

The rise and fall of the Chaos report figures

Laurenz Eveleens laurenz@few.vu.nl

http://www.cs.vu.nl/equity/

20 April 2009

Exploring QUantifiable Information Technology Yields

Introduction

- Ph.D. student at VU University Amsterdam.
- Research about quality of IT forecasts.
- Part of research is about project success figures.
 - Accepted for publication in IEEE Software.

Introduction

- In 1994, Standish Group published figures on project success in their Chaos reports.
 - They found software developments projects were 16% successful, 53% were challenged and 31% failed outright.
- The figures have had enormous impact.
- But are these figures accurate and reliable?

Research results

- Standish definitions for successful and challenged projects have four problems:
 - Term project success is misleading since it is solely about estimation accuracy.
 - Definitions encourage estimation inaccuracies.
 - They lead to unrealistically low success rates.
 - Definitions allow for politically biased figures.
- Conclusion: Standish success rates are meaningless for benchmarking.

Standish definitions

- Standish assessed projects using the following definitions.
 - Project success: the project is completed on-time and onbudget, with all features and functions as initially specified.
 - Project challenged: the project is completed and operational but over-budget, over the time estimate, and offers fewer features and functions than originally specified.

Standish figures

• Using these definitions Standish derived success rates.

Standish rapport	Project success	Project challenged	Project failure
1994	16%	53%	31%
1996	27%	33%	40%
1998	26%	46%	28%
2000	28%	49%	23%
2004	29%	53%	18%

Problem I: misleading

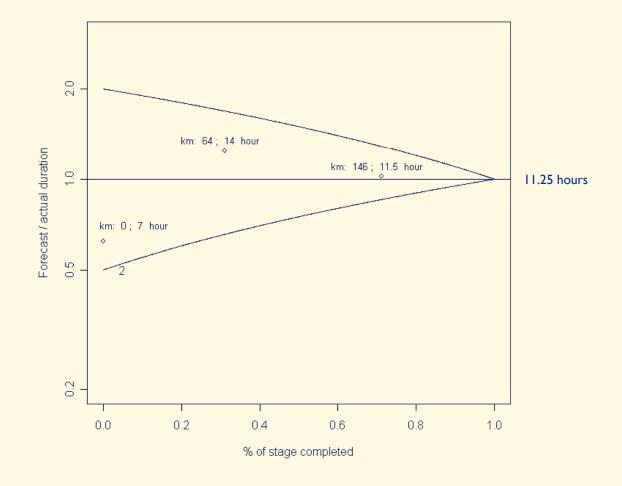
- These definitions compare the initial forecasts to the actual outcome.
 - All about estimation accuracy of cost, time and functionality.
- Only forecasts of cost, duration and functionality count.
 - They do not consider, for example, usefulness, value or user satisfaction.
- Still, Standish named it project success, suggesting much more than estimation accuracy.

Problem 2:

encourages inaccuracies

- To assess the figures, we have to take closer look at estimation accuracy.
 - What does it mean to be on-time, on-budget and with all features and functions?
- On-time means: actual duration time is shorter than or equal to forecasted duration time.
- But what is the quality of the initial forecasts?

Cycling: no politics


Forecast at start:		Forecast after 64 km:		Forecast after 146 km:	
Used time	0 hours	Used time	3 hours	Used time	7 hours
Estimate of rest	7 hours	Estimate of rest	II hours	Estimate of rest	4.5 hours
Total forecast	7 hours	Total forecast	14 hours	Total forecast	11.5 hours

20 April 2009

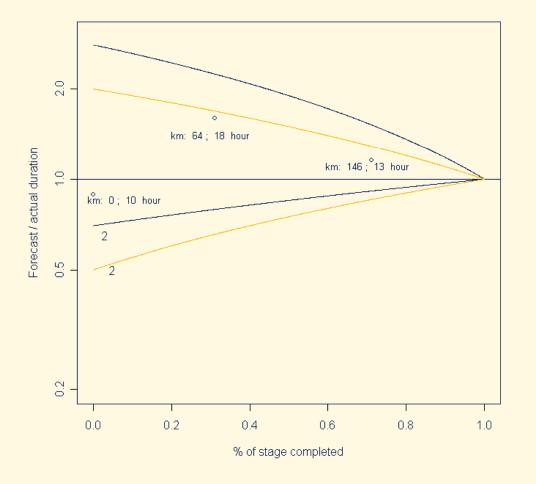
Exploring QUantifiable Information Technology Yields

Forecasts: theory

Exploring QUantifiable Information Technology Yields

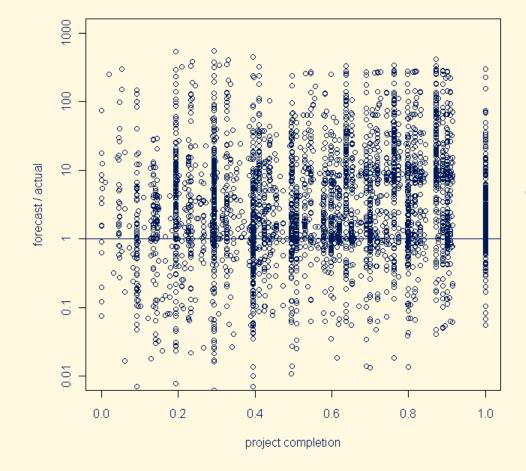
10/23

Cycling: politics I


- Partner calls: How long will you be gone?
 - You want to make sure you will make it

Forecast:Forecast after 64km:Forecast after 146km:No politics7 hoursNo politics14 hoursNo politics11.5 hoursPolitics: maximum10 hoursPolitics: maximum18 hoursPolitics: maximum13 hours

Forecasts: politics I



20 April 2009

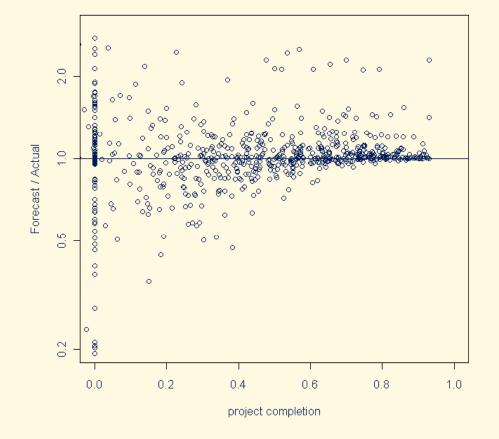
Exploring QUantifiable Information Technology Yields

Real-world example

Data of 867 software development projects.

Forecasts of total project cost.

Problem 2:



encourages inaccuracies

- Organization has low quality of forecasting.
 - Median deviation to the actual of 233%.
- Standish success rate is 67%.
- Steered on Standish success figures.
 - Project was deemed successful if stayed within budget.
 - Result: Adding large safety margins to insure success.

Real-world example

Data of 140 software development projects.

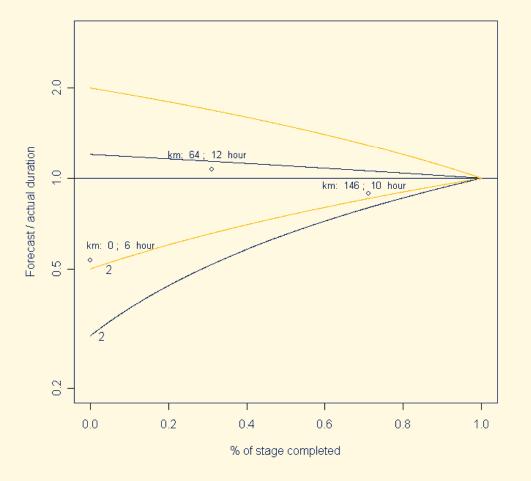
Forecasts of total project cost.

Problem 3: unrealistic

- This organization has relatively good forecasting quality.
 - Forecasts centered around actual value.
 - Median deviation of 12% to the actual.
- However, the Standish success rate is only 59%.
 - Accounting for functionality forecasts results in 35% success rate.

Cycling: politics II

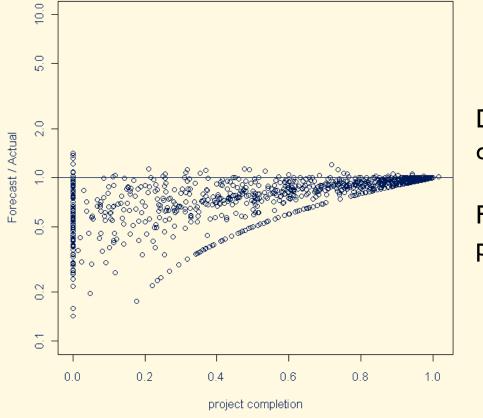
- Partner calls: How long will you be gone?
 - Positive estimation



Forecast:Forecast after 64 km:Forecast after 146 km:No politics7 hoursNo politics14 hoursNo politics11.5 hoursPolitics: goes well6 hoursPolitics: goes well12 hoursPolitics: goes well10.5 hours

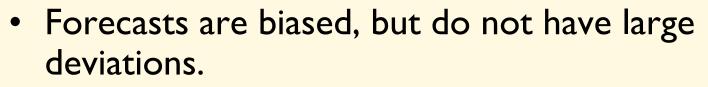
Exploring QUantifiable Information Technology Yields

Forecasts: politics II


20 April 2009

Exploring QUantifiable Information Technology Yields

18/23


Real-world example

Data of 121 software development projects.

Forecasts of total project duration.

Problem 4: allows for political biases

- Median deviation of 21% to actual.
- Standish success rate is only 5.8%.
 - Low compared to the other organizations.
- Bias of forecasts in organization highly influential for outcome Standish figures.

xbloring auantifiable [

Conclusions

- Standish Chaos definitions are misleading.
 - They are solely about estimation accuracy of cost, duration and functionality.
- Using the definitions encourages inaccuracies.
 - Found deviations of 233% to the actual that are considered highly successful with 67%.
- They lead to unrealistically low rates.
 - Organization with 12% deviation is only 59% successful.

Conclusions

- The resulting figures are meaningless as they allow for biases.
 - No information about the politics involved in organizations Standish considered.
 - Averaging biased figures is meaningless.
- Successful and challenged figures of Standish are meaningless for benchmarking.
 - Should not be used to support claims of problems with software development.

Additional information

- For additional information check IEEE Software paper on the subject.
 - The rise and fall of the Chaos report figures.
 www.cs.vu.nl/~x/chaos/chaos.pdf
- For information how to quantify IT forecast quality and how to use it in decision making check the following paper.
 - Quantifying IT forecast quality.
 www.cs.vu.nl/~x/cone/cone.pdf
- Contact info:
 - laurenz@few.vu.nl
 - x@cs.vu.nl