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Abstract

There is a need for automated methods to learn general features of the interactions of a ligand class with its

diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP)

which automatically generates comprehensible rules in addition to prediction. The development of ILP systems

which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work

we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein

interactions.

The rules induced by ProGolem detect aromatic and planar-polar residues interactions in addition to less

common features like the aromatic sandwich. The rules also reveal a previously unreported dependency for

residues CYS and LEU. They also specify stereo configurations involving aromatic and hydrogen bonding residues.

Further to confirming literature results, ProGolem’s model has a 10-fold cross-validated predictive accuracy that

is superior, at the 95% confidence level, to other ILP systems and comparable with state-of-the-art statistical

learners.
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Introduction

Elucidating unifying features of protein-ligand interactions in systems showing a diversity of interaction

modes remains a challenging problem, often requiring extensive human intervention. In this work we present

an automated general approach to identify these features using Inductive Logic Programming (ILP). We

apply ILP to study the factors relevant to protein-hexose binding.

Hexoses are 6-carbon monosaccharides involved in numerous biochemical processes, including energy

release and carbohydrate synthesis [1]. Several non-homologous protein families bind hexoses using a diverse

set of protein-ligand interactions. Many research groups have used computational techniques to model

and analyze hexose- and sugar-protein interactions, often employing extensive visualization and empirical

methods [2–5]. Some techniques use surface and binding site similarities to search for matching functional

sites in other proteins [6,7]. Others apply machine learning algorithms to construct sugar-specific classifiers [8,

9]. Such classifiers can be combined with programs that detect protein surface-pockets of a given size [10,11]

to discriminate potential binding-sites.

Recently [12] used the predominant ILP system, Aleph [13], to study hexose binding. A powerful feature

of ILP is that, in addition to prediction, it automatically learns rules which can be readily understood. It

has been successfully applied to predict and model various medical [14, 15] and biological datasets [16, 17].

However, the complexity and size of the hypothesis space often presents computational challenges in search

time which limit both the insight and predictive power of the rules found.

Recognizing the limitations of Aleph and other current ILP systems, [18] developed ProGolem to facilitate

the learning of long, complex rules. Long, complex rules are common in the molecular biology domain and

we argue that a sophisticated ILP system such as ProGolem is a promising approach to automatically learn

these rules from molecular data.

The present work extends previous hexose prediction work in multiple ways. First we supplement the

background knowledge with both atomic and amino-acid information. Second, we bias the hypothesis space

to reduce the search space and increase the likelihood of generating meaningful rules. Third, we employ the

newly-developed ProGolem, which has been shown to learn better than Aleph in highly non-determinate do-

mains such as this hexose-binding application. Finally, we explore several approaches to curb the limitations

of the recall bound in ILP systems.

The combined usage of an extended background knowledge, a better biased search, and the ILP system

ProGolem allowed the discovery of more accurate and insightful rules explaining the stereochemistry of

hexose binding.
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Automatically finding these stereochemical rules and providing their explanation is the main contribution

of this paper. While some of the rules ProGolem found were already known from the literature, other rules,

namely one that specifies a dependency over residues CYS and LEU, have never been reported but are

plausible and require further investigation.

Predicting whether an actual protein binds an hexose is of secondary importance to us. Nevertheless, the

predictive accuracy of our approach is competitive to statistical learners such as Support Vector Machines

and superior to other logic-based approaches.

Problem Representation
Dataset

For ease of comparison, we use the same dataset and cross-validation folds described in [12]. To retrieve

the positive examples, the Protein Data Bank (PDB) [19] was mined for proteins crystallized with the most

common hexoses: galactose, glucose and mannose [20]. Theoretical structures and files older than PDB

format 2.1 were ignored. Glycosylated sites and redundant structures (at most 30% overall sequence identity

using PISCES [21]) were also ignored. The positive subset consisting of 80 protein-hexose binding sites (33

galactose, 35 glucose and 12 mannose) is presented in Table 1.

The Protein Data Bank was mined in a similar way for the 80 negative examples. The negative dataset

consists of 22 binding sites that bind hexose-like ligands (e.g. hexose or fructose derivatives, 6-carbon

molecules, and molecules similar in shape to hexoses), 27 other-ligand binding sites and 31 non-binding

sites. The non-binding sites are surface pockets that look like binding sites but are not known to bind any

ligand. The negative dataset is presented in Table 2 (non-hexose binding sites) and Table 3 (non-binding

sites).

The data also specifies the center for each of the resulting 160 examples. The binding-site center is

computed as the hexose pyranose ring centroid for the positive examples and as the ligand or empty pocket

centroid for the negative examples. The binding-site consists of all protein atoms present within a 10 Å

radius sphere around this center. All other atoms are discarded.

Inductive Logic Programming

ILP is a machine learning approach that generates a hypothesis composed of a set of logical if-then rules

that explains a given dataset [22]. ILP has three major advantages over other machine learning and data

mining techniques. First, it allows an easy interaction between humans and computers by using background
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knowledge to guide the search. Second, it returns results in an easy-to-understand if-then format. Finally,

ILP can easily operate on relational databases, as relational databases are naturally expressed as relations

in first-order logic.

Most leading ILP approaches start by a saturation step, randomly selecting a positive example for which

they construct the bottom clause: the most specific hypothesis that explains the example. This most specific

clause is the rule formed by the conjunction of all features (called predicates or literals) pertaining to the

chosen example. In the reduction step, ILP generalizes this rule (called clause or hypothesis) to include

other positive examples using one of two basic induction methods, generalization or specialization.

Aleph, using a general-to-specific approach, starts with the most general hypothesis, “all sites are hexose-

binding sites”, calling all examples positives. It then refines this hypothesis by repeatedly adding the literal

from the bottom-clause that best improves the hypothesis score. The new rule will be more specific, covering

only a subset of the examples previously covered.

ProGolem, in contrast, uses a specific-to-general search. Starting with the bottom clause, it successively

drops a minimal set of literals to allow coverage of one additional positive example. By dropping this set of

literals the clause becomes more general, and will cover a superset of the examples previously covered.

Both ProGolem and Aleph stop hypothesis refinement when the hypothesis score stops improving. A rule

scores well if it covers many positive and few negative examples. If the rule passes a certain performance

threshold, it is added to the theory, and all the positive examples it covers are removed. The cycle of

saturation and reduction continues on the remaining examples. When all positive examples are covered or

no new rules can be found, the ILP system outputs its theory, the set of all compressive rules found thus

far. The compression score of a rule is defined as: positive examples covered - negative examples covered -

clause length.

The compressive rules found in the training phase are later used to predict the class of new, test, examples.

A new example (i.e. a new protein) is classified as positive (i.e. binds an hexose) if it is covered by any of

the discovered rules, otherwise it is labeled as negative.

The newly developed ProGolem is more than a specific-to-general version of Aleph. Two additional

features set it apart. Aleph adopts a local theory construction method, incrementally adding a new rule to

its theory after each reduction cycle. This method depends on the ordering of the positive examples, and

it is possible that the best rules are not generated. This situation may occur if these better rules would be

generated by examples that were removed by previous sub-optimal rules. By contrast, ProGolem implements

a global theory construction approach, which ensures that the theory is only constructed after all rules have
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been generated. ProGolem repeatedly adds to the theory the rule that best improves the global theory score.

The global-theory-construction feature of ProGolem is especially useful in this application.

In ILP, an example can have multiple instances from the same predicate. For example, a binding site

has multiple atoms. If a predicate has more than one possible solution, it is called non-determinate. Hence

the site has atom predicate is non-determinate. In fact our hexose dataset is highly non-determinate.

When evaluating a clause, Aleph will proceed literal by literal from left to right. This is the standard

Selective Linear Definite (SLD) resolution [23], which is the only option in most ILP systems. However,

ProGolem has to evaluate longer clauses than Aleph due to its specific-to-general hypothesis search. SLD-

resolution is too slow to compute the coverage of such long clauses. To cope with this problem ProGolem

supports the usage of different resolution engines, including the smallest variable domain resolution, which

enumerates the possible values a variable in a literal may take and, during clause evaluation, chooses at each

moment the variable with the smallest domain [24]. This clause evaluation engine is better suited to our

problem than SLD-resolution, drastically reducing the runtime per evaluated clause.

Background knowledge

The background knowledge is the set of features, facts and rules known a priori. This is given to the ILP

system as a basis for learning and constructing the classification rules. The piece of background knowledge

central to our task is the binding site representation. Figure 1 is an excerpt of the background knowledge

for protein 1BDG. The center coords predicate specifies the binding-site center coordinates, which is the

pyranose ring centroid of the bound glucose in this case. The has aminoacid predicate specifies each amino

acid present within the protein binding site, listing its unique identifier and name. The has atom predicate

details the residue atoms, specifying the PDB atom name and its coordinates.

By extracting the coordinates of the center and the various atoms, we compute their respective distances.

We set a tolerance of 0.5 Å on distances between atoms, a sensible error margin in a hexose binding site [25].

In addition to these facts, ILP allows for a higher level of expressiveness within its background knowledge:

human coded rules. Using the facts of Figure 1, and the Euclidean distances between atoms that are derived

from this data, we can now define the predicates atom to center dist and atom to atom dist.

These predicates respectively compute the distance between an atom and the binding-site center, and

between two atoms. We also define a diff aminoacid predicate which allows expressing that two amino acids

are different. This may be relevant when there are multiple amino acids of the same type and each amino

acid needs to be individually identified.
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Hypothesis space

We experiment with multiple hypothesis spaces. Similarly to [12], we first exclude residue information and

limit the background to the atoms and their 3D coordinates. In this atom-only representation, the binding

site is a sphere of radius 10 Å containing atoms in space, for which distances can be computed (Table 4).

The distances between atoms are computed by having a dist literal in the ILP background knowledge,

allowing ILP systems to express the 3D conformation of the binding site. However, the number of possible

distances grows quadratically with the number of atoms considered, resulting in an exponential growth of the

bottom clause. Starting its generalization search from the bottom clause, ProGolem learning time is highly

sensitive to its length. To keep learning tractable, both ProGolem and to a lesser extent Aleph, require

a bound on the maximum number of solutions a given predicate may return, called the recall (not to be

confused with the statistical measure of the same name, also called sensitivity). In practice this recall bound

limits the hypothesis search space by forcing that only the first recall solutions of a literal be considered in

the bottom clause.

By relying on the arbitrary ordering of the atoms and residues in the background knowledge, having a

bound on the recall of a predicate is subject to data idiosyncrasies. In this work we explored two alternative

approaches of organizing the background knowledge to curb the limitations of having a recall bound. The first

approach, randomized recall, considers all solutions first, out of which it randomly picks a number of solutions

equal to recall rather than the always the first N. This is achieved by either altering the internal recall routine,

as we did, or equivalently, by randomizing the order of the atoms and residues in the background knowledge.

The second approach is domain-dependent. Using Random Forests to measure feature importance [26,27],

[9] show that atoms closest to the binding center have higher discriminative power. Closest atoms are more

likely to determine whether or not the binding site binds hexose, as compared to more distant atoms. The

domain-dependent approach orders the atoms and residues in the background knowledge by their distance

from the binding site center. For instance, in this approach the distance literal will attempt to match the

recall atoms closest to the binding center.

Another contribution of this work is the re-modeling of the problem representation and a better bias to the

hypothesis space. We propose two major improvements to the atomic representation. First is the inclusion of

residues using the has aminoacid predicate. The second is imposing that atoms cannot appear dangling in a

hypothesis. A residue has to be introduced into a rule first, before atom to atom dist and atom to center dist

predicates compute its atomic distances. We thus only compute distances between atoms of residues already

in a rule. In this amino acid representation, the binding site sphere is composed of amino acids, who in turn
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contain atoms (Table 4).

By first dealing with residues instead of atoms, the binding site sphere now contains a smaller number

of elements. In addition, in the amino acid representation we can express the distance between two atoms

using only one literal, atom to atom dist.A rule can contain up to recall residues, and for each atom of a

given residue we measure its distance to recall atoms of each one of the included residues. In contrast, in

the atom-only representation we need three literals to express a distance, two has atom and one dist. A rule

can contain only recall atoms, and each atom can only detect recall other atoms in the feature space. Thus,

for the same recall bound, the amino acid representation considers both more features and generates more

informative clauses than the atom-only representation.

Figure 2 is an example of a hypothesis from the amino acid representation hypothesis space, in raw

Prolog format as induced by ProGolem.

When interpreting Prolog clauses, it is important to note that these have a structure Head:-Body, which

reads as, the head is verified (i.e. is true) if the body (a conjunction of literals) holds true. The uppercase

letters in the clause, in this case A, B, C and D, are logical variables and represent a certain entity. Lowercase

strings, string within quotes (e.g. leu, cys, ’N’, ’OD2’, and ’C’) and numbers are constants representing

themselves.

The variable A in this clause represents a protein, variables B, C and D represent amino acids. The types

of variables and constants, is specified in ILP via mode declarations. Figure 3 has the translation to English

of the rule in Figure 2.

Experiments
Methods

All materials (i.e. dataset, ILP systems and scripts) to reproduce these experiments are available at

http://www.doc.ic.ac.uk/∼jcs06/Hexose.

ILP settings

We apply two ILP systems, Aleph and ProGolem, with both atom-only and amino acid representations, and

using YAP 6.0.6 as the Prolog compiler [28]. To ensure a fair comparison, we use the same settings for both

ILP algorithms whenever possible. We set the recall bound to 7, and the maximum number of negatives a

hypothesis may cover to 5. We evaluate clauses according to their compression score.

We use ProGolem with its global theory construction and smallest variable domain resolution. In Aleph,
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we set the number of nodes to be explored when searching for an acceptable clause to 5000. The clause

length in Aleph, i.e. the maximum number of literals allowed in a hypothesis, was set to match the clause

length that ProGolem generates (5 for atom-only, 6 for amino acid). Notice that if the same clause length

was used in both representations, the predictive accuracies of Aleph would be lower. In ProGolem the user

does not need to specify the maximum clause length of a rule, as the hypothesis search is from specific to

general.

Homology and cross-validation

Our dataset consists of 160 binding sites, belonging to 152 unique proteins (8 of the hexose-binding proteins

have two distinct binding sites). These 152 proteins belong to a total of 122 CATH [29] superfamilies. In

order to guarantee that rules are not being learned from homologous proteins, each cross-validation fold

should not contain proteins whose superfamilies also occur in other folds.

Unfortunately, with this particular dataset, it is impossible to construct cross-validation folds that verify

this non-sharing superfamily constraint. This is because the binding site may span over multiple chains,

each belonging to a different superfamily. Moreover, a single chain may be subdivided into domains, each

belonging to different CATH superfamilies. Thus, if binding site A belongs to superfamilies sf1 and sf2, B

to sf2 and sf3, and C to sf3 and sf4, the binding sites A, B and C must be in the same cross-validation fold.

With the current dataset this constraint would result in a single cross-validation fold containing 48 binding

sites (34 positives, 14 negatives) out of 160, creating a significative imbalance between cross-validation folds.

Given this impossibility, and in order for our results to be comparable with previous work, we performed

a 10-fold cross-validation using the same folds as [12]. Each fold consists of 8 positive and 8 negative

examples. Since the number of hexose binding proteins is limited, the dataset proteins share a low sequence

identity (≤ 30%), and the main goal of this paper is providing insight into the hexose-binding discriminating

process rather than the predictive accuracy of the classifiers, we consider our methodology acceptable. When

comparing two approaches or algorithms on the 10 folds, we consistently use a two-tailed paired t-test at

the 95% confidence level.

Results

It is important to note that the main aim of this work is to discover rules describing the bio- and stereo-

chemistry of protein-hexose binding. Although there is empirical evidence suggesting that many hexose

dockings are not accompanied by substantial protein conformational changes [25], we do not aim to predict
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the binding sites of new hexose-binding proteins, as we would not know in advance the coordinates of the

hexose ligand. Nevertheless, we use 10-folds cross-validated predictive accuracies as a measure to demonstrate

the quality of the rules.

As explained previously, an important parameter when running ILP systems, is the recall bound, which

imposes a bound on the maximum number of solutions a given Prolog predicate may return.

Since, for performance reasons, the recall setting has to be limited to a relatively low value, we started

by performing experiments to determine how to best set the background knowledge to get the most out of

a limited recall.

We considered three schemes. The first considers the atoms of the protein according to the order of their

occurrence in the PDB file, which follows the order of the primary sequence. The second scheme randomizes

the order of the atoms in the background knowledge. The third scheme, domain-dependent, orders the atoms

by their distance to the binding-site center.

Using the atom-only representation each of the three approaches yielded, in ProGolem, a 10-fold CV

accuracy of, respectively, 59.4%, 68.8% and 74.4%. Therefore, after this initial set of experiments, we

adopted the domain-dependent approach to organize the background knowledge in all our subsequent runs,

involving both ILP algorithms (ProGolem and Aleph) and both data representations (atom-only and amino

acid).

We then compared our results to a state-of-the-art approach, where we first use Random Forests for

feature selection, and then apply Support Vector Machines (SVM) [30] to the selected attributes. We used

internal validation to select the best Random Forests and SVM parameters for each training fold, before

predicting the testing fold. Note that SVM is a statistical classifier requiring a constant-length feature vector

as input. This requires a different problem representation than the one used with ILP. Essentially we divide

the binding site in concentric spherical layers, and for each we compute atomic and residue properties. We

also add various atomic features namely hydrophobicity, charge and hydrogen-bonding. Refer to [9] for

method and representation details.

Table 6 shows the 10-fold cross-validation predictive accuracies of Aleph and ProGolem with the atom-

only and amino acid representations. We used the same folds for SVM.

9



Discussion
ProGolem performance

Simply relying on the given order of the background knowledge introduces placement bias. Both randomizing

recall selection, and incorporating domain knowledge by ordering the atoms according to their distance to

the binding site center, significantly improves accuracy when compared to the given PDB ordering (p-values

of 0.026 and 0.021, respectively). This showcases the importance of domain knowledge, whereas clever

manipulations based on prior knowledge will have better results compared to default settings. We also argue

that randomizing recall selection should be used as default since it avoids data idiosyncrasies.

From Table 6 we notice that ProGolem performs better using the enhanced amino acid representation

rather than the atom-only one (p-value = 0.029). However, the amino acid representation yields no sta-

tistically significant improvement in Aleph (p-value = 0.390). A possible explanation as to why ProGolem

takes advantage of the amino acid representation more than Aleph is the myopia effect [31]. The myopia

effect occurs because general-to-specific ILP systems, like Aleph, indirectly assume literals are conditionally

independent given the target class. They refine the working hypothesis by adding one literal at a time,

the one that maximizes a fitness function. If literals have a strong conditional dependency, any selected

literal will roughly have the same score. Thus multiple literals need to be added before Aleph can determine

which set is optimal. If the literals are highly non-determinate, as is our case, a significant portion of the

search resources is wasted searching very similar hypotheses, which results in a poorer chance of finding good

theories.

We also notice that ProGolem outperforms Aleph for both representations (Table 6). The differences

in their predictive accuracies are statistically significant for both atom-only (p-value = 0.043) and amino

acid (p-value = 0.004) representations, the latter being significant even at the 99% confidence level. This

discrepancy is in part explained by ProGolem’s global theory construction, which only constructs the final

theory after all hypotheses have been generated rather than incrementally, on a per-example basis, as Aleph

does.

Finally, we compare ILP to SVM. Using the amino acid representation, despite ProGolem having a higher

average accuracy and a lower standard deviation than SVM, the difference is not statistically significant (p-

value = 0.52). More surprisingly, SVM do not outperform amino acid Aleph (p-value = 0.057). SVM

significantly outperforms both Aleph (p-value = 0.005) and ProGolem (p-value = 0.025) in the atom-only

representation.

10



Insight from rules

In this section we present the English translation and the biological explanation for some of the most relevant

rules found by ProGolem using the amino acid representation. ProGolem rules were judged by a structural

bioinformatician to be more interesting than those found by Aleph. According to ProGolem a site is hexose-

binding if:

1. It contains two different ASN residues and an ASP residue whose CG atom is 5.4± 0.5 Å away from the

binding center.

[Positives covered = 37, Negatives covered = 4]

2. It contains an ASN whose N and C atoms are 2.4± 0.5 Å apart, and a GLU whose CB and CG atoms

are 8.0± 0.5 Å and 6.9± 0.5 Å away from the binding center, respectively.

[Positives covered = 24, Negatives covered = 0]

3. It contains an ASN residue whose N atom is 8.2± 0.5 Å away from the binding center, and an ASN

residue whose N and ND2 atoms are 4.1± 0.5 Å apart and whose N and O atoms are 3.6± 0.5 Å apart.

[Positives covered = 30, Negatives covered = 0]

4. It contains a TRP residue whose CB atom is 7.1± 0.5 Å away from the binding center, and whose N

and CD1 atoms are 4.0± 0.5 Å apart.

[Positives covered = 14, Negatives covered = 0]

5. It contains a TYR residue whose CB and OH atoms are 5.6± 0.5 Å apart, a HIS residue whose ND1

atom is 8.9± 0.5 Å away from the binding center, and a TYR residue whose O atom is 9.8± 0.5 Å

away from the binding center.

[Positives covered = 6, Negatives covered = 0]

6. It contains CYS and LEU residues, and an ASP residue whose N and OD2 atoms are 4.6± 0.5 Å apart,

and whose C atom is 7.6± 0.5 Å away from the binding center.

[Positives covered = 18, Negatives covered = 0]

The first rule requires the presence of an ASP and two ASNs. Early on, [32] highlighted the importance

of both residues in hexose binding. Studying the lectin protein family, they report that the 3D position of

binding-site ASP and ASN residues is conserved across the protein family; despite the fact that lectins bind

various types of hexoses and exhibit different sugar-binding specificities.
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That same rule requires the ASP CG atom to be 5.4 Å away from the centroid of the hexose pyranose ring.

The pyranose radius itself being 3 Å, the ASP actually interfaces the docked hexose. Binding-site interface

residues are key for hexose recognition and binding [9], especially planar polar residues that establish a

network of hydrogen bonds with the various hydroxyl groups of the docked hexose [33]. [34] report that the

most common planar polar amino acids involved in hexose binding are mainly ASP and ASN, followed by

GLU. ProGolem detects the role of GLU in the second rule.

The second rule also implies a triangular distance relationship between GLU’s CB and CG atoms, and the

binding center. [25] report that spatial disposition of protein-galactose interacting atoms is not conserved per

se, but is conserved with respect to the docking position of the ligand. Similarly, ProGolem often specifies

the distance of an atom with respect to the centroid of the hexose.

An additional advantage of inducing rules using ILP is the straightforward reverse-engineering to find the

particular proteins, residues and atoms covered by a given rule. This is achieved by executing the ILP rule

in a Prolog interpreter. As an example, Figure 4 visualizes the second rule with protein 1HIZ, a xylanase.

The hexose ligand is depicted with its backbone in light pink. The two amino acids involved in the rule, a

glutamic acid and an asparagine, have a white backbone. The relevant distances are shown.

In addition to specifying the distance from the binding center, ProGolem can detect specific amino acid

stereochemical dispositions. The third rule determines a particular ASN conformation, specifying the dis-

tances between backbone N and O atoms, and the side chain ND2 atom. The various spatial dispositions of the

different rules need further investigation to compare them with known 3D hexose binding-site conformations.

The aromatic residues (TRP most frequently, TYR, PHE, and to a lesser extent HIS) provide a stacking

platform for the hexose to dock on [34]. The hexose pyranose ring forms a planar apolar hydrophobic side

that stacks, through hydrophobic and van der Waals interactions, over the aromatic residues planar apolar

hydrophobic side chain ring [35]. Similarly, the ProGolem fourth rule requires the presence of TRP in a

particular stereochemical conformation.

The fifth rule requires the presence of one or two TYR, and a HIS. This rule is thus describing a confor-

mational representation of two or three aromatic residues around the binding-site center. It is interesting

that this low-coverage rule may indeed be capturing the infrequent sandwich interaction, whereby two or

more aromatic residues engage both faces of a hexose pyranose ring [36].

The last rule specifies CYS and LEU residues. Both have negative interface propensity measures and

do not form hydrogen bonds with hexoses [37]. To quantify the disposition of each amino acid to be in

contact with the docked sugar, [37] devised an interface propensity measure, defined as the logarithm of the
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ratio between a residue frequency at the sugar binding site, and the average frequency of any residue at the

binding site. They compute and report the sugar-interface propensity measure for the 20 common amino

acids. A residue with a negative propensity measure does not favor the sugar binding-site region since it is

present there less frequently than average.

This rule covers 18 positive examples and no negative examples, and clearly specifies the presence of CYS

and LEU as a discriminative factor for hexose-binding site recognition. This dependency over LEU and CYS

is not previously identified in literature and merits further attention.

Conclusion

Inductive Logic Programming (ILP) is a leading technique to mine accurate and comprehensible rules. The

newly developed ILP system ProGolem is well suited for complex non-determinate problems, like most

biochemical datasets. In our hexose-binding application, its predictive accuracy is significantly better than

previous approaches, while showing a clear insight of the underlying discrimination process.

ProGolem was able to infer different aspects of the established biochemical information about hexose-

binding, namely the presence of a docking aromatic residue, the importance of interface atoms, and the

hydrogen-bonding activity of planar-polar residues (ASN, ASP, GLU). ProGolem also detected the less com-

mon aromatic sandwich interaction.

In addition, ProGolem reveals an important previously unreported finding: a dependency over residues

CYS and LEU. It also specifies stereo configurations involving aromatic and hydrogen bonding residues. The

newly reported relationship and 3D conformations require further investigation.

Author’s contributions

Jose Santos developed the ProGolem ILP system under the supervision of Stephen Muggleton. ProGolem’s

theoretical foundations were laid out by Stephen Muggleton. Houssam Nassif and David Page created the

Hexose dataset and did the initial experiments with Aleph. Jose did the current experimental evaluation

between ProGolem, Aleph and Support Vector Machines.

Jose drafted the computational sections of the manuscript while Houssam drafted the biological sections.

In particular the biological interpretation of the ProGolem rules was written by Houssam. Michael Sternberg

reviewed and edited the biological interpretation of the rules, wrote the introductory section and provided

critical input on several iterations of the manuscript. All authors read and approved the final manuscript.

13



Acknowledgment

This work was partially supported by the US National Institute of Health grant R01CA127379-01. Jose

Santos thanks the Wellcome Trust for funding his Ph.D. scholarship. Stephen Muggleton thanks the Royal

Academy of Engineering and Microsoft for funding his Research Chair. We thank Dr Suhail Islam for his

help with Figure 4 and Professor Kurt Drickamer for comments on the rules.

14



References
1. Solomon E, Berg L, Martin DW: Biology. Belmont, CA: Brooks Cole, 8th edition 2007.

2. Shionyu-Mitsuyama C, Shirai T, Ishida H, Yamane T: An Empirical Approach for Structure-Based Pre-
diction of Carbohydrate-Binding Sites on Proteins. Protein Engineering 2003, 16(7):467–478.

3. Sujatha MS, Sasidhar YU, Balaji PV: Energetics of Galactose- and Glucose-Aromatic Amino Acid In-
teractions: Implications for Binding in Galactose-Specific Proteins. Protein Science 2004, 13(9):2502–
2514.

4. Chakrabarti R, Klibanov AM, Friesner RA: Computational prediction of native protein ligand-binding
and enzyme active site sequences. Proceedings of the National Academy of Sciences of the United States of

America 2005, 102(29):10153–10158.

5. Doxey AC, Cheng Z, Moffatt BA, McConkey BJ: Structural motif screening reveals a novel, conserved
carbohydrate-binding surface in the pathogenesis-related protein PR-5d. BMC Structural Biology

2010, 10:23.

6. Gold ND, Jackson RM: Fold independent structural comparisons of protein-ligand binding sites for
exploring functional relationships. Journal of Molecular Biology 2006, 355(5):1112–1124.

7. Cipriano G, Wesenberg G, Grim T, Jr GNP, Gleicher M: GRAPE: GRaphical Abstracted Protein Ex-
plorer. Nucleic Acids Research 2010, 38:W595–W601.

8. Malik A, Ahmad S: Sequence and Structural Features of Carbohydrate Binding in Proteins and
Assessment of Predictability Using a Neural Network. BMC Structural Biology 2007, 7:1.

9. Nassif H, Al-Ali H, Khuri S, Keirouz W: Prediction of Protein-Glucose Binding Sites Using Support
Vector Machines. Proteins 2009, 77:121–132.

10. Kawabata T: Detection of multi-scale pockets on protein surfaces using mathematical morphology.
Proteins 2010, 78(5):1195–1211.

11. Wong GY, Leung FH: Predicting Protein-Ligand Binding Site with Support Vector Machine. In
Proceedings of the IEEE Congress on Evolutionary Computation 2010:1–5.

12. Nassif H, Al-Ali H, Khuri S, Keirouz W, Page D: An Inductive Logic Programming Approach to Vali-
date Hexose Biochemical Knowledge. In Proceedings of the 19th International Conference on ILP, Leuven,
Belgium 2009:149–165.

13. Srinivasan A: The Aleph Manual. 4th 2007, [http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/
%aleph.html].

14. Srinivasan A, King RD, Muggleton SH, Sternberg MJE: Carcinogenesis Predictions Using ILP. In Proceed-

ings of the 7th International Workshop on Inductive Logic Programming, Prague, Czech Republic 1997:273–287.

15. Burnside ES, Davis J, Santos Costa V, de Castro Dutra I, Kahn CE, Fine J, Page D: Knowledge Discovery
from Structured Mammography Reports Using Inductive Logic Programming. In AMIA Symposium

Proceedings, Washington, DC 2005:96–100.

16. Finn P, Muggleton S, Page D, Srinivasan A: Pharmacophore Discovery using the Inductive Logic Pro-
gramming System PROGOL. Machine Learning 1998, 30(2-3):241–270.

17. Szaboova A, Kuzelka O, Zelezny F, Tolar J: Prediction of DNA-Binding Proteins from Structural Fea-
tures. In Proceedings of the 4th International Workshop on Machine Learning in Systems Biology, Edinburgh
2010:273–287.

18. Muggleton S, Santos J, Tamaddoni-Nezhad A: ProGolem: a system based on relative minimal generali-
sation. In Proceedings of the 19th International Conference on ILP, Springer, Leuven, Belgium 2009:131–148.

19. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein
Data Bank. Nucleic Acids Research 2000, 28:235–242.

20. Fox MA, Whitesell JK: Organic Chemistry. Boston, MA: Jones & Bartlett Publishers, 3rd edition 2004.

21. Wang G, Dunbrack RL: PISCES: A Protein Sequence Culling Server. Bioinformatics 2003, 19(12):1589–
1591.

22. Mitchell TM: Machine Learning. Singapore: McGraw-Hill International Editions 1997.

15



23. Kowalski RA, Kuehner D: Linear Resolution with Selection Function. Artificial Intelligence 1971,
2(3/4):227–260.

24. Santos J, Muggleton S: Subsumer: A Prolog theta-subsumption engine. In Technical communications of

the International Conference on Logic Programming, Edinburgh, Scotland 2010:172–181.

25. Sujatha MS, Balaji PV: Identification of Common Structural Features of Binding Sites in Galactose-
Specific Proteins. Proteins 2004, 55:44–65.

26. Breiman L: Random Forests. Machine Learning 2001, 45:5–32.

27. Dı́az-Uriarte R, de Andrés SA: Gene Selection and Classification of Microarray Data Using Random
Forest. BMC Bioinformatics 2006, 7:3.

28. Santos Costa V: The Life of a Logic Programming System. In Proceedings of the 24th International Con-

ference on Logic Programming. Edited by de la Banda MG, Pontelli E, Udine, Italy 2008:1–6.

29. Orengo C, Michie A, Jones S, Jones D, Swindells M: CATH—a hierarchic classification of protein domain
structures. Structure 1997, 5:1093–1108.

30. Vapnik VN: Statistical Learning Theory. New York: John Wiley & Sons 1998.

31. Kononenko I, Simec E, Robnik-Sikonja M: Overcoming the Myopia of Inductive Learning Algorithms
with RELIEFF. Appl. Intell. 1997, 7:39–55.

32. Rao VSR, Lam K, Qasba PK: Architecture of the Sugar Binding Sites in Carbohydrate Bind-
ing Proteins—a Computer Modeling Study. International Journal of Biological Macromolecules 1998,
23(4):295–307.

33. Zhang Y, Swaminathan GJ, Deshpande A, Boix E, Natesh R, Xie Z, Acharya KR, Brew K: Roles of individ-
ual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity.
Biochemistry 2003, 42(46):13512–13521.

34. Quiocho FA, Vyas NK: Atomic Interactions Between Proteins/Enzymes and Carbohydrates. In Bioor-

ganic Chemistry: Carbohydrates. Edited by Hecht SM, New York: Oxford University Press 1999:441–457.

35. Screen J, Stanca-Kaposta EC, Gamblin DP, Liu B, Macleod NA, Snoek LC, Davis BG, Simons JP: IR-Spectral
Signatures of Aromatic–Sugar Complexes: Probing Carbohydrate–Protein Interactions. Angew.

Chem. Int. Ed. 2007, 46:3644–3648.

36. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysac-
charide recognition. Biochem. J. 2004, 382:769–781.

37. Taroni C, Jones S, Thornton JM: Analysis and Prediction of Carbohydrate Binding Sites. Protein Eng.

2000, 13(2):89–98.

16



Figures

Figure 1: Excerpt of the background knowledge for protein 1BDG in Prolog. Since 1BDG is a
hexose-binding protein, center coords/2 predicate states the coordinates of the hexose binding center. The
has aminoacid and has atom predicates state the coordinates of the amino acids and atoms in a neighborhood
of 10 Å of the binding site center.

center_coords(p1BDG, p(27.0,22.1,64.9)).

has_aminoacid(p1BDG, a64, phe).

has_aminoacid(p1BDG, a85, leu).

has_aminoacid(p1BDG, a86, gly).

has_aminoacid(p1BDG, a87, gly).

has_atom(p1BDG, a64, ’CD2’, p(22.4,13.3,65.5)).

has_atom(p1BDG, a64, ’CE2’, p(21.6,14.0,66.4)).

has_atom(p1BDG, a85, ’C’, p(24.6,25.9,57.4)).

has_atom(p1BDG, a85, ’O’, p(24.6,24.8,57.8)).

has_atom(p1BDG, a86, ’N’, p(24.8,27.0,58.3)).

has_atom(p1BDG, a86, ’CA’, p(24.9,26.8,59.7)).

Figure 2: Example of a hypothesis from the hypothesis space considering amino acid mode
declarations

bind(A):-

has_aminoacid(A,B,asp),

atom_to_atom_dist(B,B,’N’,’OD2’,4.6,0.5),

has_aminoacid(A,C,leu),

has_aminoacid(A,D,cys),

atom_to_center_dist(B,’C’,7.6,0.5).

Figure 3: English translation of the rule from Figure 2

A protein is hexose-binding if:

the N and OD2 atoms of an aspartic acid are 4.6+/-0.5 Angstroms away from each other and

the C atom of this aspartic acid is 7.6+/-0.5 Angstroms away from the binding center.

A leucine and a cysteine are also present.
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Figure 4: A visualization of the second ProGolem rule instantiated with protein 1HIZ (covered
by the rule). In the left, with a pink backbone, there is the Hexose. On the right, with a white backbone,
there are the two aminoacids, an ASN and a GLU, in closer contact with the Hexose. The dotted black lines
highlight the distances between the atoms in the aminoacids and the center of the Hexose.
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Tables

Table 1: The positive dataset, composed of 80 non-redundant protein-hexose binding sites.
Hexose PDB ID Ligand PDB ID Ligand

Glucose 1BDG GLC-501 1ISY GLC-1471
1EX1 GLC-617 1J0Y GLC-1601
1GJW GLC-701 1JG9 GLC-2000
1GWW GLC-1371 1K1W GLC-653
1H5U GLC-998 1KME GLC-501
1HIZ GLC-1381 1MMU GLC-1
1HIZ GLC-1382 1NF5 GLC-125
1HKC GLC-915 1NSZ GLC-1400
1HSJ GLC-671 1PWB GLC-405
1HSJ GLC-672 1Q33 GLC-400
1I8A GLC-189 1RYD GLC-601
1ISY GLC-1461 1S5M AGC-1001
1SZ2 BGC-1001 1SZ2 BGC-2001
1U2S GLC-1 1UA4 GLC-1457
1V2B AGC-1203 1WOQ GLC-290
1Z8D GLC-901 2BQP GLC-337
2BVW GLC-602 2BVW GLC-603
2F2E AGC-401

Galactose 1AXZ GLA-401 1MUQ GAL-301
1DIW GAL-1400 1NS0 GAL-1400
1DJR GAL-1104 1NS2 GAL-1400
1DZQ GAL-502 1NS8 GAL-1400
1EUU GAL-2 1NSM GAL-1400
1ISZ GAL-461 1NSU GAL-1400
1ISZ GAL-471 1NSX GAL-1400
1JZ7 GAL-2001 1OKO GLB-901
1KWK GAL-701 1OQL GAL-265
1L7K GAL-500 1OQL GAL-267
1LTI GAL-104 1PIE GAL-1
1R47 GAL-1101 1S5D GAL-704
1S5E GAL-751 1S5F GAL-104
1SO0 GAL-500 1TLG GAL-1
1UAS GAL-1501 1UGW GAL-200
1XC6 GAL-9011 1ZHJ GAL-1
2GAL GAL-998

Mannose 1BQP MAN-402 1KZB MAN-1501
1KLF MAN-1500 1KZC MAN-1001
1KX1 MAN-20 1KZE MAN-1001
1KZA MAN-1001 1OP3 MAN-503
1OUR MAN-301 1QMO MAN-302
1U4J MAN-1008 1U4J MAN-1009

The positive dataset, composed of 80 non-redundant protein-hexose binding sites. The table lists the
protein’s PDB ID and the hexose ligand considered.
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Table 2: Protein binding-sites that bind non-hexose ligands.

PDB ID Cavity Center Ligand PDB ID Cavity Center Ligand

Hexose-like ligands

1A8U 4320, 4323 BEZ-1 1AI7 6074, 6077 IPH-1
1AWB 4175, 4178 IPD-2 1DBN pyranose ring GAL-102
1EOB 3532, 3536 DHB-999 1F9G 5792, 5785, 5786 ASC-950
1G0H 4045, 4048 IPD-292 1JU4 4356, 4359 BEZ-1
1LBX 3941, 3944 IPD-295 1LBY 3944, 3939, 3941 F6P-295
1LIU 15441, 15436, 15438 FBP-580 1MOR pyranose ring G6P-609
1NCW 3406, 3409 BEZ-601 1P5D pyranose ring G1P-658
1T10 4366, 4361, 4363 F6P-1001 1U0F pyranose ring G6P-900
1UKB 2144, 2147 BEZ-1300 1X9I pyranose ring G6Q-600
1Y9G 4124, 4116, 4117 FRU-801 2B0C pyranose ring G1P-496
2B32 3941, 3944 IPH-401 4PBG pyranose ring BGP-469

Other ligands

11AS 5132 ASN-1 11GS 1672, 1675 MES-3
1A0J 6985 BEN-246 1A42 2054, 2055 BZO-555
1A50 4939, 4940 FIP-270 1A53 2016, 2017 IGP-300
1AA1 4472, 4474 3PG-477 1AJN 6074, 6079 AAN-1
1AJS 3276, 3281 PLA-415 1AL8 2652 FMN-360
1B8A 7224 ATP-500 1BO5 7811 GOL-601
1BOB 2566 ACO-400 1D09 7246 PAL-1311
1EQY 3831 ATP-380 1IOL 2674, 2675 EST-400
1JTV 2136, 2137 TES-500 1KF6 16674, 16675 OAA-702
1RTK 3787, 3784 GBS-300 1TJ4 1947 SUC-1
1TVO 2857 FRZ-1001 1UK6 2142 PPI-1300
1W8N 4573, 4585 DAN-1649 1ZYU 1284, 1286 SKM-401
2D7S 3787 GLU-1008 2GAM 11955 NGA-502
3PCB 3421, 3424 3HB-550

Non-hexose binding-sites negative dataset, composed of protein binding-sites that bind non-hexose ligands.
The table lists the protein’s PDB ID, the ligand considered and the specified cavity center. 22 ligands are
similar to hexoses in shape and/or size. The cavity center is the centroid of the reported PDB atom
numbers.
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Table 3: Non-binding sites negative dataset, composed of random surface pockets that do not
bind any ligand.

PDB ID Cavity Center PDB ID Cavity Center PDB ID Cavity Center

1A04 1424, 2671 1A0I 1689, 799 1A22 2927
1AA7 579 1AF7 631, 1492 1AM2 1277
1ARO 154, 1663 1ATG 1751 1C3G 630, 888
1C3P 1089, 1576 1DXJ 867, 1498 1EVT 2149, 2229
1FI2 1493 1KLM 4373, 4113 1KWP 1212
1QZ7 3592, 2509 1YQZ 4458, 4269 1YVB 1546, 1814
1ZT9 1056, 1188 2A1K 2758, 3345 2AUP 2246
2BG9 14076, 8076 2C9Q 777 2CL3 123, 948
2DN2 749, 1006 2F1K 316, 642 2G50 26265, 31672
2G69 248, 378 2GRK 369, 380 2GSE 337, 10618
2GSH 6260

Non-binding sites negative dataset, composed of random surface pockets that do not bind any ligand. The
table lists the protein’s PDB ID and the specified cavity center, computed as the centroid of the reported
PDB atom numbers.

Table 4: Background knowledge predicates for the two binding site representations

Representation Background Knowledge Predicates

atom-only center coords, has atom, dist
amino acid has aminoacid, atom to center dist,

atom to atom dist, diff aminoacid

Table 5: 10-folds cross-validation predictive accuracies for ProGolem using different recall se-
lection methods

Recall selection method
Fold Primary sequence Randomized Domain-dependent

1 43.8% 56.3% 87.5%
2 62.5% 93.8% 78.5%
3 81.3% 87.5% 87.5%
4 56.3% 50.0% 43.8%
5 68.8% 68.8% 81.3%
6 37.5% 56.3% 81.3%
7 56.3% 62.5% 75.0%
8 68.8% 68.8% 81.3%
9 62.5% 81.3% 62.5%
10 56.3% 62.5% 68.8%

Mean 59.4% 68.8% 74.8%
Std Dev 12.6% 14.4% 13.4%
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Table 6: 10-folds cross-validation predictive accuracies for Aleph, ProGolem and SVM. The 1

besides Aleph and ProGolem stands for the atom-only representation and the 2 for the amino

acid representation. SVM uses a different representation (see text).

Learning algorithm
Fold Aleph 1 ProG. 1 Aleph 2 ProG. 2 SVM

1 50.0% 75.0% 56.3% 75.0% 81.3%
2 68.8% 81.3% 68.8% 81.3% 87.5%
3 62.5% 68.8% 68.8% 93.8% 87.5%
4 50.0% 56.3% 68.8% 75.0% 75.0%
5 75.0% 81.3% 56.3% 81.3% 75.0%
6 68.8% 87.5% 81.3% 87.5% 87.5%
7 75.0% 81.3% 75.0% 81.3% 93.8%
8 93.8% 81.3% 75.0% 93.8% 87.5%
9 68.8% 75.0% 75.0% 81.3% 75.0%
10 56.3% 56.3% 87.5% 81.3% 62.5%

Mean 66.9% 74.4% 71.3% 83.2% 81.3%
Std Dev 13.2% 10.8% 9.8% 6.6% 9.3%
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