MULTIPLICATIVE DEPENDENCE AND ISOLATION I

P. HABEGGER

1. Introduction. Two elements x, y of a field are called multiplicatively dependent
if zy # 0 and there exists r,s € Z not both zero such that z"y* = 1. In [CZ00]
Cohen and Zannier prove that if € Q, the field of algebraic numbers, such that z
and 1 — z are multiplicatively dependent, then max{H (z), H(1 — x)} < 2, where H(-)
is the absolute Weil height. This bound is sharp because of the exceptional values
x = —1,1/2,2. Cohen and Zannier then use Bilu’s Equidistribution Theorem [Bil97]
to show that there exists ¢ > 0 such that if x is as before but not one of the three
exceptional values, then max{H(z), H(1 —x)} < 2 — e. In [Hab05] the author showed
that if o is any non-zero rational integer and x, a — x are multiplicatively dependent,
then max{H (z), H(a —z)} <2H(«). In the same article it is shown that this bound is
sharp if and only if « is a power of 2. If & = 2" > 2. a uniform isolation result is proved,
namely either z € {2a, —a} or already max{H (x), H(ao — z)} < 1.98H(«).

The purpose of this note is to give a concise proof of a slight strengthening of the
height bound in the case & = 1 based on the method used in [Hab05]. We also work
out an explicit €. Finally we show that there exists a sequence z, with z,, and 1 —
x, multiplicatively dependent and such that the height of x,, converges to the Mahler
measure of the polynomial X +Y — 1.

We define M to be the set of x such that x and 1 — z are multiplicatively dependent.
Clearly the elements of M are algebraic. If ( # 1 is a root of unity, then ( and 1— ( are
multiplicatively dependent and so ( € M. Thus M is infinite, a result which has been
made quantitative by Masser in Theorem 2 of [Mas05]. Let H(z,y) denote the affine
absolute non-logarithmic Weil height, which will be defined further down. This height
function corresponds to the compactification of the algebraic torus G2, — P2. We have:

Theorem 1. Let x € M, then H(z,1 — x) < 2 with equality if and only if v €
{~1,1/2,2}.

Theorem 1 implies Theorem 1 of [CZ00] since max{H (z), H(y)} < H(x,y) for al-
gebraic z and y. We choose the particular height function H(x,1 — z) because it is
invariant under the maps  — 1 — x and = — 2~ !. Incidently M is stable under these
two maps. Our method of proof for Theorem 1 exploits this fact and relies on elementary
local estimates combined with the product formula.

Theorem 1 can be put in the context of a more general result by Bombieri, Masser,
and Zannier (Theorem 1, [BMZ99]). In their article it is shown that if C is an irreducible
algebraic curve defined over Q embedded in the multiplicative torus and not contained
in the translate of a proper algebraic subgroup, then the points of the intersection of C
with the union of all proper algebraic subgroups have bounded height. In our special
situation the curve is defined by the polynomial X + Y — 1.

Date: June 27, 2010.



MULTIPLICATIVE DEPENDENCE AND ISOLATION I 2

The proof of the isolation result in [Hab05] made use of 2-adic estimates and works
only if a = 2™ > 2. To handle the case o = 1 we apply an explicit result by Mignotte
[Mig89] on the angular distribution of conjugates of an algebraic number of small height
and big degree to find an explicit e. Large degree is guaranteed by a theorem of Smyth
[Smy71] on lower bounds for heights of non-reciprocal algebraic numbers.

Theorem 2. If v € M\{—1,1/2,2} then H(x,1 —z) < 1.915.

The element of M\{—1,1/2,2} of largest height known to the author is 1 — (3 where
(3 is a primitive 3rd root of unity. In fact H(1 — (3) = v/3. It would be interesting to
know if v/3 is already the second to largest height value obtained on M.

If ( # 11is a root of unity, then 1 — ( € M. As the degree of { goes to infinity we can
use Bilu’s Equidistribution Theorem (Theorem 1.1, [Bil97]) to show that H(1 — ¢, () =
H(1 — () converges to

1/3
(1) exp/ log |1 4 exp(2mit)|dt = 1.381356...,
~1/3

Let f be a polynomial in n variables with complex coefficients, the Mahler measure

M(f) of f is defined as

M(f) = exp (@ /O%---/027rlog|f(exp(it1),...,exp(itn))|dt1---dtn).

Smyth ([Smy81]) calculated the Mahler measure of the polynomial X + Y — 1 defining

our curve as
3v3 E\ 1
(2) M(X +Y —1) —eXP(E; (g)p%

here () is the Legendre symbol. By Jensen’s Formula the Mahler measure in (2) is equal
to the integral (1). We immediately get

Proposition. There exists a sequence z,, € M with lim,,_,[Q(z,) : Q] = oo such that
lim, oo H(xp, 1 —x,) = M(X +Y —1).

In a future paper we will show that H(z,,1 — x,) has limit M (X +Y — 1) for any
sequence x, € M with lim,_,[Q(z,) : Q] = occ.

2. Proof of Theorem 1. First we recall some basics about places of number fields
and heights. Let K be a number field. A place of K is a non-trivial absolute value
normalized such that its restriction to Q is either a p-adic absolute value for a prime
p or the standard complex absolute value. The places extending the complex absolute
value will be called infinite, the others finite. It is well-known that if v is an infinite place
of K, then there exists an embedding o of K into C, such that |z|, = |ox| for all x € K
and | - | the standard complex absolute value. For any place v of K we denote K, the
completion of K with respect to v. If |- |, is a finite place of K, then |- |, is ultrametric,
i.e. for all z,y € K one has |z + y|, < max{|z|,,|y|,}. If x is in K*, the non-zero
elements of K, then |z|, = 1 for all but finitely many places v of K. Furthermore for
such & we have the product formula

(3) H |x|LKU:QU] =1,
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where the product runs over all places of K. Let (z1,...,z,) € K", we set

(4) H(zy, ... xp) = [ [max{L, |21y, ..., 2,], o@D

where the product runs over all places of K. For notation purposes we set h(-) = log H(-).
It is well-known that (4) is independent of the number field K containing the x;. If
P € Z[X] is the minimal polynomial of z (with content 1), then H(z)@®Q is equal
to the Mahler measure of P. The height function satisfies some important functional
(in)equalities which we apply freely throughout this note. For example h(z") = |n|h(x)
if 1€ Q and n € Z or h(z +y) < log2 + h(z) + h(y) for any z,y € Q. For references
see [Lan83].

We prove Theorem 1 via an elementary estimate which holds for any field K with any
absolute value | - | : K — R.

Lemma 1. Let x € K\{0,1}, r,it € Z with0#t >r >0 and 2" = (1 — z)'. We have
5) 11— 2 Va1, Jo]} <
where § = 1 if | - | is ultrametric and § = 2 otherwise. Furthermore, equality in (5)
mmplies 6 =1 orr =0 orr =1t.
Proof. Let ¢ denote the left-hand side of (5).
First let us assume
(6) lz| < 67! or |z| > 4.
If § =1, then |z| # 1, so |1 — x| = max{1, |z|}, hence ¢ = 1. If § = 2 we use the triangle

inequality to bound
B lz| — 1> Jz|6~' : if 2] >4,
(7) 1=z { 1— el > 670 ¢ iffa] <6

which implies ¢ < §. So in the case (6) we have ¢ < § and furthermore ¢ = 0 can only
hold if 6 = 1.

Now let us assume 6! < |z| < 4. If |2| < 1, then ¢ = |1 —z|~' = || 77/t < §"/ < 6,
and if |z| > 1, then ¢ = |z|/|1 — 2| = |z|'77/t < §'77/t < 6. It is clear that if we have
the equalities ¢ = 6 = 2, then r =0 or r = ¢. U

We recall Lemma 7 of [Hab05]:
Lemma 2. Let ¢ # 1 be a root of unity, then h(1+ () < 1log(2V/3).

We note that 1 log(2v/3) is an improvement of the trivial bound h(1+¢) < log2 which
holds for all roots of unity {. In the proof of Theorem 1 we need only a weak form of
Lemma 2. For the sake of completeness we include its proof:

Lemma 3. Let ( # 1 be a root of unity, then h(1+ () < log 2.
Proof. Since |1 + (|, <1 for all finite places v of Q(¢) we have

(8) [Q¢) : QA1 +¢) = logmax{1, |1 + o¢[}

where the sum runs over all embeddings ¢ of Q(¢) into C. Let ¢ be such an embedding.
Since o¢ # 1 the parallelogram equality |1 + o(|? + |1 — o¢|? = 2|o(|* + 2 = 4 implies
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|1+ 0| < 2. Therefore h(1+() < log2 by (8) and since Q(¢) has [Q(¢) : Q] embeddings
o. U

Lemma 4. Let ' € M, then there exists x € M and r,t € Z with 0 £t > 2r > 0 such
that " = (1 — )" and h(z',1 — 2') = h(z). Furthermore if ' ¢ {—1,1/2,2} then we
can choose x such that x ¢ {—1,1/2,2}.

Proof. The lemma is simple if 2’ is a primitive 6th root of unity, for then 1 — 2’ is also
a 6th root of unity and we may take x = 2/, t = 6, and r = 0. Hence it suffices to
show the lemma for 2/ € My with My = M\{e*?™/6}. For any such 2’ there exists
a unique A\(z') = [r : t] € PY(Q) with r and ¢ coprime integers such that z'"(1 — /)~
is a root of unity. The maps ¢(z) = 1/x and ¢o(z) = 1 — x are automorphisms of
M, and generate the symmetric group S3. Thus we get an action of S5 on M which
also leaves {—1,1/2,2} invariant. By the product formula the height h(z,1 — z) is also
invariant under this action. We check that if A(x) = [r : t], then A(¢1(z)) = [t —r : {]
and A(¢a(x)) = [t : r]. We get an action of S3 on P'(Q) with fundamental domain
{[1:s]; s >2}U{[0:1]}. The lemma follows immediately. O

Proof of Theorem 1. Because of Lemma 4 it suffices to show that if z € Q\{0, 1} with
x# —1,1/2,2 and 2" = (1 — x)" for integers 0 # t > 2r > 0, then h(z) < log 2.

If » =0, then x = 1 + ¢ for some root of unity ( # +1. In this case the theorem
follows from Lemma 3.

Let us assume r > 0. We fix a number field K which contains x and apply the product
formula (3) to 1 — 2 to deduce

(K : Qlh(z) = ) [K, : Q)] logmax{1, |z],} = Y [K, : Q,]log

v

max{1, |z|,}
11—z,

Since 0 < r < t we apply Lemma 1 to the local terms in the equality above to see that
K Qlh(z) < >, insiuite Ko @ Qu]log2. This inequality completes the proof since the
sum is just [K : Q]log 2. O
3. Proof of Theorem 2.
A non-zero algebraic number « is called reciprocal if o and o=t are conjugated. We ap-

ply Mignotte’s equidistribution result and Smyth’s Theorem ([Smy71]) on lower bounds
for heights of non-reciprocal algebraic integers to deduce the following lemma.

Lemma 5. Let o € Q  be non-reciprocal with h(a) < ;,(-)1%3257 then h(1 + o) < 0.933 -
log2 + h(w).

Proof. Let a be as in the hypothesis and d = [Q(«) : Q], furthermore let 6y > 1 be the
unique real which satisfies 3 —6y—1 = 0. If « is an algebraic integer, then dh(a) > log 6
by Smyth’s Theorem ([Smy71]). The upper bound for h(a) implies

(9) d > 121700.

On the other hand, if «v is not an algebraic integer, then it is well-known that dh(a) >
log 2. Thus (9) holds in any case.
We split C* up into three sectors

2 2
Cy = {r - explio); r>0and§(k—1)§¢<%k}f0r1§k§3



MULTIPLICATIVE DEPENDENCE AND ISOLATION I 5

and define the function

m(z) = max{l, |z + 1|} _ max{L, (r* + 2rcos¢ +1)"/?}

max{1,|z|} max{1,7}

for z =r - exp(i¢) with r > 0 and ¢ € R. Hence
mad{lLr?+2041} e 953 < g < 97/3

max{1,7%}

madlrordl} L 9r/3 < ¢ < 4n/3.

max{1,7%}

Elementary calculus now leads to
(10) m|cluc3 S 2 and m|(;2 S 1.

We fix an embedding of Q into C. Let ag....,ay € C* be the conjugates of o. We
set Ny = #{i; oy € Ci} for 1 < k < 3. For any finite place v of Q(«) we have
max{1, |1 + «|,} = max{1, |a|,} by the ultrametric inequality. Since the finite places of
Q(«) taken with multiplicities correspond to embeddings of Q(«) into C and because of
(10) we have

(11) d(h(1+a) — h(a)) = Z log m(a;) < (Ny + N3)log 2.

We set € = (%c%% + h(a)))Y? with ¢ = 2.62. Since % is decreasing
considered as function of d > 1, we use (9) and our hypothesis on h(a) to conclude
€ < 0.1477. We apply Mignotte’s Theorem (ii) ([Mig89], p.83) to the minimal polynomial

of o and to the closure of our sectors ('}, to bound

N, 1 log(2d + 1
(12) <o+ 282310824 Y s,
Our hypothesis on h(a) and (9) together with (12) imply & < 0.4662. This last bound
applied to (11) concludes the proof. O

We note that the trivial bound A(1+«a) < log2+ h(«) holds for all algebraic a. Thus
Lemma 5 gives a slight improvement for non-reciprocal « of small height. Instead of
Smyth’s lower bound for heights we could have used the lower bound by Dobrowolski
which holds for any non-zero algebraic number not a root of unity. This approach leads
to slightly worse numerical constants. Thus by taking sectors with smaller angles in the
proof of Lemma 5 the constant 0.933 - log 2 can be replaced by any real number strictly
greater than the logarithm of the number (1) if the height of « is sufficiently small but
positive. But the bound given in Lemma 5 is apt for our application.

In [CZ00] Cohen and Zannier introduce a function S : (1,00) — R relevant to our
problem. We briefly recall its definition. Say A > 1 and let &, € > 1 be the unique reals
such that &* = £ 4+ 1 and EYAD = £ 4+ 1, then

_ log(¢+1)log(€ +1)
log(¢ + 1) + log(f+ 1)

Lemma 1 of [CZ00] implies S < log2, furthermore if 2" = (1 — z)" for integers
t >r >0, then h(z) < S(t/r). The proof of said lemma also shows that S increases on
2, 00).
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Proof of Theorem 2. Because of Lemma 4 it suffices to show that if z € Q\{0, 1},
x# —1,1/2,2 and 2" = (1 — z)" for integers 0 # ¢ > 2r > 0, then h(z) < log1.915. If
r =0, then x = 1+ for a root of unity ¢ # +1. Lemma 2 implies h(z) < %log(Z\/g) <
log 1.915. We now assume r > 0 and define A = ¢/r > 2.

If A < 3-10°, Then we have h(z) < S(3-10°) by the properties of S(-). A calculation
shows that the right-hand side of the last inequality is strictly less then log 1.915.

Finally we assume A > 3-10°. Then h(1 — 2) = A~ 'h(z) < ;%2 by Theorem 1. Let
a =z — 1, we have

(13) (-’ =(1+a)".

Let us assume first that o and a~! are not conjugated, then h(z) < 0.933-log2+ 3105 <
log 1.915 by Lemma 5. If a and a~! are conjugated, then equality (13) must hold with
a replaced by a~'. Hence 1 = a®(14+a 1), or 1 = 22" (1 —2)?*") in terms of x. Since
r # 0 and r # 2t this new dependency relation between x and 1 — x is independent

of the original relation 1 = 2"(1 — z)~". We conclude that z is a root of unity and so
h(xz) = 0. =
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