MULTIPLICATIVE DEPENDENCE AND ISOLATION I

P. HABEGGER

1. Introduction. Two elements x, y of a field are called multiplicatively dependent if $x y \neq 0$ and there exists $r, s \in \mathbb{Z}$ not both zero such that $x^{r} y^{s}=1$. In [CZO0] Cohen and Zannier prove that if $x \in \overline{\mathbb{Q}}$, the field of algebraic numbers, such that x and $1-x$ are multiplicatively dependent, then $\max \{H(x), H(1-x)\} \leq 2$, where $H(\cdot)$ is the absolute Weil height. This bound is sharp because of the exceptional values $x=-1,1 / 2,2$. Cohen and Zannier then use Bilu's Equidistribution Theorem [Bil97] to show that there exists $\epsilon>0$ such that if x is as before but not one of the three exceptional values, then $\max \{H(x), H(1-x)\} \leq 2-\epsilon$. In [Hab05] the author showed that if α is any non-zero rational integer and $x, \alpha-x$ are multiplicatively dependent, then $\max \{H(x), H(\alpha-x)\} \leq 2 H(\alpha)$. In the same article it is shown that this bound is sharp if and only if α is a power of 2 . If $\alpha=2^{n} \geq 2$, a uniform isolation result is proved, namely either $x \in\{2 \alpha,-\alpha\}$ or already $\max \{H(x), H(\alpha-x)\} \leq 1.98 H(\alpha)$.

The purpose of this note is to give a concise proof of a slight strengthening of the height bound in the case $\alpha=1$ based on the method used in [Hab05]. We also work out an explicit ϵ. Finally we show that there exists a sequence x_{n} with x_{n} and $1-$ x_{n} multiplicatively dependent and such that the height of x_{n} converges to the Mahler measure of the polynomial $X+Y-1$.

We define \mathcal{M} to be the set of x such that x and $1-x$ are multiplicatively dependent. Clearly the elements of \mathcal{M} are algebraic. If $\zeta \neq 1$ is a root of unity, then ζ and $1-\zeta$ are multiplicatively dependent and so $\zeta \in \mathcal{M}$. Thus \mathcal{M} is infinite, a result which has been made quantitative by Masser in Theorem 2 of [Mas05]. Let $H(x, y)$ denote the affine absolute non-logarithmic Weil height, which will be defined further down. This height function corresponds to the compactification of the algebraic torus $\mathbb{G}_{m}^{2} \rightarrow \mathbb{P}^{2}$. We have:

Theorem 1. Let $x \in \mathcal{M}$, then $H(x, 1-x) \leq 2$ with equality if and only if $x \in$ $\{-1,1 / 2,2\}$.

Theorem 1 implies Theorem 1 of $[\mathrm{CZ} 00]$ since $\max \{H(x), H(y)\} \leq H(x, y)$ for algebraic x and y. We choose the particular height function $H(x, 1-x)$ because it is invariant under the maps $x \mapsto 1-x$ and $x \mapsto x^{-1}$. Incidently \mathcal{M} is stable under these two maps. Our method of proof for Theorem 1 exploits this fact and relies on elementary local estimates combined with the product formula.

Theorem 1 can be put in the context of a more general result by Bombieri, Masser, and Zannier (Theorem 1, [BMZ99]). In their article it is shown that if \mathcal{C} is an irreducible algebraic curve defined over $\overline{\mathbb{Q}}$ embedded in the multiplicative torus and not contained in the translate of a proper algebraic subgroup, then the points of the intersection of \mathcal{C} with the union of all proper algebraic subgroups have bounded height. In our special situation the curve is defined by the polynomial $X+Y-1$.

Date: June 27, 2010.

The proof of the isolation result in [Hab05] made use of 2-adic estimates and works only if $\alpha=2^{n} \geq 2$. To handle the case $\alpha=1$ we apply an explicit result by Mignotte [Mig89] on the angular distribution of conjugates of an algebraic number of small height and big degree to find an explicit ϵ. Large degree is guaranteed by a theorem of Smyth [Smy71] on lower bounds for heights of non-reciprocal algebraic numbers.

Theorem 2. If $x \in \mathcal{M} \backslash\{-1,1 / 2,2\}$ then $H(x, 1-x)<1.915$.
The element of $\mathcal{M} \backslash\{-1,1 / 2,2\}$ of largest height known to the author is $1-\zeta_{3}$ where ζ_{3} is a primitive 3 rd root of unity. In fact $H\left(1-\zeta_{3}\right)=\sqrt{3}$. It would be interesting to know if $\sqrt{3}$ is already the second to largest height value obtained on \mathcal{M}.

If $\zeta \neq 1$ is a root of unity, then $1-\zeta \in \mathcal{M}$. As the degree of ζ goes to infinity we can use Bilu's Equidistribution Theorem (Theorem 1.1, [Bil97]) to show that $H(1-\zeta, \zeta)=$ $H(1-\zeta)$ converges to

$$
\begin{equation*}
\exp \int_{-1 / 3}^{1 / 3} \log |1+\exp (2 \pi i t)| d t=1.381356 \ldots \tag{1}
\end{equation*}
$$

Let f be a polynomial in n variables with complex coefficients, the Mahler measure $M(f)$ of f is defined as

$$
M(f)=\exp \left(\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \log \left|f\left(\exp \left(i t_{1}\right), \ldots, \exp \left(i t_{n}\right)\right)\right| d t_{1} \cdots d t_{n}\right) .
$$

Smyth ([Smy81]) calculated the Mahler measure of the polynomial $X+Y-1$ defining our curve as

$$
\begin{equation*}
M(X+Y-1)=\exp \left(\frac{3 \sqrt{3}}{4 \pi} \sum_{k \geq 1}\left(\frac{k}{3}\right) \frac{1}{k^{2}}\right) \tag{2}
\end{equation*}
$$

here (:) is the Legendre symbol. By Jensen's Formula the Mahler measure in (2) is equal to the integral (1). We immediately get
Proposition. There exists a sequence $x_{n} \in \mathcal{M}$ with $\lim _{n \rightarrow \infty}\left[\mathbb{Q}\left(x_{n}\right): \mathbb{Q}\right]=\infty$ such that $\lim _{n \rightarrow \infty} H\left(x_{n}, 1-x_{n}\right)=M(X+Y-1)$.

In a future paper we will show that $H\left(x_{n}, 1-x_{n}\right)$ has limit $M(X+Y-1)$ for any sequence $x_{n} \in \mathcal{M}$ with $\lim _{n \rightarrow \infty}\left[\mathbb{Q}\left(x_{n}\right): \mathbb{Q}\right]=\infty$.
2. Proof of Theorem 1. First we recall some basics about places of number fields and heights. Let K be a number field. A place of K is a non-trivial absolute value normalized such that its restriction to \mathbb{Q} is either a p-adic absolute value for a prime p or the standard complex absolute value. The places extending the complex absolute value will be called infinite, the others finite. It is well-known that if v is an infinite place of K, then there exists an embedding σ of K into \mathbb{C}, such that $|x|_{v}=|\sigma x|$ for all $x \in K$ and $|\cdot|$ the standard complex absolute value. For any place v of K we denote K_{v} the completion of K with respect to v. If $|\cdot|_{v}$ is a finite place of K, then $|\cdot|_{v}$ is ultrametric, i.e. for all $x, y \in K$ one has $|x+y|_{v} \leq \max \left\{|x|_{v},|y|_{v}\right\}$. If x is in K^{*}, the non-zero elements of K, then $|x|_{v}=1$ for all but finitely many places v of K. Furthermore for such x we have the product formula

$$
\begin{equation*}
\prod_{v}|x|_{v}^{\left[K_{v}: \mathbb{Q}_{v}\right]}=1 \tag{3}
\end{equation*}
$$

where the product runs over all places of K. Let $\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$, we set

$$
\begin{equation*}
H\left(x_{1}, \ldots, x_{n}\right)=\prod_{v} \max \left\{1,\left|x_{1}\right|_{v}, \ldots,\left|x_{n}\right|_{v}\right\}^{\left[K_{v}: \mathbb{Q}_{v}\right] /[K: \mathbb{Q}]} \tag{4}
\end{equation*}
$$

where the product runs over all places of K. For notation purposes we set $h(\cdot)=\log H(\cdot)$. It is well-known that (4) is independent of the number field K containing the x_{i}. If $P \in \mathbb{Z}[X]$ is the minimal polynomial of x (with content 1), then $H(x)^{[\mathbb{Q}(x): \mathbb{Q}]}$ is equal to the Mahler measure of P. The height function satisfies some important functional (in)equalities which we apply freely throughout this note. For example $h\left(x^{n}\right)=|n| h(x)$ if $x \in \overline{\mathbb{Q}}^{*}$ and $n \in \mathbb{Z}$ or $h(x+y) \leq \log 2+h(x)+h(y)$ for any $x, y \in \overline{\mathbb{Q}}$. For references see [Lan83].

We prove Theorem 1 via an elementary estimate which holds for any field K with any absolute value $|\cdot|: K \rightarrow \mathbb{R}$.
Lemma 1. Let $x \in K \backslash\{0,1\}$, $r, t \in \mathbb{Z}$ with $0 \neq t \geq r \geq 0$ and $x^{r}=(1-x)^{t}$. We have

$$
\begin{equation*}
|1-x|^{-1} \max \{1,|x|\} \leq \delta \tag{5}
\end{equation*}
$$

where $\delta=1$ if $|\cdot|$ is ultrametric and $\delta=2$ otherwise. Furthermore, equality in (5) implies $\delta=1$ or $r=0$ or $r=t$.
Proof. Let q denote the left-hand side of (5).
First let us assume

$$
\begin{equation*}
|x|<\delta^{-1} \text { or }|x|>\delta \tag{6}
\end{equation*}
$$

If $\delta=1$, then $|x| \neq 1$, so $|1-x|=\max \{1,|x|\}$, hence $q=1$. If $\delta=2$ we use the triangle inequality to bound

$$
|1-x| \geq \begin{cases}|x|-1>|x| \delta^{-1} & : \tag{7}\\ \text { if }|x|>\delta, \\ 1-|x|>\delta^{-1} & : \\ \text { if }|x|<\delta^{-1}\end{cases}
$$

which implies $q<\delta$. So in the case (6) we have $q \leq \delta$ and furthermore $q=\delta$ can only hold if $\delta=1$.

Now let us assume $\delta^{-1} \leq|x| \leq \delta$. If $|x|<1$, then $q=|1-x|^{-1}=|x|^{-r / t} \leq \delta^{r / t} \leq \delta$, and if $|x| \geq 1$, then $q=|x| /|1-x|=|x|^{1-r / t} \leq \delta^{1-r / t} \leq \delta$. It is clear that if we have the equalities $q=\delta=2$, then $r=0$ or $r=t$.

We recall Lemma 7 of [Hab05]:
Lemma 2. Let $\zeta \neq 1$ be a root of unity, then $h(1+\zeta) \leq \frac{1}{2} \log (2 \sqrt{3})$.
We note that $\frac{1}{2} \log (2 \sqrt{3})$ is an improvement of the trivial bound $h(1+\zeta) \leq \log 2$ which holds for all roots of unity ζ. In the proof of Theorem 1 we need only a weak form of Lemma 2. For the sake of completeness we include its proof:
Lemma 3. Let $\zeta \neq 1$ be a root of unity, then $h(1+\zeta)<\log 2$.
Proof. Since $|1+\zeta|_{v} \leq 1$ for all finite places v of $\mathbb{Q}(\zeta)$ we have

$$
\begin{equation*}
[\mathbb{Q}(\zeta): \mathbb{Q}] h(1+\zeta)=\sum_{\sigma} \log \max \{1,|1+\sigma \zeta|\} \tag{8}
\end{equation*}
$$

where the sum runs over all embeddings σ of $\mathbb{Q}(\zeta)$ into \mathbb{C}. Let σ be such an embedding. Since $\sigma \zeta \neq 1$ the parallelogram equality $|1+\sigma \zeta|^{2}+|1-\sigma \zeta|^{2}=2|\sigma \zeta|^{2}+2=4$ implies
$|1+\sigma \zeta|<2$. Therefore $h(1+\zeta)<\log 2$ by (8) and since $\mathbb{Q}(\zeta)$ has $[\mathbb{Q}(\zeta): \mathbb{Q}]$ embeddings σ.

Lemma 4. Let $x^{\prime} \in \mathcal{M}$, then there exists $x \in \mathcal{M}$ and $r, t \in \mathbb{Z}$ with $0 \neq t \geq 2 r \geq 0$ such that $x^{r}=(1-x)^{t}$ and $h\left(x^{\prime}, 1-x^{\prime}\right)=h(x)$. Furthermore if $x^{\prime} \notin\{-1,1 / 2,2\}$ then we can choose x such that $x \notin\{-1,1 / 2,2\}$.
Proof. The lemma is simple if x^{\prime} is a primitive 6 th root of unity, for then $1-x^{\prime}$ is also a 6th root of unity and we may take $x=x^{\prime}, t=6$, and $r=0$. Hence it suffices to show the lemma for $x^{\prime} \in \mathcal{M}_{0}$ with $\mathcal{M}_{0}=\mathcal{M} \backslash\left\{e^{ \pm 2 \pi i / 6}\right\}$. For any such x^{\prime} there exists a unique $\lambda\left(x^{\prime}\right)=[r: t] \in \mathbb{P}^{1}(\mathbb{Q})$ with r and t coprime integers such that $x^{\prime r}\left(1-x^{\prime}\right)^{-t}$ is a root of unity. The maps $\phi_{1}(x)=1 / x$ and $\phi_{2}(x)=1-x$ are automorphisms of \mathcal{M}_{0} and generate the symmetric group S_{3}. Thus we get an action of S_{3} on \mathcal{M}_{0} which also leaves $\{-1,1 / 2,2\}$ invariant. By the product formula the height $h(x, 1-x)$ is also invariant under this action. We check that if $\lambda(x)=[r: t]$, then $\lambda\left(\phi_{1}(x)\right)=[t-r: t]$ and $\lambda\left(\phi_{2}(x)\right)=[t: r]$. We get an action of S_{3} on $\mathbb{P}^{1}(\mathbb{Q})$ with fundamental domain $\{[1: s] ; s \geq 2\} \cup\{[0: 1]\}$. The lemma follows immediately.
Proof of Theorem 1. Because of Lemma 4 it suffices to show that if $x \in \overline{\mathbb{Q}} \backslash\{0,1\}$ with $x \neq-1,1 / 2,2$ and $x^{r}=(1-x)^{t}$ for integers $0 \neq t \geq 2 r \geq 0$, then $h(x)<\log 2$.

If $r=0$, then $x=1+\zeta$ for some root of unity $\zeta \neq \pm 1$. In this case the theorem follows from Lemma 3.

Let us assume $r>0$. We fix a number field K which contains x and apply the product formula (3) to $1-x$ to deduce

$$
[K: \mathbb{Q}] h(x)=\sum_{v}\left[K_{v}: \mathbb{Q}_{v}\right] \log \max \left\{1,|x|_{v}\right\}=\sum_{v}\left[K_{v}: \mathbb{Q}_{v}\right] \log \frac{\max \left\{1,|x|_{v}\right\}}{|1-x|_{v}}
$$

Since $0<r<t$ we apply Lemma 1 to the local terms in the equality above to see that $[K: \mathbb{Q}] h(x)<\sum_{v \text { infinite }}\left[K_{v}: \mathbb{Q}_{v}\right] \log 2$. This inequality completes the proof since the sum is just $[K: \mathbb{Q}] \log 2$.

3. Proof of Theorem 2.

A non-zero algebraic number α is called reciprocal if α and α^{-1} are conjugated. We apply Mignotte's equidistribution result and Smyth's Theorem ([Smy71]) on lower bounds for heights of non-reciprocal algebraic integers to deduce the following lemma.
Lemma 5. Let $\alpha \in \overline{\mathbb{Q}}^{*}$ be non-reciprocal with $h(\alpha) \leq \frac{\log 2}{3 \cdot 10^{5}}$, then $h(1+\alpha) \leq 0.933$. $\log 2+h(\alpha)$.
Proof. Let α be as in the hypothesis and $d=[\mathbb{Q}(\alpha): \mathbb{Q}]$, furthermore let $\theta_{0}>1$ be the unique real which satisfies $\theta_{0}^{3}-\theta_{0}-1=0$. If α is an algebraic integer, then $d h(\alpha) \geq \log \theta_{0}$ by Smyth's Theorem ([Smy71]). The upper bound for $h(\alpha)$ implies

$$
\begin{equation*}
d \geq 121700 \tag{9}
\end{equation*}
$$

On the other hand, if α is not an algebraic integer, then it is well-known that $d h(\alpha) \geq$ $\log 2$. Thus (9) holds in any case.

We split \mathbb{C}^{*} up into three sectors

$$
C_{k}=\left\{r \cdot \exp (i \phi) ; r>0 \text { and } \frac{2 \pi}{3}(k-1) \leq \phi<\frac{2 \pi}{3} k\right\} \text { for } 1 \leq k \leq 3
$$

and define the function

$$
m(z)=\frac{\max \{1,|z+1|\}}{\max \{1,|z|\}}=\frac{\max \left\{1,\left(r^{2}+2 r \cos \phi+1\right)^{1 / 2}\right\}}{\max \{1, r\}}
$$

for $z=r \cdot \exp (i \phi)$ with $r>0$ and $\phi \in \mathbb{R}$. Hence

$$
m(z)^{2} \leq\left\{\begin{array}{lll}
\frac{\max \left\{1, r^{2}+2 r+1\right\}}{\max \left\{1, r^{2}\right\}} & : & \text { if }-2 \pi / 3 \leq \phi \leq 2 \pi / 3 \\
\frac{\max \left\{1, r^{2}-r+1\right\}}{\max \left\{1, r^{2}\right\}} & : & \text { if } 2 \pi / 3 \leq \phi \leq 4 \pi / 3
\end{array}\right.
$$

Elementary calculus now leads to

$$
\begin{equation*}
\left.m\right|_{C_{1} \cup C_{3}} \leq 2 \text { and }\left.m\right|_{C_{2}} \leq 1 . \tag{10}
\end{equation*}
$$

We fix an embedding of $\overline{\mathbb{Q}}$ into \mathbb{C}. Let $\alpha_{1} \ldots, \alpha_{d} \in \mathbb{C}^{*}$ be the conjugates of α. We set $N_{k}=\#\left\{i ; \alpha_{i} \in C_{k}\right\}$ for $1 \leq k \leq 3$. For any finite place v of $\mathbb{Q}(\alpha)$ we have $\max \left\{1,|1+\alpha|_{v}\right\}=\max \left\{1,|\alpha|_{v}\right\}$ by the ultrametric inequality. Since the finite places of $\mathbb{Q}(\alpha)$ taken with multiplicities correspond to embeddings of $\mathbb{Q}(\alpha)$ into \mathbb{C} and because of (10) we have

$$
\begin{equation*}
d(h(1+\alpha)-h(\alpha))=\sum_{i=1}^{d} \log m\left(\alpha_{i}\right) \leq\left(N_{1}+N_{3}\right) \log 2 . \tag{11}
\end{equation*}
$$

We set $\epsilon=\left(\frac{9}{2} c^{2}\left(\frac{\log (2 d+1)}{d}+h(\alpha)\right)\right)^{1 / 3}$ with $c=2.62$. Since $\frac{\log (2 d+1)}{d}$ is decreasing considered as function of $d \geq 1$, we use (9) and our hypothesis on $h(\alpha)$ to conclude $\epsilon<0.1477$. We apply Mignotte's Theorem (ii) ([Mig89], p.83) to the minimal polynomial of α and to the closure of our sectors C_{k} to bound

$$
\begin{equation*}
\frac{N_{k}}{d} \leq \frac{1}{3}+2.823\left(\frac{\log (2 d+1)}{d}+h(\alpha)\right)^{1 / 3} \tag{12}
\end{equation*}
$$

Our hypothesis on $h(\alpha)$ and (9) together with (12) imply $\frac{N_{k}}{d}<0.4662$. This last bound applied to (11) concludes the proof.

We note that the trivial bound $h(1+\alpha) \leq \log 2+h(\alpha)$ holds for all algebraic α. Thus Lemma 5 gives a slight improvement for non-reciprocal α of small height. Instead of Smyth's lower bound for heights we could have used the lower bound by Dobrowolski which holds for any non-zero algebraic number not a root of unity. This approach leads to slightly worse numerical constants. Thus by taking sectors with smaller angles in the proof of Lemma 5 the constant $0.933 \cdot \log 2$ can be replaced by any real number strictly greater than the logarithm of the number (1) if the height of α is sufficiently small but positive. But the bound given in Lemma 5 is apt for our application.

In [CZ00] Cohen and Zannier introduce a function $S:(1, \infty) \rightarrow \mathbb{R}$ relevant to our problem. We briefly recall its definition. Say $\lambda>1$ and let $\xi, \tilde{\xi}>1$ be the unique reals such that $\xi^{\lambda}=\xi+1$ and $\tilde{\xi}^{\lambda /(\lambda-1)}=\tilde{\xi}+1$, then

$$
S(\lambda)=\frac{\log (\xi+1) \log (\tilde{\xi}+1)}{\log (\xi+1)+\log (\tilde{\xi}+1)} .
$$

Lemma 1 of [CZ00] implies $S<\log 2$, furthermore if $x^{r}=(1-x)^{t}$ for integers $t>r>0$, then $h(x) \leq S(t / r)$. The proof of said lemma also shows that S increases on $[2, \infty)$.

Proof of Theorem 2. Because of Lemma 4 it suffices to show that if $x \in \mathbb{Q} \backslash\{0,1\}$, $x \neq-1,1 / 2,2$ and $x^{r}=(1-x)^{t}$ for integers $0 \neq t \geq 2 r \geq 0$, then $h(x)<\log 1.915$. If $r=0$, then $x=1+\zeta$ for a root of unity $\zeta \neq \pm 1$. Lemma 2 implies $h(x) \leq \frac{1}{2} \log (2 \sqrt{3})<$ \log 1.915. We now assume $r>0$ and define $\lambda=t / r \geq 2$.

If $\lambda<3 \cdot 10^{5}$, Then we have $h(x) \leq S\left(3 \cdot 10^{5}\right)$ by the properties of $S(\cdot)$. A calculation shows that the right-hand side of the last inequality is strictly less then $\log 1.915$.

Finally we assume $\lambda \geq 3 \cdot 10^{5}$. Then $h(1-x)=\lambda^{-1} h(x) \leq \frac{\log 2}{3 \cdot 10^{5}}$ by Theorem 1. Let $\alpha=x-1$, we have

$$
\begin{equation*}
(-1)^{t} \alpha^{t}=(1+\alpha)^{r} . \tag{13}
\end{equation*}
$$

Let us assume first that α and α^{-1} are not conjugated, then $h(x) \leq 0.933 \cdot \log 2+\frac{\log 2}{3 \cdot 10^{5}}<$ $\log 1.915$ by Lemma 5 . If α and α^{-1} are conjugated, then equality (13) must hold with α replaced by α^{-1}. Hence $1=\alpha^{2 t}\left(1+\alpha^{-1}\right)^{2 r}$, or $1=x^{2 r}(1-x)^{2(t-r)}$ in terms of x. Since $r \neq 0$ and $r \neq 2 t$ this new dependency relation between x and $1-x$ is independent of the original relation $1=x^{r}(1-x)^{-t}$. We conclude that x is a root of unity and so $h(x)=0$.

References

[Bil97] Y. Bilu, Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997), 465-476.
[BMZ99] E. Bombieri, D. Masser, and U. Zannier, Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Research Notes 20 (1999), 1119-1140.
[CZ00] P. B. Cohen and U. Zannier, Multiplicative dependence and bounded height, an example, Proceedings of the Algebraic Number Theory and Diophantine Approximation Conference, Graz, 1998 (Walter de Gruyter, 2000), 93-101.
[Hab05] P. Habegger, The equation $x+y=\alpha$ in multiplicatively dependent unknowns, Acta Arith. 119 (2005), 349-372.
[Lan83] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983.
[Mas05] D.W. Masser, Counting points with multiplicatively dependent coordinates on a curve, This volume. (23rd October 2005).
[Mig89] M. Mignotte, Sur un théorème de M. Langevin, Acta Arith. 54 (1989), 81-86.
[Smy71] C.J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc. 3 (1971), 169-175.
[Smy81] _ On measures of polynomials in several variables, Bull. Austral. Math. Soc. 23 (1981), 49-63.

Mathematisches Institut
Universität Basel
Rheinsprung 21
CH-4051 Basel, Switzerland
E-mail: habegger@math-lab.unibas.ch

