
MULTIPLICATIVE DEPENDENCE AND ISOLATION I

P. HABEGGER

1. Introduction. Two elements x, y of a field are called multiplicatively dependent
if xy 6= 0 and there exists r, s ∈ Z not both zero such that xrys = 1. In [CZ00]
Cohen and Zannier prove that if x ∈ Q, the field of algebraic numbers, such that x
and 1 − x are multiplicatively dependent, then max{H(x), H(1 − x)} ≤ 2, where H(·)
is the absolute Weil height. This bound is sharp because of the exceptional values
x = −1, 1/2, 2. Cohen and Zannier then use Bilu’s Equidistribution Theorem [Bil97]
to show that there exists ε > 0 such that if x is as before but not one of the three
exceptional values, then max{H(x), H(1 − x)} ≤ 2 − ε. In [Hab05] the author showed
that if α is any non-zero rational integer and x, α − x are multiplicatively dependent,
then max{H(x), H(α− x)} ≤ 2H(α). In the same article it is shown that this bound is
sharp if and only if α is a power of 2. If α = 2n ≥ 2, a uniform isolation result is proved,
namely either x ∈ {2α,−α} or already max{H(x), H(α− x)} ≤ 1.98H(α).

The purpose of this note is to give a concise proof of a slight strengthening of the
height bound in the case α = 1 based on the method used in [Hab05]. We also work
out an explicit ε. Finally we show that there exists a sequence xn with xn and 1 −
xn multiplicatively dependent and such that the height of xn converges to the Mahler
measure of the polynomial X + Y − 1.

We defineM to be the set of x such that x and 1− x are multiplicatively dependent.
Clearly the elements ofM are algebraic. If ζ 6= 1 is a root of unity, then ζ and 1− ζ are
multiplicatively dependent and so ζ ∈ M. Thus M is infinite, a result which has been
made quantitative by Masser in Theorem 2 of [Mas05]. Let H(x, y) denote the affine
absolute non-logarithmic Weil height, which will be defined further down. This height
function corresponds to the compactification of the algebraic torus G2

m → P2. We have:

Theorem 1. Let x ∈ M, then H(x, 1 − x) ≤ 2 with equality if and only if x ∈
{−1, 1/2, 2}.

Theorem 1 implies Theorem 1 of [CZ00] since max{H(x), H(y)} ≤ H(x, y) for al-
gebraic x and y. We choose the particular height function H(x, 1 − x) because it is
invariant under the maps x 7→ 1 − x and x 7→ x−1. Incidently M is stable under these
two maps. Our method of proof for Theorem 1 exploits this fact and relies on elementary
local estimates combined with the product formula.

Theorem 1 can be put in the context of a more general result by Bombieri, Masser,
and Zannier (Theorem 1, [BMZ99]). In their article it is shown that if C is an irreducible
algebraic curve defined over Q embedded in the multiplicative torus and not contained
in the translate of a proper algebraic subgroup, then the points of the intersection of C
with the union of all proper algebraic subgroups have bounded height. In our special
situation the curve is defined by the polynomial X + Y − 1.
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The proof of the isolation result in [Hab05] made use of 2-adic estimates and works
only if α = 2n ≥ 2. To handle the case α = 1 we apply an explicit result by Mignotte
[Mig89] on the angular distribution of conjugates of an algebraic number of small height
and big degree to find an explicit ε. Large degree is guaranteed by a theorem of Smyth
[Smy71] on lower bounds for heights of non-reciprocal algebraic numbers.

Theorem 2. If x ∈M\{−1, 1/2, 2} then H(x, 1− x) < 1.915.

The element ofM\{−1, 1/2, 2} of largest height known to the author is 1− ζ3 where
ζ3 is a primitive 3rd root of unity. In fact H(1 − ζ3) =

√
3. It would be interesting to

know if
√

3 is already the second to largest height value obtained on M.
If ζ 6= 1 is a root of unity, then 1− ζ ∈M. As the degree of ζ goes to infinity we can

use Bilu’s Equidistribution Theorem (Theorem 1.1, [Bil97]) to show that H(1− ζ, ζ) =
H(1− ζ) converges to

(1) exp

∫ 1/3

−1/3

log |1 + exp(2πit)|dt = 1.381356...,

Let f be a polynomial in n variables with complex coefficients, the Mahler measure
M(f) of f is defined as

M(f) = exp

(
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

log |f(exp (it1), . . . , exp (itn))|dt1 · · · dtn
)
.

Smyth ([Smy81]) calculated the Mahler measure of the polynomial X + Y − 1 defining
our curve as

(2) M(X + Y − 1) = exp(
3
√

3

4π

∑
k≥1

(
k

3

)
1

k2
),

here
(·
·

)
is the Legendre symbol. By Jensen’s Formula the Mahler measure in (2) is equal

to the integral (1). We immediately get

Proposition. There exists a sequence xn ∈ M with limn→∞[Q(xn) : Q] =∞ such that
limn→∞H(xn, 1− xn) = M(X + Y − 1).

In a future paper we will show that H(xn, 1 − xn) has limit M(X + Y − 1) for any
sequence xn ∈M with limn→∞[Q(xn) : Q] =∞.

2. Proof of Theorem 1. First we recall some basics about places of number fields
and heights. Let K be a number field. A place of K is a non-trivial absolute value
normalized such that its restriction to Q is either a p-adic absolute value for a prime
p or the standard complex absolute value. The places extending the complex absolute
value will be called infinite, the others finite. It is well-known that if v is an infinite place
of K, then there exists an embedding σ of K into C, such that |x|v = |σx| for all x ∈ K
and | · | the standard complex absolute value. For any place v of K we denote Kv the
completion of K with respect to v. If | · |v is a finite place of K, then | · |v is ultrametric,
i.e. for all x, y ∈ K one has |x + y|v ≤ max{|x|v, |y|v}. If x is in K∗, the non-zero
elements of K, then |x|v = 1 for all but finitely many places v of K. Furthermore for
such x we have the product formula

(3)
∏
v

|x|[Kv :Qv ]
v = 1,
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where the product runs over all places of K. Let (x1, . . . , xn) ∈ Kn, we set

(4) H(x1, . . . , xn) =
∏
v

max{1, |x1|v, . . . , |xn|v}[Kv :Qv ]/[K:Q]

where the product runs over all places ofK. For notation purposes we set h(·) = logH(·).
It is well-known that (4) is independent of the number field K containing the xi. If
P ∈ Z[X] is the minimal polynomial of x (with content 1), then H(x)[Q(x):Q] is equal
to the Mahler measure of P . The height function satisfies some important functional
(in)equalities which we apply freely throughout this note. For example h(xn) = |n|h(x)

if x ∈ Q∗ and n ∈ Z or h(x + y) ≤ log 2 + h(x) + h(y) for any x, y ∈ Q. For references
see [Lan83].

We prove Theorem 1 via an elementary estimate which holds for any field K with any
absolute value | · | : K → R.

Lemma 1. Let x ∈ K\{0, 1}, r, t ∈ Z with 0 6= t ≥ r ≥ 0 and xr = (1− x)t. We have

(5) |1− x|−1 max{1, |x|} ≤ δ

where δ = 1 if | · | is ultrametric and δ = 2 otherwise. Furthermore, equality in (5)
implies δ = 1 or r = 0 or r = t.

Proof. Let q denote the left-hand side of (5).
First let us assume

(6) |x| < δ−1 or |x| > δ.

If δ = 1, then |x| 6= 1, so |1−x| = max{1, |x|}, hence q = 1. If δ = 2 we use the triangle
inequality to bound

(7) |1− x| ≥
{
|x| − 1 > |x|δ−1 : if |x| > δ,
1− |x| > δ−1 : if |x| < δ−1

which implies q < δ. So in the case (6) we have q ≤ δ and furthermore q = δ can only
hold if δ = 1.

Now let us assume δ−1 ≤ |x| ≤ δ. If |x| < 1, then q = |1− x|−1 = |x|−r/t ≤ δr/t ≤ δ,
and if |x| ≥ 1, then q = |x|/|1 − x| = |x|1−r/t ≤ δ1−r/t ≤ δ. It is clear that if we have
the equalities q = δ = 2, then r = 0 or r = t. �

We recall Lemma 7 of [Hab05]:

Lemma 2. Let ζ 6= 1 be a root of unity, then h(1 + ζ) ≤ 1
2

log(2
√

3).

We note that 1
2

log(2
√

3) is an improvement of the trivial bound h(1+ζ) ≤ log 2 which
holds for all roots of unity ζ. In the proof of Theorem 1 we need only a weak form of
Lemma 2. For the sake of completeness we include its proof:

Lemma 3. Let ζ 6= 1 be a root of unity, then h(1 + ζ) < log 2.

Proof. Since |1 + ζ|v ≤ 1 for all finite places v of Q(ζ) we have

(8) [Q(ζ) : Q]h(1 + ζ) =
∑
σ

log max{1, |1 + σζ|}

where the sum runs over all embeddings σ of Q(ζ) into C. Let σ be such an embedding.
Since σζ 6= 1 the parallelogram equality |1 + σζ|2 + |1 − σζ|2 = 2|σζ|2 + 2 = 4 implies
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|1+σζ| < 2. Therefore h(1+ζ) < log 2 by (8) and since Q(ζ) has [Q(ζ) : Q] embeddings
σ. �

Lemma 4. Let x′ ∈M, then there exists x ∈M and r, t ∈ Z with 0 6= t ≥ 2r ≥ 0 such
that xr = (1 − x)t and h(x′, 1 − x′) = h(x). Furthermore if x′ /∈ {−1, 1/2, 2} then we
can choose x such that x /∈ {−1, 1/2, 2}.

Proof. The lemma is simple if x′ is a primitive 6th root of unity, for then 1− x′ is also
a 6th root of unity and we may take x = x′, t = 6, and r = 0. Hence it suffices to
show the lemma for x′ ∈ M0 with M0 = M\{e±2πi/6}. For any such x′ there exists
a unique λ(x′) = [r : t] ∈ P1(Q) with r and t coprime integers such that x′r(1 − x′)−t
is a root of unity. The maps φ1(x) = 1/x and φ2(x) = 1 − x are automorphisms of
M0 and generate the symmetric group S3. Thus we get an action of S3 on M0 which
also leaves {−1, 1/2, 2} invariant. By the product formula the height h(x, 1− x) is also
invariant under this action. We check that if λ(x) = [r : t], then λ(φ1(x)) = [t − r : t]
and λ(φ2(x)) = [t : r]. We get an action of S3 on P1(Q) with fundamental domain
{[1 : s]; s ≥ 2} ∪ {[0 : 1]}. The lemma follows immediately. �

Proof of Theorem 1. Because of Lemma 4 it suffices to show that if x ∈ Q\{0, 1} with
x 6= −1, 1/2, 2 and xr = (1− x)t for integers 0 6= t ≥ 2r ≥ 0, then h(x) < log 2.

If r = 0, then x = 1 + ζ for some root of unity ζ 6= ±1. In this case the theorem
follows from Lemma 3.

Let us assume r > 0. We fix a number field K which contains x and apply the product
formula (3) to 1− x to deduce

[K : Q]h(x) =
∑
v

[Kv : Qv] log max{1, |x|v} =
∑
v

[Kv : Qv] log
max{1, |x|v}
|1− x|v

.

Since 0 < r < t we apply Lemma 1 to the local terms in the equality above to see that
[K : Q]h(x) <

∑
v infinite[Kv : Qv] log 2. This inequality completes the proof since the

sum is just [K : Q] log 2. 2

3. Proof of Theorem 2.
A non-zero algebraic number α is called reciprocal if α and α−1 are conjugated. We ap-

ply Mignotte’s equidistribution result and Smyth’s Theorem ([Smy71]) on lower bounds
for heights of non-reciprocal algebraic integers to deduce the following lemma.

Lemma 5. Let α ∈ Q∗ be non-reciprocal with h(α) ≤ log 2
3·105 , then h(1 + α) ≤ 0.933 ·

log 2 + h(α).

Proof. Let α be as in the hypothesis and d = [Q(α) : Q], furthermore let θ0 > 1 be the
unique real which satisfies θ3

0−θ0−1 = 0. If α is an algebraic integer, then dh(α) ≥ log θ0

by Smyth’s Theorem ([Smy71]). The upper bound for h(α) implies

(9) d ≥ 121700.

On the other hand, if α is not an algebraic integer, then it is well-known that dh(α) ≥
log 2. Thus (9) holds in any case.

We split C∗ up into three sectors

Ck = {r · exp(iφ); r > 0 and
2π

3
(k − 1) ≤ φ <

2π

3
k} for 1 ≤ k ≤ 3
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and define the function

m(z) =
max{1, |z + 1|}

max{1, |z|}
=

max{1, (r2 + 2r cosφ+ 1)1/2}
max{1, r}

for z = r · exp(iφ) with r > 0 and φ ∈ R. Hence

m(z)2 ≤

{
max{1,r2+2r+1}

max{1,r2} : if − 2π/3 ≤ φ ≤ 2π/3
max{1,r2−r+1}

max{1,r2} : if 2π/3 ≤ φ ≤ 4π/3.

Elementary calculus now leads to

(10) m|C1∪C3 ≤ 2 and m|C2 ≤ 1.

We fix an embedding of Q into C. Let α1. . . . , αd ∈ C∗ be the conjugates of α. We
set Nk = #{i; αi ∈ Ck} for 1 ≤ k ≤ 3. For any finite place v of Q(α) we have
max{1, |1 + α|v} = max{1, |α|v} by the ultrametric inequality. Since the finite places of
Q(α) taken with multiplicities correspond to embeddings of Q(α) into C and because of
(10) we have

(11) d(h(1 + α)− h(α)) =
d∑
i=1

logm(αi) ≤ (N1 +N3) log 2.

We set ε = (9
2
c2( log(2d+1)

d
+ h(α)))1/3 with c = 2.62. Since log(2d+1)

d
is decreasing

considered as function of d ≥ 1, we use (9) and our hypothesis on h(α) to conclude
ε < 0.1477. We apply Mignotte’s Theorem (ii) ([Mig89], p.83) to the minimal polynomial
of α and to the closure of our sectors Ck to bound

(12)
Nk

d
≤ 1

3
+ 2.823(

log(2d+ 1)

d
+ h(α))1/3.

Our hypothesis on h(α) and (9) together with (12) imply Nk

d
< 0.4662. This last bound

applied to (11) concludes the proof. �

We note that the trivial bound h(1 +α) ≤ log 2 +h(α) holds for all algebraic α. Thus
Lemma 5 gives a slight improvement for non-reciprocal α of small height. Instead of
Smyth’s lower bound for heights we could have used the lower bound by Dobrowolski
which holds for any non-zero algebraic number not a root of unity. This approach leads
to slightly worse numerical constants. Thus by taking sectors with smaller angles in the
proof of Lemma 5 the constant 0.933 · log 2 can be replaced by any real number strictly
greater than the logarithm of the number (1) if the height of α is sufficiently small but
positive. But the bound given in Lemma 5 is apt for our application.

In [CZ00] Cohen and Zannier introduce a function S : (1,∞) → R relevant to our

problem. We briefly recall its definition. Say λ > 1 and let ξ, ξ̃ > 1 be the unique reals
such that ξλ = ξ + 1 and ξ̃λ/(λ−1) = ξ̃ + 1, then

S(λ) =
log(ξ + 1) log(ξ̃ + 1)

log(ξ + 1) + log(ξ̃ + 1)
.

Lemma 1 of [CZ00] implies S < log 2, furthermore if xr = (1 − x)t for integers
t > r > 0, then h(x) ≤ S(t/r). The proof of said lemma also shows that S increases on
[2,∞).
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Proof of Theorem 2. Because of Lemma 4 it suffices to show that if x ∈ Q\{0, 1},
x 6= −1, 1/2, 2 and xr = (1 − x)t for integers 0 6= t ≥ 2r ≥ 0, then h(x) < log 1.915. If
r = 0, then x = 1 + ζ for a root of unity ζ 6= ±1. Lemma 2 implies h(x) ≤ 1

2
log(2

√
3) <

log 1.915. We now assume r > 0 and define λ = t/r ≥ 2.
If λ < 3 · 105, Then we have h(x) ≤ S(3 · 105) by the properties of S(·). A calculation

shows that the right-hand side of the last inequality is strictly less then log 1.915.
Finally we assume λ ≥ 3 · 105. Then h(1 − x) = λ−1h(x) ≤ log 2

3·105 by Theorem 1. Let
α = x− 1, we have

(13) (−1)tαt = (1 + α)r.

Let us assume first that α and α−1 are not conjugated, then h(x) ≤ 0.933 · log 2+ log 2
3·105 <

log 1.915 by Lemma 5. If α and α−1 are conjugated, then equality (13) must hold with
α replaced by α−1. Hence 1 = α2t(1 +α−1)2r, or 1 = x2r(1−x)2(t−r) in terms of x. Since
r 6= 0 and r 6= 2t this new dependency relation between x and 1 − x is independent
of the original relation 1 = xr(1 − x)−t. We conclude that x is a root of unity and so
h(x) = 0. 2
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