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Introduction. There are at least three different problems with which one is con 
fronted in the study of L-functions : the analytic continuation and functional equation >' 
the location of the zeros; and in some cases, the determination of the values at special 
points. The first may be the easiest. It is certainly the only one with which I have 
been closely involved. 

There are two kinds of /.-functions, and they will be described below: motivic 
L-functions which generalize the Artin L-functions and are defined purely arithmeti
cally, and automorphic L-functions, defined by data which are largely transcendental. 
Within the automorphic L-functions a special class can be singled out, the class of 
standard L-functions, which generalize the Hecke L-functions and for which the 
analytic continuation and functional equation can be proved directly. 

For the other L-functions the analytic continuation is not so easily effected. 
However all evidence indicates that there are fewer L-functions than the definitions 
suggest, and that every L-function, motivic or automorphic, is equal to a standard 
L-function. Such equalities are often deep, and are called reciprocity laws, for 
historical reasons. Once a reciprocity law can be proved for an L-function, analytic 
continuation follows, and so, for those who believe in the validity of the reciprocity 
laws, they and not analytic continuation are the focus of attention, but very few 
such laws have been established. 

The automorphic L-functions are defined representation-theoretically, and it 
should be no surprise that harmonic analysis can be applied to some effect in the 
study of reciprocity laws. One recent small success was the proof of a reciprocity 
law for the Artin L-functions associated to tetrahedral representations of a Galois 
group and to a few other representations of degree two. It is the excuse for this 
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lecture, but I do not want to overwhelm you with technique from harmonic analysis. 
Those who care to will be able to learn it at leisure from [6], in which a concerted 
effort was made to provide an introduction to automorphic representations, and 
so I forego proofs, preferring instead to review the evolution of our notion of an 
L-function and a reciprocity law over the past five decades. 

Artin and Hecke L-functions. An L-function is, first of all, a function defined by 
a Dirichlet series with an Euler product, and is therefore initially defined in a right 
half-plane. I will forbear defining explicitly the best known L-functions, the zeta-
functions of Riemann and Dedekind, and the L-functions of Dirichlet, and begin 
with the more general functions introduced in this century by Hecke [19] and by 
Artin [2]. Artin's reciprocity law is the pattern to which all others, born and unborn, 
are cut. 

Although they overlap, the two kinds of L-functions are altogether different 
in their origins. If F is a number field or, if one likes, a function field, although 
I prefer to leave function fields in the background, for they will be discussed by 
Drinfeld [12], then a Hecke L-function is an Euler product L(s9 x) attached to 
a character x of FX\IF. IF is the group of idèles of F. If v is a place of F then 
F* imbeds in IF and % defines a character xv °f F*- To form the function 
T /„ „A , , , « 7 (? -A «.».« take a product over all pla^s of F 

L(S,x) = lIL(S,Xo). 
V 

If u is archimedean the local factor L(s9 xv) is formed from F-functions. Here 
the important point is that whenever v is defined by a prime p and xv is trivial 
on the units, as it is for almost all v9 then 

L(s, Xv) l-a(]))/Nps 

with 
<x(p) = Xv(äp), 

œv being a uniformizing parameter at p. The function L(s, x) can be analytically 
continued and has a functional equation of the form 

L(s9 x) = «(s, X)L(\ - 5 , x~x\ 

s(s9x) being an elementary function [35], 
An Artin L-function is associated to a finite-dimensional representation Q of 

a Galois group Gal (K/F), K being an extension of finite degree. It is defined arith
metically and its analytic properties are extremely difficult to establish. Once again 

L(s9 Q) = J]L(s, Q0), 

QV being the restriction of Q to the decomposition group. For our purposes it is 
enough to define the local factor when v is defined by a prime p and p is un-
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ramified in K. Then the Frobenius conjugacy class #p in Ga\(K/F) is defined, and 

1 d 1 

det (/-e(*p)/^p*) ,ii l-ft(p)/tfp' ' 

if ßi(P)> •••» AI(P) are the eigenvalues of g($p). 
Although the function L(s9 Q) attached to Q is known to be meromorphic in 

the whole plane, Artin's conjecture that it is entire when Q is irreducible and non-
trivial is still outstanding. Artin himself showed this for one dimensional Q [3], 
and it can now be proved that the conjecture is valid for tetrahedral Q9 as well as 
a few octahedral Q. Artin's method is to show that in spite of the differences in the 
definitions the function L(s9 Q) attached to a one-dimensional Q is equal to 
a Hecke L-function L(s,x), where X=X(o) is a character of FX\IF. He employed 
all the available resources of class field theory, and went beyond them, for the equality 
of L(s9 Q) and L(s9 X(Q)) for all Q is pretty much tantamount to the Artin re
ciprocity law, which asserts the existence of a homomorphism from IF onto the 
Galois group Gal (K/F) of an abelian extension which is trivial on Fx and takes 
ö5v to $v for almost all p. 

The equality of L(s9 g) and L(s9x) implies that of x(%) a n d Q($P) for almost 
all p. On close examination both these quantities are seen to be defined by elementary, 
albeit extremely complicated, operations, and so the reciprocity laws for one-
dimensional Q, like the quadratic and higher reciprocity laws implicit in them, 
are ultimately elementary, and can for any Q and any given prime p be verified 
by computation. The reciprocity law for tetrahedral Q seems, on the other hand, 
to be of a truly transcendental nature, and must be judged not by traditional criteria 
but by its success with the Artin conjecture. 

Motivic L-functions. If V is a nonsingular projective variety over a number field 
then, for almost all p, V has a good reduction over the residue field Fp at p and 
we can speak of the number N(n) of points with coordinates in the extension of 
F of degree //. Following Weil [36], we define the zeta-function Zp(s9 V) by 

We owe to the efforts of Dwork, Grothendieck, Deligne, and others the proof that 
2d b> ( a..(»n(~1),+1 2d 

zv(s,v) = n n i ~ i # = n^,vf-»'. 
i=o j = i v yvp / ,-=0 

Here d is the dimension of V9 b( its /th Betti number, and 

M P ) I = tfp,/f. 

It seems to have been Hasse (cf. [18]) who first proposed, in the case of an elliptic 
curve, the problem of proving that the L-function L(s9 V) defined by the Euler 
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product 

nu(s,v) 
V 

has analytic continuation and functional equation. Of course, a solution of the prob
lem involves a reasonable definition of the local factors at the infinite places and 
at the finite places at which V does not have good reduction. 

Since ò1 is generally greater than 1 and LÏ(s9V) is an Euler product of degree 
bl

9 it cannot, except in special circumstances, be equal to an L(s,x)- Sometimes, 
however, L'(s9 V) can be factored into a product of b' Euler products of degree 1, 
each of which is equal to a Hecke L-function. The idea of factoring an L-function 
into Euler products of smaller degree is very important. It led Artin from the zeta-
function of K to the L-functions associated to representations of Gal (KjF). 
Allusions to the same idea can be found in the correspondence of Dedekind with 
Frobenius [9], from which it appears that it was at the origin of the notion of a group 
character. The factorization can be simply interpreted in the context of the /-adic 
representations of Grothendieck. 

The field K is the function field of an algebraic variety of dimension 0 over 
F and the zeta-function of K is L°(s9 V). The variety VF obtained from V by 
extension of scalars to the algebraic closure F has [K: F] points. The Galois 
group Gal (F/F) acts on these points and hence on the /-adic ét̂ lf* mhomology 
group H°(VF). The zeta-function may be defined in the same way as the Artin 
L-function except that it is now associated to the representation of Gal (F/F) 
on H°(VF). The function field of VF is K®FF and the action of Gal (F/F) on 
points is induced by its natural action on the second factor of the tensor product. 
The action of Gal (KjF) on VF induced by its action on the first factor is geometric, 
because the ground field F is fixed, and commutes with Gal (F/F). The group 
Gal (K/F) will then act on the cohomology as well, and so to each G in Gal (KjF) 
we associate an operator T(o) on H°(VF). If some linear combination of the 
T(G) is an idempotent E9 we can restrict the representation of Gal (F/F) to its 
range, and employing Artin's procedure attach an L-function L(s9 E) to the restric
tion. Taking a family of such idempotents, orthogonal and summing to the identity, 
we obtain a factorization of L°(s9 V) or of the zeta-function of K. Since the repre
sentation of Gal (F/F) on H°(VF) is equivalent to that obtained by lifting the regular 
representation of Gal (K/F) to Gal (F/F)9 and the interplay between the actions 
of Gal (K/F) and Gal (F/F) is that between the left and right regular represen
tations, we obtain the factorization of Artin 

L°(s9V) = U(s) = IIL(s9Qy°s°. 
Q 

The product is taken over all irreducible representations of Gal (K/F). 
For a general variety the function L?(s9 V) is obtained from the representation 

of Gal (F/F) on the /-adic cohomology group H^Vp). The algebraic corres
pondences of V with itself which are of degree 0 and defined over F will define 
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operators on H'iVp) which commute with Gal (F/F). Once again, if some linear 
combination of these operators is an idempotent E we may introduce L(s9 E)9 

hoping that it will have an analytic continuation, and that it will be equal to a Hecke 
L-function if the range of E has dimension one. 

In particular, if we can write the identity as a sum of such idempotents which are 
orthogonal and of rank one then we can hope to prove that L'(s9 V) is a product 
of Hecke L-functions, and so has an analytic continuation and a functional equation. 
The major examples here are abelian varieties of CM-type, the relevant endo-
morphisms being defined over F. The idempotents are constructed from these 
endomorphisms. The theorems were proved by Shimura, Taniyama, Weil, and 
Deuring (cf. [33]). ' 

The functions L(s9 E) seem to be the correct, perhaps the ultimate, generaliza
tions of the Artin L-functions. There is no reason to expect that they can be further 
factored. On close examination, it will be seen that the meaning of E has been 
left fuzzy. It should be a motive, a problematical notion, which Grothendieck 
has made precise ([23], [29]). But it cannot be shown to have all the properties 
desired of it without invoking certain conjectures closely related to the Hodge 
conjecture. Indeed, if the Hodge conjecture itself turns out to be false the notion 
will lose much of its geometric appeal. Furthermore there are L-functions arising 
in the study of Shimura varieties which we would be unwilling to jettison but which 
have not been shown to be carried by a motive in the sense of Grothendieck. But 
the notion is indispensable, and if the attendant problems will not yield to a vigorous 
assault then we have to prepare for a long siege. 

If the functions L(s9 E) cannot be factored further then the theorems of Artin 
and Shimura-Taniyama mark the limits of usefulness of the Hecke L-functions in 
the study of the motivic L-functions. Fortunately the Hecke L-functions can be 
generalized. 

Standard L-functions and the principle of reciprocity. If A is the adèle ring of F 
then IF is GL(1, A)9 Fx is Gh(l9F)9 and a character of FX\IF is nothing 
but a representation of GL (1, A) that occurs in the space of continuous functions 
on GL(1, F ) \ G L (1, A). It is the simplest type of automorphic representation. 
GL (n9 A) acts on the factor space GL (/7, 7 0 \ G L Oh A) and hence on the space 
of continuous functions on it. An automorphic representation of GL (/?, A) is basically 
an irreducible constituent n of the representation on the space of continuous 
functions, but the topological group GL (77, A) is not compact and n is, in general, 
infinite-dimensional, and some care must be taken with the definitions [7]. One can 
attach to an automorphic representation it of GL (77, A) an L-function L(s9 n) 
which will have an analytic continuation and a functional equation [17]: 

L(s , 7i) = e(s, 7T)L(1— S, 71), 

with ft contragredient to n. It is possible [14] to write n as a tensor product 
n — ®yrc,,5 the product being taken over all places of F9 and L(s9 n) is an Euler 
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-product JJ0L(s,n0). At a finite place v=p 

" 1 
L(s9ic0)= n , i i l-*t(p)/N? 

Js of degree n9 and for almost all p the matrix 

*i(p) o 
A(nv) = 

{ 0 aB(p)J 
is invertible. 

Since these L-functions, called standard, come in all degrees, there is no patently 
insurmountable obstacle to showing that each L(s9 E) is equal to some standard 
L-functions, thereby demonstrating the analytic continuation of L(s9 E). But the 
difficulties to overcome before this general principle of reciprocity is established are 
enormous, new ideas are called for, and little has yet been done. 

If F=Q an automorphic representation of GL (2, A) is an ordinary auto
morphic form, analytic or non-analytic, in disguise, and the L-functions L(s9 n) 
have been with us for almost half a century. They were introduced and studied by 
Hecke [20], and later defined for nonanalytic forms by Maass [28]. Moving from 
n = i to n = l does not give us much more latitude, but there are two obvious 
kinds of motivic L-functions of degree two. 

If V is an elliptic curve then V-(s9 V) is of degree two and the possibility that it 
would be equal to a standard L-function was first raised by Taniyama and later by 
Weil [37], during his re-examination of Hecke's theory. The numerical evidence is 
good, but no theoretical progress has been made with the problem, except over 
function fields where it is solved [10]. 

If Q is a two-dimensional representation of Gal (K/F) then the Artin L-function 
L(s9 Q) is of degree two. If Q is reducible or dihedral, Artin's theorem can deal 
with L(s9g). Otherwise the image of Gal (K/F) in PGL(2, C) = SO (3, C) 
is tetrahedral, octahedral, or icosahedral. One example of an icosahedral represen
tation with a reciprocity law has been found [8], but no general theorems are available. 
I will return to the tetrahedral and octahedral below, after the principle of functoriality 
has been described, 

The first successful applications of standard L-functions of degree two to the study 
of zeta-functions of algebraic varieties were for curves V obtained by dividing the 
upper half-plane by an arithmetic group, either a congruence subgroup of SL (2, Z) 
or a group defined by an indefinite quaternion algebra ([13], [32]). Here D-(s9 V) 
is a product of several L(s9 n) and the situation is similar to that for curves whose 
Jacobian is of CM-type, except that standard L-functions of degree two replace 
the Hecke L-functions, which are of degree one. The projections underlying the 
factorizations are linear combinations of the Hecke correspondences. 

It is not surprising that these varieties were handled first, for they are defined by 
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a group, and the mechanism which links their zeta-functions with automorphic 
L-functions is relatively simple, similar to that appearing in the study of cyclotomic 
extensions of the rationals. There is a great deal to be learned from the study of 
these varieties and their generalizations, the Shimura varieties, but there are no 
Shimura varieties attached to GL (77) when 77 >2, and we must pass to more 
general groups. 

Automorphic L-functions and the principle of fimctoriality. If G is any connected, 
reductive group over a global field an automorphic representation of G (A) is 
defined as for GL (77). The study of Eisenstein series led to a plethora of L-functions 
attached to automorphic representations. The Artin L-functions and the Hecke 
L-functions are fused in the class of automorphic L-functions, which contains 
them both, but the general automorphic L-function is in fact a kind of mongrel 
object, the true generalization of the Artin L-functions being the motivic L-functions 
and the true generalization of the Hecke L-functions being the standard L-functions. 

To define the automorphic L-functions one associates to each connected, reductive 
group G over F an L-group LG = LGF ([5], [25]), itself an extension 

1 + LGO _ LG _ G a l (K/F) _ ! 

with LG° a connected, reductive, complex group. K is simply a finite but large 
Galois extension of F. To each continuous finite-dimensional representation 
g of LG which is complex-analytic on LG° and each automorphic representation 
n of G(A) one attaches an L-function L(s9 n, g)9 which is an Euler product of 
degree equal to the dimension of g. There is evidence to support the hypothesis 
that each L(s, 71, g) can be analytically continued to the whole plane as a mero-
morphic function with few poles and a functional equation. 

The representation n is again a tensor product n=(g)vnv and 

L(s,n,Q) = [J L(s9nv9 g). 
V 

For almost all finite v the theory of spherical functions, or, if one prefers, of Hecke 
operators, attaches to nv a conjugacy class {gv}={g(nv)} in LG which reduces 
to the Frobenius class when G= {]}. The local factor for these places is 

1 

L(s, nv9 g) 
det(l-e(gy)//Vps) 

if v is defined by p. If G is GL (77) then LG is a direct product GL (77, C)X 
XGal (K/F) and the projection of {g(nv)} on the first factor is the class of A(nv). 
Consequently if g is the projection on the first factor then L(s9 n, g) is the standard 
L-function L(s9 n). 

The automorphic L-functions once defined, their resemblance to the Artin 
L-functions is manifest, and the possibility suggests itself of establishing their analytic 
continuation by showing that when G, 71, and g are given there is a representation 
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n of GL (n9A)9 with n = degg9 such that {A(n'v)} = {g(g(nD))} for almost 
all v and 

L(s9 7T, g) = L(s9 n'). 

For G= {1} this would be the reciprocity law for Artin L-functions. 
More generally, if H and G are two connected reductive groups over F and 

we have a commutative diagram 

LH/ 

/Gal (K/F) 

with <p complex-analytic, then to every automorphic representation n of LG there 
should be an automorphic representation n' of H which is such that {g(n'v)}= 
{<p(g(îO)} for almost all v. There is evidence that this is so, although some 
subtleties must be taken into account. I refer to the phenomenon as the principle 
of functoriality in the L-group. 

Examples. Suppose E is a finite extension of F. Then G is also a group over E 
and the L-group over E9

 LGE9 is a subgroup of LGF. It is the inverse image of 
Gal(Ä/L) in L<JF. Ihe principle ot tunctonahty implies the possibility of making 
a change of base from F to E and associating to each automorphic representation 
% of G(AF) an automorphic representation 77 of G(AE)9 sometimes called 
a lifting of n. For almost all places, w9 of E the class {g(TIw)} must be {g(nv)

f} 
if w divides the place v of F and f=[Ew: F0], 

Ideas of Saito [30] and Shintani [34] allow us to show that base change is always 
possible when (7 = GL (2) and E is a cyclic extension of prime degree [26], arid 
thus, by iteration, a solvable extension. For now extensions of prime degree are 
enough, and for them it is possible to characterize those 77 which are liftings. 
The Galois group Gal (E/F) acts on AE and on GL (2, AE) and thus on the set 
of automorphic representations of GL (2, AE). Apart from some trivial exceptions, 
77 is a lifting if and only if 77 is fixed by Gal (E/F). 

Base change is a first step towards a proof of the principle of reciprocity and 
Artin's conjecture for two-dimensional representations. Suppose, for example, 
that G is a tetrahedral representation of Gal (F/F). Then there is a cyclic extension 
E of F of degree three which is such that the restriction I of G to Gal (F/E) is 
dihedral. Consequently the principle of reciprocity applies to it and yields an auto
morphic representation 77 = 77 (I) of GL (2, AE). The class of I is invariant 
under Gal (E/F) and therefore 77 is too, and is a lifting. There is precisely one 
representation n which lifts to 77 and has central character det er. It should be 
TZ(G)9 the representation whose existence is demanded by the principle of functoriality. 
At first sight this does not look difficult to show, for the eigenvalues of G(<PP) and 
{A(%0)}9 where v is the place defined by p, differ only by cube roots of unity, 
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but it should be a deep matter. However fortune smiles on us, for we can deduce 
some interesting theorems without pressing for a full understanding. 

There are two ways of proceeding. The one used in [26] has the disadvantage that 
it does not work for all fields or all tetrahedral representations, but the advantage 
that it also works for some octahedral representations. It invokes a theorem of 
Deligne-Serre, characterizing some of the automorphic representations attached 
to two-dimensional representations of the Galois group. The other (cf. [15]) employs 
special cases of the principle of functoriality proved by Piatetskii-Shapiro and 
Gelbart-Jacquet. 

One begins with Serre's observation to me that composition of G with the adjoint 
representation <p of GL (2) on the Lie algebra of PGL (2) gives a three-dimensional 
monomial representation g to which, by a theorem of Piatetskii-Shapiro [21], 
the principle of functoriality applies to yield an automorphic representation n(g) 
of GL (3, AF). On the other hand, the L-group of GL (2) is a direct product 
GL(2,C)XGal(Ä:/F) and that of GL (3) is a direct product GL (3, C)XGal (K/F). 
The principle of functoriality should attach to the homomorphism 

(pXid: GL(29C)XGal(KjF)-+GL(39C)xGa\(K/F) 

a map <p+ from automorphic representations of GL (2, AF) to automorphic 
representations of GL (3, AF). The existence of <y>+ has been proven by Gelbart-
Jacquet [16]. 

If the principle of functoriality is consistent and n is TI(G) then q)*(%) must 
be n(g). Conversely, elementary considerations, which exploit the absence of an 
element of order six in the tetrahedral group, show that if <pjji) equals n(g) then 
7T is 7i (G). That (p^(n) equals n(g) follows easily from an analytic criterion of 
Jacquet-Shalika [22]. 

Even for GL (2) base change for cyclic extensions is not proved without some 
effort, the principal tools being the trace formula and combinatorics of the Bruhat-
Tits building. These are being developed by Arthur [1] and by Kottwitz [23], but 
our knowledge of harmonic analysis is still inadequate to a frontal attack on the 
problem of base change for a general group. Nonetheless some progress can be 
anticipated, although it is not clear how close base change will bring us to the Artin 
conjecture. 

For number fields there has been no other recent progress with the principle of 
reciprocity. But we could also try to show that a motivic L-function is equal to an 
automorphic L-function L(s9 n9 g) which is not standard or to a product of such 
functions. This may not imply the analytic continuation of L(s9E) but can have 
concrete arithmetic consequences and the proof may direct our attention to important 
features of the mechanism underlying the principles of reciprocity and func
toriality [31]. 

The immediate examples are the L-functions defined by Shimura varieties [27]. 
These varieties are a rich source of ideas and problems, but once again we must 
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advance slowly, deepening our understanding of harmonic analysis and arithmetic 
as we proceed. For the varieties associated to the group over Q obtained by restric
tion of scalars from a totally indefinite quaternion algebra over a totally real field F9 

the problems are tractable. In [27] no motives are mentioned, but the zeta-
function is expressed as a quotient of products of automorphic L-functions of 
degree 2n

9 where n=[F:Q] is the dimension of the variety. For n=2 the analytic 
continuation and functional equation have been established by Asai [4], and we 
have the first examples of analytic continuation for motivic L-functions which are 
of degree four and, apparently, irreducible and not induced. 
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