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Statistical Modelling and Computing 
 
0. Introduction 

0.1 Books and Websites 

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with 

S, (4th Edition), Springer. 

This is the main course book. The software (including versions in R) and 

datasets used in this book are available from various websites such as  

http://www.stats.ox.ac.uk/pub/MASS4 

This course will use many of the data sets and functions from the MASS 

library.  

Verzani, J. (2005) Using R for Introductory Statistics, Chapman & 

Hall. This book provides many good examples of the more elementary 

techniques. 

Nolan, D. & Speed, T. P. (2000), Stat Labs: Mathematical Statistics 

Through Applications. Springer. Support material is available at: 

http://www.stat.Berkeley.edu/users/statlabs 

This book is recommended for additional  reading. 

Ripley, B.D. (1996) Pattern Recognition and Neural Networks. 

Cambridge University Press. 

This book provides much fuller details of neural nets from the practical 

statistical point of view. 
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Much of the course will be focused around the computing system R 

which provides various statistical facilities including high quality 

graphics. It is an open source system and is available free. It is ‘not 

unlike’ the expensive commercial package S-PLUS, the prime difference 

is that R is command-line driven without the standard menus and dialog 

boxes in S-PLUS. Otherwise, most code written for the two systems is 

interchangeable. 

The sites from which R and associated software (extensions and 

libraries) and manuals can be found are listed at 

http://www.ci.tuwien.ac.at/R/mirrors.html 

The nearest ones are at 

http://cran.dk.r-project.org (in Denmark) 
and 

http://cran.uk.r-project.org (in Bristol, UK) 
 

Free versions of full manuals for R (mostly in PDF format) can be found 

at any of these mirror sites.  There is also a wealth of contributed 

documentation. Particularly useful are: 

Using R for Data Analysis and Graphics by John Maindonald (PDF 
[702kB], 106 pages). Many of the topics in this course are covered in 
these notes. This is also available as a hardback book. 

R for Beginners by Emmanuel Paradis, (PDF [152kB], 31 pages). This 
provides a useful introduction to R. The notes are translated from the 
original version in French (but not always very accurately). 

R reference card by Jonathan Baron, (PDF [58kB], LaTeX [5kB], 1 
page) 
 
These can be consulted online during R sessions or downloaded and 

printed to take away. 
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0.2 Objectives 

The overall objective of this course is to provide an introduction to some 

of the techniques of modern statistical methodology.  An integral part of 

modern statistical analysis is directed towards understanding data, 

discovering structure in it and making inferences about the wider world. 

Applied Statistics is not a subset of mathematics, though mathematics is 

a useful tool in developing statistical methods and techniques, just as it 

is a useful tool in the various forms of engineering. In some ways, this 

course regards applied statistics as ‘data engineering’ — this includes 

actually doing practical things with data. Inevitably, some attention has 

to be given to the computational side and there will be some pointers to 

the mathematical aspects.   

 

A great revolution in statistical practice occurred with the development of 

the language S and later the development of S-PLUS.  

(R is essentially the same language as S-PLUS but is free) 

This integrated computing system has allowed the statistical community 

to extend traditional methods and to try out new techniques to provide 

new ways of investigating practical statistical problems. Often these are 

based not on mathematical development but on more intuitive ideas. 

This course aims to give a flavour of this new approach to statistical 

thinking and an introduction to implementing them in practice.  
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0.3 Outline of Course 

1. Overview of S-PLUS and R:– how does it work and what can it do. 

2. Exploratory Data Analysis:– standard summary descriptions and 

plots, robust summaries, improved alternatives to histograms. 

3. Classical Univariate Statistics:– revision and implementation of one 

and two sample tests, analysis of variance, bootstrap and 

permutation methods. 

4. Linear Statistical Models:– classic linear regression and 

diagnostics. Robust methods, smooth regression and additive 

models. 

5. Multivariate Methods:– multivariate EDA, principal components and 

biplots, discrimination and classification, cluster analysis. 

6. Tree-based Methods:– Classification and Regression Trees, trees 

for decision making. 

7. Neural Networks:– use for classification and regression problems. 
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1.  Overview of S-PLUS and R  

1.0 Introduction 

S-PLUS (and its public domain equivalent R) is an integrated suite of 

software facilities for data analysis and graphical display. It offers:– 

♦ an extensive and coherent set tools for statistics and data 

analysis 

♦ a language for expressing statistical models and tools for using 

linear and non-linear statistical models 

♦ graphical facilities for interactive data analysis and display 

♦ an object-orientated programming language that can easily be 

extended 

♦ an expanding set of publicly available libraries of routines for 

special analyses  
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S-PLUS is available as a commercial package from Insightful (formally 

known as MathSoft) and is an implementation of the language S 

developed at Bell Laboratories by Becker, Chamberlain and Wilks. R is a 

very similar implementation but is available free from many different 

websites.  The prime differences between R and S-PLUS (apart from the 

cost!) are: 

♦ R is an Open Source system — it is possible to examine the 

source code and determine precisely what variation on a 

statistical method has been implemented. This is less important 

for e.g. t-tests (although even for these there are equal variance 

or unequal variance versions of t-tests) but much more important 

for the more heuristic methods of robust analysis and semi-

parametric methods, i.e. those modern methods based more on 

practical consideration than on mathematical theory. 

♦ S-PLUS has menus and dialogs as well as a command-line 

interface, but R has only the command-line. 

♦ S-PLUS has ways to edit graphs and more facilities for multi-

panel plots. 

♦ R is better at annotating with mathematical notation. 

♦ R is small with many extensions, S-PLUS is monolithic. 

♦ R runs on less powerful machines. 
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1.1 Some Features of R 

1.1.1 R is a function language 

All commands in R are regarded as functions, they operate on 

arguments, e.g. plot(x, y) plots the vector x against the vector y — 

that is it produces a scatter plot of x vs. y.   Even Help is regarded as a 

function:— to obtain help on the function plot use help(plot). To 

obtain general help use help(), i.e.use the function help with a null 

argument. To end a session in R use quit(), or q(), i.e. the function 

quit or q with a null argument. In fact the function quit can take 

optional arguments, type help(quit) to find out what the possibilities 

are. 

1.1.2 R is an object orientated language 

All entities (or 'things') in R are objects. This includes vectors, matrices, 

data arrays, graphs, functions, and the results of an analysis. For 

example, the set of results from performing a two-sample t-test is 

regarded as a complete single object. The object can be displayed by 

typing its name or it can be summarized by the function summary().  

1.1.3 R is a case-sensitive language 

Note that R treats small letters and big letters as different, for example a 

two sample t-test is performed using the function t.test() but R does 

not recognize T.test(), nor T.TEST(), nor t.Test(), nor…… 
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1.1.4 Brief Example  
R : Copyright 2004, The R Foundation for Statistical 
Computing 
Version 2.0.1 Patched (2004-11-19), ISBN 3-900051-07-0 
 
R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain 
conditions. 
Type 'license()' or 'licence()' for distribution details. 
 
R is a collaborative project with many contributors. 
Type 'contributors()' for more information and 
'citation()' on how to cite R or R packages in 
publications. 
 
Type 'demo()' for some demos, 'help()' for on-line help, 
or 
'help.start()' for a HTML browser interface to help. 
Type 'q()' to quit R. 
 

> library(MASS) 

> data(hills)  

> summary(hills) 

      dist            climb           time        

 Min.   : 2.000   Min.   : 300   Min.   : 15.95   

 1st Qu.: 4.500   1st Qu.: 725   1st Qu.: 28.00   

 Median : 6.000   Median :1000   Median : 39.75   

 Mean   : 7.529   Mean   :1815   Mean   : 57.88   

 3rd Qu.: 8.000   3rd Qu.:2200   3rd Qu.: 68.63   

 Max.   :28.000   Max.   :7500   Max.   :204.62   
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> hills 
                 dist climb    time 
Greenmantle       2.5   650  16.083 
Carnethy          6.0  2500  48.350 
Craig Dunain      6.0   900  33.650 
Ben Rha           7.5   800  45.600 
Ben Lomond        8.0  3070  62.267 
Goatfell          8.0  2866  73.217 
Bens of Jura     16.0  7500 204.617 
Cairnpapple       6.0   800  36.367 
Scolty            5.0   800  29.750 
Traprain          6.0   650  39.750 
Lairig Ghru      28.0  2100 192.667 
Dollar            5.0  2000  43.050 
Lomonds           9.5  2200  65.000 
Cairn Table       6.0   500  44.133 
Eildon Two        4.5  1500  26.933 
Cairngorm        10.0  3000  72.250 
Seven Hills      14.0  2200  98.417 
Knock Hill        3.0   350  78.650 
Black Hill        4.5  1000  17.417 
Creag Beag        5.5   600  32.567 
Kildcon Hill      3.0   300  15.950 
Meall Ant-Suidhe  3.5  1500  27.900 
Half Ben Nevis    6.0  2200  47.633 
Cow Hill          2.0   900  17.933 
N Berwick Law     3.0   600  18.683 
Creag Dubh        4.0  2000  26.217 
Burnswark         6.0   800  34.433 
Largo Law         5.0   950  28.567 
Criffel           6.5  1750  50.500 
Acmony            5.0   500  20.950 
Ben Nevis        10.0  4400  85.583 
Knockfarrel       6.0   600  32.383 
Two Breweries    18.0  5200 170.250 
Cockleroi         4.5   850  28.100 
Moffat Chase     20.0  5000 159.833 
>   
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> pairs(hills) 

  
> cor(hills) 
           dist     climb      time 

dist  1.0000000 0.6523461 0.9195892 

climb 0.6523461 1.0000000 0.8052392 

time  0.9195892 0.8052392 1.0000000 
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> data(shoes) 

> shoes 

$A 

 [1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3 

 

$B 

 [1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6 

 

> attach(shoes) 

> t.test(A,B) 

 

         Welch Two Sample t-test  

 

data:  A and B  

t = -0.3689, df = 17.987, p-value = 0.7165  

alternative hypothesis: true difference in means is 
not equal to 0  

95 percent confidence interval: 

 -2.745046  1.925046  

sample estimates: 

mean of x mean of y  

    10.63     11.04  
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> T.test(A,B) 

Error: couldn't find function "T.test" 

> t.test(a,b) 

Error in t.test(a, b) : Object "b" not found 

> summary(t.test(A,B)) 

            Length Class  Mode      

statistic   1      -none- numeric   

parameter   1      -none- numeric   

p.value     1      -none- numeric   

conf.int    2      -none- numeric   

estimate    2      -none- numeric   

null.value  1      -none- numeric   

alternative 1      -none- character 

method      1      -none- character 

data.name   1      -none- character 

>  

>  mean(A) 

[1] 10.63 

> mean(B) 

[1] 11.04 
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1.1.5 Comments on example 

♦ 1:– The first command opened the library of routines and data 

sets MASS. There are many libraries of routines available in R and 

many can be downloaded from the various R websites listed in 

§0.1.  To find out what libraries are available in your system type 

library() and you will obtain a list of them. To find out what 

routines are available in [for example] MASS type 

library(help=MASS). 

♦ 2:– The second command data(hills) made the data set 

hills available to the session. The base system of R and many 

of the available libraries come with example data sets for testing 

routines and for illustrations and hills is one of those that come 

in the library MASS. To find out what data sets are currently 

available to the session type data().  It is of course possible to 

read in data from files, not only ordinary ASCII text files but also 

files produced by most other packages such as Excel, SAS, 

SPSS, Minitab, STATA, …… . In addition data can be typed in 

direct from the keyboard. 

♦ 3:– summary(hills) produced a basic summary of the object 

hills. Typing summary(name-of-object) will produce some 

sort of summary whatever type of object it is, though what is 

produced depends on the type of the object (i.e. whether it is a 

data set or the results of an analysis or whatever. 
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♦ 4:– hills produced a complete list of the object hills. Typing 

name-of-object will print it out, whatever sort of object it is. 

Note that this data set consists of three variables: dist, 

climb, time, and that the rows are labelled with names. These 

are the record times in minutes taken for hill races in Scotland. 

The distance (dist) is in kilometres and climb gives the total 

cumulative height in metres climbed in the race. 

♦ 5:– Note the commands pairs(hills) and cor(hills) are 

functions operating on the object hills.   

♦ 6:– Finally, a further data set, shoes, is opened. Given are 

measures of the wear of shoes of materials A and B for one foot 

each of ten boys. Illustrated are the results of a Two Sample t-test 

of A vs B and reminders that R is case-sensitive.  
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♦ 7:– In fact, it would be better to do a paired t-test on these data, 

since each boy is wearing material A on one foot and B on the 

other and since there is likely to be great differences between the 

different boys but not between the different feet of individual boys. 

This can be done by the same function t.test() on the 

differences, i.e. t.test(A–B). In fact t.test() is an example 

of a generic function (as is summary() ) whose result depends 

on the type of argument given to it 

> t.test(A-B) 

 

         One Sample t-test  

 

data:  A - B  

t = -3.3489, df = 9, p-value = 0.008539  

alternative hypothesis: true mean is not equal to 0  

95 percent confidence interval: 

 -0.6869539 -0.1330461  

sample estimates: 

mean of x  

    -0.41 
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1.2 Summary so far 

♦ The aim of this course is to give a flavour of recent developments 

in applied statistics that have been made possible by the 

development of a computer language S (implemented as the 

commercial package S-plus and as the free language R). 

♦ It may seem at first as if the course is more about the computer 

package R than about statistics, but have patience — it really is 

about statistics. 

♦ R is an object-orientated language providing facilities for 

manipulating objects such as vectors, matrices, data sets, results 

of analyses as well as inbuilt statistical procedures and integrated 

(and interactive) graphical facilities. 

♦ R consists of a base system supplemented by various libraries of 

routines. Additionally, various standard data sets are included 

that can be used to illustrate the techniques. The extensive Help 

System can be used to find out what libraries are available, what 

each of them contains, what data sets are included and what the 

data refer to. 

♦ §1.1.4 gives a record of a short R session with comments and 

explanations given in §1.1.5. These contain some key tools for 

getting started when using the system. 



©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing 
 

 17  
 

2. Exploratory Data Analysis 

2.1 Data Summaries 

2.1.1 Introduction 

Standard summaries mean(), median() and var() are available for 

summarizing data. The first two take individual variables as arguments, 

and the argument for var() can be either a single variable or a data 

matrix. If the latter then a complete variance-covariance matrix is 

returned.  summary() will return the minimum, 1st quartile, median, 3rd 

quartile and maximum, together with the mean. The first five of these are 

the (0,0.25,0.5,0.75,1) quantiles and can be produced by quantile(). 

This can also be used to produce any arbitrary quantiles by including a 

vector of  the required probabilities: 

> attach(hills) 
> summary(dist) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  2.000   4.500   6.000   7.529   8.000  28.000  
> quantile(dist) 
  0%  25%  50%  75% 100%  
 2.0  4.5  6.0  8.0 28.0  
> quantile(dist,c(0.25,0.33,0.4,0.8)) 
25% 33% 40% 80%  
4.5 5.0 5.3 9.6 

Note the use of c(0.25,0.33,0.4,0.8) to concatenate (=join 

together) the numbers into a vector. 

[The quantiles are obtained by linear interpolation in the ordered sample] 

However, these summaries (especially mean() and var() )are 

sensitive to outliers, i.e. they are not robust. 
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2.1.2 Robust Summaries 

> data(chem) 

> chem 

[1] 2.90 3.10 3.40 3.40 3.70 3.70 2.80 2.50 2.40 2.40 
          2.70 2.20 

[13] 5.28 3.37 3.03 3.03 28.95 3.77 3.40 2.20 3.50  
         3.60 3.70 3.70 

The data above are values of 24 determinations of copper in ppm in 

wholemeal flour.  The [1] and [13] indicate that these lines begin with 

the 1st and 13th element of the object chem. 

Note the very large value 28.95. It is an outlier. 

> mean(chem) 
[1] 4.280 

The value of the mean is highly influenced by this outlier (it is larger than 

all but two of the observations). 

The sample mean → ±∞x  if any data value → ±∞ix , whereas the 

median is hardly affected if any single value of  tends to ±∞ . 

In fact, the median will not be affected until 50% of the data are grossly 

contaminated. 

The median is resistant to gross errors, but the mean is not. 

The median has a breakdown point of 50%, the mean has a 

breakdown point of 0%. 
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A more robust estimate of location is a trimmed mean, i.e. the mean 

when a percentage of the largest and smallest observations are trimmed 

away from the sample. Specifically, an α-trimmed mean is the mean of 

the sample after removal of the upper and lower 100×α% portions of the 

sample, i.e. of the middle 1-2α part of the distribution. 

Example (chemical data above): 

> mean(chem, trim=0.01) 
[1] 4.280417 
> mean(chem, trim=0.04) 
[1] 4.280417 
> mean(chem, trim=0.05) 
[1] 3.253636 
> mean(chem, trim=0.1) 
[1] 3.205 

Questions: 

1. What breakdown point does an α-trimmed mean have? 

2. Which observations have been trimmed and why in the four 

calculations above? 

3. What will an 0.5-trimmed mean give? 

 

Other robust estimators of location are M-estimators, see e.g. Venables 

& Ripley, (1999), but these are not implemented as standard in R [yet] 

but are available in S-plus. 
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Robust estimators of scale: 

Consider the following estimators of scale 

 

1. s, where s2 −= −∑ 21
1 ( )in x x  

2. πσ = −∑1
2 in x x  

3. IQR=0.741× −[3 / 4] [ / 4]( )n nx x   

         (Inter-Quartile Range) 

4. MAD=1.4826×median{|xi–median(xj)|}  

        (Median Absolute Deviation) 

 

All of these are [approximately] unbiased estimators of σ (or their 

squares of σ2) if the xi~N(µ,σ2). 

Questions: 

1. How resistant are these to outliers?, i.e. what are their breakdown 

points? 

2. How can these be calculated in R using functions mad(), 

sum(), mean(), median(), abs()? 

3. Do we need to use the function mad()? 
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Relative Efficiency: This measures what price is paid in using a robust 

estimator instead of an alternative one. The relative efficiency of two 

estimators θ  and θ̂  is RE(θ ; θ̂ )=(variance of θ̂ )/(variance of θ ) where 

the variances are calculated for the particular distribution that the sample 

comes from (assuming we know what this is). This will probably 

depend on the sample size n and we can consider the Asymptotic 

Relative efficiency as n→∞ 

e.g. for Normal data, (1) ARE( 2σ ;s2)=88%, (2) ARE(MAD;s)=37% and 

ARE(median;mean)=64%. 

We can interpret these as saying that for Normal data we need roughly 

only 37% of the sample size to estimate σ with s to achieve the same 

precision of estimation as we would have with MAD. This does not look 

attractive — it is a high price to pay for protection against outliers. 

However, these calculations are based on the sample really coming 

from a Normal distribution. 
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If the data come from a student t-distribution on 5 d.f., t5, the 

ARE(median; mean)=96% (not 64%) 

If the data come from a Normal distribution with ε% contamination from a 

Normal with the same mean but 3 times the standard deviation, i.e. from 

(1–ε)N(µ,σ2)+εN(µ,9σ2) then the table of ARE( 2σ ;s2) values is 

 

ε(%) ARE(σ 2 ;s2) 

0 87.6% 

0.1 94.8% 

0.2 101.2% 

1 144% 

5 204% 

 

Thus we can see that 2σ  is robust to model deviation, i.e. if the data 

do not come from the Normal model that we have assumed but instead 

from a slightly different model then this estimator provides good 

protection.  

As well as robust data summaries (and implicitly estimators) we can 

consider methods of more general statistical analysis that are robust or 

resistant to model deviation and data contamination. 
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2.2 Graphical Summaries 

2.2.1 Stem-and-leaf plots 

Examples: 

(1) Scottish hill race data 

> data(hills) 

> dist 

 [1] 2.5 6.0 6.0 7.5 8.0 8.0 16.0 6.0 5.0 6.0 28.0  
        5.0 9.5 6.0 4.5 
[16] 10.0 14.0 3.0 4.5 5.5 3.0 3.5 6.0 2.0 3.0 4.0  
        6.0 5.0 6.5 5.0 
[31] 10.0 6.0 18.0 4.5 20.0 

> stem(dist) 

The decimal point is 1 digit(s) to the right of the | 

  0 | 2333344 
  0 | 55555556666666667888 
  1 | 0004 
  1 | 68 
  2 | 0 
  2 | 8 
 

(2) Durations and intervals between eruptions of Old Faithful.  

> data(geyser) 
> summary(geyser) 
    waiting          duration      
 Min.   : 43.00   Min.   :0.8333   
 1st Qu.: 59.00   1st Qu.:2.0000   
 Median : 76.00   Median :4.0000   
 Mean   : 72.31   Mean   :3.4608   
 3rd Qu.: 83.00   3rd Qu.:4.3833   
 Max.   :108.00   Max.   :5.4500   
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> stem(duration) 

 The decimal point is 1 digit(s) to the left of the |    

   8 | 3 
  10 |  
  12 |  
  14 |  
  16 | 223370023357778 
  18 | 00022223333335557778880022333333555557778 
  20 | 00000000000000000000000223578023578 
  22 | 0278 
  24 | 7807 
  26 | 05 
  28 | 373 
  30 | 00 
  32 | 583 
  34 | 523 
  36 | 00235 
  38 | 0277802377 
  40 | 0000000000000000000000000000000000000000000000000000023780233355777 
  42 | 00222222355557778802333557788888 
  44 | 00222255555557777800000233888 
  46 | 00002225577778800033357778 
  48 | 0033782277788 
  50 | 30 
  52 | 7 
  54 | 5 

 

> stem(waiting) 

The decimal point is 1 digit(s) to the right of the | 

 
   4 | 3 
   4 | 577888889999999 
   5 | 00000000000011111222223333333444444444 
   5 | 5556677777777788888999 
   6 | 0000001112222234 
   6 | 5555555668889999 
   7 | 01111122222233333344444444 
   7 | 5555555556666666677777777778888888888888888899999999999 
   8 | 00000000000001111111111112222222233333344444444444 
   8 | 5555555666667777777777777788888889999999 
   9 | 0011222333333334 
   9 | 668 
  10 |  
  10 | 8 

Comments: Quick, easy, no data are lost — actual 

values are retained 
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2.2.2 Boxplots 

Examples: 

> data(hills) 
> par(mfrow=c(2,2)) 
> boxplot(dist,sub="distance") 
> boxplot(time,sub="time") 
> boxplot(climb,sub="cumulative height") 
> boxplot(dist,sub="distance") 
> rug(dist,side=2) 
> 
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Note use of  par(mfrow=c(2,2)) and  rug()  
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> data(geyser) 
> boxplot(duration,sub="duration") 
> boxplot(waiting,sub="waiting time") 
> boxplot(duration,sub="duration") 
> rug(duration,side=4) 
> boxplot(waiting,sub="waiting time") 
> rug(waiting, side=2) 
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Comments: quick summaries for data but may miss gross features, e.g. 

bimodality, though addition of a rug-plot can help. However, most useful 

for plotting several related data sets for comparison, see example below. 

Example:  OrchardSpray data give decrease in counts on bees in 

response to 8 levels of sulphur treatment. The experiment was 

performed as an 8×8 Latin Square with row and column positions. Here 

we ignore the Latin Square structure and treat the data as one-way 

classification example. 

 

> data(OrchardSprays) 

> attach(OrchardSprays) 

> summary(OrchardSprays) 
    decrease          rowpos         colpos       treatment  
 Min.   :  2.00   Min.   :1.00   Min.   :1.00   H      : 8   
 1st Qu.: 12.75   1st Qu.:2.75   1st Qu.:2.75   G      : 8   
 Median : 41.00   Median :4.50   Median :4.50   F      : 8   
 Mean   : 45.42   Mean   :4.50   Mean   :4.50   E      : 8   
 3rd Qu.: 72.00   3rd Qu.:6.25   3rd Qu.:6.25   D      : 8   
 Max.   :130.00   Max.   :8.00   Max.   :8.00   C      : 8   

        
(Other):16   

> par(mfrow=c(1,2)) 

> boxplot(decrease, sub="decrease in counts") 

> rug(decrease,side=2) 

> boxplot(decrease~treatment) 
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Example: InsectSprays, similar data to above with six treatments. Note 

use of the logical parameter notch in the second two plots.  This 

indicates a ‘sort of confidence interval’ for the median, in the sense that 

if two notches do not overlap then the medians of those samples are 

‘significantly different’ at the 5% level. 

> data(InsectSprays) 
> attach(InsectSprays) 
> boxplot(count) 
> rug(count, side=2) 
> boxplot(count~spray) 
> boxplot(count,notch=TRUE) 
> rug(count,side=2) 
> boxplot(count~spray,notch=TRUE) 
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Note that the notches may be bigger than the boxes e.g. for spray F, this 

is likely to happen with small amounts of data. 

Question: Why, in this example, is the rug plot not very informative? 
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2.2.3 Histograms and density estimation. 

2.2.3.1 Histograms 

Histograms provide a very simple density estimate of the data. 

Two functions are useful for drawing histograms, hist()(shownon the 

left below) and truehist()  (on the right). The first comes from the 

base library of R  and by default plots frequencies vertically, the second 

comes from the MASS library of Venables & Ripley and plots relative 

frequencies vertically,so the total area under the histogram in the second 

one is 1. Both take many optional arguments controlling the bin width, 

the number of bins, the class boundaries and it is possible to use 

unequal bin widths. Type help(truehist) to find out more. 

> data(geyser) 
> hist(duration) 
> truehist(duration) 
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Question: why are these different (e.g. in range 1.5 to 2.5)? 
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If we think of the data as coming from some density f(.) [i.e. that the data 

are observations of a random variable with probability density function 

f(.)] then for any value of x the histogram gives an estimate of f(x),  

Specifically, if the class intervals are c0,c1,…,ck and x is in interval (ci,ci+1) 

then the histogram estimate of f(x) is +

+

≤ <
=

−
1

1

#( ; )
( )

( )
i i

i i

x c x c
f x

n c c
 

If the number of points is large then this will provide quite a good 

estimate of the true density, but it will depend on the number of bins and 

the starting values.   It is possible to make choices of these based on 

measures of optimality for sampling from specific distributions, resulting 

in rules such as Sturges’ formula: h=range(x)/(log2(n)+1) to give the bin 

width h for a sample of n observations.  Another is Scott’s formula  which 

gives h=3.5s(n–1/3 ) where  s is the sample standard deviation or [better] 

a robust estimate of standard deviation. 

The R code below produces a histogram of a random sample taken from 

N(0,1), with superimposed the ‘true’ density. 

 

> x<- rnorm(1000) 
> x<- sort(x) 
> y<- exp(-x*x/2)/sqrt(2*pi) 
> truehist(x) 
> hist(x,probability=TRUE) 
> plot(x,y,type='l') 
> truehist(x) 
> lines(x,y,type='l') 
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[Asides:   Note the use of the assign operator <- which assigns names 

to objects.  Note also the use of lines() to add lines to an existing plot 

(the most recent one), just as rug() does.] 
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2.2.3.2 Kernel Density Estimates 

Definition: If we have data x1,x2,…xn which are observations of a 

density f(.) and if K(.) is any probability density function then the Kernel 

Density Estimate of f(x), with kernel K(.) and bandwidth b is given by 

n
j

j 1

x x1
f̂(x) K

nb b=

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

[It is easy to check that this is a genuine probability density provided that 

K(.) is, i.e. f̂(x) 0≥  for all x and f(t)dt 1=∫ ] 

The smoothing parameter or bandwidth b is open to choice and is 

similar to the bin width in histograms. If b is small then the kernel 

estimate is very rough, if it is large then the estimate is smooth.  Similar 

arguments to choosing the bin width for histograms can be used to show 

that the best bandwidth is proportional to n–1/5 with the constant of 

proportionality dependent both on the kernel used and on the underlying 

distribution (which you are trying to estimate of course). 

 

A common choice of kernel function is the standard Normal or Gaussian, 

i.e. 
1
2 21

2f(x) (2 ) exp( x )−= π −  but other choices are available (e.g. 

rectangular, triangular and Epanechnikov) and there are various 

theoretical results available for choosing them. 
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> library(MASS) 
> data(geyser) 
> attach(geyser) 
> par(mfrow=c(2,2)) 
> truehist(duration) 
> lines(density(duration)) 
> truehist(duration) 
> lines(density(duration, adjust=0.3)) 
> truehist(duration) 
> lines(density(duration,adjust=0.7)) 
> truehist(duration) 
> lines(density(duration, adjust=2.5)) 
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Kernel density estimates of Old Faithful data with default, 0.3×default, 

0.7×default and 2.5×default bandwidths. 
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Comments: Kernel density estimates are an easy and attractive 

alternative or additional tool to histograms. Although you have to choose 

the bandwidth, as you do in histograms, they do not depend upon 

choices of starting values of class intervals nor upon whether you regard 

the classes as open or closed on the left/right. 

 

A more important reason for considering them is that they can be used 

in more sophisticated methods, e.g. in problems of testing for mixtures of 

distributions the minimum value of the bandwidth (bcrit  say) for which the 

data is unimodal can be used as a test statistic for bimodality. 
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2.2.3.3 Two Dimensional Kernel Density Estimates 

Extensions to two dimensions (and more) are straightforward. In R they 

can be calculated using functions kde2d(), and displayed using 

contour() and persp(). 

The two dimensional kernel density estimate is defined by 

i x i yi

x y

((x x ) /h ) ((y y ) /h )
f̂(x,y)

nh h

φ − φ −
= ∑  where (.)φ  is a probability density 

function (e.g. the standard normal) and hx, hy are the two bandwidths. 

 

Example: (the data set faithful is in the base library and is the same 

as geyser but with a different variable name) 

> data(faithful) 
> attach(faithful) 
> summary(faithful) 

   eruptions        waiting     
 Min.   :1.600   Min.   :43.0   
 1st Qu.:2.163   1st Qu.:58.0   
 Median :4.000   Median :76.0   
 Mean   :3.488   Mean   :70.9   
 3rd Qu.:4.454   3rd Qu.:82.0   
 Max.   :5.100   Max.   :96.0   

> plot(eruptions,waiting,xlim=c(0.5,6),ylim=c(40,100)) 

> f1 <- kde2d(eruptions, waiting, n=50, lims=c(0.5,6,40,100)) 

>  persp(f1, phi=30, theta=20, d=5) 

> contour(f1) 
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It is possible to choose the angle of view in the perspective drawing, the 

levels of contours plotted, put labels on the axes etc, etc, …… . 
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2.2.4 Choice of bandwidth: 

The theoretical optimal choice of bandwidth depends on what the true 

density is that we are estimating. However, we do not know what this is 

(which is why we are estimating it).   However, we do have an estimate 

of the density (!!), provided of course we know what the optimal 

bandwidth is. Can we use this somehow?     

Yes, by using cross-validation. The idea is to leave one observation 

out and then estimate the density using the other n–1 observations and 

compare the estimate with the observation left out in some way. Then 

we do this again, leaving out the next observation, and then the next. 

We then choose the bandwidth b to make the match as good as 

possible. 

 

Specifically, in this case we choose b to minimize  

n
2 2

i in
i 1

ˆUCV(b) f (x;b) dx f(x ;b)−
=

= − ∑∫  where i if̂(x ;b)− is the kernel density 

estimate based on the n–1 observations leaving out xi .    

 

The idea of cross-validation is used in many different contexts in 

statistical analysis. 
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2.2.5 Another use of kernel density estimates: 

Suppose we want to estimate the median of a set of data (e.g. of the 

geyser eruptions). Obviously the sample median is a sensible estimate 

but how do obtain it’s standard error?   It can be shown that in large 

samples, the median of a sample from f(.) with true median m is 

asymptotically Normally distributed N(m, 1/{4n[f(m)]2}).  So, the standard 

error depends upon the value of the density at the median. This can be 

estimated from the kernel density estimate. 

Example: 
> library(MASS) 
> data(faithful) 
> attach(faithful) 
> summary(faithful) 
> median(eruptions) 
[1] 4 
> truehist(eruptions, nbins=15) 
> lines(density(eruptions)) 
> truehist(eruptions, nbins=15) 
> lines(density(eruptions,adjust=0.8)) 
> rug(eruptions) 
> truehist(eruptions, nbins=15) 
> lines(density(eruptions,adjust=0.9)) 
> rug(eruptions) 
> truehist(eruptions, nbins=15) 
> lines(density(eruptions,adjust=0.7)) 
> rug(eruptions) 
> density(eruptions,n=1,from=3.99, to=4.01)$y 
[1] 0.3808035 
> density(eruptions,n=1,from=3.99, to=4.01,adjust=0.9)$y 
[1] 0.3858891 
> density(eruptions,n=1,from=3.99, to=4.01,adjust=0.8)$y 
[1] 0.3901167 
> density(eruptions,n=1,from=3.99, to=4.01,adjust=0.7)$y 
[1] 0.3937933 
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Note that we first found that the sample median was 4. Then 

investigation of the kernel density estimates suggested that the default 

choice of bandwidth was a little too large, so try a few other values 

slightly smaller.  Then note use of density with n=1, to ensure only 

one value calculated, over a range around the sample median and also 

note the use of density(…….)$y to extract the y-coordinate. 

Conclusion, f̂(m) 0.39 so standard error of the estimate 4.0 of the 

median is (4×272×0.392)–½ =0.078 

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing 
 

 42  
 

2.3 Summary 

The key ideas introduced here have been problems of  

♦ ways of summarizing and displaying data, perhaps informally 

♦ robustness & resistance to model deviation and data 

contamination 

♦ kernel density estimates and their use for a variety of problems 

♦ idea of cross-validation 

These ideas are especially useful because they allow us to examine 

assumptions made in statistical analyses and they provide a starting 

point for developing methods which are not so sensitive to failures in 

assumptions. 
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3. Classical Univariate Statistics 

3.1. Standard tests 

Standard one– and two–sample Normal theory and non-parametric 

classical univariate tests are readily available in R and S-plus. 

Many of these are generic functions and what is returned depends on 

the context, i.e. whether it is a one-sample or two-sample test depends 

on whether you give the function t.test() the names of one or two 

samples. 

Example: (Data shoes in MASS library but note how to enter the data 

direct into vectors A and B) 

> data(shoes) 
> shoes 
$A 
 [1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3 
$B 
 [1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6 

Or enter the data directly: 

> A<- c(13.2, 8.2, 10.9, 14.3, 10.7, 6.6, 9.5, 10.8, 8.8, 13.3) 

> B<- c(14.0, 8.8, 11.2, 14.2, 11.8, 6.4, 9.8, 11.3, 9.3, 13.6) 

 
> t.test(A,B) 
 
         Welch Two Sample t-test  
 
data:  A and B  
t = -0.3689, df = 17.987, p-value = 0.7165  
alternative hypothesis: true difference in means is not equal 
to 0  
95 percent confidence interval: 
 -2.745046  1.925046  
sample estimates: 
mean of x mean of y  
    10.63     11.04  
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> t.test(A-B) 
 
         One Sample t-test  
 
data:  A - B  
t = -3.3489, df = 9, p-value = 0.008539  
alternative hypothesis: true mean is not equal to 0  
95 percent confidence interval: 
 -0.6869539 -0.1330461  
sample estimates: 
mean of x  
    -0.41  
 
> t.test(A,B,paired=TRUE) 
 
         Paired t-test  
 
data:  A and B  
t = -3.3489, df = 9, p-value = 0.008539  
alternative hypothesis: true difference in means is not equal 
to 0  
95 percent confidence interval: 
 -0.6869539 -0.1330461  
sample estimates: 
mean of the differences  
                  -0.41 

The full list of tests available is  

binom.test chisq.test cor.test fisher.test 

friedman.test kruskal.test mantelhaen.test mcnemar.test 

prop.test t.test var.test wilcox.test 

chisq.gof ks.gof   

And details can be found in help(). 
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Note that the results of each of these functions is an object and 

individual elements of these objects can be accessed separately by 

using a $ sign with name-of-ofbject$name-of-element: 

> t.test(A-B)$p.value 
[1] 0.00853878 

> t.test(A-B)$conf.int 
[1] -0.6869539 -0.1330461 
attr(,"conf.level") 
[1] 0.95 

Again, a list of elements of each of these tests is given in the help 

system. 

 

Some of these tests depend upon assumptions on the underlying 

distribution of the data and others do not. For example the t-test 

presumes data are normally distributed but the non-parametric Wilcoxon 

does not.   Both of them can test whether the measures of location are 

the same for two samples or whether the measure has a specific value 

(e.g. 0) for one sample, but the t-test works in terms of the mean as the 

measure of location and the Wilcoxon uses the median as the measure. 

Not only is the median more resistant to outliers but the probability 

argument used to obtain the p-value is based on combinatorial 

arguments rather than one assumptions about probability distributions of 

the data. 
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Example (shoe data again, paired test): 

> t.test(A-B) 
 
         One Sample t-test  
 
data:  A - B  
t = -3.3489, df = 9, p-value = 0.008539  
alternative hypothesis: true mean is not equal to 0  
95 percent confidence interval: 
 -0.6869539 -0.1330461  
sample estimates: 
mean of x  
    -0.41  
 
> wilcox.test(A-B) 
 
         Wilcoxon signed rank test with continuity 
correction  
 
data:  A - B  
V = 3, p-value = 0.01431  
alternative hypothesis: true mu is not equal to 0  
 
Warning message:  
Cannot compute exact p-value with ties in: 
wilcox.test(A - B) 

Note that the Wilcoxon returns a larger p-value than the t-test, this is 

largely because the t-test is assuming more about the data and so you 

‘get more out of the analysis’  (more in ⇒ more out).  This is fine 

provided the assumptions made for the t-test are sensible. It is of course 

possible to check some of the assumptions (e.g. using a normal 

probability plot for checking normality) but with small samples it is 

difficult to detect non-normality. 
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> qqnorm(A-B)  

> qqline(A-B) 

 

 

 

 

 

 

This plot suggests that there are at least doubts about normality for 

these data. 

One solution is to use only ‘non-parametric’ methods, but even these 

make some assumptions. 

An alternative is to use permutation methods or simulation techniques, 

some of which come under a general heading of Monte Carlo Methods. 

The Bootstrap is a particular form of simulation technique. 
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3.2 The Bootstrap 

3.2.1. Introduction 

Suppose we have estimated the median by the sample median from a 

set of data and want to know how variable this estimate is.  If we knew 

what the true density was then we could simulate more samples from 

the same density, taking samples of the same size as the one we have, 

calculate the median of each and then see how variable our answers 

were in each of these separate simulated samples. 

However, we don’t know what the true distribution is. So, either we have 

to estimate it (e.g. fit a normal distribution) or we have to find some other 

estimate.  It might be possible to use a kernel density estimate but then 

simulating from this might be complicated. The is a much simpler 

estimate of the distribution and that is the sample itself. 

Specifically, if we have a sample x1,…,xn from a distribution F(.) and we 

calculate the sample distribution function, Fn(.) based on our sample, we 

can then use Fn(.) directly to generate more samples from our ‘best 

estimate’ of the unknown F(.).   In fact this is just the same as taking a 

random sample of size n, with replacement, from our actual data set 

x1,…,xn.   This may look very strange but it is a very powerful technique 

and with the use of the R function sample(….., replace=TRUE) it 

can be done very easily. 
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3.2.2 Simple Simulation 

First, we give an illustration of the basic idea of estimation by simulation. 

Suppose we take a sample of size 20 from a Normal distribution 

N(5,2.72), i.e. mean 5 and standard deviation, calculate the sample 

mean and then want to calculate a 95% confidence interval for the true 

mean.  The standard way of doing this is to use classical distributional 

theory and say the 95% confidence interval is given by  

19x t (0.975)s / n±  

where s is the sample standard deviation and t19(0.975) is the two-sided 

95% point of a t-distribution on 19 d.f. (which is 2.093, but can be 

calculated directly in R as 

> qt(0.975,19); 
[1] 2.093024 

(here the function is quantile of the t-distribution for the 0.975 point for 
19 degrees of freedom.) 
 

> x<- rnorm(20,mean=5,sd=2.7) 
> mean(x) 
[1] 4.75921 
> var(x) 
[1] 7.10922 
> confupper<-mean(x)+qt(0.975,19)*sqrt(var(x)/length(x)) 
> conflower<-mean(x)-qt(0.975,19)*sqrt(var(x)/length(x)) 
> confinterval<- c(conflower,confupper) 
> confinterval 
[1] 3.511338 6.007082 

This gives the 95% confidence interval based on our sample as 

(3.511,6.007) 
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However if we could do a practical experiment to see how variable our 

estimate of the means is. If we ‘simulate’ our particular sample by taking 

lots of similar samples from N(5,2.72) and calculate the mean of each of 

them, then we can see experimentally what the range of values they 

have. We could then estimate a confidence interval by taking a range 

which includes 95% of our simulated values.   We would not have used 

the sample standard deviation nor the t-distribution, nor any of the 

mathematical theory involving the t-distribution.  

> simulate <-numeric(100) 
> for (i in 1:100) simulate[i]<-mean(rnorm(20,mean=5,sd=2.7)) 
> z<-sort(simulate) 
> z 
  [1] 3.683628 3.876367 3.901581 3.977876 4.059417 4.084968 4.103193 4.127214 
  [9] 4.145423 4.151252 4.151807 4.158069 4.197285 4.220176 4.250503 4.393266 
 [17] 4.467750 4.500474 4.521293 4.566604 4.574698 4.613527 4.631142 4.652405 
 [25] 4.684332 4.696737 4.699455 4.707846 4.720326 4.732183 4.737479 4.754224 
 [33] 4.761708 4.828722 4.832087 4.848576 4.873959 4.897021 4.903855 4.919861 
 [41] 4.926004 4.936150 4.955231 4.962549 4.982843 4.985068 5.014348 5.025469 
 [49] 5.060322 5.068560 5.070019 5.078719 5.081987 5.086046 5.097905 5.134257 
 [57] 5.148494 5.156743 5.162649 5.177213 5.184232 5.190236 5.216297 5.245337 
 [65] 5.249008 5.276213 5.296429 5.308889 5.310640 5.316523 5.352162 5.357711 
 [73] 5.372045 5.376082 5.423826 5.440574 5.448857 5.477199 5.484830 5.511197 
 [81] 5.517907 5.585537 5.598260 5.657312 5.659240 5.662326 5.692230 5.709956 
 [89] 5.714891 5.859206 5.926859 5.989662 6.009138 6.072194 6.139593 6.217246 
 [97] 6.337749 6.383891 6.385220 6.449417 

> z[3] 
[1] 3.901581 
> z[98] 
[1] 6.383891 
> 

Then we could say that an approximate 95% confidence interval is given 

by (3.90, 6.39), — more precisely this is a 96% interval since 96% of our 

values lie inside it and 4% outside. 
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Computational notes:  

1: note the declaration of the vector simulate[.] of length 100 using 

numeric(100). 

2: note the construction of a simple loop with for (i in 1:100), This 

can be notoriously slow in packages such as R and S-plus and 

advanced programmers would try to replace loops etc by matrix 

calculations (but I don’t intend doing this here).  

3: note that we do not need to store all the values in each simulated 

sample, we just need the mean of them. 

4: note the use of sort(.) 
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Difficulty:  In this example we ‘knew’ that our sample came from 

N(5,2.72) and we used this to  simulate further samples. Of course we 

could never really know this and so the best we could do is to simulate 

from our best guess at the distribution, i.e. N( x ,s2), i.e. N(4.76, 2.672) 

since 4.76 and 2.66 were the mean and standard deviation of our 

original sample: 

> simulate <- numeric(100) 
> for(i in 1:100)simulate[i]<-mean(rnorm(20,mean=4.76,sd=2.67)) 
> z<-sort(simulate) 
> z 
  [1] 3.396327 3.502508 3.841749 3.870058 3.923347 3.969280 4.050996 4.071518 
  [9] 4.110478 4.115113 4.163969 4.182597 4.185243 4.195840 4.277520 4.286212 
 [17] 4.289088 4.295636 4.365233 4.374939 4.386417 4.404138 4.417440 4.425339 
 [25] 4.460611 4.471175 4.471656 4.501675 4.510588 4.517224 4.528234 4.535420 
 [33] 4.551477 4.552511 4.557144 4.557668 4.569633 4.573537 4.578601 4.582115 
 [41] 4.583091 4.583715 4.598089 4.599501 4.609323 4.613675 4.666297 4.671486 
 [49] 4.671580 4.679536 4.681736 4.721742 4.723026 4.734635 4.738312 4.738548 
 [57] 4.796185 4.800435 4.800466 4.874767 4.887359 4.891548 4.893593 4.899882 
 [65] 4.908909 4.925140 4.935247 4.964652 4.970336 4.970521 4.992720 5.080825 
 [73] 5.081477 5.091885 5.106060 5.110453 5.129278 5.154696 5.159185 5.184879 
 [81] 5.197338 5.206724 5.229970 5.256769 5.271497 5.304417 5.348681 5.356202 
 [89] 5.364906 5.376544 5.411127 5.441553 5.545112 5.605137 5.680706 5.789276 
 [97] 5.855591 5.902711 5.946993 6.147668 
> z[3] 
[1] 3.841749 
> z[98] 
[1] 5.902711 

 

This gives an estimated confidence interval of (3.84, 5.90) — not very 

different from our previous estimates, in fact slightly closer to the ‘true 

answer’ of  (3.511,6.007) but this is just an accident. 
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Difficulty:  Although we estimated the mean and variance from our 

sample, we still assumed that our data came from a Normal distribution. 

Of course, we can test this and in the simple case we had above it might 

seem reasonable, but in other cases it we might know that a Normal 

distribution was not sensible and we might have no idea of a sensible 

distribution to use in simulation. 

Consider again the problem of estimating the median of the eruption 

durations of Old Faithful. We have already seen that the distribution is 

bimodal and so cannot possibly be Normal of any sort but here is how 

we would check: 

> data(faithful) 
> attach(faithful) 
> par(mfrow=c(2,2)) 
> library(MASS) 
> truehist(eruptions,nbins=15) 
> rug(eruptions) 
> lines(density(eruptions,adjust=0.7)) 
> qqnorm(eruptions) 
> qqline(eruptions) 

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.0

0
.2

0
.4

0
.6

eruptions

-3 -2 -1 0 1 2 3

1
.5

2
.5

3
.5

4
.5

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti

le
s

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing 
 

 54  
 

3.2.3 Bootstrap Simulation 

We cannot possible pretend that the distribution of the eruption durations 

is normal so if we want to simulate samples that are like the actual 

sample we need another distribution.  Now the simplest estimate we 

have of the ‘true’ distribution of eruption durations is given by the sample 

itself, i.e. by the sample distribution function Fn(x) 

 

 

 

 

 

 

 

 

 

 

 

If we sample from Fn(x) this is equivalent to taking a sample with 

replacement from our original observations. 
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> data(faithful) 

> attach(faithful) 
> set.seed(137) 
> help(numeric) 
> boots<- numeric(1000) 
> for (i in 1:1000) boots[i]<- 
    median(sample(eruptions,replace=TRUE)) 
 
> mean(boots-median(eruptions)) 
[1] -0.013551 
> sqrt(var(boots)) 
[1] 0.07662417 
> truehist(boots) 
> lines(density(boots)) 
> rug(boots) 
> truehist(jitter(boots)) 
> lines(density(boots,adjust=0.7)) 
> rug(jitter(boots)) 
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This shows that the bias of the bootstrap estimate is –0.0.136 (i.e. quite 

small) and the estimated standard error is 0.077, quite close to the 

kernel density estimate of 0.078, which was based in part on a Normal 

distribution. 
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Computational notes 

1: Set.seed(137) chooses the ‘seed’ of the random number 

generator as 137.   This means that I can get precisely the same 

bootstrap sample again if I set the seed to be 137. If I were to set the 

seed to another number then I would get a different sample and so a 

different estimate at the end. For example: 

> set.seed(731) 
> for (i in 1:1000) boots[i]<-   
     median(sample(eruptions,replace=T)) 
> mean(boots-median(eruptions)) 
[1] -0.0180855 
> sqrt(var(boots)) 
[1] 0.08026924 

— slightly different but not enough to be of practical importance. 

2:  Note the use of jitter in drawing the histogram, there were clearly 

problems of observations being exactly on the class boundary (not 

surprising since we know the median is 4) and the use of the jitter 

makes the histogram a better density estimate — if we just wanted to 

display the actual data then the use of jitter would not be statistically 

justified (and we should use stem anyway).  
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3.2.4 Other Types of Bootstrap 

The bootstrap sampling used above took the sample distribution function 

Fn(x) as an estimate of the ‘true’ distribution function F(x). This is a very 

‘rough’ estimate and it makes intuitive sense to use a smoother one, i.e. 

to use a Smooth Bootstrap. We can do this by adding a small amount 

to each sampled value, rather like using jitter(.). 

The procedure used in the second set of simulations illustrating the 

simple simulation technique (i.e. when we presumed the underlying 

distribution was Normal but estimated the mean and variance from our 

sample) is sometimes known as a Parametric Bootstrap. 

The general ideas of bootstrapping are very powerful and very widely 

used for statistical analyses that do not depend very much on 

assumptions that are difficult to verify.  They are one of the techniques 

that were initially called computer intensive but now these are 

becoming so routine and ordinary that this term is becoming old-

fashioned. 
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3.3 Randomization and Permutation Tests 

When W.S. Gosset (who was also known as ‘Student’) first derived the 

t-distribution he did not actually work it out as a result of assuming that 

the original data were Normally distributed but from a different argument. 

Consider the problem of comparing the means of two samples A and B. 

Each of the observations is labelled either A or B. If the null hypothesis 

that there is no difference between the two is samples is true then these 

labels are entirely random.  This means that the true distribution of a test 

statistic (such as the t-statistic) could be assessed by considering 

random re-labelling of each observation. 

We could do this by experiment (or a type of simulation) by doing the 

following: 

Step 1: calculate our two-sample test statistic, tobs say. 

Step 2: randomly label each observation as either A or B (keeping the 

sample sizes the same) and then calculate the same test statistic for 

comparing all the A observations with the B observations, getting a value 

t1 say. 

Steps 3, 4,…, 1001: repeat step 2 for a total of a 1000 times getting a 

thousand values t1, t2, …, t1000 . 
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Final step: compare our observed value tobs with the simulated values. If 

there is no difference between the original samples A and B then the 

labels are arbitrary and so our tobs will not look unusual amongst the 

simulated t1, t2, …, t1000. However, if our value tobs is amongst the most 

extreme 5% then we would have evidence (at the 5% level) that there 

really was a difference between the samples. Specifically, if we order the 

values so that t(1)<t(2)<…<t(1000) then we would reject the hypothesis that 

the two samples were the same if either tobs<t(25) or if tobs>t(975). 

What Student showed was that if you consider the theoretical distribution 

of the randomly re-labelled t-values then this was very well 

approximated by the ‘student t-distribution’.   [The mathematics involved 

much the same approximations and limits as are involved in proving the 

Central Limit Theorem]. It was only later that it was shown that you could 

get the same result by assuming that the observations were Normally 

distributed. 

Anyway, it is now easy to perform these tests empirically and so avoid 

either the assumption of Normality or the inaccuracy of the 

approximations (whichever approach you use).  Many packages (not just 

R and S-plus) now offer this facility for many tests, e.g. in SPSS you will 

find it under Options and Monte Carlo. 

Sometimes, the sample is so small that you can consider all possible 

relabellings, in which case you just need to calculate the statistics for 

each labelling once and then the resulting test is know as a permutation 

test. Otherwise, it is known as a randomization test. 
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Example: Paired t-test 

Consider the shoes example and consider it is a paired t-test.  There are 

10 pairs and the paired t-test is just the same as a one-sample test on 

the differences that the mean is zero. If we randomly relabel each pair 

as either A-B or B-A then the numerical values of the differences in 

values stays the same, it is just the sign that is changed (with probability 

0.5). In fact there are only 210=1024 different possibilities so it is practical 

to consider a permutation test but here we will do it by simulation. 

To do this in R we will first define a function to calculate the t-statistic 

which is sim

x
t

var(x) /n
= .   Then to change the signs of the differences 

randomly we will use the R function sign() which is either +1 or –1 

according to whether the argument is positive or negative, together with 

a random Uniform(0,1) number which is generated by the function 

runif(), subtracting 0.5 from it. Note that sign(runif(10)-0.5) 

will produce a vector of length 10 consisting of +1 or –1 with probability 

0.5.    
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> data(shoes) 
> attach(shoes) 
> ttest<- function(x) mean(x)/sqrt(var(x)/length(x)) 
> d<- A-B 
> d 
 [1] -0.8 -0.6 -0.3  0.1 -1.1  0.2 -0.3 -0.5 -0.5 -0.3  
> ttest(d) 
[1] -3.348877 
> t.test(A,B,paired=TRUE) 
 
         Paired t-test  
 
data:  A and B  
t = -3.3489, df = 9, p-value = 0.008539  
alternative hypothesis: true difference in means is 
not equal to 0  
95 percent confidence interval: 
 -0.6869539 -0.1330461  
sample estimates: 
mean of the differences  
                  -0.41  
 
> tsim<- numeric(1000) 
> ttest(d) 
[1] -3.348877 
> for(i in 1:1000)tsim[i]<-ttest(d*sign(runif(10)-0.5)) 
> truehist(tsim) 
> rug(tsim) 
> z<- seq(-4,4,0.1) 
> lines(z,dt(z,9)) 
> tobs<-ttest(d) 
> markx<- c(tobs,tobs) 
> marky<- c(0,0.4) 
> lines(markx,marky) 
> tsorted<-sort(tsim) 
> tsorted[1:10] 
 [1] -4.920934 -4.258442 -3.753745 < tobs <-3.348877 -
3.348877 -3.348877 -3.348877 
 [8] -3.348877 -3.011905 -3.011905 
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The picture above gives a histogram of the simulated values (and note 

from the rug plot how few distinct values there are — partly this is 

because there are only 7 (not 10) distinct values of abs(d). 

The vertical line towards the left of the plot marks our observed value of  

–3.35 and we can see that only three of our 1000 simulated values are 

less than this.   We can thus reject the hypothesis that the means are 

equal at level 2×3/1000=.006, (note that the t-approximations gives a 

level of 0.0085, quite close as can be seen from the density of t9 

superimposed on the histogram). 
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3.4 Summary 

This section has given a brief summary of classical univariate tests. The 

key ideas introduced are that  

♦ many of these tests rely on assumptions which may be difficult to 

verify or may in fact be wrong (e.g. for bimodal data) 

♦ tests involving sample means and variances are more at risk than 

those depending on medians and permutation arguments  

♦ we can simulate similar samples to obtain estimates of quantities 

such as standard errors or p-values 

♦ bootstrapping provides a way of making no assumptions about 

the distribution of the data at all (except independence!) 

♦ randomization and permutation tests are easy to do and 

provide good protection. If they are available in your favourite 

statistics package (e.g. SPSS) then USE THEM, especially for 

small sample problems such as 2×2 tables and chi-squared tests. 
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4. Linear and Generalized Linear Models 

4.1 Introduction 

Linear models relate a response (or dependent variable) to a set of 

predictors (or independent variables) by a linear expression of unknown 

parameters which are estimated from the data, i.e. they are termed 

linear because we estimate a linear function of the unknown parameters. 

The actual response may depend in a non-linear way on the predictors, 

e.g. there may be a polynomial relationship but this can still be 

expressed as a linear function of the parameters.  

If the response is a continuous quantitative variable then we may model 

the response as a Normal random variable with mean depending upon 

the predictors. The next section provides a brief review and illustration of 

regression models, including simple regression diagnostics. Ideas of 

robust regression and bootstrapping are covered. 

Generalized linear models cover situations where the response is some 

other measure, e.g. success/failure, and we may then model some other 

function of the response leading to techniques such as log-linear and 

logistic regression which are considered briefly in later sections. 

All the methods will be illustrated on specific examples. 
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4.2 Simple Linear Regression 

4.2.1 Example: Scottish Hill Races 
> library(MASS) 
> data(hills) 
> attach(hills) 
> plot(dist,time) 
> identify(dist,time,row.names(hills)) 
 [1]  7 11 17 18 33 35 
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Note the use of identify() which allowed several of the points to be 

named interactively with the row names just by pointing at them with the 

mouse and clicking the left button. Clicking with the right button and 

choosing stop returns control to the Console Window. It is clear that 

there are some outliers in the data, notably Knock Hill and Bens of Jura 

which may cause some trouble. 
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Next, we fit a simple linear model to relate time to distance, storing the 

analysis in object  hillslm1, and add the fitted line to the plot: 

> hillslm1<- lm(time~dist) 
> summary(hillslm1) 
Call: 
lm(formula = time ~ dist) 
Residuals: 
    Min      1Q  Median      3Q     Max  
-35.745  -9.037  -4.201   2.849  76.170  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -4.8407     5.7562  -0.841    0.406     
dist          8.3305     0.6196  13.446    6e-15 *** 
--- 
Signif. codes:  0  `***'  0.001  `**'  0.01  `*'  0.05  `.'  0.1  ` '  1  
 
Residual standard error: 19.96 on 33 degrees of freedom 
Multiple R-Squared: 0.8456,     Adjusted R-squared: 0.841  
F-statistic: 180.8 on 1 and 33 degrees of freedom,      p-
value: 6.106e-015  
 
> lines(abline(hillslm1)) 
> 
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Although this shows a highly significant result for the slope we need to 

investigate the adequacy of the model further. 
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4.2.2 Regression Diagnostics: 

The model that we have used is that if the time and distance of the ith 

race are yi and xi respectively then our model is that yi=α+β xi+εi where 

the εI are independent observations from N(0,σ2). If we look at the 

residuals iε̂  given by i i i i i
ˆˆˆ ˆy y y xε = − = − α − β  then these residuals 

should look as if they are independent observations from N(0,σ2), and 

further they should be independent of the fitted values iŷ .  

A further question of interest is whether any of the observations are 

influential, that is, do any of the observations greatly affect the 

estimates of α and β. The way to check this is to leave each observation 

out of the data in turn and estimate the parameters from the reduced 

data set. Cooks Distance is a measure of how much the estimate 

changes as each observation is dropped.   

All of these diagnostics can be performed graphically using the function 

plot.lm() which take as its argument the results of the lm() analysis 

(which was stored as an object hillslm1). 

 
> par(mfrow=c(2,2)) 
> plot.lm(hillslm1) 
> hills 
> row.names(hills) 

 [1] "Greenmantle"   "Carnethy"         "Craig Dunain"   "Ben Rha"      
 [5] "Ben Lomond"    "Goatfell"         "Bens of Jura"   "Cairnpapple"  
 [9] "Scolty"        "Traprain"         "Lairig Ghru"    "Dollar"       
[13] "Lomonds"       "Cairn Table"      "Eildon Two"     "Cairngorm"    
[17] "Seven Hills"   "Knock Hill"       "Black Hill"     "Creag Beag"   
[21] "Kildcon Hill"  "Meall Ant-Suidhe" "Half Ben Nevis" "Cow Hill"     
[25] "N Berwick Law" "Creag Dubh"       "Burnswark"      "Largo Law"    
[29] "Criffel"       "Acmony"           "Ben Nevis"      "Knockfarrel"  
[33] "Two Breweries" "Cockleroi"        "Moffat Chase"    
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The function automatically identifies (with row numbers) the outlying and 

most influential points. 

7: Bens of Jura, 11: Lairig Ghru, 18: Knock Hill 

Of these, 7, Bens of Jura, is the most serious — it is both an outlier and 

is influential so the estimates depend strongly on it. 18, Knock Hill, is 

also an outlier but not nearly so influential so the results will not change 

so much if that observation is removed. 11, Lairig Ghru is very influential 

but does not appear to be ‘out of line’ with the others, it is just the 

longest race. 
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We can investigate the effect of dropping individual observations from 

the data set by lm(time~dist,data=hills[-7,]) (to drop  the 7th 

observation) and lm(time~dist,data=hills[-c(7,18),]) for 

both: 

> hillslm2<- lm(time~dist,data=hills[-7,]) 
> summary(hillslm2) 
Call: 
lm(formula = time ~ dist, data = hills[-7, ]) 
Residuals: 
    Min      1Q  Median      3Q     Max  
-19.221  -7.412  -3.159   3.692  57.790  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -2.0630     4.2073   -0.49    0.627     
dist          7.6411     0.4665   16.38   <2e-16 *** 
Residual standard error: 14.48 on 32 degrees of freedom 
Multiple R-Squared: 0.8934,     Adjusted R-squared: 0.8901  
F-statistic: 268.3 on 1 and 32 degrees of freedom,      p-
value:     0  
> plot.lm(hillslm2) 
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> hillslm3<- lm(time~dist,data=hills[-c(7,18),]) 

> summary(hillslm3) 
Call: 
lm(formula = time ~ dist, data = hills[-c(7, 18), ]) 
Residuals: 
    Min      1Q  Median      3Q     Max  
-23.023  -5.285  -1.686   5.981  33.668  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -5.8125     3.0217  -1.924   0.0636 .   
dist          7.9108     0.3306  23.926   <2e-16 *** 
 
Residual standard error: 10.16 on 31 degrees of freedom 
Multiple R-Squared: 0.9486,     Adjusted R-squared: 0.947  
F-statistic: 572.5 on 1 and 31 degrees of freedom,      p-
value:     0  
> plot.lm(hillslm3) 
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4.2.3 Several Variables 

We can fit regression models involving several variables just by 

extending the formula in the lm() function in a natural way and we still 

have the same available diagnostics. To include the variable climb we 

have: 

> hillslm4<-lm(time~dist+climb) 
> summary(hillslm4) 
Call: 
lm(formula = time ~ dist + climb) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-16.215  -7.129  -1.186   2.371  65.121  
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -8.992039   4.302734  -2.090   0.0447 *   
dist         6.217956   0.601148  10.343 9.86e-12 *** 
climb        0.011048   0.002051   5.387 6.45e-06 *** 
Residual standard error: 14.68 on 32 degrees of freedom 
Multiple R-Squared: 0.9191,     Adjusted R-squared: 0.914  
F-statistic: 181.7 on 2 and 32 degrees of freedom,      p-
value:     0  
 



©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing 
 

 73  
 

> plot.lm(hillslm4) 
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Note that the 11th observation is no longer the most influential one but 

we still have problems with outliers.  These could be dropped in just the 

same way as previously. 
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4.3 Robust Regression 

Just as we have robust and resistant summary measures, or more 

technically robust estimates of location and scale, it is possible to define 

robust regression methods which are not so influenced by outliers. The 

only techniques provided in R is the function rlm(), (but in S-plus there 

are several others). 

Consider again the Scottish Hill Races Data where it was found that 

observations 7 and 18 were outliers. The ordinary least squares fits to 

the full data set and after dropping the two outliers is given below: 

> lm(time~dist+climb) 
 
Call: 
lm(formula = time ~ dist + climb) 
 
Coefficients: 
(Intercept)         dist        climb   
   -8.99204      6.21796      0.01105   
 
> lm(time~dist+climb,data=hills[-c(7,18),]) 
 
Call: 
lm(formula = time ~ dist + climb, data = hills[-c(7, 
18), ]) 
 
Coefficients: 
(Intercept)         dist        climb   
 -10.361646     6.692114     0.008047   

Note how much the estimates change after dropping the two outliers. 

Now consider the results of the robust regression using rlm() 
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> rlm(time~dist+climb) 

Call: 
rlm.formula(formula = time ~ dist + climb) 
Converged in 10 iterations 
 
Coefficients: 
 (Intercept)         dist        climb  
-9.606716592  6.550722947  0.008295854  
 
Degrees of freedom: 35 total; 32 residual 
Scale estimate: 5.21  
 

The estimates are nearly the same as using ordinary least square on the 

reduced data set. 

 

Another example is a set of data giving the numbers of phone calls (in 

millions) in Belgium for the years 1950-73. In fact, there had been a mis-

recording and the data for six years was recorded as the total length and 

not the number. 

> plot(year,calls) 
> lines(abline(lm(calls~year))) 
> lines(abline(rlm(calls~year,maxit=50))) 

gives a plot of the data with the fitted least squares line and the line fitted 

by a robust technique. 
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The diagnostic function plot.lm() can also be used with the results of 

a robust fit using rlm() and you are encouraged to try it, as well as 

investigating the full summary output of both lm() and rlm() for this 

data set. 
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4.4 Bootstrapping linear models 

Care needs to be taken when bootstrapping in linear models. The 

obvious idea of taking samples with replacement of the actual data 

points {(xi,yi);I=1,…,n} is not usually appropriate if we regard the values 

of the independent variable as fixed.  In the whiteside data set the x-

values were temperatures and it might be argued that you could select 

pairs of points then. 

The more usual technique is first to fit a model and then resample, with 

replacement, the residuals and create a bootstrap data set by adding on 

the resampled residuals to the estimated fits. 

Specifically, if our model is yi=α+βxi+εi  then we estimate α and β to 

obtain i i i
ˆˆ ˆy xε = − α − β , then we create a new bootstrap data set 

i i{(x ,y );i 1, ,n}∗ = …  where i i iˆy x∗ ∗= α + β + ε  and the i( )∗ε  are resampled with 

replacement from the iˆ( )ε . 

More details of this and other bootstrap techniques are given in Davison 

& Hinkley (1997) Boostrap Methods and their Applications, C.U.P. The 

library boot contains routines described in that book. It may also be 

noted that the library Bootstrap contains routines from the book An 

Introduction to the Bootstrap by Efron & Tibshirani (1993), Chapman and 

Hall. 
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4.5 Scatterplot smoothing and smooth regression 

A useful function for investigating structure in a scatterplot is the 

lowess() function.  In outline, this fits a curve to a small window of the 

data, sliding the window across the data. The curve is calculated as a 

locally weighted regression, giving most weight to points close to the 

centre of the window with weights declining rapidly away from the centre 

to zero at the edge. It is possible to control the width of the window by a 

parameter which specifies the proportion of points included. The default 

value is 2/3 and larger values will give a smoother line, smaller ones a 

less smooth line. 

Example: The data set cars gives the stopping distances for various 

speeds of 50 cars. 

> plot(cars) 
> plot(cars) 
> lines(lowess(cars)) 
> plot(cars) 
> lines(lowess(cars,f=0.8)) 
> plot(cars) 
> lines(lowess(cars,f=0.3)) 

The plots are given on the next page. Note that for this data set of two 

variables we do not need to specify the names of the variables. If the 

data set had several variables the we would have to attach the data 

set to be able to plot specific variables, although if it is just the first two 

we need we could give just the name of the data set as here. 
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Although the data are very ‘noisy’ we can see definite evidence that the 

stopping distance increases more sharply with higher speeds, i.e. that 

the relationship is not completely linear. It provides an informal guide to 

how we should model the data. 
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The lowess smoother is an example of a smooth regression function. 

Other smooth regressions can be done with natural splines using 

function ns() in the splines library and kernel smoothing local 

regression.  Generally these work much more satisfactorily than 

polynomial regression.  We illustrate some of these on a data set 

mcycle which gives the accelerations at times in milliseconds after 

impact. 

 
> data(mcycle) 
> attach(mcycle) 
> summary(mcycle) 
     times           accel         
 Min.   : 2.40   Min.   :-134.00   
 1st Qu.:15.60   1st Qu.: -54.90   
 Median :23.40   Median : -13.30   
 Mean   :25.18   Mean   : -25.55   
 3rd Qu.:34.80   3rd Qu.:   0.00   
 Max.   :57.60   Max.   :  75.00   
> plot(mcycle) 
> plot(mcycle) 
> lines(lowess(mcycle)) 
> plot(mcycle) 
> lines(times,fitted(lm(accel~poly(times,3)))) 
> plot(mcycle) 
> lines(times,fitted(lm(accel~poly(times,8)))) 
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Note how unsatisfactory even a very high order polynomial regression is. 

> library(splines) 
> plot(mcycle) 
> lines(times,fitted(lm(accel~ns(times,df=5)))) 
> plot(mcycle) 
> lines(times,fitted(lm(accel~ns(times,df=10)))) 
> plot(mcycle) 
> lines(times,fitted(lm(accel~ns(times,df=15)))) 
> plot(mcycle) 
> lines(times,fitted(lm(accel~ns(times,df=20)))) 
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The degree of freedom parameter controls the smoothness and it can be 

seen that a sensible choice is some around 10 for this data set. 

More general regression models are  generalised additive models 

which have the form 

p

j j
j 1

Y f (X )
=

= α + + ε∑  

for some smooth functions fj(.) 
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4.6 Example of non-linear regression 

This example fits a model to data giving the weight loss in kg of a 

subject over a period of 250 days. The data are in dataset wtloss in the 

MASS library. There are strong theoretical grounds supporting a model 

of the form t /y .2− θ= α + β + ε  which is linear in the parameters α and β 

but non-linear in the parameter θ. 

To fit this model we need to have starting values for the iterative 

estimation of the parameters and this can be difficult to determine in 

general cases. 

> data(wtloss) 
> attach(wtloss) 
> library(nls) 
> wtlossfm<- nls(Weight~a+b*2^ 
   (-Days/theta),start=c(a=90,b=95,theta=120)) 
> wtlossfm 
Nonlinear regression model 
  model:  Weight ~ a + b * 2^(-Days/theta)  
   data:  list  
        a         b     theta  
 81.37375 102.68417 141.91052  
 residual sum-of-squares:  39.2447 
> plot(Days,Weight) 
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A summary of the fitted model will produce standard errors of the 

estimates and inference can be carried out [almost] as with any other 

linear model. It is left as an exercise to plot the fitted model on the data. 
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4.7 Summary 

♦ In this section we have presented the standard methods of fitting 

regression models on one or more variables, including cases 

where the independent variables are continuous covariates 

and/or factors with discrete levels. 

♦ Diagnostic methods, including searches for outliers and 

influential observations, were mentioned and illustrated. Ideas of 

robustness and bootstrapping were extended to regression 

situations.  

♦ Smooth regression was introduced with the idea of the lowess 

function (also available in many other packages) and illustrations 

using natural splines were presented.  

♦ An example of a non-linear regression model was given. 

 

The overall theme of this chapter is that there are many widely different 

regression models that can be handled in very similar ways without 

necessarily knowing the full details of all the mathematical theory 

underlying them. 
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5. Multivariate Methods 
5.1 Introduction 

Earlier chapters have considered a variety of statistical methods for 

univariate data, i.e. the response we are interested in is a one-

dimensional variable although we have considered data sets which have 

several variables, e.g. hills consists of three variables dist, time 

and climb but we regarded time as the response and considered its 

dependence on the explanatory variables dist and climb.   

Multivariate analysis is concerned with datasets that have more than one 

response variable for each observational unit, we may also have several 

explanatory variables or maybe none at all — the key feature is that we 

want to treat all the response variables simultaneously and equally, none 

is ‘preferred’ over the others. In this brief review of multivariate methods 

we will consider primarily problems where all the n observations are on p 

response variables. 

References: 

Gnanadesikan, R. (1997) Methods for Statistical Data Analysis of 

Multivariate Observations. (2nd) Edition). Wiley. 

Mardia, K., Kent, J. & Bibby, J. (1981) Multivariate Analysis. Wiley. 

Krzanowski, W. (1990) Multivariate Analysis. (Oxford) 

Ripley, B.D. (1996) Pattern Recognition and Neural Networks. 

Cambridge University Press  

Everitt, B.S. & Dunn, G. (1991) Applied Multivariate Data Analysis. 

Arnold 

Manly, B. J.  (1986)  Multivariate statistical methods:  a primer, Chapman 
& Hall. 
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Examples of multivariate data sets: 

(i) body temperature, renal function, blood pressure, weight of 73 

hypertensive subjects (p=4, n=73). 

(ii) petal & sepal length & width of 150 flowers (p=4, n=150). 

(iii) amounts of 9 trace elements in clay of Ancient Greek pottery 

fragments (p=9). 

(iv) amounts of each of 18 amino acids in fingernails of 92 arthritic 

subjects (p=18, n=92). 

(v) presence or absence of each of 286 decorative motifs on 148 bronze 

age vessels found in North Yorkshire (p=286, n=148). 

(vi) grey shade levels of each of 1024 pixels in each of 15 digitized 

images (p=1024, n=15) 

(vii) Analysis of responses to questionnaires in a survey (p= number of 

questions, n=number of respondents) 

(viii) Digitization of a spectrum (p=20000, n=20 is typical) 

(ix) Activation levels of all genes on a genome (p=60000, n=50 is typical) 

 

Notes 

♦ Measurements can be discrete e.g. (v) & (vi), or continuous, e.g. 

(i)-(iv) or a mixture of both, e.g.(vii).  

♦ There may be more observations than variables, e.g. (i)-(iv), or 

they may be more variables than observations, e.g. (v) & (vi) and 

especially (viii) and (ix). 

♦ Typically the variables are correlated but individual sets of 

observations are independent. 
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 Subject Matter/ Some Multivariate Problems 

(i) Obvious generalizations of univariate problems: t-tests, analysis of 

variance, regression, multivariate general linear model.  

e.g. model data Y′ by Y′=XΘ + ε,  

 where Y′ is the n×p data matrix, X is an n×k matrix of known 

observations of k-dimensional regressor variables, Θ is k×p matrix 

of unknown parameters, ε is n×p with n values of p-dimensional 

error variables. 

(ii) Reduction of dimensionality for  

 (a) exploratory analysis 

 (b) simplification (MVA is easier if p=1 or p=2) 

 (c) achieve greater statistical stability 

   (e.g. remove variables which are highly correlated) 

 Methods of principal component analysis, factor analysis, non-

metric scaling.... 

 

(iii) Discrimination 

 Find rules for discriminating between groups, e.g. 2 known variants 

of a disease, data X′, Y′ on each. What linear combination of the p 

variables best discriminates between them. Useful to have 

diagnostic rules and this may also throw light onto the conditions 

(e.g. in amino acids and arthritis example there are two type of 

arthritis :— psoriatic and rheumatoid, determining which 

combinations of amino acids best distinguishes between them 

gives information on the biochemical differences between the two 

conditions). Sometimes referred to as a supervised problem. 
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(iv) Cluster Analysis/Classification  

Do data arise from a homogeneous source or do they come from a 

variety of sources, e.g. does a medical condition have sub-

variants. This is sometimes referred to as an unsupervised 

problem. 

 

(v) Canonical Correlation Analysis  

Of use when looking at relationships between sets of variables, 

e.g. in particular in questionnaire analysis between response to 2 

groups of questions, perhaps first group of questions might 

investigate respondents expectations and the second group their 

evaluation. 

 

This chapter will look at (ii), (iii) and (iv). 

 

Quotation: 

“Much classical and formal theoretical 

work in Multivariate Analysis rests on 

assumptions of underlying multivariate 

normality — resulting in techniques of very 

limited value”.   

  (Gnanadesikan, page 2). 
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5.2 Data Display 

5.2.1 Preliminaries 

The key tool in displaying multivariate data is scatterplots of pairwise 

components arranges as a matrix plot. The function pairs() makes 

this easy but the examples below illustrate that as soon as the number 

of dimensions becomes large (i.e. more than about 5) it is difficult to 

make sense of the display. If the number of observations is small then 

some other technique can handle quite large numbers of variables. Star 

plots are one possibility and are illustrated, others are Andrews’ Plots 

and Chernoff Faces which are not available in R but you may find them 

in other packages (e.g. S-plus, Minitab). 

A classic set of data that is used for illustration of many multivariate 

problems is Anderson’s Iris Data which give the sepal and petal lengths 

and widths of each of 50 flowers from each of threes varieties (Setosa, 

Versicola and Virginica). This is held in the base library of R in two 

formats, data sets iris and iris3, the first is as a complete dataframe 

and the second has a slightly different structure. Although we ‘know’ a 

priori (because the botanist has told us and it is recorded) that there are 

three different varieties we will ignore this fact in some of the analyses 

below.  

For many multivariate methods in R the data need to be presented as a 

matrix rather than a dataframe. This is a slightly obscure technicality but 

is the reason for the use of as.matrix(.), rbind(.)and cbind(.) 

etc at various places in what follows. 
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5.2.2 Matrix Plots and Star Plots 

> data(iris) 
> pairs(iris) 
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The 5th ‘variable’ held in the dataframe iris is the name of the species 

and perhaps it is not useful to include that 
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> attach(iris) 
> summary(iris) 
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width    
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100   
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300   
 Median :5.800   Median :3.000   Median :4.350   Median :1.300   
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199   
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800   
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500   
       Species   
 setosa    :50   
 versicolor:50   
 virginica :50   
                                 
> ir<- cbind(Sepal.Length, Sepal.Width, Petal.Length, 
Petal.Width) 
> pairs(ir) 
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It is clear that we can see some structure in the data and might even 

guess that there are three distinct groups of flowers. Now consider an 

example with 12 variables (and 43 observations). Data set 

USJudgeRatings gives 12 measures of ability and performance on 43 

US judges. 

> data(USJudgeRatings) 
> pairs(USJudgeRatings) 

CONT
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The matrix plot above is difficult to comprehend. An alternative is a star 

plot  where each observation is represented by a star or polygon where 

the length of the vector to each vertex corresponds to the value of a 

particular variable. 

>  stars(USJudgeRatings, labels = 
abbreviate(case.names(USJudgeRatings)), 
+            key.loc = c(13, 1.5), main = "Judge not ...", len 
= 0.8) 

Judge not ...

AARO ALEX ARME BERD BRAC BURN CALL

COHE DALY DANN DEAN DEVI DRIS GRIL

HADD HAMI HEAL HULL LEVIN LEVIS MART

MCGR MIGN MISS MULV NARU O'BR O'SU

PASK RUBI SADE SATA SHEA,D SHEA,J SIDO

SPEZ SPON STAP TEST TIER W ALL W RIG

ZARR
CONT

INTG
DMNRDILGCFMG

DECI
PREP

FAMI
ORALW RITPHYS

RTEN

 

We can begin to see something about similarities and differences 

between individual observations (i.e. judges) but not any relationships 

between the variables. 
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Another example: data set mtcars gives measurements of 11 

properties of 32 cars (fuel consumption, engine size etc). 

> data(mtcars) 
> pairs(mtcars) 

mpg

4 6 8 50 250 2 4 0.0 0.8 3.0 4.5

1
0

2
5

4
6

8

cyl

disp

1
0

0
4

0
0

5
0

2
5

0

hp

drat

3
.0

4
.5

2
4

wt

qsec

1
6

2
2

0
.0

0
.8

vs

am

0
.0

0
.8

3
.0

4
.5

gear

10 25 100 400 3.0 4.5 16 22 0.0 0.8 1 4 7

1
4

7

carb

 

 

Again, not informative. 
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> stars(mtcars[, 1:7], key.loc = c(12, 2), 
+            main = "Motor Trend Cars", full = FALSE) 

 

M otor T rend Cars

Mazda RX4Mazda RX4 W agDatsun 710 Hornet 4 DriveHornet Sportabout Valiant

Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE

Merc 450SL Merc 450SLCCadillac FleetwoodLincoln ContinentalChrysler Imperial Fiat 128

Honda Civic Toyota CorollaToyota CoronaDodge ChallengerAMC Javelin Camaro Z28

Pontiac Firebird Fiat X1-9 Porsche 914-2Lotus EuropaFord Pantera L Ferrari Dino

Maserati Bora Volvo 142E mpg

cyl

disp
hp

drat

wt

qsec

 

This is perhaps more informative on individual models of cars but again 

not easy to see more general structure in the data. 
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Conclusions: The simple scatter plots arranged in a matrix work well 

when there are not too many variables. If there are more than about 5 

variables it is difficult to focus on particular displays and so understand 

the structure.  If there are not too many observations then we can 

construct a symbol (e.g. a star or polygon) for each separate observation 

which indicates the values of the variables for that observation. The 

other techniques mentioned (Andrews’ Plots and Chernoff Faces, as 

well as many other ingenious devices) all have similar objectives and 

drawbacks as star plots.  Obviously star plots will not be useful if either 

there are a large number of observations (more than will fit on one page) 

or if there are a large number of variables (e.g. > 20).   

However, many multivariate statistical analyses involve very large 

numbers of variables, e.g. 50+ is routine, 1000+ is becoming 

increasingly common in areas such as genomics. 

What is required is a display of ‘all of the data’ using just a few 

scatterplots (i.e. using just a few variables). That is we need to select 

‘the most interesting variables’.   This may mean concentrating on ‘the 

most interesting’ actual measurements or it may mean combining the 

variables together in some way to create a few new ones which are the 

‘most interesting’.  That is, we need some technique of dimensionality 

reduction. 

The most useful routine method of dimensionality reduction is 

principal component analysis. 
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5.3 Principal Component Analysis 

Principal Component Analysis (or PCA) looks for components in the data 

which contain the most information.    Often, transforming data to 

principal components will reduce the dimensionality of the data and we 

need only look at a very few components. Details are not given here 

(they can be found in many of the textbooks listed at the start of the 

chapter).   It is best, to begin with, to use the technique and see what 

happens. 

 

Note that some of the key routines in R are contained in a special library 

for multivariate analysis called mva. 
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Example: Iris data. 

 
> library(mva) 
> ir.pca<-princomp(ir) 
> ir.pca 
Call: 
princomp(x = ir) 
 
Standard deviations: 
   Comp.1    Comp.2    Comp.3    Comp.4  
2.0494032 0.4909714 0.2787259 0.1538707  
 
 4  variables and  150 observations. 
> summary(ir.pca) 
Importance of components: 
                          Comp.1     Comp.2     Comp.3      
Comp.4 
Standard deviation     2.0494032 0.49097143 0.27872586 
0.153870700 
Proportion of Variance 0.9246187 0.05306648 0.01710261 
0.005212184 
Cumulative Proportion  0.9246187 0.97768521 0.99478782 
1.000000000 
> plot(ir.pca) 
> par(mfrow=c(2,2)) 
> plot(ir.pca) 
> loadings(ir.pca) 
                  Comp.1      Comp.2      Comp.3     Comp.4 
Sepal.Length  0.36138659  0.65658877 -0.58202985 -0.3154872 
Sepal.Width  -0.08452251  0.73016143  0.59791083  0.3197231 
Petal.Length  0.85667061 -0.17337266  0.07623608  0.4798390 
Petal.Width   0.35828920 -0.07548102  0.54583143 -0.7536574 
> ir.pc<- predict(ir.pca) 
> plot(ir.pc[,1:2]) 
> plot(ir.pc[,2:3]) 
> plot(ir.pc[,3:4]) 
> 
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Comments 

Generally, if data X’ are measurements of p variables all of the same 

‘type’ (e.g. all concentrations of amino acids or all linear dimensions in 

the same units, but not e.g. age/income/weights) then the coefficients of 

principal components can be interpreted as ‘loadings’ of the original 

variables and hence the principal components can be interpreted as 

contrasts in the original variables. 
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Further Example of Interpretation of Loadings 

This data for this example are given in Wright (1954), The interpretation of multivariate systems. In 

Statistics and Mathematics in Biology (Eds. O. Kempthorne, T.A. Bancroft J. W. Gowen and J.L. 

Lush), 11–33. State university Press, Iowa, USA.  

Six bone measurements x1,…,x6 were made on each of 275 white 

leghorn fowl. These were: x1 skull length; x2 skull breadth; x3 humerus; x4 

ulna; x5 femur; x6 tibia (the first two were skull measurements, the third 

and fourth wing measurements and the last two leg measurements).  

The table below gives the coefficients of the six principal components 

calculated from the covariance matrix. 

 

Original  Principal Components 

variable a1 a2 a3 a4 a5 a6 

x1 skull l. 0.35 0.53 0.76 –0.04 0.02 0.00 

x2 skull b. 0.33 0.70 –0.64 0.00 0.00 0.03 

x3 humerus 0.44 –0.19 –0.05 0.53 0.18 0.67 

x4 ulna 0.44 –0.25 0.02 0.48 –0.15 –0.71 

x5 femur 0.44 –0.28 –0.06 –0.50 0.65 –0.13 

x6 tibia 0.44 –0.22 –0.05 –0.48 –0.69 0.17 
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To interpret these coefficients we 'round' them heavily to either just one 

digit  and ignore values 'close' to zero, giving 

 

Original  Principal Components 

variable a1 a2 a3 a4 a5 a6 

x1 skull l. 0.4 0.6 0.7 0 0 0 

x2 skull b. 0.4 0.6 –0.7 0 0 0 
skull

x3 humerus 0.4 –0.2 0 0.5 0 0.7 

x4 ulna 0.4 –0.2 0 0.5 0 –0.7 
wing

x5 femur 0.4 –0.2 0 –0.5 0.6 0 

x6 tibia 0.4 –0.2 0 –0.5 –0.6 0 
leg

Original  Principal Components 

variable a1 a2 a3 a4 a5 a6 

x1 skull l. + + +    

x2 skull b. + + –    
skull

x3 humerus + –  +  + 

x4 ulna + –  +  – 
wing

x5 femur + –  – +  

x6 tibia + –  – –  
leg

We can then see that the first component a1 is proportional to the sum of 

all the measurements. Large fowl will have all xi large and so their 

scores on the first principal component y1 (=x'a1) will be large, similarly 

small birds will have low scores of y1.  If we produce a scatter plot using 

the first p.c. as the horizontal axis then the large birds will appear on the 

right hand side and small ones on the left. Thus the first p.c. measures 

overall size. 

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing 
 

 104  
 

The second component is of the form (skull)–(wing & leg) and so high 

positive scores of y2 (=x'a2) will come from birds with large heads and 

small wings and legs. If we plot y2  against y1 then the birds with 

relatively small heads for the size of their wings and legs will appear at 

the bottom of the plot and those with relatively big heads at the top. The 

second p.c. measures overall body shape. 

The third component is a measure of skull shape (i.e. skull width vs 

skull width), the fourth is wing size vs leg size and so is also a measure 

of body shape (but not involving the head). The fifth and sixth are 

contrasts between upper and lower parts of the wing and leg 

respectively and so y5 measures  wing shape and y6 measures  leg 

shape. 

Notes: 

♦ The full mathematical/algebraic theory of principal component 

analysis strictly applies ONLY to continuous data on comparable 

scales of measurements using the covariance matrix. Using the 

correlation matrix brings the measurements onto a common scale 

but a little care is needed in interpretation, especially in 

interpretation of the loadings. 

♦ Since the key objective of pca is to extract information, i.e. 

partition the internal variation  it is sensible to plot the data using 

equal scaling on the axes. This can be done using the MASS 

function eqscplot(): 
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> plot(ir.pc[,1:2]) 
> eqscplot(ir.pc[,1:2]) 
> plot(mtcars.pc[,1:2]) 
> eqscplot(mtcars.pc[,1:2]) 
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Note that unlike plot() the axes are not automatically labelled by 

eqscplot() and you need to do this by including  

    ,xlab="first p.c.",ylab="second p.c."  

 in the call to it. 
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5.4 Discriminant Analysis 

So far the data analytic techniques considered have regarded the data 

as arising from a homogeneous source — i.e. as all one data set. A 

display on principal components might reveal unforeseen features:– 

outliers, subgroup structure as well as perhaps singularities (i.e. 

dimensionality reduction). 

 

Suppose now we know that the data consist of observations classified 

into k groups (c.f. 1-way classification in univariate data analysis) so that 

data from different groups might be different in some ways. We can take 

advantage of this knowledge 

• to produce more effective displays  

• to achieve greater dimensionality reduction  

• to allow informal examination of the nature of the differences between 

the groups. 

Linear Discriminant Analysis finds the best linear combinations of 

variables for separating the groups, if there are k different groups then it 

is possible to find k–1 separate linear discriminant functions which 

partition the between groups variance into decreasing order, similar to 

the way that principal component analysis partitions the within group 

variance into decreasing order. The data can be displayed on these 

discriminant coordinates. 
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Example: Iris Data 

> ir.species<- 
factor(c(rep("s",50),rep("c",50),rep("v",50))) 
> ir.lda<-lda(ir,ir.species) 
> ir.lda 
Call: 
lda.matrix(ir, grouping = ir.species) 
Prior probabilities of groups: 
      c       s       v  
0.33333 0.33333 0.33333  
Group means: 
  Sepal L. Sepal W. Petal L. Petal W. 
c    5.936    2.770    4.260    1.326 
s    5.006    3.428    1.462    0.246 
v    6.588    2.974    5.552    2.026 
 
Coefficients of linear discriminants: 
              LD1       LD2 
Sepal L.  0.82938  0.024102 
Sepal W.  1.53447  2.164521 
Petal L. -2.20121 -0.931921 
Petal W. -2.81046  2.839188 
 
Proportion of trace: 
   LD1    LD2  
0.9912 0.0088 

Now plot the data on discriminant coordinates and compare with a 

principal component plot: 

> ir.ld<-predict(ir.lda,dimen=2)$x 
> eqscplot(ir.ld,type="n", 
+ xlab="first linear discriminant", 
+ ylab="second linear discriminant") 
> text(ir.ld,labels=as.character(ir.species)) 
> eqscplot(ir.pc,type="n", 
+ xlab="first principal component", 
+ ylab="second principal component") 
> text(ir.pc,labels=as.character(ir.species)) 
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There is perhaps a very slightly better separation between the groups 

labelled v and c in the left hand plot than in the right hand one.  

Another way of examining the overlap between the groups is to look at 

kernel density estimates based on the values on the first linear 

discriminant coordinate separately for the three groups, conveniently 

done by: 

> plot(ir.lda,type="density",dimen=1) 
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A key objective of discriminant analysis is to classify further 

observations.  This can be done using the predict function 

predict.lda(lda-object,newdata).  In the Cushings data we 

can perform the lda on the first 21 observations and then use the results 

to classify the final 7 observations of unknown categories. Note that we 

have to turn the final 7 observations into a data matrix cushu in the 

same way as we did with the training data. 

> cush<-log(as.matrix(Cushings[1:21,-3])) 
> cushu<-log(as.matrix(Cushings[22:27,-3])) 
> tp<-factor(Cushings$Type[1:21]) 
 
> cush.lda<-lda(cush,tp) 
 
> upredict<-predict.lda(cush.lda,cushu) 
> upredict$class 
[1] b c b a b b 

These are the classifications for the seven new cases.  

We can plot the data on the discriminant coordinates with 

> plot(cush.lda) 

and then add in the unknown points with 

> points(jitter(predict(cush.lda,cushu)$x),pch=19,) 

and finally put labels giving the predicted classifications on the unknown 

points with 
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> text(predict(cush.lda,cushu)$x,pch=19, 

+ labels=as.character(predict(cush.lda,cushu)$class)) 

(where the + is the continuation prompt from R) to give the plot below. 

The use of jitter() moves the points slightly so that the labels are not 

quite in the same place as the plotting symbol. 
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Quadratic Discriminant Analysis generalizes lda to allow quadratic 

functions of the variables. Easily handled in R qda(). 

> cush.qda<-qda(cush,tp) 
> predict.qda(cush.qda,cushu)$class 
[1] b c b a a b 
It can be seen that the 5th unknown observation is classified differently 

by qda().   How can we see whether lda() or qda() is better?  One 

way is to see how each performs on classifying the training data (i.e. the 

cases with known categories. 

 
> predict.lda(cush.lda,cush)$class 
 [1] a a a b b a b a a b b c b b b b c c b c c 

and compare with the ‘true’ categories: 

> tp 
 [1] a a a a a a b b b b b b b b b b c c c c c 

We see that 6 observations are misclassified, the 5th,6th,9th,10th,13th and 

19th. To get a table of predicted and actual values: 

> table(tp,predict.lda(cush.lda,cush)$class) 

tp  a b c 
  a 4 2 0 
  b 2 7 1 
  c 0 1 4 

Doing the same with qda() gives: 

> table(tp,predict.qda(cush.qda,cush)$class) 
tp  a b c 
  a 6 0 0 
  b 0 9 1 
  c 0 1 4 
 
so 19 out 21 were correctly classified, when only 15 using lda(). 
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If we want to see whether correctly classifying 15 out of 21 is better than 

chance we can permute the labels by sampling tp without replacement: 

> randcush.lda<-lda(cush,sample(tp)) 
> table(tp,predict.lda(randcush.lda,cush)$class) 
    
tp  a b c 
  a 3 2 1 
  b 1 9 0 
  c 0 5 0 

i.e. 12 were correctly classified even with completely random labels. 

Repeating this a few more times quickly shows that 15 is much higher 

than would be obtained by chance.  It would be easy to write a function 

to do this 1000 times say by extracting the diagonal elements which are 

the 1st,5th and 9th elements of the object table(.,.), i.e. 

table(.,.)[1], table(.,.)[5] and table(.,.)[9]. 

> randcush.lda<-lda(cush,sample(tp)) 
> table(tp,predict.lda(randcush.lda,cush)$class) 
tp  a  b c 
  a 1  5 0 
  b 0 10 0 
  c 0  5 0 
> randcush.lda<-lda(cush,sample(tp)) 
> table(tp,predict.lda(randcush.lda,cush)$class) 
 tp a b c 
  a 1 5 0 
  b 2 8 0 
  c 1 4 0 
> randcush.lda<-lda(cush,sample(tp)) 
> table(tp,predict.lda(randcush.lda,cush)$class) 
tp  a  b c 
  a 1  5 0 
  b 0 10 0 
  c 1  4 0 
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5.6 Cluster Analysis 

Cluster Analysis is a collection of techniques for unsupervised 

examination of multivariate data with an objective of discovering ‘natural’ 

groups in the data, often used together with scaling methods. The 

results are displayed in a dendogram rather like a family tree indicating 

which family objects belong to. The first example is on data swiss 

which gives demographic measurements of 47 provinces in Switzerland. 

The first step is to calculate a distance matrix, using dist() and then to 

perform hierarchical cluster analysis using hclust(), The result can 

then be plotted as a dendogram using the generic function plot(). This 

example has used the default clustering method of complete linkage, 

others you might try are average linkage, single linkage or Wards 

method 

 
> data(swiss) 
> summary(swiss) 
   Fertility      Agriculture     Examination      Education     
 Min.   :35.00   Min.   : 1.20   Min.   : 3.00   Min.   : 1.00   
 1st Qu.:64.70   1st Qu.:35.90   1st Qu.:12.00   1st Qu.: 6.00   
 Median :70.40   Median :54.10   Median :16.00   Median : 8.00   
 Mean   :70.14   Mean   :50.66   Mean   :16.49   Mean   :10.98   
 3rd Qu.:78.45   3rd Qu.:67.65   3rd Qu.:22.00   3rd Qu.:12.00   
 Max.   :92.50   Max.   :89.70   Max.   :37.00   Max.   :53.00   
    Catholic       Infant.Mortality 
 Min.   :  2.150   Min.   :10.80    
 1st Qu.:  5.195   1st Qu.:18.15    
 Median : 15.140   Median :20.00    
 Mean   : 41.144   Mean   :19.94    
 3rd Qu.: 93.125   3rd Qu.:21.70    
 Max.   :100.000   Max.   :26.60    
> dswiss<-dist(swiss) 
> h<- hclust(dswiss) 
> plot(h) 
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This suggests three main groups, we can identify these with  

> cutree(h,3) 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 
22 23 24 25 26  
 1  2  2  1  1  2  2  2  2  2  2  1  1  1  1  1  1  1  1  1  1  
1  1  1  1  1  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
 1  1  1  1  2  2  2  2  2  2  2  2  1  1  1  1  1  1  3  3  3 

which gives the group membership for each of the provinces. 
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Next, we look at the iris data (yet again) and use the interactive function 

identify.hclust() which allows you to point with the mouse and 

click  on vertical bars to extract the elements in the family below. Click 

with the right button and choose stop to leave it. 

 
> distiris<-dist(ir) 
> hiris<- hclust(distiris) 
> plot(hiris) 
> help(identify.hclust) 
>  identify.hclust(hiris, function(k) print(table(iris[k,5]))) 
 
    setosa versicolor  virginica  
         0          0         12  
 
    setosa versicolor  virginica  
         0         23         37  
 
    setosa versicolor  virginica  
         0         27          1  
 
    setosa versicolor  virginica  
        50          0          0  
> 
 

The dendogram on the next pages shows four groups, and 

identify.clust was used to click on the four ancestor lines. Note 

that one of the groups is obviously the overlap group between 

versicolour and virginica. 
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Using a different method (Ward’s) gives: 

> hirisw<- hclust(distiris,method="ward") 
> plot(hirisw) 
>  identify.hclust(hirisw,function(k) print(table(iris[k,5]))) 
    setosa versicolor  virginica  
        50          0          0  
    setosa versicolor  virginica  
         0          0         36  
    setosa versicolor  virginica  
         0         50         14 
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And finally, using the ‘median’ method gives 

> hirimed<- hclust(distiris,method="median") 
> plot(hirimed) 
>  identify.hclust(hirimed,function(k)print(table(iris[k,5]))) 
    setosa versicolor  virginica  
        50          0          0  
    setosa versicolor  virginica  
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         0         41         13  
    setosa versicolor  virginica  
         0          9         37 
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Further Directions: The library cluster contains a variety of routines 

and data sets. The mclust library offers model-based clustering (i.e. a 

little more statistical). 

Key reference: Cluster Analysis, 4th Edition, (2001), by Brian Everitt, 

Sabine Landau and Morven Leese. 
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6 Tree-Based Methods 

Classification and regression trees are similar supervised techniques 

which are used to analyse problems in a step-by-step approach. We 

start (even yet again) with the iris data where the objective is to find a 

set of rules, based on the four measurements we have, of classifying the 

flowers into on of the fours species. The rules will be of the form: 

 ‘if petal length>x then…. , but if petal length ≤ x then something else’ 

i.e. the rules are based on the values of one variable at a time and 

gradually partition the data set into groups. 

 
> data(iris) 
> attach(iris) 
> ir.tr<-tree(Species~.,iris) 
> plot(ir.tr) 
> summary(ir.tr) 
 
Classification tree: 
tree(formula = Species ~ ., data = iris) 
Variables actually used in tree construction: 
[1] "Petal.Length" "Petal.Width"  "Sepal.Length" 
Number of terminal nodes:  6  
Residual mean deviance:  0.1253 = 18.05 / 144  
Misclassification error rate: 0.02667 = 4 / 150  
> text(ir.tr,all=T,cex=0.5) 
 

Now look at  the graphical representation: 
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|
Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor
virginica

virginica virginica

 

 

 
> ir.tr 
node), split, n, deviance, yval, (yprob) 
      * denotes terminal node 
 
 1) root 150 329.600 setosa ( 0.33333 0.33333 0.33333 )   
   2) Petal.Length < 2.45 50   0.000 setosa ( 1.00000 0.00000 0.00000 ) * 
   3) Petal.Length > 2.45 100 138.600 versicolor ( 0.00000 0.50000 0.50000 )   
     6) Petal.Width < 1.75 54  33.320 versicolor ( 0.00000 0.90741 0.09259 )   
      12) Petal.Length < 4.95 48   9.721 versicolor ( 0.00000 0.97917 0.02083 )   
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        24) Sepal.Length < 5.15 5   5.004 versicolor ( 0.00000 0.80000 0.20000 ) * 
        25) Sepal.Length > 5.15 43   0.000 versicolor ( 0.00000 1.00000 0.00000 ) * 
      13) Petal.Length > 4.95 6   7.638 virginica ( 0.00000 0.33333 0.66667 ) * 
     7) Petal.Width > 1.75 46   9.635 virginica ( 0.00000 0.02174 0.97826 )   
      14) Petal.Length < 4.95 6   5.407 virginica ( 0.00000 0.16667 0.83333 ) * 
      15) Petal.Length > 4.95 40   0.000 virginica ( 0.00000 0.00000 1.00000 ) * 
> 

Another example: the forensic glass data fgl. the data give the 

refractive index and oxide content of six types of glass. 

 
> data(fgl) 
> attach(fgl) 
> summary(fgl) 
       RI                Na              Mg              Al        
 Min.   :-6.8500   Min.   :10.73   Min.   :0.000   Min.   :0.290   
 1st Qu.:-1.4775   1st Qu.:12.91   1st Qu.:2.115   1st Qu.:1.190   
 Median :-0.3200   Median :13.30   Median :3.480   Median :1.360   
 Mean   : 0.3654   Mean   :13.41   Mean   :2.685   Mean   :1.445   
 3rd Qu.: 1.1575   3rd Qu.:13.82   3rd Qu.:3.600   3rd Qu.:1.630   
 Max.   :15.9300   Max.   :17.38   Max.   :4.490   Max.   :3.500   
       Si              K                Ca               Ba         
 Min.   :69.81   Min.   :0.0000   Min.   : 5.430   Min.   :0.0000   
 1st Qu.:72.28   1st Qu.:0.1225   1st Qu.: 8.240   1st Qu.:0.0000   
 Median :72.79   Median :0.5550   Median : 8.600   Median :0.0000   
 Mean   :72.65   Mean   :0.4971   Mean   : 8.957   Mean   :0.1750   
 3rd Qu.:73.09   3rd Qu.:0.6100   3rd Qu.: 9.172   3rd Qu.:0.0000   
 Max.   :75.41   Max.   :6.2100   Max.   :16.190   Max.   :3.1500   
       Fe             type    
 Min.   :0.00000   WinF :70   
 1st Qu.:0.00000   WinNF:76   
 Median :0.00000   Veh  :17   
 Mean   :0.05701   Con  :13   
 3rd Qu.:0.10000   Tabl : 9   
 Max.   :0.51000   Head :29   
> fgl.tr<-tree(type~.,fgl) 
> summary(fgl.tr) 
 
Classification tree: 
tree(formula = type ~ ., data = fgl) 
Number of terminal nodes:  20  
Residual mean deviance:  0.6853 = 133 / 194  
Misclassification error rate: 0.1542 = 33 / 214  
> plot(fgl.tr) 
> text(fgl.tr,all=T,cex=0.5)) 
Error: syntax error 
> text(fgl.tr,all=T,cex=0.5) 
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|
Mg < 2.695

Na < 13.785

A l < 1.38

Fe < 0.085

Ba < 0.2

RI < 1.265

A l < 1.42

RI < -0.93

RI < -1.885 K < 0.29

Ca < 9.67 Mg < 3.75

Fe < 0.145

RI < 1.045 A l < 1.17

Mg < 3.455

Si < 72.84 Na < 12.835
K < 0.55

WinNF

Con WinNF

Tabl WinNF
Head

WinF Veh

WinF WinF

WinF WinFWinNFWinF

WinNF

V eh WinNF
WinF

WinNFWinNF
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Decision Trees: 

One common use of classification trees is as an aid to decision making 

— not really different from classification but sometimes distinguished. 

Data shuttle gives guidance on whether to use autolander or manual 

control on landing the space shuttle under various conditions such as 

head or tail wind of various strengths, good or poor visibility (always use 

auto in poor visibility!) etc, 6 factors in all.  There are potentially 256 

combinations of conditions and these can be tabulated and completely 

enumerated but displaying the correct decision as a tree is convenient 

and attractive. 

 
> data(shuttle) 
> attach(shuttle) 
> summary(shuttle) 
 stability   error   sign       wind         magn     vis          use      
 stab :128   LX:64   nn:128   head:128   Light :64   no :128   auto  :145   
 xstab:128   MM:64   pp:128   tail:128   Medium:64   yes:128   noauto:111   
             SS:64                       Out   :64                          
             XL:64                       Strong:64                          
> table(use,vis) 
        vis 
use       no yes 
  auto   128  17 
  noauto   0 111 
> table(use,wind) 
        wind 
use      head tail 
  auto     72   73 
  noauto   56   55 
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> table(use,magn,wind) 
, , wind = head 
 
        magn 
use      Light Medium Out Strong 
  auto      19     19  16     18 
  noauto    13     13  16     14 
 
, , wind = tail 
 
        magn 
use      Light Medium Out Strong 
  auto      19     19  16     19 
  noauto    13     13  16     13 
 
> shuttle 
    stability error sign wind   magn vis    use 
1       xstab    LX   pp head  Light  no   auto 
2       xstab    LX   pp head Medium  no   auto 
3       xstab    LX   pp head Strong  no   auto 
…  …  …  …  …  … 
…  …  …  …  …  … 
…  …  …  …  …  … 
…  …  …  …  …  … 
255      stab    MM   nn head Medium yes noauto 
256      stab    MM   nn head Strong yes noauto 
> 
> shuttle.tr<-tree(use~.,shuttle) 

> plot(shuttle.tr) 

> text(shuttle.tr) 
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|vis:a

stability:a

error:bc

magn:abd

error:b
sign:a

auto

noauto auto
auto

noauto

noauto

noauto

 

In this default display, the levels of the factors are indicated by a,b,…. 

alphabetically and the tree is read so that levels indicated are to the left 

branch and others to the right, e.g. at the first branching vis:a indicates 

no for the left branch and yes for the right one. At the branch labelled 

magn:abd the right branch is for level c which is ‘out of range’; all 

other levels take the left branch. The plot can of course be enhanced 

with better labels. 
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Regression Trees: 

We can think of classification trees as modelling a discrete factor or 

outcome as depending on various explanatory variables, either 

continuous or discrete. For example, the iris species depended upon 

values of the continuous variables giving the dimensions of the sepals 

and petals. In an analogous way we could model a continuous outcome 

on explanatory variables using tree-based methods, i.e. regression 

trees. The analysis can be thought of as categorizing the continuous 

outcome into discrete levels, i.e. turning the continuous outcome into a 

discrete factor.  The number of distinct levels can be controlled by 

specifying the minimum number of observations (minsize) at a node 

that can be split and the reduction of variance produced by splitting a 

node (mindev). This is illustrated on the hills data, but first an example 

of data on c.p.u. performance of 209 different processors in data set 

cpus contained in the MASS library. The measure of performance is perf 

and we model the log of this variable.  

> library(MASS) 
> library(tree) 
> data(cpus) 
> attach(cpus) 
> summary(cpus) 
                   name          syct             mmin            mmax       
 WANG VS10           :  1   Min.   :  17.0   Min.   :   64   Min.   :   64   
 WANG VS 90          :  1   1st Qu.:  50.0   1st Qu.:  768   1st Qu.: 4000   
 STRATUS 32          :  1   Median : 110.0   Median : 2000   Median : 8000   
 SPERRY 90/80 MODEL 3:  1   Mean   : 203.8   Mean   : 2868   Mean   :11796   
 SPERRY 80/8         :  1   3rd Qu.: 225.0   3rd Qu.: 4000   3rd Qu.:16000   
 SPERRY 80/6         :  1   Max.   :1500.0   Max.   :32000   Max.   :64000   
 (Other)             :203                                                    
      cach          chmin          chmax           perf         estperf     
 Min.   :  0.00 Min.   : 0.000 Min.   :  0.00 Min.   :   6.0 Min.   :  15.0 
 1st Qu.:  0.00 1st Qu.: 1.000 1st Qu.:  5.00 1st Qu.:  27.0 1st Qu.:  28.0 
 Median :  8.00 Median : 2.000 Median :  8.00 Median :  50.0 Median :  45.0 
 Mean   : 25.21 Mean   : 4.699 Mean   : 18.27 Mean   : 105.6 Mean   :  99.3 
 3rd Qu.: 32.00 3rd Qu.: 6.000 3rd Qu.: 24.00 3rd Qu.: 113.0 3rd Qu.: 101.0 
 Max.   :256.00 Max.   :52.000 Max.   :176.00 Max.   :1150.0 Max.   :1238.0 
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> cpus.tr<-tree(log(perf)~.,cpus[,2:8]) 
> plot(cpus.tr) 
> text(cpus.tr) 

|
cach < 27

mmax < 6100

mmax < 1750 syct < 360

chmin < 5.5

mmax < 28000

cach < 96.5
mmax < 11240

cach < 56

2.507 3.285
3.911 4.546

2.947 4.206 4.916
5.350 5.223 6.141

 
The attraction of the display is that it gives a quick way of predicting cpu 

performance for a processor with specified characteristics. The accuracy 

of the predictions can be increased by increasing the number of terminal 

nodes (or leaves). However, this does not offer a substitute for more 

investigative modelling and outlier identification. 
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Now we illustrate some of the refinements with the more familiar Scottish 

Hill race data hills 

> data(hills) 
> hills.tr<-tree(time~.,hills) 
> plot(hills.tr) 
> text(hills.tr,cex=1.25) 

|
dist < 12

dist < 7.75

dist < 5.75
 28.58  41.28  71.66

165.20
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Next, increase the number of terminal nodes, i.e. increase the resolution 

of forecasting. 

> hills.tr1<-tree(time~.,hills,control=tree.control(nobs=35, 
+ minsize=2,mindev=.003)) 
> plot(hills.tr1) 
> text(hills.tr1) 

|
dist < 15

dist < 7.75

dist < 5.75climb < 425climb < 325 dist < 3.25
dist < 12

dist < 17dist < 24

 15.95  78.65
 17.57  28.15  41.28  71.66  98.42

204.60 165.00 192.70

 

With function tree, the maximum number of terminal nodes is 32. 
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Next, for comparison we repeat the above analyses removing the known 

outliers observations 7 and 18. 

 
> hills.tr2<-tree(time~.,hills[-c(7,18),]) 
> plot(hills.tr2) 
> text(hills.tr2,cex=1.25) 

|dist < 9.75

dist < 6.25

dist < 4.75

 21.69  36.28
 59.32

129.80

 

 



©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing 
 

 133  
 

And with more nodes: 

 
> hills.tr3<-tree(time~., hills[-c(7,18),], 
+ control=tree.control(nobs=33, 
+ minsize=2,mindev=.003)) 
> plot(hills.tr3) 
> text(hills.tr3) 

|
dist < 16

dist < 7.75

dist < 5.75
dist < 3.25 climb < 1325

dist < 12climb < 3735

dist < 24

 17.16  28.15  38.05  48.83  68.18  85.58  98.42

165.00 192.70
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It is clear that there differences in the trees after dropping the outliers but 

these are not quite so great as they might appear, taking into account 

the resolution of the end nodes. 

More refined facilities are available in library rpart (pruning etc). 
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7 Neural Networks 

7.1 Introduction 

We have seen how we can consider classification and discrimination 

problems as a form of modelling the relationship between a categorical 

variable and various explanatory variables. We could make this more 

explicit and use, for example, logistic regression techniques. For 

example, suppose we have two categories, A and B, and explanatory 

variables x1,…,xk then we could model the probability that an object with 

values of x1,…,xk belongs to category A as a logistic function of the 

x1,…,xk: 

1 1 k k

1 1 k k

exp{ x ... x }
P[belongs to A]

1 exp{ x ... x }

α + β + + β
=

+ α + β + + β
 

and then estimate the unknown parameters βi from training data on 

objects with known classifications. New observations would be classified 

by classifying them as of type A if the estimated probability of belonging 

to A is > 0.5, otherwise classify them as of type B. The technique is 

widely used and is very effective, it is known as logistic discrimination. It 

can readily handle cases where the xi are a mixture of continuous and 

binary variables. If there is an explanatory variable whish is categorical 

with k>2 levels then it needs to be replaced by k–1 dummy binary 

variables (though this step can be avoided with tree-based methods). 

The idea could be extended to discrimination and classification with 

several categories, multiple logistic discrimination.  
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Neural networks, from a statistical point of view, can be thought of as a 

further extension of the idea and special cases of them are essentially 

non-linear logistic models. However, the technique is rather more 

general than just non-linear logistic modelling. It also has analogies with 

generalized additive modelling (mentioned very briefly on p97). 

The full model for a feed-forward neural network with one hidden layer is 

k 0 k hk h h ih i
h i

y w ( w x )
⎛ ⎞= φ α + φ α +⎜ ⎟
⎝ ⎠

∑ ∑  

where the ‘inputs’ are xi (i.e. values of explanatory variables), the 

‘outputs’ are yk (i.e. values of the dependent variable, and the αj and wij 

are unknown parameters which have to be estimated (i.e. the network 

has to be ‘trained’) by minimising some fitting criterion, e.g. least 

squares or a measure of entropy. The functions φj are ‘activation 

functions’ and are often taken to be the logistic function 

φ(x)=exp(x)/{1+exp(x)}.   The wij are usually thought of as weights 

feeding forward input from the observations through a ‘hidden layer’ of 

units (φh) to output units which also consist of activation functions φo. 

The model is often represented graphically as a set of inputs linked 

through a hidden layer to the outputs:  
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The number of inputs is the number of explanatory variables xi, the 

number of outputs is the number of levels of yk (if yk is categorical), or 

the dimension of yk (if yk is continuous) and the number of ‘hidden units’ 

is open to choice. The greater the number of hidden units the larger the 

number of parameters to be estimated and (generally) the better will be 

the fit of the predicted yk  with the observed yk.    

 

 

input 
layer 

hidden 
layer(s) 

outputs 
yk 

inputs 
xi 

wih φh φo whk 
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7.2 Examples 

These next two examples are taken from the help(nnet) output and 

are illustrations on the iris data yet again, this time the classification is 

based on (i.e. the neural network is trained on) a random 50% sample of 

the data and evaluated on the other 50%. In the first example the target 

values are taken to be the vectors (1,0,0), (0,1,0) and (0,0,1) for the 

three species (i.e. indicator variables) and we classify new data (i.e. with 

new values of the sepal and petal measurements) by which column has 

the maximum estimated value. 

> library(nnet) 
> data(iris3) 
># use half the iris data 
> ir <- rbind(iris3[,,1],iris3[,,2],iris3[,,3]) 
> targets <-class.ind(c(rep("s",50),rep("c",50),rep("v",50))) 
> samp<-c(sample(1:50,25),sample(51:100,25), 
+ sample(101:150,25)) 
>ir1 <- nnet(ir[samp,], targets[samp,], size=2, rang=0.1,  
+                  decay=5e-4, maxit=200) 
# weights:  19 
initial  value 54.827508  
iter  10 value 30.105123 
iter  20 value 18.718125 
… … … … … … … … … … … … 
… … … … … … … … … … … … 
iter 200 value 0.532392 
final  value 0.532392  
stopped after 200 iterations 
>      test.cl <- function(true, pred){ 
+              true <- max.col(true) 
+              cres <- max.col(pred) 
+              table(true, cres) 
+      } 
>      test.cl(targets[-samp,], predict(ir1, ir[-samp,])) 
    cres 
true  1  2  3 
   1 24  0  1 
   2  0 25  0 
   3  2  0 23 
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Thus, the classification rule only misclassifies 3 out of the 75 flowers 

which were not used in the analysis. If we used a net with only 1 unit in 

the hidden layer: 

 
> ir1 <- nnet(ir[samp,], targets[samp,], size=1, rang=0.1, 
+              decay=5e-4, maxit=200) 
# weights:  11 
initial  value 57.220735  
iter  10 value 35.168339 
… … … … … … 
iter  60 value 17.184611 
final  value 17.167133  
converged 
>      test.cl <- function(true, pred){ 
+              true <- max.col(true) 
+              cres <- max.col(pred) 
+              table(true, cres) 
+      } 
>      test.cl(targets[-samp,], predict(ir1, ir[-samp,])) 
    cres 
true  1  2  3 
   1 22  0  3 
   2  0 25  0 
   3  0  0 25 
> 
 

then it is still only 3, though a different 3 clearly. To see what the actual 

values of the predictions are we can print the first five rows of the 

estimated target values: 

 
> predict(ir1, ir[-samp,])[1:5,] 
             c         s v 
[1,] 0.1795149 0.9778684 0 
[2,] 0.1822938 0.9747983 0 
[3,] 0.1785939 0.9788104 0 
[4,] 0.1758644 0.9813966 0 
[5,] 0.1850007 0.9714523 0 
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and we see that although it does not estimate the values as precisely 

(0,1,0) (or (1,0,0) or (0,0,1)) they are close. Hence the use of the 

mac.col function above. 

We can find out more about the actual fitted (or trained) network, 

including the estimated weights with summary() etc: 

> ir1 
a 4-1-3 network with 11 weights 
options were - decay=5e-04 
> summary(ir1) 
a 4-1-3 network with 11 weights 
options were - decay=5e-04 
 b->h1 i1->h1 i2->h1 i3->h1 i4->h1  
 -0.15   0.41   0.74  -1.01  -1.18  
 b->o1 h1->o1  
 -0.06  -1.59  
 b->o2 h1->o2  
 -6.59  11.28  
 b->o3 h1->o3  
  3.75 -39.97 
and we could draw a graphical representation putting in values of the 

weights along the arrows. 

Another way of tackling the same problem is given by the following: 

> ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]), 
+          species=c(rep("s",50), rep("c", 50), rep("v", 50))) 
>      ir.nn2 <- nnet(species ~ ., data=ird, subset=samp, 
+ size=2, rang=0.1,  decay=5e-4, maxit=200) 
# weights:  19 
initial  value 82.614238  
iter  10 value 27.381769 
… … … … … 
iter 200 value 0.481454 
final  value 0.481454  
stopped after 200 iterations 
>table(ird$species[-samp], predict(ir.nn2, ird[-samp,], 
type="class")) 
     c  s  v 
  c 24  0  1 
  s  0 25  0 
  v  2  0 23 
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again, 3 of the new data are misclassified. However, if try a net with only 

one hidden unit we actually succeed slightly better: 

 
>  ir.nn2 <- nnet(species ~ ., data=ird, subset=samp, size=1,  
+ rang=0.1, decay=5e-4, maxit=200) 
# weights:  11 
initial  value 82.400908  
final  value 3.270152  
converged 
>    table(ird$species[-samp], predict(ir.nn2, ird[-samp,],  
+ type="class")) 
    
     c  s  v 
  c 24  0  1 
  s  0 25  0 
  v  1  0 24 
 
 
> summary(ir.nn2) 
a 4-1-3 network with 11 weights 
options were - softmax modelling  decay=5e-04 
 b->h1 i1->h1 i2->h1 i3->h1 i4->h1  
 -1.79  -0.44  -0.91   1.05   1.65  
 b->o1 h1->o1  
  7.11  -0.99  
 b->o2 h1->o2  
 12.30 -36.31  
 b->o3 h1->o3  
-19.45  37.43 
 

 

Exercise: Try modifying the R commands above to train a network on a 

much smaller sample, say 10 from each species, and the classifying the 

remainder. This can be done by changing the 25 to 10 in each of the 

three sample commands on P171. (I found that the misclassification rate 

on the new data was 6 out of 120 and even with training samples of 5 

from each species it was 8 out of 135). 
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Simple Example: 

This is an artificial example: the objective is to train a network with a 

hidden layer containing two units to return a value A for low numbers 

and a value B for high ones. The following code sets up a dataframe 

(nick) which has 8 rows and two columns. The first column has the 

values of x and the second the targets. The first five rows will be used 

for training the net and the last three will be fed into the trained net for 

classification, so the first 3 rows have low values of x and target value 

A, the next 2 rows have high values of x and the target value B and 

the final 3 rows have test values of x and unknown classifications. 

> library(nnet) # open nnet library 
> nick<- 
+ data.frame(x=c(1.1,1.7,1.3,5.6,7.2,8.1,1.8,3.0), 
+ targets=c(rep("A",3),rep("B",2),rep("U",3))) 
> attach(nick) 
# check dataframe is ok 
> nick 
     x   targets 
1   1.1       A 
2   1.7       A 
3   1.3       A 
4   5.6       B 
5   7.2       B 
6   8.1       U 
7   1.8       U 
8   3.0       U 
> nick.net<-nnet(targets~.,data=nick[1:5,],size=2) 
# weights:  10 
initial  value 3.844981  
final  value 0.039811  
converged 
Warning message:  
group(s) U are empty in: nnet.formula(targets ~ ., 
data = nick[1:5, ], size = 2)  
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# check predictions on training data 
> predict(nick.net,nick[1:5,],type="class") 
[1] "A" "A" "A" "B" "B" 
# now classify new data 
> predict(nick.net,nick[6:8,],type="class") 
[1] "B" "A" "A" 
# see what the predictions look like numerically 
> predict(nick.net,nick[6:8,]) 
             A            B 
6 1.364219e-15 1.000000e+00 
7 1.000000e+00 4.659797e-18 
8 1.000000e+00 1.769726e-08 
> predict(nick.net,nick[1:5,]) 
             A            B 
1 1.000000e+00 2.286416e-18 
2 1.000000e+00 3.757951e-18 
3 1.000000e+00 2.477393e-18 
4 1.523690e-08 1.000000e+00 
5 2.161339e-14 1.000000e+00 
> 
# look at estimates of weights. 
> summary(nick.net) 
a 1-2-2 network with 10 weights 
options were - softmax modelling  
 b->h1 i1->h1  
 -7.58   1.32  
 b->h2 i1->h2  
-10.44   3.47  
 b->o1 h1->o1 h2->o1  
 20.06 -16.10 -22.59  
 b->o2 h1->o2 h2->o2  
-20.69  15.81  21.88 

 

 

 

 x 

A (o1) (+20.06)

B (o2) (-20.69) 

h1(-7.58) 

h2 (-10.44) 

1.32

3.47

-16.10 

21.88 

15.81 

-22.59 
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7.3 Extended example: Data set Book 

Data set book.txt is available from the WebCT Datasets page. If you 

right-click on the filename then you can download the file onto your 

hard disk.  Suppose you have downloaded the file to file book.txt in 

directory temp on your C drive. So its full pathname would be 

C:\temp\book.txt.  Then to read it into R you need to do 

> book<- read.table("c:\\temp\\book.txt") 

> attach(book) 

which will make the data set and its variables accessible to the session. 

NOTE the use of the double backslash \\ in the pathname. 

This data set has 16 variables, plus a binary classification (QT). The 

variables are a mixture of continuous (5 variables), binary (8 vars) and 

ordinal (3). An exploratory PCA on the correlation matrix (not shewn 

here) on ‘raw’ variables (i.e. ordinal not transformed to dummy variables) 

indicates very high dimensionality, typical of such sets with a mixture of 

types. The first 6 PCs account for only 75% of variability, the first 9 for 

90%. Plots on PCs indicate that there is some well-defined structure 

revealed on the mid-order PCs but strikingly the cases with QT=1 are 

clearly divided into two groups, one of which separates fairly well from 

cases with QT=0 but the other is interior to those with QT=0 from all 

perspectives. 

A Linear Discriminant Analysis emphasizes that these latter points are 

consistently misclassified. The plot below (from R) shews the data on 

the first (and only) crimcoord against sequence number. There then 

follows various analyses using a random subset to classify the 
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remainder using both LDA and various simple neural nets. In this 

exercise LDA appears to win. Again the ‘raw’ variables are used for 

illustration but recoding would be better. 
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Plot of Book data on first discriminant (vs index in data file) 

 
  Predicted 
         0  1  
  true 0 256  1  
   1  16 23  
    17  
 
Raw misclassification rate 17/296     
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Next take random samples of 200 and then use the LDF obtained to 

classify the remaining 96 (details of code and some output suppressed): 

 
 
> samp<- sample(1:296,200) 
> books.lda<-lda(book[samp,],qt[samp]) 
> table(qt[-samp],predict(book.lda,book[-samp,])$class) 
                    predicted 
             0 1      0 1       0 1      0 1      0 1  
   true   0 82 0   0 87 0    0 84 1   0 88 0   0 84 0  
          1  7 7   1  2 7    1  3 8   1  4 4   1  6 6  
misclassif  
 rates      7        2         4        4        6 
    
            0  1     0  1       0 1      0 1      0 1 
   true  0 81  1  0 79  0    0 81 0   0 89 0   0 83 1 
         1  4 10  1  6 11    1  7 8   1  2 5   1  4 8 
misclassify  
 rates      5        6          7        2        5 
         
 
i.e. overall about 5% 
 
Now try a neural net with 8 hidden units: 
 
 
> book.net<-nnet(book,qt,size=8,rang=0.1,decay=5e-4,maxit=200) 
> q<-class.ind(qt) 
> book.net<-nnet(book,q,size=8,rang=0.1,decay=5e-4,maxit=200) 
> book.net 
a 16-8-2 network with 154 weights 
options were - decay=5e-04 
> test.cl(q,predict(book.net,book)) 
    pred 
true   1  2 
   1 257  0 
   2  11 28 
    11 
Raw misclassification rate 11/96, now again with 15 hidden units:    
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> book.net<-nnet(book,q,size=15,rang=0.1,decay=5e-4,maxit=200) 
# weights:  287 
> test.cl(q,predict(book.net,book)) 
    pred 
true   1  2 
   1 257  0 
   2   9 30 
    9 
 
Raw misclassification rate 9/96     
 
Now again with 20 hidden units: 
 
> book.net<-nnet(book,q,size=20,rang=0.1,decay=5e-4,maxit=200) 
# weights:  382 
> test.cl(q,predict(book.net,book)) 
    pred 
true   1  2 
   1 257  0 
   2   4 35 
     4 
Raw misclassification rate 4/96 
 
 
Now try training the net on 200 randomly selected cases and classify the 
remaining 96. 
 
 
> book.net<-
nnet(book[samp,],q[samp,],size=20,rang=0.1,decay=5e-
4,maxit=200) 
# weights:  382 
> test.cl(q[-samp,],predict(book.net,book[-samp,])) 
    pred        pred       pred          pred        pred     
true  1 2   true  1 2  true  1  2    true  1 2   true  1 2    
   1 82 2      1 77 9     1 73 10       1 79 9      1 77 5    
   2  6 6      2  5 5     2  6  7       2  3 5      2  8 6    
misclassif  
 rates   
     8          14         16            12          13 
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    pred        pred        pred        pred        pred 
true  1 2   true  1 2   true  1 2   true  1 2   true  1 2 
   1 81 4      1 81 1      1 88 2      1 81 9      1 85 5 
   2  6 5      2  7 7      2  2 4      2  2 4      2  2 4 
 
misclassif  
 rates   
    10          8           4           11          7  
 
   pred        pred 
true  1 2   true  1  2 
   1 86 4      1 80 10 
   2  2 4      2  2  4 
misclassif  
 rates   
    6           12   
 
i.e. overall about 10% 

 
Next, try this again with only 5 hidden units: 
 
 
> book.net<-
nnet(book[samp,],q[samp,],size=5,rang=0.1,decay=5e-
4,maxit=300) 
# weights:  97 
    pred        pred        pred        pred        pred 
true  1 2   true  1 2   true  1 2   true  1 2   true  1 2 
   1 85 5      1 82 4      1 77 7      1 82 2      1 77 8 
   2  2 4      2  3 7      2  6 6      2  7 5      2  4 7 
misclassif  
 rates   
    7           7           13          9           12 
    pred        pred        pred        pred         pred 
true  1 2   true  1 2   true  1 2   true  1  2   true  1 2 
   1 76 5      1 78 5      1 79 5      1 75 10      1 78 6 
   2  8 7      2  6 7      2  3 9      2  6  5      2  6 6 
 misclassif  
 rates   
   13          11          8           16           12   
> 
 
i.e. overall about 11% 
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7.4 Summary 

The above account is only a very brief introduction to simple neural 

networks, with particular reference to their use for classification. As with 

tree-based methods they can also be used for regression problems. 

Little has been said about the use and choice of activation functions, 

fitting criteria etc and examples have been given entirely in the context 

of the simple and basic facilities offered in the nnet library of R. To find 

out more then look at the reference Ripley (1996) given on p1, this is 

written with statistical terminology and largely from a statistical point of 

view.  Another definitive reference is Chris Bishop (1995), Neural 

Networks for Pattern Recognition, Oxford, Clarendon Press. 
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8 Concluding Remarks 

The sections above have been intended to give an introduction to and a 

flavour of the more practical and intuitive methods which are used by 

practicing applied statisticians in their day-to-day work. Some of the 

techniques are used only at early or intermediate stages of the 

investigation into obtaining understanding and insight into the data, 

some are used to provide the end-points of the analysis and would be 

used in the final report.   The account given above is inevitably selective 

and incomplete, many important areas have not been mentioned (e.g. 

time series analysis, spatial statistics, survival data, … ) nor have all the 

available techniques been covered within those areas that have been 

touched upon. In part this is because the account is based around the 

facilities offered in one particular computer package or language R. 

What should have become apparent is that this package itself contains a 

great deal of instructional material and example data sets that should 

encourage you to try out new and unfamiliar methods. Use the code 

given on worked examples in the help system, try modifying it and 

seeing what happens. Remember the maxim (Aristotle) that: 

‘for the things we have to know before we can do them,  
we learn by doing them’. 

This is a quotation given in the start of a book Applied Stochastic 

Modelling by Byron Morgan (2000), another good book to read. 
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