2001).

Devlin, B. & Roeder, K. Genomic Control for Association Studies. Biometrics 55, 997-1004 (1999).

24



69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.
89.

90.

91.

Pritchard, J.K. & Donnelly, P. Case-control studies of association in structured or admixed
populations. Theor Popul Biol 60, 227-37 (2001).

Pritchard, J.K. & Rosenberg, N.A. Use of unlinked genetic markers to detect population
stratification in association studies. Am J Hum Genet 65, 220-8 (1999).

Kingman, J.F.C. On the genealogy of large populations. J. Appl. Prob. 19A, 27-43 (1982).
Kingman, J.F.C. The coalescent. Stoch. Proc. Appl. 13, 235-248 (1982).

Kuhner, M.K. & Smith, L.P. Comparing Likelihood and Bayesian Coalescent Estimation of
Population Parameters. Genetics 175, 155-165 (2007).

Wang, J. A Coalescent-Based Estimator of Admixture From DNA Sequences. Vol. 173 1679-1692
(2006).

Innan, H., Zhang, K., Marjoram, P., Tavare, S. & Rosenberg, N.A. Statistical Tests of the
Coalescent Model Based on the Haplotype Frequency Distribution and the Number of
Segregating Sites. Genetics 169, 1763-1777 (2005).

Wall, J.D. & Hudson, R.R. Coalescent Simulations and Statistical Tests of Neutrality. Molecular
Biology and Evolution 18, 1134-1135 (2001).

Nordborg, M. Structured coalescent processes on different time scales. Genetics 146, 1501-14
(1997).

Donnelly, P. & Tavaré, S. Coalescents and genealogical structure under neutrality. Annual Review
of Genetics 29, 401-421 (1995).

Griffiths, R.C. & Tavare, S. Simulating probability distributions in the coalescent. Theoretical
Population Biology 46, 131-159 (1994).

Fearnhead, P. & Donnelly, P. Estimating Recombination Rates From Population Genetic Data.
Genetics 159, 1299-1318 (2001).

Kuhner, M.K., Beerli, P., Yamato, J. & Felsenstein, J. Usefulness of single nucleotide
polymorphism data for estimating population parameters. Genetics 156, 439-47 (2000).
Kuhner, M.K., Yamato, J. & Felsenstein, J. Maximum likelihood estimation of recombination
rates from population data. Genetics 156, 1393 (2000).

Kuhner, M.K. & Felsenstein, J. Sampling among haplotype resolutions in a coalescent-based
genealogy sampler. Genet Epidemiol 19 Suppl 1, S15-21 (2000).

Kuhner, M.K., Yamato, J. & Felsenstein, J. Maximum likelihood estimation of population growth
rates based on the coalescent. Genetics. 149, 429 (1998).

Beerli, P. & Felsenstein, J. Maximume-likelihood estimation of migration rates and effective
population numbers in two populations using a coalescent approach. Genetics 152, 763-773
(1999).

Drummond, A.J., Nicholls, G.K., Rodrigo, A.G. & Solomon, W. Estimating Mutation Parameters,
Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data.
Genetics 161, 1307-1320 (2002).

Wright, S. An analysis of local variability of flower color in Linanthus parryae. Genetics 28, 139-
156 (1943).

Malécot, G. The Mathematics of Heredity, (W. H. Freeman, San Francisco, 1969).

Hamrick, J.L. & Godt, M.J.W. Effects of life history traits on genetic diversity in plant species.
Philosophical Transactions of the Royal Society of London, Series B 351, 1291-1298 (1996).
Hamrick, J.L. Isosymes and the analysis of genetic structure in plant populations. in Isozymes in
Plant Biology (eds. Soltis, D.E. & Soltis, P.S.) 87-105 (Dioscorides Press, Portland, OR, 1989).
Loveless, M.D. & Hamrick, J.L. Ecological determinants of genetic structure in plant populations.
Annual Review of Ecology & Systematics 15, 65-95 (1984).

25



92.

93.

94.
95.

96.
97.
98.

99.

100.

101.

102.

103.

104.

105.

106.
107.

108.

Hamrick, J.L., Linhart, Y.B. & Mitton, J.B. Relationships between life history characteristics and
electrophoretically deterctable genetic variation in plants. Annual Review of Ecology &
Systematics 10, 173-200 (1979).

Gottlieb, L.D. Electrophoretic evidence and plant populations. in Progress in Phytochemistry, Vol.
7 (eds. Reinhold, L., Harborne, J.B. & Swain, T.) 1-46 (Pergamon Press, Oxford, 1981).

Brown, A.H.D. Enzyme polymorphism in plant populations. Theor. Popul. Biol. 15, 1-42 (1979).
Consortium, T.I.H. A second generation human haplotype map of over 3.1 million SNPs. Nature
449, 851-861 (2007).

Consortium, T.I.H. A haplotype map of the human genome. Nature 437, 1299-1320 (2005).

He, M. et al. Geographical Affinities of the HapMap Samples. PLoS ONE 4, e4684 (2009).
Balding, D.J. Likelihood-based inference for genetic correlation coefficients. Theoretical
Population Biology 63, 221-230 (2003).

Foll, M. & Gaggiotti, O. Identifying the Environmental Factors That Determine the Genetic
Structure of Populations. Genetics 174, 875-891 (2006).

Begun, D.J. et al. Population Genomics: Whole-Genome Analysis of Polymorphism and
Divergence in Drosophila simulans. PLoS Biology 5, €310 (2007).

Luikart, G., England, P.R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of
population genomics: from genotyping to genome typing. Nature Reviews Genetics 4, 981-994
(2003).

Goudet, J., Raymond, M., de Meeus, T. & Rousset, F. Testing differentiation in diploid
populations. Genetics 144, 1933-1940 (1996).

Workman, P.L. & Niswander, J.D. Population studies on southwest indian tribes. Il. Local genetic
differentiation in the Papago. American Journal of Human Genetics 22, 24-49 (1970).

Holsinger, K.E. Bayesian hierarchical models in geographical genetics. in Hierarchical Modeling
for the Environmental Sciences (eds. Clark, J.S. & Gelfand, A.E.) 25-37 (Oxford University Press,
Oxford, 2006).

Holsinger, K.E. Analysis of genetic diversity in hierarchically structured populations: a Bayesian
perspective. Hereditas 130, 245-255 (1999).

Weir, B.S. The rarity of DNA profiles. Annals of Applied Statistics 1, 358-370 (2007).

Ritland, K.R. Joint maximume-likelihood estimation of genetic and mating system structure using
open-pollinated progenies. Biometrics, 33-43 (1988).

Thompson, S.L. & Ritland, K. A novel mating system analysis for modes of self-oriented mating
applied to diploid and polyploid arctic Easter daisies (Townsendia hookeri). Heredity 97, 119-126
(2006).

Kent Holsinger received his Ph.D. training with Marcus W. Feldman at Stanford University. He was a

post-doctoral Fellow in the Miller Institute for Basic Research in Science at the University of California,

Berkeley, and he did additional post-doctoral work both with Leslie D. Gottlieb at the University of

California, Davis and with Marc Feldman before accepting a faculty position at the University of

Connecticut. His research has focused on the evolution of plant mating systems, the conservation

biology of rare and endangered species (especially plants), and the development of statistical tools for

analysis of genetic diversity in wild populations. More recently, he has become interested in

understanding mechanisms underlying evolutionary radiations in the genus Protea in southwestern

26



South Africa (see
http://darwin.eeb.uconn.edu/wiki/index.php/Evolutionary radiations in South African Proteaceae).

Bruce Weir received his Ph.D. training with Clark Cockerham at North Carolina State University and post-
doctoral training with Bob Allard at the University of California, Davis. After a brief time in his native
New Zealand he returned to North Carolina State University, where he was a faculty member for 30
years. He is now Professor and Chair of Biostatistics at the University of Washington. His research
interests are in statistical genetics with applications to forensic science and, more recently, to
association mapping.

Highlighted references
Wright Ann. Eugen. (1951): Develops the explicit framework for analysis and interpretation of F-statistics
in an evolutionary context.

Malécot (1948): Develops a framework for analysis of genetic diversity in hierarchically structured
populations equivalent to Wright’s F-statistics

Wright Genetics (1931): A landmark paper in population genetics in which the impact of population size,
mutation, and migration on the abundance and distribution of genetic variation in populations are first
guantitatively described.

Cockerham Evolution (1969): Develops the first approach for analysis of F-statistics recognizing the
impact of genetic sampling on estimates of F-statistics from population data.

Weir & Cockerham Evolution (1984): Develops the ANOVA framework to apply Cockerham’s approach to
F-statistics and provides method of moments estimates for F-statistics

Nei PNAS (1973): Introduces Gsr as a measure of genetic differentiation among populations
Excoffier Genetics (1992): Introduces @sr and AMOVA for analysis of haplotype data
Slatkin Genetics (1994): Introduces Rsr for analysis of microsatellite data

Spitze Genetics (1993): Introduces Qsr for analysis of continuously varying trait data

Online summary
* Fismeasures the departure of genotype frequencies within populations from Hardy-Weinberg
expectations. Although often referred to as the “within-population inbreeding coefficient”, this
phrase is misleading. F;s will be negative if there is heterozygote advantage or if individuals avoid
inbreeding.

* Fsris a property of the distribution of allele frequencies among populations. It reflects the joint
effects of drift, migration, mutation, and selection on the distribution of genetic variation among
populations.
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Fsr can be used to describe the distribution of genetic variation among any set of samples, but it
is most usefully applied when the samples represent relatively discrete units rather than
arbitrary divisions along a continuous distribution.

Statistics related to Fsr may be useful for haplotype or microsatellite data if an appropriate
measure of evolutionary distance among alleles is available.

Comparing an estimate of Fs; from marker data with an estimate of Qsr from continuously
varying trait data might be used to detect selection, but the estimate of Fs; may depend on the
choice of marker and the estimate of Qsr may differ from neutral expectations if there is a non-
additive component of genetic variance.

Although the simple relationship between Fsr and migration rates in Wright's island model
makes it tempting to infer migration rates from Fsr, considerable caution is needed if such an
approach is to be used.

If estimates of Fsr from a large number of loci are available, it may be possible to identify certain
loci as “outliers” that may have been subject to different patterns of selection or to different
demographic processes.

Case-control studies for association mapping studies must account for the possibility that
population substructure accounts for an observed association between a marker and a disease.
The genomic control method uses background estimates of Fsr to control for such substructure.

In forensic applications, match probabilities are sometimes calculated for subpopulations lacking
specific allele frequency data. A 6-correction, in which 8is Fr, is used to calculate the match
probability using allele frequency information from a broader population of which the
subpopulation is part.

Online links
Software
ABCAF: Approximate Bayesian computation for F-statistics (http://www-leca.ujf-

grenoble.fr/logiciels.htm)

Arlequin: Weir & Cockerham F-statistics (and many other things;
http://cmpg.unibe.ch/software/arlequin3/)

BayeScan: Bayesian genome scan for outliers (http://www-leca.ujf-grenoble.fr/logiciels.htm)

GDA: Weir & Cockerham F-statistics (http://www.eeb.uconn.edu/people/plewis/software.php)

Genepop: Weir & Cockerham F-statistics (http://kimura.univ-montp2.fr/~rousset/Genepop.htm)

GESTE: Bayesian analysis of factors that affect population structure (http://www-leca.ujf-

grenoble.fr/logiciels.htm)

Hickory: Bayesian F-statistics (http://darwin.eeb.uconn.edu/hickory/hickory.html)

hierfstat: Weir & Cockerham F-statistics for any number of levels in a hierarchy
(http://www2.unil.ch/popgen/softwares/hierfstat.htm)
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Course notes

The Wahlund effect and Wright's F-statistics

(http://darwin.eeb.uconn.edu/eeb348/lecture.php?rl id=445)

The genetic structure of populations (http://darwin.eeb.uconn.edu/eeb348/lecture.php?rl id=402)
The genetic structure of populations: a Bayesian approach
(http://darwin.eeb.uconn.edu/eeb348/lecture.php?rl id=403)

Bayesian population genetic data analysis (http://darwin.eeb.uconn.edu/summer-institute/summer-

institute.html)
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