

Statistical Modelling and Computing

Dr Nick Fieller

Department of Probability & Statistics

University of Sheffield

 visiting

University of Tampere
2004/05

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 1

Statistical Modelling and Computing

0. Introduction

0.1 Books and Websites

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with

S, (4th Edition), Springer.

This is the main course book. The software (including versions in R) and

datasets used in this book are available from various websites such as

http://www.stats.ox.ac.uk/pub/MASS4

This course will use many of the data sets and functions from the MASS

library.

Verzani, J. (2005) Using R for Introductory Statistics, Chapman &

Hall. This book provides many good examples of the more elementary

techniques.

Nolan, D. & Speed, T. P. (2000), Stat Labs: Mathematical Statistics

Through Applications. Springer. Support material is available at:

http://www.stat.Berkeley.edu/users/statlabs

This book is recommended for additional reading.

Ripley, B.D. (1996) Pattern Recognition and Neural Networks.

Cambridge University Press.

This book provides much fuller details of neural nets from the practical

statistical point of view.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 2

Much of the course will be focused around the computing system R

which provides various statistical facilities including high quality

graphics. It is an open source system and is available free. It is ‘not

unlike’ the expensive commercial package S-PLUS, the prime difference

is that R is command-line driven without the standard menus and dialog

boxes in S-PLUS. Otherwise, most code written for the two systems is

interchangeable.

The sites from which R and associated software (extensions and

libraries) and manuals can be found are listed at

http://www.ci.tuwien.ac.at/R/mirrors.html

The nearest ones are at

http://cran.dk.r-project.org (in Denmark)
and

http://cran.uk.r-project.org (in Bristol, UK)

Free versions of full manuals for R (mostly in PDF format) can be found

at any of these mirror sites. There is also a wealth of contributed

documentation. Particularly useful are:

Using R for Data Analysis and Graphics by John Maindonald (PDF
[702kB], 106 pages). Many of the topics in this course are covered in
these notes. This is also available as a hardback book.

R for Beginners by Emmanuel Paradis, (PDF [152kB], 31 pages). This
provides a useful introduction to R. The notes are translated from the
original version in French (but not always very accurately).

R reference card by Jonathan Baron, (PDF [58kB], LaTeX [5kB], 1
page)

These can be consulted online during R sessions or downloaded and

printed to take away.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 3

0.2 Objectives

The overall objective of this course is to provide an introduction to some

of the techniques of modern statistical methodology. An integral part of

modern statistical analysis is directed towards understanding data,

discovering structure in it and making inferences about the wider world.

Applied Statistics is not a subset of mathematics, though mathematics is

a useful tool in developing statistical methods and techniques, just as it

is a useful tool in the various forms of engineering. In some ways, this

course regards applied statistics as ‘data engineering’ — this includes

actually doing practical things with data. Inevitably, some attention has

to be given to the computational side and there will be some pointers to

the mathematical aspects.

A great revolution in statistical practice occurred with the development of

the language S and later the development of S-PLUS.

(R is essentially the same language as S-PLUS but is free)

This integrated computing system has allowed the statistical community

to extend traditional methods and to try out new techniques to provide

new ways of investigating practical statistical problems. Often these are

based not on mathematical development but on more intuitive ideas.

This course aims to give a flavour of this new approach to statistical

thinking and an introduction to implementing them in practice.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 4

0.3 Outline of Course

1. Overview of S-PLUS and R:– how does it work and what can it do.

2. Exploratory Data Analysis:– standard summary descriptions and

plots, robust summaries, improved alternatives to histograms.

3. Classical Univariate Statistics:– revision and implementation of one

and two sample tests, analysis of variance, bootstrap and

permutation methods.

4. Linear Statistical Models:– classic linear regression and

diagnostics. Robust methods, smooth regression and additive

models.

5. Multivariate Methods:– multivariate EDA, principal components and

biplots, discrimination and classification, cluster analysis.

6. Tree-based Methods:– Classification and Regression Trees, trees

for decision making.

7. Neural Networks:– use for classification and regression problems.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 5

1. Overview of S-PLUS and R

1.0 Introduction

S-PLUS (and its public domain equivalent R) is an integrated suite of

software facilities for data analysis and graphical display. It offers:–

♦ an extensive and coherent set tools for statistics and data

analysis

♦ a language for expressing statistical models and tools for using

linear and non-linear statistical models

♦ graphical facilities for interactive data analysis and display

♦ an object-orientated programming language that can easily be

extended

♦ an expanding set of publicly available libraries of routines for

special analyses

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 6

S-PLUS is available as a commercial package from Insightful (formally

known as MathSoft) and is an implementation of the language S

developed at Bell Laboratories by Becker, Chamberlain and Wilks. R is a

very similar implementation but is available free from many different

websites. The prime differences between R and S-PLUS (apart from the

cost!) are:

♦ R is an Open Source system — it is possible to examine the

source code and determine precisely what variation on a

statistical method has been implemented. This is less important

for e.g. t-tests (although even for these there are equal variance

or unequal variance versions of t-tests) but much more important

for the more heuristic methods of robust analysis and semi-

parametric methods, i.e. those modern methods based more on

practical consideration than on mathematical theory.

♦ S-PLUS has menus and dialogs as well as a command-line

interface, but R has only the command-line.

♦ S-PLUS has ways to edit graphs and more facilities for multi-

panel plots.

♦ R is better at annotating with mathematical notation.

♦ R is small with many extensions, S-PLUS is monolithic.

♦ R runs on less powerful machines.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 7

1.1 Some Features of R

1.1.1 R is a function language

All commands in R are regarded as functions, they operate on

arguments, e.g. plot(x, y) plots the vector x against the vector y —

that is it produces a scatter plot of x vs. y. Even Help is regarded as a

function:— to obtain help on the function plot use help(plot). To

obtain general help use help(), i.e.use the function help with a null

argument. To end a session in R use quit(), or q(), i.e. the function

quit or q with a null argument. In fact the function quit can take

optional arguments, type help(quit) to find out what the possibilities

are.

1.1.2 R is an object orientated language

All entities (or 'things') in R are objects. This includes vectors, matrices,

data arrays, graphs, functions, and the results of an analysis. For

example, the set of results from performing a two-sample t-test is

regarded as a complete single object. The object can be displayed by

typing its name or it can be summarized by the function summary().

1.1.3 R is a case-sensitive language

Note that R treats small letters and big letters as different, for example a

two sample t-test is performed using the function t.test() but R does

not recognize T.test(), nor T.TEST(), nor t.Test(), nor……

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 8

1.1.4 Brief Example
R : Copyright 2004, The R Foundation for Statistical
Computing
Version 2.0.1 Patched (2004-11-19), ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain
conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in
publications.

Type 'demo()' for some demos, 'help()' for on-line help,
or
'help.start()' for a HTML browser interface to help.
Type 'q()' to quit R.

> library(MASS)

> data(hills)

> summary(hills)

 dist climb time

 Min. : 2.000 Min. : 300 Min. : 15.95

 1st Qu.: 4.500 1st Qu.: 725 1st Qu.: 28.00

 Median : 6.000 Median :1000 Median : 39.75

 Mean : 7.529 Mean :1815 Mean : 57.88

 3rd Qu.: 8.000 3rd Qu.:2200 3rd Qu.: 68.63

 Max. :28.000 Max. :7500 Max. :204.62

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 9

> hills
 dist climb time
Greenmantle 2.5 650 16.083
Carnethy 6.0 2500 48.350
Craig Dunain 6.0 900 33.650
Ben Rha 7.5 800 45.600
Ben Lomond 8.0 3070 62.267
Goatfell 8.0 2866 73.217
Bens of Jura 16.0 7500 204.617
Cairnpapple 6.0 800 36.367
Scolty 5.0 800 29.750
Traprain 6.0 650 39.750
Lairig Ghru 28.0 2100 192.667
Dollar 5.0 2000 43.050
Lomonds 9.5 2200 65.000
Cairn Table 6.0 500 44.133
Eildon Two 4.5 1500 26.933
Cairngorm 10.0 3000 72.250
Seven Hills 14.0 2200 98.417
Knock Hill 3.0 350 78.650
Black Hill 4.5 1000 17.417
Creag Beag 5.5 600 32.567
Kildcon Hill 3.0 300 15.950
Meall Ant-Suidhe 3.5 1500 27.900
Half Ben Nevis 6.0 2200 47.633
Cow Hill 2.0 900 17.933
N Berwick Law 3.0 600 18.683
Creag Dubh 4.0 2000 26.217
Burnswark 6.0 800 34.433
Largo Law 5.0 950 28.567
Criffel 6.5 1750 50.500
Acmony 5.0 500 20.950
Ben Nevis 10.0 4400 85.583
Knockfarrel 6.0 600 32.383
Two Breweries 18.0 5200 170.250
Cockleroi 4.5 850 28.100
Moffat Chase 20.0 5000 159.833
>

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 10

> pairs(hills)

> cor(hills)
 dist climb time

dist 1.0000000 0.6523461 0.9195892

climb 0.6523461 1.0000000 0.8052392

time 0.9195892 0.8052392 1.0000000

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 11

> data(shoes)

> shoes

$A

 [1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3

$B

 [1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

> attach(shoes)

> t.test(A,B)

 Welch Two Sample t-test

data: A and B

t = -0.3689, df = 17.987, p-value = 0.7165

alternative hypothesis: true difference in means is
not equal to 0

95 percent confidence interval:

 -2.745046 1.925046

sample estimates:

mean of x mean of y

 10.63 11.04

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 12

> T.test(A,B)

Error: couldn't find function "T.test"

> t.test(a,b)

Error in t.test(a, b) : Object "b" not found

> summary(t.test(A,B))

 Length Class Mode

statistic 1 -none- numeric

parameter 1 -none- numeric

p.value 1 -none- numeric

conf.int 2 -none- numeric

estimate 2 -none- numeric

null.value 1 -none- numeric

alternative 1 -none- character

method 1 -none- character

data.name 1 -none- character

>

> mean(A)

[1] 10.63

> mean(B)

[1] 11.04

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 13

1.1.5 Comments on example

♦ 1:– The first command opened the library of routines and data

sets MASS. There are many libraries of routines available in R and

many can be downloaded from the various R websites listed in

§0.1. To find out what libraries are available in your system type

library() and you will obtain a list of them. To find out what

routines are available in [for example] MASS type

library(help=MASS).

♦ 2:– The second command data(hills) made the data set

hills available to the session. The base system of R and many

of the available libraries come with example data sets for testing

routines and for illustrations and hills is one of those that come

in the library MASS. To find out what data sets are currently

available to the session type data(). It is of course possible to

read in data from files, not only ordinary ASCII text files but also

files produced by most other packages such as Excel, SAS,

SPSS, Minitab, STATA, …… . In addition data can be typed in

direct from the keyboard.

♦ 3:– summary(hills) produced a basic summary of the object

hills. Typing summary(name-of-object) will produce some

sort of summary whatever type of object it is, though what is

produced depends on the type of the object (i.e. whether it is a

data set or the results of an analysis or whatever.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 14

♦ 4:– hills produced a complete list of the object hills. Typing

name-of-object will print it out, whatever sort of object it is.

Note that this data set consists of three variables: dist,

climb, time, and that the rows are labelled with names. These

are the record times in minutes taken for hill races in Scotland.

The distance (dist) is in kilometres and climb gives the total

cumulative height in metres climbed in the race.

♦ 5:– Note the commands pairs(hills) and cor(hills) are

functions operating on the object hills.

♦ 6:– Finally, a further data set, shoes, is opened. Given are

measures of the wear of shoes of materials A and B for one foot

each of ten boys. Illustrated are the results of a Two Sample t-test

of A vs B and reminders that R is case-sensitive.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 15

♦ 7:– In fact, it would be better to do a paired t-test on these data,

since each boy is wearing material A on one foot and B on the

other and since there is likely to be great differences between the

different boys but not between the different feet of individual boys.

This can be done by the same function t.test() on the

differences, i.e. t.test(A–B). In fact t.test() is an example

of a generic function (as is summary()) whose result depends

on the type of argument given to it

> t.test(A-B)

 One Sample t-test

data: A - B

t = -3.3489, df = 9, p-value = 0.008539

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

 -0.6869539 -0.1330461

sample estimates:

mean of x

 -0.41

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 16

1.2 Summary so far

♦ The aim of this course is to give a flavour of recent developments

in applied statistics that have been made possible by the

development of a computer language S (implemented as the

commercial package S-plus and as the free language R).

♦ It may seem at first as if the course is more about the computer

package R than about statistics, but have patience — it really is

about statistics.

♦ R is an object-orientated language providing facilities for

manipulating objects such as vectors, matrices, data sets, results

of analyses as well as inbuilt statistical procedures and integrated

(and interactive) graphical facilities.

♦ R consists of a base system supplemented by various libraries of

routines. Additionally, various standard data sets are included

that can be used to illustrate the techniques. The extensive Help

System can be used to find out what libraries are available, what

each of them contains, what data sets are included and what the

data refer to.

♦ §1.1.4 gives a record of a short R session with comments and

explanations given in §1.1.5. These contain some key tools for

getting started when using the system.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 17

2. Exploratory Data Analysis

2.1 Data Summaries

2.1.1 Introduction

Standard summaries mean(), median() and var() are available for

summarizing data. The first two take individual variables as arguments,

and the argument for var() can be either a single variable or a data

matrix. If the latter then a complete variance-covariance matrix is

returned. summary() will return the minimum, 1st quartile, median, 3rd

quartile and maximum, together with the mean. The first five of these are

the (0,0.25,0.5,0.75,1) quantiles and can be produced by quantile().

This can also be used to produce any arbitrary quantiles by including a

vector of the required probabilities:

> attach(hills)
> summary(dist)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.000 4.500 6.000 7.529 8.000 28.000
> quantile(dist)
 0% 25% 50% 75% 100%
 2.0 4.5 6.0 8.0 28.0
> quantile(dist,c(0.25,0.33,0.4,0.8))
25% 33% 40% 80%
4.5 5.0 5.3 9.6

Note the use of c(0.25,0.33,0.4,0.8) to concatenate (=join

together) the numbers into a vector.

[The quantiles are obtained by linear interpolation in the ordered sample]

However, these summaries (especially mean() and var())are

sensitive to outliers, i.e. they are not robust.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 18

2.1.2 Robust Summaries

> data(chem)

> chem

[1] 2.90 3.10 3.40 3.40 3.70 3.70 2.80 2.50 2.40 2.40
 2.70 2.20

[13] 5.28 3.37 3.03 3.03 28.95 3.77 3.40 2.20 3.50
 3.60 3.70 3.70

The data above are values of 24 determinations of copper in ppm in

wholemeal flour. The [1] and [13] indicate that these lines begin with

the 1st and 13th element of the object chem.

Note the very large value 28.95. It is an outlier.

> mean(chem)
[1] 4.280

The value of the mean is highly influenced by this outlier (it is larger than

all but two of the observations).

The sample mean → ±∞x if any data value → ±∞ix , whereas the

median is hardly affected if any single value of tends to ±∞ .

In fact, the median will not be affected until 50% of the data are grossly

contaminated.

The median is resistant to gross errors, but the mean is not.

The median has a breakdown point of 50%, the mean has a

breakdown point of 0%.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 19

A more robust estimate of location is a trimmed mean, i.e. the mean

when a percentage of the largest and smallest observations are trimmed

away from the sample. Specifically, an α-trimmed mean is the mean of

the sample after removal of the upper and lower 100×α% portions of the

sample, i.e. of the middle 1-2α part of the distribution.

Example (chemical data above):

> mean(chem, trim=0.01)
[1] 4.280417
> mean(chem, trim=0.04)
[1] 4.280417
> mean(chem, trim=0.05)
[1] 3.253636
> mean(chem, trim=0.1)
[1] 3.205

Questions:

1. What breakdown point does an α-trimmed mean have?

2. Which observations have been trimmed and why in the four

calculations above?

3. What will an 0.5-trimmed mean give?

Other robust estimators of location are M-estimators, see e.g. Venables

& Ripley, (1999), but these are not implemented as standard in R [yet]

but are available in S-plus.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 20

Robust estimators of scale:

Consider the following estimators of scale

1. s, where s2 −= −∑ 21
1 ()in x x

2. πσ = −∑1
2 in x x

3. IQR=0.741× −[3 / 4] [/ 4]()n nx x

 (Inter-Quartile Range)

4. MAD=1.4826×median{|xi–median(xj)|}

 (Median Absolute Deviation)

All of these are [approximately] unbiased estimators of σ (or their

squares of σ2) if the xi~N(µ,σ2).

Questions:

1. How resistant are these to outliers?, i.e. what are their breakdown

points?

2. How can these be calculated in R using functions mad(),

sum(), mean(), median(), abs()?

3. Do we need to use the function mad()?

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 21

Relative Efficiency: This measures what price is paid in using a robust

estimator instead of an alternative one. The relative efficiency of two

estimators θ and θ̂ is RE(θ ; θ̂)=(variance of θ̂)/(variance of θ) where

the variances are calculated for the particular distribution that the sample

comes from (assuming we know what this is). This will probably

depend on the sample size n and we can consider the Asymptotic

Relative efficiency as n→∞

e.g. for Normal data, (1) ARE(2σ ;s2)=88%, (2) ARE(MAD;s)=37% and

ARE(median;mean)=64%.

We can interpret these as saying that for Normal data we need roughly

only 37% of the sample size to estimate σ with s to achieve the same

precision of estimation as we would have with MAD. This does not look

attractive — it is a high price to pay for protection against outliers.

However, these calculations are based on the sample really coming

from a Normal distribution.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 22

If the data come from a student t-distribution on 5 d.f., t5, the

ARE(median; mean)=96% (not 64%)

If the data come from a Normal distribution with ε% contamination from a

Normal with the same mean but 3 times the standard deviation, i.e. from

(1–ε)N(µ,σ2)+εN(µ,9σ2) then the table of ARE(2σ ;s2) values is

ε(%) ARE(σ 2 ;s2)

0 87.6%

0.1 94.8%

0.2 101.2%

1 144%

5 204%

Thus we can see that 2σ is robust to model deviation, i.e. if the data

do not come from the Normal model that we have assumed but instead

from a slightly different model then this estimator provides good

protection.

As well as robust data summaries (and implicitly estimators) we can

consider methods of more general statistical analysis that are robust or

resistant to model deviation and data contamination.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 23

2.2 Graphical Summaries

2.2.1 Stem-and-leaf plots

Examples:

(1) Scottish hill race data

> data(hills)

> dist

 [1] 2.5 6.0 6.0 7.5 8.0 8.0 16.0 6.0 5.0 6.0 28.0
 5.0 9.5 6.0 4.5
[16] 10.0 14.0 3.0 4.5 5.5 3.0 3.5 6.0 2.0 3.0 4.0
 6.0 5.0 6.5 5.0
[31] 10.0 6.0 18.0 4.5 20.0

> stem(dist)

The decimal point is 1 digit(s) to the right of the |

 0 | 2333344
 0 | 55555556666666667888
 1 | 0004
 1 | 68
 2 | 0
 2 | 8

(2) Durations and intervals between eruptions of Old Faithful.

> data(geyser)
> summary(geyser)
 waiting duration
 Min. : 43.00 Min. :0.8333
 1st Qu.: 59.00 1st Qu.:2.0000
 Median : 76.00 Median :4.0000
 Mean : 72.31 Mean :3.4608
 3rd Qu.: 83.00 3rd Qu.:4.3833
 Max. :108.00 Max. :5.4500

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 24

> stem(duration)

 The decimal point is 1 digit(s) to the left of the |

 8 | 3
 10 |
 12 |
 14 |
 16 | 223370023357778
 18 | 00022223333335557778880022333333555557778
 20 | 00000000000000000000000223578023578
 22 | 0278
 24 | 7807
 26 | 05
 28 | 373
 30 | 00
 32 | 583
 34 | 523
 36 | 00235
 38 | 0277802377
 40 | 00023780233355777
 42 | 00222222355557778802333557788888
 44 | 00222255555557777800000233888
 46 | 00002225577778800033357778
 48 | 0033782277788
 50 | 30
 52 | 7
 54 | 5

> stem(waiting)

The decimal point is 1 digit(s) to the right of the |

 4 | 3
 4 | 577888889999999
 5 | 00000000000011111222223333333444444444
 5 | 5556677777777788888999
 6 | 0000001112222234
 6 | 5555555668889999
 7 | 01111122222233333344444444
 7 | 5555555556666666677777777778888888888888888899999999999
 8 | 00000000000001111111111112222222233333344444444444
 8 | 5555555666667777777777777788888889999999
 9 | 0011222333333334
 9 | 668
 10 |
 10 | 8

Comments: Quick, easy, no data are lost — actual

values are retained

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 25

2.2.2 Boxplots

Examples:

> data(hills)
> par(mfrow=c(2,2))
> boxplot(dist,sub="distance")
> boxplot(time,sub="time")
> boxplot(climb,sub="cumulative height")
> boxplot(dist,sub="distance")
> rug(dist,side=2)
>

5
1

0
1

5
2

0
2

5

dis tance

5
0

1
0

0
1

5
0

2
0

0

t ime

1
0

0
0

3
0

0
0

5
0

0
0

7
0

0
0

cumulative height

5
1

0
1

5
2

0
2

5

dis tance

Note use of par(mfrow=c(2,2)) and rug()

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 26

> data(geyser)
> boxplot(duration,sub="duration")
> boxplot(waiting,sub="waiting time")
> boxplot(duration,sub="duration")
> rug(duration,side=4)
> boxplot(waiting,sub="waiting time")
> rug(waiting, side=2)

1
2

3
4

5

duration

5
0

6
0

7
0

8
0

9
0

1
1

0

waiting time

1
2

3
4

5
duration

5
0

6
0

7
0

8
0

9
0

1
1

0

waiting time

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 27

Comments: quick summaries for data but may miss gross features, e.g.

bimodality, though addition of a rug-plot can help. However, most useful

for plotting several related data sets for comparison, see example below.

Example: OrchardSpray data give decrease in counts on bees in

response to 8 levels of sulphur treatment. The experiment was

performed as an 8×8 Latin Square with row and column positions. Here

we ignore the Latin Square structure and treat the data as one-way

classification example.

> data(OrchardSprays)

> attach(OrchardSprays)

> summary(OrchardSprays)
 decrease rowpos colpos treatment
 Min. : 2.00 Min. :1.00 Min. :1.00 H : 8
 1st Qu.: 12.75 1st Qu.:2.75 1st Qu.:2.75 G : 8
 Median : 41.00 Median :4.50 Median :4.50 F : 8
 Mean : 45.42 Mean :4.50 Mean :4.50 E : 8
 3rd Qu.: 72.00 3rd Qu.:6.25 3rd Qu.:6.25 D : 8
 Max. :130.00 Max. :8.00 Max. :8.00 C : 8

(Other):16

> par(mfrow=c(1,2))

> boxplot(decrease, sub="decrease in counts")

> rug(decrease,side=2)

> boxplot(decrease~treatment)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 28

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

decrease in counts

A B C D E F G H

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 29

Example: InsectSprays, similar data to above with six treatments. Note

use of the logical parameter notch in the second two plots. This

indicates a ‘sort of confidence interval’ for the median, in the sense that

if two notches do not overlap then the medians of those samples are

‘significantly different’ at the 5% level.

> data(InsectSprays)
> attach(InsectSprays)
> boxplot(count)
> rug(count, side=2)
> boxplot(count~spray)
> boxplot(count,notch=TRUE)
> rug(count,side=2)
> boxplot(count~spray,notch=TRUE)

0
5

1
0

1
5

2
0

2
5

A B C D E F

0
5

1
0

1
5

2
0

2
5

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 30

0
5

1
0

1
5

2
0

2
5

A B C D E F

0
5

1
0

1
5

2
0

2
5

Note that the notches may be bigger than the boxes e.g. for spray F, this

is likely to happen with small amounts of data.

Question: Why, in this example, is the rug plot not very informative?

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 31

2.2.3 Histograms and density estimation.

2.2.3.1 Histograms

Histograms provide a very simple density estimate of the data.

Two functions are useful for drawing histograms, hist()(shownon the

left below) and truehist() (on the right). The first comes from the

base library of R and by default plots frequencies vertically, the second

comes from the MASS library of Venables & Ripley and plots relative

frequencies vertically,so the total area under the histogram in the second

one is 1. Both take many optional arguments controlling the bin width,

the number of bins, the class boundaries and it is possible to use

unequal bin widths. Type help(truehist) to find out more.

> data(geyser)
> hist(duration)
> truehist(duration)

H i s t o g r a m o f d u r a t i o n

d u r a t i o n

F
re

q
ue

nc
y

1 2 3 4 5

0
2

0
4

0
6

0
8

0

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

d u r a t i o n

Question: why are these different (e.g. in range 1.5 to 2.5)?

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 32

If we think of the data as coming from some density f(.) [i.e. that the data

are observations of a random variable with probability density function

f(.)] then for any value of x the histogram gives an estimate of f(x),

Specifically, if the class intervals are c0,c1,…,ck and x is in interval (ci,ci+1)

then the histogram estimate of f(x) is +

+

≤ <
=

−
1

1

#(;)
()

()
i i

i i

x c x c
f x

n c c

If the number of points is large then this will provide quite a good

estimate of the true density, but it will depend on the number of bins and

the starting values. It is possible to make choices of these based on

measures of optimality for sampling from specific distributions, resulting

in rules such as Sturges’ formula: h=range(x)/(log2(n)+1) to give the bin

width h for a sample of n observations. Another is Scott’s formula which

gives h=3.5s(n–1/3) where s is the sample standard deviation or [better]

a robust estimate of standard deviation.

The R code below produces a histogram of a random sample taken from

N(0,1), with superimposed the ‘true’ density.

> x<- rnorm(1000)
> x<- sort(x)
> y<- exp(-x*x/2)/sqrt(2*pi)
> truehist(x)
> hist(x,probability=TRUE)
> plot(x,y,type='l')
> truehist(x)
> lines(x,y,type='l')

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 33

-2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

x

Histogram of x

x

D
e

n
s

it
y

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

-2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

x

y

-2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

x

[Asides: Note the use of the assign operator <- which assigns names

to objects. Note also the use of lines() to add lines to an existing plot

(the most recent one), just as rug() does.]

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 34

2.2.3.2 Kernel Density Estimates

Definition: If we have data x1,x2,…xn which are observations of a

density f(.) and if K(.) is any probability density function then the Kernel

Density Estimate of f(x), with kernel K(.) and bandwidth b is given by

n
j

j 1

x x1
f̂(x) K

nb b=

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

[It is easy to check that this is a genuine probability density provided that

K(.) is, i.e. f̂(x) 0≥ for all x and f(t)dt 1=∫]

The smoothing parameter or bandwidth b is open to choice and is

similar to the bin width in histograms. If b is small then the kernel

estimate is very rough, if it is large then the estimate is smooth. Similar

arguments to choosing the bin width for histograms can be used to show

that the best bandwidth is proportional to n–1/5 with the constant of

proportionality dependent both on the kernel used and on the underlying

distribution (which you are trying to estimate of course).

A common choice of kernel function is the standard Normal or Gaussian,

i.e.
1
2 21

2f(x) (2) exp(x)−= π − but other choices are available (e.g.

rectangular, triangular and Epanechnikov) and there are various

theoretical results available for choosing them.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 35

> library(MASS)
> data(geyser)
> attach(geyser)
> par(mfrow=c(2,2))
> truehist(duration)
> lines(density(duration))
> truehist(duration)
> lines(density(duration, adjust=0.3))
> truehist(duration)
> lines(density(duration,adjust=0.7))
> truehist(duration)
> lines(density(duration, adjust=2.5))

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

duration

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

duration

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

duration

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

duration

Kernel density estimates of Old Faithful data with default, 0.3×default,

0.7×default and 2.5×default bandwidths.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 36

Comments: Kernel density estimates are an easy and attractive

alternative or additional tool to histograms. Although you have to choose

the bandwidth, as you do in histograms, they do not depend upon

choices of starting values of class intervals nor upon whether you regard

the classes as open or closed on the left/right.

A more important reason for considering them is that they can be used

in more sophisticated methods, e.g. in problems of testing for mixtures of

distributions the minimum value of the bandwidth (bcrit say) for which the

data is unimodal can be used as a test statistic for bimodality.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 37

2.2.3.3 Two Dimensional Kernel Density Estimates

Extensions to two dimensions (and more) are straightforward. In R they

can be calculated using functions kde2d(), and displayed using

contour() and persp().

The two dimensional kernel density estimate is defined by

i x i yi

x y

((x x) /h) ((y y) /h)
f̂(x,y)

nh h

φ − φ −
= ∑ where (.)φ is a probability density

function (e.g. the standard normal) and hx, hy are the two bandwidths.

Example: (the data set faithful is in the base library and is the same

as geyser but with a different variable name)

> data(faithful)
> attach(faithful)
> summary(faithful)

 eruptions waiting
 Min. :1.600 Min. :43.0
 1st Qu.:2.163 1st Qu.:58.0
 Median :4.000 Median :76.0
 Mean :3.488 Mean :70.9
 3rd Qu.:4.454 3rd Qu.:82.0
 Max. :5.100 Max. :96.0

> plot(eruptions,waiting,xlim=c(0.5,6),ylim=c(40,100))

> f1 <- kde2d(eruptions, waiting, n=50, lims=c(0.5,6,40,100))

> persp(f1, phi=30, theta=20, d=5)

> contour(f1)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 38

1 2 3 4 5 6

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

eruptions

w
a

it
in

g

f1

Y

Z

1 2 3 4 5 6

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

It is possible to choose the angle of view in the perspective drawing, the

levels of contours plotted, put labels on the axes etc, etc, …… .

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 39

2.2.4 Choice of bandwidth:

The theoretical optimal choice of bandwidth depends on what the true

density is that we are estimating. However, we do not know what this is

(which is why we are estimating it). However, we do have an estimate

of the density (!!), provided of course we know what the optimal

bandwidth is. Can we use this somehow?

Yes, by using cross-validation. The idea is to leave one observation

out and then estimate the density using the other n–1 observations and

compare the estimate with the observation left out in some way. Then

we do this again, leaving out the next observation, and then the next.

We then choose the bandwidth b to make the match as good as

possible.

Specifically, in this case we choose b to minimize

n
2 2

i in
i 1

ˆUCV(b) f (x;b) dx f(x ;b)−
=

= − ∑∫ where i if̂(x ;b)− is the kernel density

estimate based on the n–1 observations leaving out xi .

The idea of cross-validation is used in many different contexts in

statistical analysis.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 40

2.2.5 Another use of kernel density estimates:

Suppose we want to estimate the median of a set of data (e.g. of the

geyser eruptions). Obviously the sample median is a sensible estimate

but how do obtain it’s standard error? It can be shown that in large

samples, the median of a sample from f(.) with true median m is

asymptotically Normally distributed N(m, 1/{4n[f(m)]2}). So, the standard

error depends upon the value of the density at the median. This can be

estimated from the kernel density estimate.

Example:
> library(MASS)
> data(faithful)
> attach(faithful)
> summary(faithful)
> median(eruptions)
[1] 4
> truehist(eruptions, nbins=15)
> lines(density(eruptions))
> truehist(eruptions, nbins=15)
> lines(density(eruptions,adjust=0.8))
> rug(eruptions)
> truehist(eruptions, nbins=15)
> lines(density(eruptions,adjust=0.9))
> rug(eruptions)
> truehist(eruptions, nbins=15)
> lines(density(eruptions,adjust=0.7))
> rug(eruptions)
> density(eruptions,n=1,from=3.99, to=4.01)$y
[1] 0.3808035
> density(eruptions,n=1,from=3.99, to=4.01,adjust=0.9)$y
[1] 0.3858891
> density(eruptions,n=1,from=3.99, to=4.01,adjust=0.8)$y
[1] 0.3901167
> density(eruptions,n=1,from=3.99, to=4.01,adjust=0.7)$y
[1] 0.3937933

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 41

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.0

0
.2

0
.4

0
.6

eruptions

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.0

0
.2

0
.4

0
.6

eruptions

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.0

0
.2

0
.4

0
.6

eruptions

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.0

0
.2

0
.4

0
.6

eruptions

Note that we first found that the sample median was 4. Then

investigation of the kernel density estimates suggested that the default

choice of bandwidth was a little too large, so try a few other values

slightly smaller. Then note use of density with n=1, to ensure only

one value calculated, over a range around the sample median and also

note the use of density(…….)$y to extract the y-coordinate.

Conclusion, f̂(m) 0.39 so standard error of the estimate 4.0 of the

median is (4×272×0.392)–½ =0.078

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 42

2.3 Summary

The key ideas introduced here have been problems of

♦ ways of summarizing and displaying data, perhaps informally

♦ robustness & resistance to model deviation and data

contamination

♦ kernel density estimates and their use for a variety of problems

♦ idea of cross-validation

These ideas are especially useful because they allow us to examine

assumptions made in statistical analyses and they provide a starting

point for developing methods which are not so sensitive to failures in

assumptions.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 43

3. Classical Univariate Statistics

3.1. Standard tests

Standard one– and two–sample Normal theory and non-parametric

classical univariate tests are readily available in R and S-plus.

Many of these are generic functions and what is returned depends on

the context, i.e. whether it is a one-sample or two-sample test depends

on whether you give the function t.test() the names of one or two

samples.

Example: (Data shoes in MASS library but note how to enter the data

direct into vectors A and B)

> data(shoes)
> shoes
$A
 [1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
$B
 [1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

Or enter the data directly:

> A<- c(13.2, 8.2, 10.9, 14.3, 10.7, 6.6, 9.5, 10.8, 8.8, 13.3)

> B<- c(14.0, 8.8, 11.2, 14.2, 11.8, 6.4, 9.8, 11.3, 9.3, 13.6)

> t.test(A,B)

 Welch Two Sample t-test

data: A and B
t = -0.3689, df = 17.987, p-value = 0.7165
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 -2.745046 1.925046
sample estimates:
mean of x mean of y
 10.63 11.04

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 44

> t.test(A-B)

 One Sample t-test

data: A - B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.6869539 -0.1330461
sample estimates:
mean of x
 -0.41

> t.test(A,B,paired=TRUE)

 Paired t-test

data: A and B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 -0.6869539 -0.1330461
sample estimates:
mean of the differences
 -0.41

The full list of tests available is

binom.test chisq.test cor.test fisher.test

friedman.test kruskal.test mantelhaen.test mcnemar.test

prop.test t.test var.test wilcox.test

chisq.gof ks.gof

And details can be found in help().

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 45

Note that the results of each of these functions is an object and

individual elements of these objects can be accessed separately by

using a $ sign with name-of-ofbject$name-of-element:

> t.test(A-B)$p.value
[1] 0.00853878

> t.test(A-B)$conf.int
[1] -0.6869539 -0.1330461
attr(,"conf.level")
[1] 0.95

Again, a list of elements of each of these tests is given in the help

system.

Some of these tests depend upon assumptions on the underlying

distribution of the data and others do not. For example the t-test

presumes data are normally distributed but the non-parametric Wilcoxon

does not. Both of them can test whether the measures of location are

the same for two samples or whether the measure has a specific value

(e.g. 0) for one sample, but the t-test works in terms of the mean as the

measure of location and the Wilcoxon uses the median as the measure.

Not only is the median more resistant to outliers but the probability

argument used to obtain the p-value is based on combinatorial

arguments rather than one assumptions about probability distributions of

the data.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 46

Example (shoe data again, paired test):

> t.test(A-B)

 One Sample t-test

data: A - B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.6869539 -0.1330461
sample estimates:
mean of x
 -0.41

> wilcox.test(A-B)

 Wilcoxon signed rank test with continuity
correction

data: A - B
V = 3, p-value = 0.01431
alternative hypothesis: true mu is not equal to 0

Warning message:
Cannot compute exact p-value with ties in:
wilcox.test(A - B)

Note that the Wilcoxon returns a larger p-value than the t-test, this is

largely because the t-test is assuming more about the data and so you

‘get more out of the analysis’ (more in ⇒ more out). This is fine

provided the assumptions made for the t-test are sensible. It is of course

possible to check some of the assumptions (e.g. using a normal

probability plot for checking normality) but with small samples it is

difficult to detect non-normality.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 47

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.0

-0
.6

-0
.2

0
.2

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti

le
s

> qqnorm(A-B)

> qqline(A-B)

This plot suggests that there are at least doubts about normality for

these data.

One solution is to use only ‘non-parametric’ methods, but even these

make some assumptions.

An alternative is to use permutation methods or simulation techniques,

some of which come under a general heading of Monte Carlo Methods.

The Bootstrap is a particular form of simulation technique.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 48

3.2 The Bootstrap

3.2.1. Introduction

Suppose we have estimated the median by the sample median from a

set of data and want to know how variable this estimate is. If we knew

what the true density was then we could simulate more samples from

the same density, taking samples of the same size as the one we have,

calculate the median of each and then see how variable our answers

were in each of these separate simulated samples.

However, we don’t know what the true distribution is. So, either we have

to estimate it (e.g. fit a normal distribution) or we have to find some other

estimate. It might be possible to use a kernel density estimate but then

simulating from this might be complicated. The is a much simpler

estimate of the distribution and that is the sample itself.

Specifically, if we have a sample x1,…,xn from a distribution F(.) and we

calculate the sample distribution function, Fn(.) based on our sample, we

can then use Fn(.) directly to generate more samples from our ‘best

estimate’ of the unknown F(.). In fact this is just the same as taking a

random sample of size n, with replacement, from our actual data set

x1,…,xn. This may look very strange but it is a very powerful technique

and with the use of the R function sample(….., replace=TRUE) it

can be done very easily.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 49

3.2.2 Simple Simulation

First, we give an illustration of the basic idea of estimation by simulation.

Suppose we take a sample of size 20 from a Normal distribution

N(5,2.72), i.e. mean 5 and standard deviation, calculate the sample

mean and then want to calculate a 95% confidence interval for the true

mean. The standard way of doing this is to use classical distributional

theory and say the 95% confidence interval is given by

19x t (0.975)s / n±

where s is the sample standard deviation and t19(0.975) is the two-sided

95% point of a t-distribution on 19 d.f. (which is 2.093, but can be

calculated directly in R as

> qt(0.975,19);
[1] 2.093024

(here the function is quantile of the t-distribution for the 0.975 point for
19 degrees of freedom.)

> x<- rnorm(20,mean=5,sd=2.7)
> mean(x)
[1] 4.75921
> var(x)
[1] 7.10922
> confupper<-mean(x)+qt(0.975,19)*sqrt(var(x)/length(x))
> conflower<-mean(x)-qt(0.975,19)*sqrt(var(x)/length(x))
> confinterval<- c(conflower,confupper)
> confinterval
[1] 3.511338 6.007082

This gives the 95% confidence interval based on our sample as

(3.511,6.007)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 50

However if we could do a practical experiment to see how variable our

estimate of the means is. If we ‘simulate’ our particular sample by taking

lots of similar samples from N(5,2.72) and calculate the mean of each of

them, then we can see experimentally what the range of values they

have. We could then estimate a confidence interval by taking a range

which includes 95% of our simulated values. We would not have used

the sample standard deviation nor the t-distribution, nor any of the

mathematical theory involving the t-distribution.

> simulate <-numeric(100)
> for (i in 1:100) simulate[i]<-mean(rnorm(20,mean=5,sd=2.7))
> z<-sort(simulate)
> z
 [1] 3.683628 3.876367 3.901581 3.977876 4.059417 4.084968 4.103193 4.127214
 [9] 4.145423 4.151252 4.151807 4.158069 4.197285 4.220176 4.250503 4.393266
 [17] 4.467750 4.500474 4.521293 4.566604 4.574698 4.613527 4.631142 4.652405
 [25] 4.684332 4.696737 4.699455 4.707846 4.720326 4.732183 4.737479 4.754224
 [33] 4.761708 4.828722 4.832087 4.848576 4.873959 4.897021 4.903855 4.919861
 [41] 4.926004 4.936150 4.955231 4.962549 4.982843 4.985068 5.014348 5.025469
 [49] 5.060322 5.068560 5.070019 5.078719 5.081987 5.086046 5.097905 5.134257
 [57] 5.148494 5.156743 5.162649 5.177213 5.184232 5.190236 5.216297 5.245337
 [65] 5.249008 5.276213 5.296429 5.308889 5.310640 5.316523 5.352162 5.357711
 [73] 5.372045 5.376082 5.423826 5.440574 5.448857 5.477199 5.484830 5.511197
 [81] 5.517907 5.585537 5.598260 5.657312 5.659240 5.662326 5.692230 5.709956
 [89] 5.714891 5.859206 5.926859 5.989662 6.009138 6.072194 6.139593 6.217246
 [97] 6.337749 6.383891 6.385220 6.449417

> z[3]
[1] 3.901581
> z[98]
[1] 6.383891
>

Then we could say that an approximate 95% confidence interval is given

by (3.90, 6.39), — more precisely this is a 96% interval since 96% of our

values lie inside it and 4% outside.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 51

Computational notes:

1: note the declaration of the vector simulate[.] of length 100 using

numeric(100).

2: note the construction of a simple loop with for (i in 1:100), This

can be notoriously slow in packages such as R and S-plus and

advanced programmers would try to replace loops etc by matrix

calculations (but I don’t intend doing this here).

3: note that we do not need to store all the values in each simulated

sample, we just need the mean of them.

4: note the use of sort(.)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 52

Difficulty: In this example we ‘knew’ that our sample came from

N(5,2.72) and we used this to simulate further samples. Of course we

could never really know this and so the best we could do is to simulate

from our best guess at the distribution, i.e. N(x ,s2), i.e. N(4.76, 2.672)

since 4.76 and 2.66 were the mean and standard deviation of our

original sample:

> simulate <- numeric(100)
> for(i in 1:100)simulate[i]<-mean(rnorm(20,mean=4.76,sd=2.67))
> z<-sort(simulate)
> z
 [1] 3.396327 3.502508 3.841749 3.870058 3.923347 3.969280 4.050996 4.071518
 [9] 4.110478 4.115113 4.163969 4.182597 4.185243 4.195840 4.277520 4.286212
 [17] 4.289088 4.295636 4.365233 4.374939 4.386417 4.404138 4.417440 4.425339
 [25] 4.460611 4.471175 4.471656 4.501675 4.510588 4.517224 4.528234 4.535420
 [33] 4.551477 4.552511 4.557144 4.557668 4.569633 4.573537 4.578601 4.582115
 [41] 4.583091 4.583715 4.598089 4.599501 4.609323 4.613675 4.666297 4.671486
 [49] 4.671580 4.679536 4.681736 4.721742 4.723026 4.734635 4.738312 4.738548
 [57] 4.796185 4.800435 4.800466 4.874767 4.887359 4.891548 4.893593 4.899882
 [65] 4.908909 4.925140 4.935247 4.964652 4.970336 4.970521 4.992720 5.080825
 [73] 5.081477 5.091885 5.106060 5.110453 5.129278 5.154696 5.159185 5.184879
 [81] 5.197338 5.206724 5.229970 5.256769 5.271497 5.304417 5.348681 5.356202
 [89] 5.364906 5.376544 5.411127 5.441553 5.545112 5.605137 5.680706 5.789276
 [97] 5.855591 5.902711 5.946993 6.147668
> z[3]
[1] 3.841749
> z[98]
[1] 5.902711

This gives an estimated confidence interval of (3.84, 5.90) — not very

different from our previous estimates, in fact slightly closer to the ‘true

answer’ of (3.511,6.007) but this is just an accident.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 53

Difficulty: Although we estimated the mean and variance from our

sample, we still assumed that our data came from a Normal distribution.

Of course, we can test this and in the simple case we had above it might

seem reasonable, but in other cases it we might know that a Normal

distribution was not sensible and we might have no idea of a sensible

distribution to use in simulation.

Consider again the problem of estimating the median of the eruption

durations of Old Faithful. We have already seen that the distribution is

bimodal and so cannot possibly be Normal of any sort but here is how

we would check:

> data(faithful)
> attach(faithful)
> par(mfrow=c(2,2))
> library(MASS)
> truehist(eruptions,nbins=15)
> rug(eruptions)
> lines(density(eruptions,adjust=0.7))
> qqnorm(eruptions)
> qqline(eruptions)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.0

0
.2

0
.4

0
.6

eruptions

-3 -2 -1 0 1 2 3

1
.5

2
.5

3
.5

4
.5

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti

le
s

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 54

3.2.3 Bootstrap Simulation

We cannot possible pretend that the distribution of the eruption durations

is normal so if we want to simulate samples that are like the actual

sample we need another distribution. Now the simplest estimate we

have of the ‘true’ distribution of eruption durations is given by the sample

itself, i.e. by the sample distribution function Fn(x)

If we sample from Fn(x) this is equivalent to taking a sample with

replacement from our original observations.

0.5

1.0

x X1 XnXi

Fn(x)

0

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 55

> data(faithful)

> attach(faithful)
> set.seed(137)
> help(numeric)
> boots<- numeric(1000)
> for (i in 1:1000) boots[i]<-
 median(sample(eruptions,replace=TRUE))

> mean(boots-median(eruptions))
[1] -0.013551
> sqrt(var(boots))
[1] 0.07662417
> truehist(boots)
> lines(density(boots))
> rug(boots)
> truehist(jitter(boots))
> lines(density(boots,adjust=0.7))
> rug(jitter(boots))

3.6 3.7 3.8 3.9 4.0 4.1 4.2

0
2

4
6

8
1

0
1

2
1

4

boots

3.6 3.7 3.8 3.9 4.0 4.1 4.2

0
2

4
6

8

jitter(boots)

This shows that the bias of the bootstrap estimate is –0.0.136 (i.e. quite

small) and the estimated standard error is 0.077, quite close to the

kernel density estimate of 0.078, which was based in part on a Normal

distribution.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 56

Computational notes

1: Set.seed(137) chooses the ‘seed’ of the random number

generator as 137. This means that I can get precisely the same

bootstrap sample again if I set the seed to be 137. If I were to set the

seed to another number then I would get a different sample and so a

different estimate at the end. For example:

> set.seed(731)
> for (i in 1:1000) boots[i]<-
 median(sample(eruptions,replace=T))
> mean(boots-median(eruptions))
[1] -0.0180855
> sqrt(var(boots))
[1] 0.08026924

— slightly different but not enough to be of practical importance.

2: Note the use of jitter in drawing the histogram, there were clearly

problems of observations being exactly on the class boundary (not

surprising since we know the median is 4) and the use of the jitter

makes the histogram a better density estimate — if we just wanted to

display the actual data then the use of jitter would not be statistically

justified (and we should use stem anyway).

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 57

3.2.4 Other Types of Bootstrap

The bootstrap sampling used above took the sample distribution function

Fn(x) as an estimate of the ‘true’ distribution function F(x). This is a very

‘rough’ estimate and it makes intuitive sense to use a smoother one, i.e.

to use a Smooth Bootstrap. We can do this by adding a small amount

to each sampled value, rather like using jitter(.).

The procedure used in the second set of simulations illustrating the

simple simulation technique (i.e. when we presumed the underlying

distribution was Normal but estimated the mean and variance from our

sample) is sometimes known as a Parametric Bootstrap.

The general ideas of bootstrapping are very powerful and very widely

used for statistical analyses that do not depend very much on

assumptions that are difficult to verify. They are one of the techniques

that were initially called computer intensive but now these are

becoming so routine and ordinary that this term is becoming old-

fashioned.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 58

3.3 Randomization and Permutation Tests

When W.S. Gosset (who was also known as ‘Student’) first derived the

t-distribution he did not actually work it out as a result of assuming that

the original data were Normally distributed but from a different argument.

Consider the problem of comparing the means of two samples A and B.

Each of the observations is labelled either A or B. If the null hypothesis

that there is no difference between the two is samples is true then these

labels are entirely random. This means that the true distribution of a test

statistic (such as the t-statistic) could be assessed by considering

random re-labelling of each observation.

We could do this by experiment (or a type of simulation) by doing the

following:

Step 1: calculate our two-sample test statistic, tobs say.

Step 2: randomly label each observation as either A or B (keeping the

sample sizes the same) and then calculate the same test statistic for

comparing all the A observations with the B observations, getting a value

t1 say.

Steps 3, 4,…, 1001: repeat step 2 for a total of a 1000 times getting a

thousand values t1, t2, …, t1000 .

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 59

Final step: compare our observed value tobs with the simulated values. If

there is no difference between the original samples A and B then the

labels are arbitrary and so our tobs will not look unusual amongst the

simulated t1, t2, …, t1000. However, if our value tobs is amongst the most

extreme 5% then we would have evidence (at the 5% level) that there

really was a difference between the samples. Specifically, if we order the

values so that t(1)<t(2)<…<t(1000) then we would reject the hypothesis that

the two samples were the same if either tobs<t(25) or if tobs>t(975).

What Student showed was that if you consider the theoretical distribution

of the randomly re-labelled t-values then this was very well

approximated by the ‘student t-distribution’. [The mathematics involved

much the same approximations and limits as are involved in proving the

Central Limit Theorem]. It was only later that it was shown that you could

get the same result by assuming that the observations were Normally

distributed.

Anyway, it is now easy to perform these tests empirically and so avoid

either the assumption of Normality or the inaccuracy of the

approximations (whichever approach you use). Many packages (not just

R and S-plus) now offer this facility for many tests, e.g. in SPSS you will

find it under Options and Monte Carlo.

Sometimes, the sample is so small that you can consider all possible

relabellings, in which case you just need to calculate the statistics for

each labelling once and then the resulting test is know as a permutation

test. Otherwise, it is known as a randomization test.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 60

Example: Paired t-test

Consider the shoes example and consider it is a paired t-test. There are

10 pairs and the paired t-test is just the same as a one-sample test on

the differences that the mean is zero. If we randomly relabel each pair

as either A-B or B-A then the numerical values of the differences in

values stays the same, it is just the sign that is changed (with probability

0.5). In fact there are only 210=1024 different possibilities so it is practical

to consider a permutation test but here we will do it by simulation.

To do this in R we will first define a function to calculate the t-statistic

which is sim

x
t

var(x) /n
= . Then to change the signs of the differences

randomly we will use the R function sign() which is either +1 or –1

according to whether the argument is positive or negative, together with

a random Uniform(0,1) number which is generated by the function

runif(), subtracting 0.5 from it. Note that sign(runif(10)-0.5)

will produce a vector of length 10 consisting of +1 or –1 with probability

0.5.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 61

> data(shoes)
> attach(shoes)
> ttest<- function(x) mean(x)/sqrt(var(x)/length(x))
> d<- A-B
> d
 [1] -0.8 -0.6 -0.3 0.1 -1.1 0.2 -0.3 -0.5 -0.5 -0.3
> ttest(d)
[1] -3.348877
> t.test(A,B,paired=TRUE)

 Paired t-test

data: A and B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
 -0.6869539 -0.1330461
sample estimates:
mean of the differences
 -0.41

> tsim<- numeric(1000)
> ttest(d)
[1] -3.348877
> for(i in 1:1000)tsim[i]<-ttest(d*sign(runif(10)-0.5))
> truehist(tsim)
> rug(tsim)
> z<- seq(-4,4,0.1)
> lines(z,dt(z,9))
> tobs<-ttest(d)
> markx<- c(tobs,tobs)
> marky<- c(0,0.4)
> lines(markx,marky)
> tsorted<-sort(tsim)
> tsorted[1:10]
 [1] -4.920934 -4.258442 -3.753745 < tobs <-3.348877 -
3.348877 -3.348877 -3.348877
 [8] -3.348877 -3.011905 -3.011905

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 62

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

ts im

The picture above gives a histogram of the simulated values (and note

from the rug plot how few distinct values there are — partly this is

because there are only 7 (not 10) distinct values of abs(d).

The vertical line towards the left of the plot marks our observed value of

–3.35 and we can see that only three of our 1000 simulated values are

less than this. We can thus reject the hypothesis that the means are

equal at level 2×3/1000=.006, (note that the t-approximations gives a

level of 0.0085, quite close as can be seen from the density of t9

superimposed on the histogram).

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 63

3.4 Summary

This section has given a brief summary of classical univariate tests. The

key ideas introduced are that

♦ many of these tests rely on assumptions which may be difficult to

verify or may in fact be wrong (e.g. for bimodal data)

♦ tests involving sample means and variances are more at risk than

those depending on medians and permutation arguments

♦ we can simulate similar samples to obtain estimates of quantities

such as standard errors or p-values

♦ bootstrapping provides a way of making no assumptions about

the distribution of the data at all (except independence!)

♦ randomization and permutation tests are easy to do and

provide good protection. If they are available in your favourite

statistics package (e.g. SPSS) then USE THEM, especially for

small sample problems such as 2×2 tables and chi-squared tests.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 64

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 65

4. Linear and Generalized Linear Models

4.1 Introduction

Linear models relate a response (or dependent variable) to a set of

predictors (or independent variables) by a linear expression of unknown

parameters which are estimated from the data, i.e. they are termed

linear because we estimate a linear function of the unknown parameters.

The actual response may depend in a non-linear way on the predictors,

e.g. there may be a polynomial relationship but this can still be

expressed as a linear function of the parameters.

If the response is a continuous quantitative variable then we may model

the response as a Normal random variable with mean depending upon

the predictors. The next section provides a brief review and illustration of

regression models, including simple regression diagnostics. Ideas of

robust regression and bootstrapping are covered.

Generalized linear models cover situations where the response is some

other measure, e.g. success/failure, and we may then model some other

function of the response leading to techniques such as log-linear and

logistic regression which are considered briefly in later sections.

All the methods will be illustrated on specific examples.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 66

4.2 Simple Linear Regression

4.2.1 Example: Scottish Hill Races
> library(MASS)
> data(hills)
> attach(hills)
> plot(dist,time)
> identify(dist,time,row.names(hills))
 [1] 7 11 17 18 33 35

5 10 15 20 25

5
0

1
0

0
1

5
0

2
0

0

dist

ti
m

e

Bens of Jura

Lairig Ghru

Seven Hills

Knock Hill

Two Breweries

Moffat Chase

Note the use of identify() which allowed several of the points to be

named interactively with the row names just by pointing at them with the

mouse and clicking the left button. Clicking with the right button and

choosing stop returns control to the Console Window. It is clear that

there are some outliers in the data, notably Knock Hill and Bens of Jura

which may cause some trouble.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 67

Next, we fit a simple linear model to relate time to distance, storing the

analysis in object hillslm1, and add the fitted line to the plot:

> hillslm1<- lm(time~dist)
> summary(hillslm1)
Call:
lm(formula = time ~ dist)
Residuals:
 Min 1Q Median 3Q Max
-35.745 -9.037 -4.201 2.849 76.170
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.8407 5.7562 -0.841 0.406
dist 8.3305 0.6196 13.446 6e-15 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 19.96 on 33 degrees of freedom
Multiple R-Squared: 0.8456, Adjusted R-squared: 0.841
F-statistic: 180.8 on 1 and 33 degrees of freedom, p-
value: 6.106e-015

> lines(abline(hillslm1))
>

5 10 15 20 25

5
0

1
0

0
1

5
0

2
0

0

dist

ti
m

e

Bens of Jura

Lairig Ghru

Seven Hills

Knock Hill

Two Breweries

Moffat Chase

Although this shows a highly significant result for the slope we need to

investigate the adequacy of the model further.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 68

4.2.2 Regression Diagnostics:

The model that we have used is that if the time and distance of the ith

race are yi and xi respectively then our model is that yi=α+β xi+εi where

the εI are independent observations from N(0,σ2). If we look at the

residuals iε̂ given by i i i i i
ˆˆˆ ˆy y y xε = − = − α − β then these residuals

should look as if they are independent observations from N(0,σ2), and

further they should be independent of the fitted values iŷ .

A further question of interest is whether any of the observations are

influential, that is, do any of the observations greatly affect the

estimates of α and β. The way to check this is to leave each observation

out of the data in turn and estimate the parameters from the reduced

data set. Cooks Distance is a measure of how much the estimate

changes as each observation is dropped.

All of these diagnostics can be performed graphically using the function

plot.lm() which take as its argument the results of the lm() analysis

(which was stored as an object hillslm1).

> par(mfrow=c(2,2))
> plot.lm(hillslm1)
> hills
> row.names(hills)

 [1] "Greenmantle" "Carnethy" "Craig Dunain" "Ben Rha"
 [5] "Ben Lomond" "Goatfell" "Bens of Jura" "Cairnpapple"
 [9] "Scolty" "Traprain" "Lairig Ghru" "Dollar"
[13] "Lomonds" "Cairn Table" "Eildon Two" "Cairngorm"
[17] "Seven Hills" "Knock Hill" "Black Hill" "Creag Beag"
[21] "Kildcon Hill" "Meall Ant-Suidhe" "Half Ben Nevis" "Cow Hill"
[25] "N Berwick Law" "Creag Dubh" "Burnswark" "Largo Law"
[29] "Criffel" "Acmony" "Ben Nevis" "Knockfarrel"
[33] "Two Breweries" "Cockleroi" "Moffat Chase"

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 69

50 100 150 200

-4
0

0
2

0
4

0
6

0
8

0

Fitted values

R
e

s
id

u
a

ls

Residuals vs Fitted

7

18

11

-2 -1 0 1 2

-2
-1

0
1

2
3

4

Theoretical Quantiles
S

ta
n

d
a

rd
iz

e
d

 r
e

s
id

u
a

ls

Normal Q-Q plot

7

18

11

50 100 150 200

0
.0

0
.5

1
.0

1
.5

2
.0

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s

id
u

a
ls

Scale-Location plot
7

18

11

0 5 10 15 20 25 30 35

0
.0

0
.5

1
.0

1
.5

2
.0

Obs. number

C
o

o
k

's
 d

is
ta

n
c

e

Cook's distance plot

11

7

18

The function automatically identifies (with row numbers) the outlying and

most influential points.

7: Bens of Jura, 11: Lairig Ghru, 18: Knock Hill

Of these, 7, Bens of Jura, is the most serious — it is both an outlier and

is influential so the estimates depend strongly on it. 18, Knock Hill, is

also an outlier but not nearly so influential so the results will not change

so much if that observation is removed. 11, Lairig Ghru is very influential

but does not appear to be ‘out of line’ with the others, it is just the

longest race.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 70

We can investigate the effect of dropping individual observations from

the data set by lm(time~dist,data=hills[-7,]) (to drop the 7th

observation) and lm(time~dist,data=hills[-c(7,18),]) for

both:

> hillslm2<- lm(time~dist,data=hills[-7,])
> summary(hillslm2)
Call:
lm(formula = time ~ dist, data = hills[-7,])
Residuals:
 Min 1Q Median 3Q Max
-19.221 -7.412 -3.159 3.692 57.790
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.0630 4.2073 -0.49 0.627
dist 7.6411 0.4665 16.38 <2e-16 ***
Residual standard error: 14.48 on 32 degrees of freedom
Multiple R-Squared: 0.8934, Adjusted R-squared: 0.8901
F-statistic: 268.3 on 1 and 32 degrees of freedom, p-
value: 0
> plot.lm(hillslm2)

50 100 150 200

-2
0

0
2

0
4

0
6

0

F itted values

R
e

s
id

u
a

ls

Residuals vs Fitted

Knock H ill

Two Breweries

Lairig Ghru

-2 -1 0 1 2

-2
-1

0
1

2
3

4

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s

id
u

a
ls

Normal Q-Q plot

Knock H ill

Two Breweries

Lairig Ghru

50 100 150 200

0
.0

0
.5

1
.0

1
.5

2
.0

F itted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s

id
u

a
ls

Scale-Location plot
Knock H ill

Two Breweries

Lairig Ghru

0 5 10 15 20 25 30 35

0
.0

0
.5

1
.0

1
.5

Obs. number

C
o

o
k

's
 d

is
ta

n
c

e

Cook's distance plot

Lairig Ghru

Two Breweries

Knock H ill

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 71

> hillslm3<- lm(time~dist,data=hills[-c(7,18),])

> summary(hillslm3)
Call:
lm(formula = time ~ dist, data = hills[-c(7, 18),])
Residuals:
 Min 1Q Median 3Q Max
-23.023 -5.285 -1.686 5.981 33.668
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.8125 3.0217 -1.924 0.0636 .
dist 7.9108 0.3306 23.926 <2e-16 ***

Residual standard error: 10.16 on 31 degrees of freedom
Multiple R-Squared: 0.9486, Adjusted R-squared: 0.947
F-statistic: 572.5 on 1 and 31 degrees of freedom, p-
value: 0
> plot.lm(hillslm3)

50 100 150 200

-3
0

-1
0

0
1

0
2

0
3

0
4

0

Fitted values

R
e

s
id

u
a

ls

Residuals vs Fitted

Two Breweries

Lairig Ghru

Goatf ell

-2 -1 0 1 2

-2
0

2
4

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s

id
u

a
ls

Normal Q-Q plot

Two Breweries

Lairig Ghru

Goatf ell

50 100 150 200

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s

id
u

a
ls

Scale-Location plot
Two Breweries

Lairig Ghru

Goatf ell

0 5 10 15 20 25 30

0
1

2
3

4
5

Obs. number

C
o

o
k

's
 d

is
ta

n
c

e

Cook's distance plot

Lairig Ghru

Two Breweries

Mof f at C hase

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 72

4.2.3 Several Variables

We can fit regression models involving several variables just by

extending the formula in the lm() function in a natural way and we still

have the same available diagnostics. To include the variable climb we

have:

> hillslm4<-lm(time~dist+climb)
> summary(hillslm4)
Call:
lm(formula = time ~ dist + climb)

Residuals:
 Min 1Q Median 3Q Max
-16.215 -7.129 -1.186 2.371 65.121
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.992039 4.302734 -2.090 0.0447 *
dist 6.217956 0.601148 10.343 9.86e-12 ***
climb 0.011048 0.002051 5.387 6.45e-06 ***
Residual standard error: 14.68 on 32 degrees of freedom
Multiple R-Squared: 0.9191, Adjusted R-squared: 0.914
F-statistic: 181.7 on 2 and 32 degrees of freedom, p-
value: 0

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 73

> plot.lm(hillslm4)

50 100 150

-2
0

0
2

0
4

0
6

0

Fitted values

R
e

s
id

u
a

ls
Residuals vs Fitted

18

7

31

-2 -1 0 1 2

-1
0

1
2

3
4

5

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s

id
u

a
ls

Normal Q-Q plot

18

7

31

50 100 150

0
.0

0
.5

1
.0

1
.5

2
.0

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s

id
u

a
ls

Scale-Location plot
18

7

31

0 5 10 15 20 25 30 35

0
.0

0
.5

1
.0

1
.5

2
.0

Obs. number

C
o

o
k

's
 d

is
ta

n
c

e
Cook's distance plot

7

18

11

Note that the 11th observation is no longer the most influential one but

we still have problems with outliers. These could be dropped in just the

same way as previously.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 74

4.3 Robust Regression

Just as we have robust and resistant summary measures, or more

technically robust estimates of location and scale, it is possible to define

robust regression methods which are not so influenced by outliers. The

only techniques provided in R is the function rlm(), (but in S-plus there

are several others).

Consider again the Scottish Hill Races Data where it was found that

observations 7 and 18 were outliers. The ordinary least squares fits to

the full data set and after dropping the two outliers is given below:

> lm(time~dist+climb)

Call:
lm(formula = time ~ dist + climb)

Coefficients:
(Intercept) dist climb
 -8.99204 6.21796 0.01105

> lm(time~dist+climb,data=hills[-c(7,18),])

Call:
lm(formula = time ~ dist + climb, data = hills[-c(7,
18),])

Coefficients:
(Intercept) dist climb
 -10.361646 6.692114 0.008047

Note how much the estimates change after dropping the two outliers.

Now consider the results of the robust regression using rlm()

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 75

> rlm(time~dist+climb)

Call:
rlm.formula(formula = time ~ dist + climb)
Converged in 10 iterations

Coefficients:
 (Intercept) dist climb
-9.606716592 6.550722947 0.008295854

Degrees of freedom: 35 total; 32 residual
Scale estimate: 5.21

The estimates are nearly the same as using ordinary least square on the

reduced data set.

Another example is a set of data giving the numbers of phone calls (in

millions) in Belgium for the years 1950-73. In fact, there had been a mis-

recording and the data for six years was recorded as the total length and

not the number.

> plot(year,calls)
> lines(abline(lm(calls~year)))
> lines(abline(rlm(calls~year,maxit=50)))

gives a plot of the data with the fitted least squares line and the line fitted

by a robust technique.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 76

50 55 60 65 70

0
5

0
1

0
0

1
5

0
2

0
0

year

c
a

lls

The diagnostic function plot.lm() can also be used with the results of

a robust fit using rlm() and you are encouraged to try it, as well as

investigating the full summary output of both lm() and rlm() for this

data set.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 77

4.4 Bootstrapping linear models

Care needs to be taken when bootstrapping in linear models. The

obvious idea of taking samples with replacement of the actual data

points {(xi,yi);I=1,…,n} is not usually appropriate if we regard the values

of the independent variable as fixed. In the whiteside data set the x-

values were temperatures and it might be argued that you could select

pairs of points then.

The more usual technique is first to fit a model and then resample, with

replacement, the residuals and create a bootstrap data set by adding on

the resampled residuals to the estimated fits.

Specifically, if our model is yi=α+βxi+εi then we estimate α and β to

obtain i i i
ˆˆ ˆy xε = − α − β , then we create a new bootstrap data set

i i{(x ,y);i 1, ,n}∗ = … where i i iˆy x∗ ∗= α + β + ε and the i()∗ε are resampled with

replacement from the iˆ()ε .

More details of this and other bootstrap techniques are given in Davison

& Hinkley (1997) Boostrap Methods and their Applications, C.U.P. The

library boot contains routines described in that book. It may also be

noted that the library Bootstrap contains routines from the book An

Introduction to the Bootstrap by Efron & Tibshirani (1993), Chapman and

Hall.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 78

4.5 Scatterplot smoothing and smooth regression

A useful function for investigating structure in a scatterplot is the

lowess() function. In outline, this fits a curve to a small window of the

data, sliding the window across the data. The curve is calculated as a

locally weighted regression, giving most weight to points close to the

centre of the window with weights declining rapidly away from the centre

to zero at the edge. It is possible to control the width of the window by a

parameter which specifies the proportion of points included. The default

value is 2/3 and larger values will give a smoother line, smaller ones a

less smooth line.

Example: The data set cars gives the stopping distances for various

speeds of 50 cars.

> plot(cars)
> plot(cars)
> lines(lowess(cars))
> plot(cars)
> lines(lowess(cars,f=0.8))
> plot(cars)
> lines(lowess(cars,f=0.3))

The plots are given on the next page. Note that for this data set of two

variables we do not need to specify the names of the variables. If the

data set had several variables the we would have to attach the data

set to be able to plot specific variables, although if it is just the first two

we need we could give just the name of the data set as here.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 79

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

speed

d
is

t

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

speed
d

is
t

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

speed

d
is

t

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

speed

d
is

t

Although the data are very ‘noisy’ we can see definite evidence that the

stopping distance increases more sharply with higher speeds, i.e. that

the relationship is not completely linear. It provides an informal guide to

how we should model the data.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 80

The lowess smoother is an example of a smooth regression function.

Other smooth regressions can be done with natural splines using

function ns() in the splines library and kernel smoothing local

regression. Generally these work much more satisfactorily than

polynomial regression. We illustrate some of these on a data set

mcycle which gives the accelerations at times in milliseconds after

impact.

> data(mcycle)
> attach(mcycle)
> summary(mcycle)
 times accel
 Min. : 2.40 Min. :-134.00
 1st Qu.:15.60 1st Qu.: -54.90
 Median :23.40 Median : -13.30
 Mean :25.18 Mean : -25.55
 3rd Qu.:34.80 3rd Qu.: 0.00
 Max. :57.60 Max. : 75.00
> plot(mcycle)
> plot(mcycle)
> lines(lowess(mcycle))
> plot(mcycle)
> lines(times,fitted(lm(accel~poly(times,3))))
> plot(mcycle)
> lines(times,fitted(lm(accel~poly(times,8))))

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 81

10 20 30 40 50

-1
0

0
-5

0
0

5
0

t imes

a
c

c
e

l

10 20 30 40 50

-1
0

0
-5

0
0

5
0

t imes
a

c
c

e
l

10 20 30 40 50

-1
0

0
-5

0
0

5
0

t imes

a
c

c
e

l

10 20 30 40 50

-1
0

0
-5

0
0

5
0

t imes

a
c

c
e

l

Note how unsatisfactory even a very high order polynomial regression is.

> library(splines)
> plot(mcycle)
> lines(times,fitted(lm(accel~ns(times,df=5))))
> plot(mcycle)
> lines(times,fitted(lm(accel~ns(times,df=10))))
> plot(mcycle)
> lines(times,fitted(lm(accel~ns(times,df=15))))
> plot(mcycle)
> lines(times,fitted(lm(accel~ns(times,df=20))))

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 82

10 20 30 40 50

-1
0

0
-5

0
0

5
0

t imes

a
c

c
e

l

10 20 30 40 50

-1
0

0
-5

0
0

5
0

t imes

a
c

c
e

l

10 20 30 40 50

-1
0

0
-5

0
0

5
0

t imes

a
c

c
e

l

10 20 30 40 50

-1
0

0
-5

0
0

5
0

t imes

a
c

c
e

l

The degree of freedom parameter controls the smoothness and it can be

seen that a sensible choice is some around 10 for this data set.

More general regression models are generalised additive models

which have the form

p

j j
j 1

Y f (X)
=

= α + + ε∑

for some smooth functions fj(.)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 83

4.6 Example of non-linear regression

This example fits a model to data giving the weight loss in kg of a

subject over a period of 250 days. The data are in dataset wtloss in the

MASS library. There are strong theoretical grounds supporting a model

of the form t /y .2− θ= α + β + ε which is linear in the parameters α and β

but non-linear in the parameter θ.

To fit this model we need to have starting values for the iterative

estimation of the parameters and this can be difficult to determine in

general cases.

> data(wtloss)
> attach(wtloss)
> library(nls)
> wtlossfm<- nls(Weight~a+b*2^
 (-Days/theta),start=c(a=90,b=95,theta=120))
> wtlossfm
Nonlinear regression model
 model: Weight ~ a + b * 2^(-Days/theta)
 data: list
 a b theta
 81.37375 102.68417 141.91052
 residual sum-of-squares: 39.2447
> plot(Days,Weight)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 84

0 50 100 150 200 250

1
1

0
1

3
0

1
5

0
1

7
0

Days

W
e

ig
h

t

A summary of the fitted model will produce standard errors of the

estimates and inference can be carried out [almost] as with any other

linear model. It is left as an exercise to plot the fitted model on the data.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 85

4.7 Summary

♦ In this section we have presented the standard methods of fitting

regression models on one or more variables, including cases

where the independent variables are continuous covariates

and/or factors with discrete levels.

♦ Diagnostic methods, including searches for outliers and

influential observations, were mentioned and illustrated. Ideas of

robustness and bootstrapping were extended to regression

situations.

♦ Smooth regression was introduced with the idea of the lowess

function (also available in many other packages) and illustrations

using natural splines were presented.

♦ An example of a non-linear regression model was given.

The overall theme of this chapter is that there are many widely different

regression models that can be handled in very similar ways without

necessarily knowing the full details of all the mathematical theory

underlying them.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 86

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 87

5. Multivariate Methods
5.1 Introduction

Earlier chapters have considered a variety of statistical methods for

univariate data, i.e. the response we are interested in is a one-

dimensional variable although we have considered data sets which have

several variables, e.g. hills consists of three variables dist, time

and climb but we regarded time as the response and considered its

dependence on the explanatory variables dist and climb.

Multivariate analysis is concerned with datasets that have more than one

response variable for each observational unit, we may also have several

explanatory variables or maybe none at all — the key feature is that we

want to treat all the response variables simultaneously and equally, none

is ‘preferred’ over the others. In this brief review of multivariate methods

we will consider primarily problems where all the n observations are on p

response variables.

References:

Gnanadesikan, R. (1997) Methods for Statistical Data Analysis of

Multivariate Observations. (2nd) Edition). Wiley.

Mardia, K., Kent, J. & Bibby, J. (1981) Multivariate Analysis. Wiley.

Krzanowski, W. (1990) Multivariate Analysis. (Oxford)

Ripley, B.D. (1996) Pattern Recognition and Neural Networks.

Cambridge University Press

Everitt, B.S. & Dunn, G. (1991) Applied Multivariate Data Analysis.

Arnold

Manly, B. J. (1986) Multivariate statistical methods: a primer, Chapman
& Hall.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 88

Examples of multivariate data sets:

(i) body temperature, renal function, blood pressure, weight of 73

hypertensive subjects (p=4, n=73).

(ii) petal & sepal length & width of 150 flowers (p=4, n=150).

(iii) amounts of 9 trace elements in clay of Ancient Greek pottery

fragments (p=9).

(iv) amounts of each of 18 amino acids in fingernails of 92 arthritic

subjects (p=18, n=92).

(v) presence or absence of each of 286 decorative motifs on 148 bronze

age vessels found in North Yorkshire (p=286, n=148).

(vi) grey shade levels of each of 1024 pixels in each of 15 digitized

images (p=1024, n=15)

(vii) Analysis of responses to questionnaires in a survey (p= number of

questions, n=number of respondents)

(viii) Digitization of a spectrum (p=20000, n=20 is typical)

(ix) Activation levels of all genes on a genome (p=60000, n=50 is typical)

Notes

♦ Measurements can be discrete e.g. (v) & (vi), or continuous, e.g.

(i)-(iv) or a mixture of both, e.g.(vii).

♦ There may be more observations than variables, e.g. (i)-(iv), or

they may be more variables than observations, e.g. (v) & (vi) and

especially (viii) and (ix).

♦ Typically the variables are correlated but individual sets of

observations are independent.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 89

 Subject Matter/ Some Multivariate Problems

(i) Obvious generalizations of univariate problems: t-tests, analysis of

variance, regression, multivariate general linear model.

e.g. model data Y′ by Y′=XΘ + ε,

 where Y′ is the n×p data matrix, X is an n×k matrix of known

observations of k-dimensional regressor variables, Θ is k×p matrix

of unknown parameters, ε is n×p with n values of p-dimensional

error variables.

(ii) Reduction of dimensionality for

 (a) exploratory analysis

 (b) simplification (MVA is easier if p=1 or p=2)

 (c) achieve greater statistical stability

 (e.g. remove variables which are highly correlated)

 Methods of principal component analysis, factor analysis, non-

metric scaling....

(iii) Discrimination

 Find rules for discriminating between groups, e.g. 2 known variants

of a disease, data X′, Y′ on each. What linear combination of the p

variables best discriminates between them. Useful to have

diagnostic rules and this may also throw light onto the conditions

(e.g. in amino acids and arthritis example there are two type of

arthritis :— psoriatic and rheumatoid, determining which

combinations of amino acids best distinguishes between them

gives information on the biochemical differences between the two

conditions). Sometimes referred to as a supervised problem.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 90

(iv) Cluster Analysis/Classification

Do data arise from a homogeneous source or do they come from a

variety of sources, e.g. does a medical condition have sub-

variants. This is sometimes referred to as an unsupervised

problem.

(v) Canonical Correlation Analysis

Of use when looking at relationships between sets of variables,

e.g. in particular in questionnaire analysis between response to 2

groups of questions, perhaps first group of questions might

investigate respondents expectations and the second group their

evaluation.

This chapter will look at (ii), (iii) and (iv).

Quotation:

“Much classical and formal theoretical

work in Multivariate Analysis rests on

assumptions of underlying multivariate

normality — resulting in techniques of very

limited value”.

 (Gnanadesikan, page 2).

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 91

5.2 Data Display

5.2.1 Preliminaries

The key tool in displaying multivariate data is scatterplots of pairwise

components arranges as a matrix plot. The function pairs() makes

this easy but the examples below illustrate that as soon as the number

of dimensions becomes large (i.e. more than about 5) it is difficult to

make sense of the display. If the number of observations is small then

some other technique can handle quite large numbers of variables. Star

plots are one possibility and are illustrated, others are Andrews’ Plots

and Chernoff Faces which are not available in R but you may find them

in other packages (e.g. S-plus, Minitab).

A classic set of data that is used for illustration of many multivariate

problems is Anderson’s Iris Data which give the sepal and petal lengths

and widths of each of 50 flowers from each of threes varieties (Setosa,

Versicola and Virginica). This is held in the base library of R in two

formats, data sets iris and iris3, the first is as a complete dataframe

and the second has a slightly different structure. Although we ‘know’ a

priori (because the botanist has told us and it is recorded) that there are

three different varieties we will ignore this fact in some of the analyses

below.

For many multivariate methods in R the data need to be presented as a

matrix rather than a dataframe. This is a slightly obscure technicality but

is the reason for the use of as.matrix(.), rbind(.)and cbind(.)

etc at various places in what follows.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 92

5.2.2 Matrix Plots and Star Plots

> data(iris)
> pairs(iris)

Sepal.Length

2.0 3.0 4.0 0.5 1.5 2.5

4
.5

5
.5

6
.5

7
.5

2
.0

3
.0

4
.0

Sepal.Width

Petal.Length

1
2

3
4

5
6

7

0
.5

1
.5

2
.5

Petal.Width

4.5 5.5 6.5 7.5 1 2 3 4 5 6 7 1.0 1.5 2.0 2.5 3.0

1
.0

1
.5

2
.0

2
.5

3
.0

Species

The 5th ‘variable’ held in the dataframe iris is the name of the species

and perhaps it is not useful to include that

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 93

> attach(iris)
> summary(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width
 Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
 Median :5.800 Median :3.000 Median :4.350 Median :1.300
 Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
 Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
 Species
 setosa :50
 versicolor:50
 virginica :50

> ir<- cbind(Sepal.Length, Sepal.Width, Petal.Length,
Petal.Width)
> pairs(ir)

Sepal.Length

2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5

4
.5

5
.5

6
.5

7
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Sepal.Width

Petal.Length

1
2

3
4

5
6

7

4.5 5.5 6.5 7.5

0
.5

1
.0

1
.5

2
.0

2
.5

1 2 3 4 5 6 7

Petal.Width

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 94

It is clear that we can see some structure in the data and might even

guess that there are three distinct groups of flowers. Now consider an

example with 12 variables (and 43 observations). Data set

USJudgeRatings gives 12 measures of ability and performance on 43

US judges.

> data(USJudgeRatings)
> pairs(USJudgeRatings)

CONT

6.0 8.5 5 7 9 6.0 8.5 5 7 9 5 7 9 5 7 9

6
9

6
.0

8
.5

INTG

DMNR

5
7

9

5
7

9

D ILG

CFMG

5
.5

8
.0

6
.0

8
.5

DECI

PREP

5
7

9

5
7

9

FAMI

ORAL

5
7

9

5
7

9

WRIT

PHYS

5
7

9

6 9

5
7

9

5 7 9 5.5 8.0 5 7 9 5 7 9 5 7 9

RTEN

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 95

The matrix plot above is difficult to comprehend. An alternative is a star

plot where each observation is represented by a star or polygon where

the length of the vector to each vertex corresponds to the value of a

particular variable.

> stars(USJudgeRatings, labels =
abbreviate(case.names(USJudgeRatings)),
+ key.loc = c(13, 1.5), main = "Judge not ...", len
= 0.8)

Judge not ...

AARO ALEX ARME BERD BRAC BURN CALL

COHE DALY DANN DEAN DEVI DRIS GRIL

HADD HAMI HEAL HULL LEVIN LEVIS MART

MCGR MIGN MISS MULV NARU O'BR O'SU

PASK RUBI SADE SATA SHEA,D SHEA,J SIDO

SPEZ SPON STAP TEST TIER W ALL W RIG

ZARR
CONT

INTG
DMNRDILGCFMG

DECI
PREP

FAMI
ORALW RITPHYS

RTEN

We can begin to see something about similarities and differences

between individual observations (i.e. judges) but not any relationships

between the variables.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 96

Another example: data set mtcars gives measurements of 11

properties of 32 cars (fuel consumption, engine size etc).

> data(mtcars)
> pairs(mtcars)

mpg

4 6 8 50 250 2 4 0.0 0.8 3.0 4.5

1
0

2
5

4
6

8

cyl

disp

1
0

0
4

0
0

5
0

2
5

0

hp

drat

3
.0

4
.5

2
4

wt

qsec

1
6

2
2

0
.0

0
.8

vs

am

0
.0

0
.8

3
.0

4
.5

gear

10 25 100 400 3.0 4.5 16 22 0.0 0.8 1 4 7

1
4

7

carb

Again, not informative.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 97

> stars(mtcars[, 1:7], key.loc = c(12, 2),
+ main = "Motor Trend Cars", full = FALSE)

M otor T rend Cars

Mazda RX4Mazda RX4 W agDatsun 710 Hornet 4 DriveHornet Sportabout Valiant

Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE

Merc 450SL Merc 450SLCCadillac FleetwoodLincoln ContinentalChrysler Imperial Fiat 128

Honda Civic Toyota CorollaToyota CoronaDodge ChallengerAMC Javelin Camaro Z28

Pontiac Firebird Fiat X1-9 Porsche 914-2Lotus EuropaFord Pantera L Ferrari Dino

Maserati Bora Volvo 142E mpg

cyl

disp
hp

drat

wt

qsec

This is perhaps more informative on individual models of cars but again

not easy to see more general structure in the data.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 98

Conclusions: The simple scatter plots arranged in a matrix work well

when there are not too many variables. If there are more than about 5

variables it is difficult to focus on particular displays and so understand

the structure. If there are not too many observations then we can

construct a symbol (e.g. a star or polygon) for each separate observation

which indicates the values of the variables for that observation. The

other techniques mentioned (Andrews’ Plots and Chernoff Faces, as

well as many other ingenious devices) all have similar objectives and

drawbacks as star plots. Obviously star plots will not be useful if either

there are a large number of observations (more than will fit on one page)

or if there are a large number of variables (e.g. > 20).

However, many multivariate statistical analyses involve very large

numbers of variables, e.g. 50+ is routine, 1000+ is becoming

increasingly common in areas such as genomics.

What is required is a display of ‘all of the data’ using just a few

scatterplots (i.e. using just a few variables). That is we need to select

‘the most interesting variables’. This may mean concentrating on ‘the

most interesting’ actual measurements or it may mean combining the

variables together in some way to create a few new ones which are the

‘most interesting’. That is, we need some technique of dimensionality

reduction.

The most useful routine method of dimensionality reduction is

principal component analysis.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 99

5.3 Principal Component Analysis

Principal Component Analysis (or PCA) looks for components in the data

which contain the most information. Often, transforming data to

principal components will reduce the dimensionality of the data and we

need only look at a very few components. Details are not given here

(they can be found in many of the textbooks listed at the start of the

chapter). It is best, to begin with, to use the technique and see what

happens.

Note that some of the key routines in R are contained in a special library

for multivariate analysis called mva.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 100

Example: Iris data.

> library(mva)
> ir.pca<-princomp(ir)
> ir.pca
Call:
princomp(x = ir)

Standard deviations:
 Comp.1 Comp.2 Comp.3 Comp.4
2.0494032 0.4909714 0.2787259 0.1538707

 4 variables and 150 observations.
> summary(ir.pca)
Importance of components:
 Comp.1 Comp.2 Comp.3
Comp.4
Standard deviation 2.0494032 0.49097143 0.27872586
0.153870700
Proportion of Variance 0.9246187 0.05306648 0.01710261
0.005212184
Cumulative Proportion 0.9246187 0.97768521 0.99478782
1.000000000
> plot(ir.pca)
> par(mfrow=c(2,2))
> plot(ir.pca)
> loadings(ir.pca)
 Comp.1 Comp.2 Comp.3 Comp.4
Sepal.Length 0.36138659 0.65658877 -0.58202985 -0.3154872
Sepal.Width -0.08452251 0.73016143 0.59791083 0.3197231
Petal.Length 0.85667061 -0.17337266 0.07623608 0.4798390
Petal.Width 0.35828920 -0.07548102 0.54583143 -0.7536574
> ir.pc<- predict(ir.pca)
> plot(ir.pc[,1:2])
> plot(ir.pc[,2:3])
> plot(ir.pc[,3:4])
>

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 101

Comp.1 Comp.2 Comp.3 Comp.4

ir.pca

V
a

ri
a

n
c

e
s

0
1

2
3

4

-3 -2 -1 0 1 2 3 4

-1
.0

-0
.5

0
.0

0
.5

1
.0

Comp.1
C

o
m

p
.2

-1.0 -0.5 0.0 0.5 1.0

-0
.5

0
.0

0
.5

Comp.2

C
o

m
p

.3

-0.5 0.0 0.5

-0
.4

-0
.2

0
.0

0
.2

0
.4

Comp.3

C
o

m
p

.4

Comments

Generally, if data X’ are measurements of p variables all of the same

‘type’ (e.g. all concentrations of amino acids or all linear dimensions in

the same units, but not e.g. age/income/weights) then the coefficients of

principal components can be interpreted as ‘loadings’ of the original

variables and hence the principal components can be interpreted as

contrasts in the original variables.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 102

Further Example of Interpretation of Loadings

This data for this example are given in Wright (1954), The interpretation of multivariate systems. In

Statistics and Mathematics in Biology (Eds. O. Kempthorne, T.A. Bancroft J. W. Gowen and J.L.

Lush), 11–33. State university Press, Iowa, USA.

Six bone measurements x1,…,x6 were made on each of 275 white

leghorn fowl. These were: x1 skull length; x2 skull breadth; x3 humerus; x4

ulna; x5 femur; x6 tibia (the first two were skull measurements, the third

and fourth wing measurements and the last two leg measurements).

The table below gives the coefficients of the six principal components

calculated from the covariance matrix.

Original Principal Components

variable a1 a2 a3 a4 a5 a6

x1 skull l. 0.35 0.53 0.76 –0.04 0.02 0.00

x2 skull b. 0.33 0.70 –0.64 0.00 0.00 0.03

x3 humerus 0.44 –0.19 –0.05 0.53 0.18 0.67

x4 ulna 0.44 –0.25 0.02 0.48 –0.15 –0.71

x5 femur 0.44 –0.28 –0.06 –0.50 0.65 –0.13

x6 tibia 0.44 –0.22 –0.05 –0.48 –0.69 0.17

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 103

To interpret these coefficients we 'round' them heavily to either just one

digit and ignore values 'close' to zero, giving

Original Principal Components

variable a1 a2 a3 a4 a5 a6

x1 skull l. 0.4 0.6 0.7 0 0 0

x2 skull b. 0.4 0.6 –0.7 0 0 0
skull

x3 humerus 0.4 –0.2 0 0.5 0 0.7

x4 ulna 0.4 –0.2 0 0.5 0 –0.7
wing

x5 femur 0.4 –0.2 0 –0.5 0.6 0

x6 tibia 0.4 –0.2 0 –0.5 –0.6 0
leg

Original Principal Components

variable a1 a2 a3 a4 a5 a6

x1 skull l. + + +

x2 skull b. + + –
skull

x3 humerus + – + +

x4 ulna + – + –
wing

x5 femur + – – +

x6 tibia + – – –
leg

We can then see that the first component a1 is proportional to the sum of

all the measurements. Large fowl will have all xi large and so their

scores on the first principal component y1 (=x'a1) will be large, similarly

small birds will have low scores of y1. If we produce a scatter plot using

the first p.c. as the horizontal axis then the large birds will appear on the

right hand side and small ones on the left. Thus the first p.c. measures

overall size.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 104

The second component is of the form (skull)–(wing & leg) and so high

positive scores of y2 (=x'a2) will come from birds with large heads and

small wings and legs. If we plot y2 against y1 then the birds with

relatively small heads for the size of their wings and legs will appear at

the bottom of the plot and those with relatively big heads at the top. The

second p.c. measures overall body shape.

The third component is a measure of skull shape (i.e. skull width vs

skull width), the fourth is wing size vs leg size and so is also a measure

of body shape (but not involving the head). The fifth and sixth are

contrasts between upper and lower parts of the wing and leg

respectively and so y5 measures wing shape and y6 measures leg

shape.

Notes:

♦ The full mathematical/algebraic theory of principal component

analysis strictly applies ONLY to continuous data on comparable

scales of measurements using the covariance matrix. Using the

correlation matrix brings the measurements onto a common scale

but a little care is needed in interpretation, especially in

interpretation of the loadings.

♦ Since the key objective of pca is to extract information, i.e.

partition the internal variation it is sensible to plot the data using

equal scaling on the axes. This can be done using the MASS

function eqscplot():

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 105

> plot(ir.pc[,1:2])
> eqscplot(ir.pc[,1:2])
> plot(mtcars.pc[,1:2])
> eqscplot(mtcars.pc[,1:2])

-3 -2 -1 0 1 2 3 4

-1
.0

-0
.5

0
.0

0
.5

1
.0

Comp.1

C
o

m
p

.2

-3 -2 -1 0 1 2 3

-2
-1

0
1

2
3

-4 -2 0 2 4

-3
-2

-1
0

1
2

3
4

Comp.1

C
o

m
p

.2

-4 -2 0 2 4

-2
-1

0
1

2
3

4

Note that unlike plot() the axes are not automatically labelled by

eqscplot() and you need to do this by including

 ,xlab="first p.c.",ylab="second p.c."

 in the call to it.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 106

5.4 Discriminant Analysis

So far the data analytic techniques considered have regarded the data

as arising from a homogeneous source — i.e. as all one data set. A

display on principal components might reveal unforeseen features:–

outliers, subgroup structure as well as perhaps singularities (i.e.

dimensionality reduction).

Suppose now we know that the data consist of observations classified

into k groups (c.f. 1-way classification in univariate data analysis) so that

data from different groups might be different in some ways. We can take

advantage of this knowledge

• to produce more effective displays

• to achieve greater dimensionality reduction

• to allow informal examination of the nature of the differences between

the groups.

Linear Discriminant Analysis finds the best linear combinations of

variables for separating the groups, if there are k different groups then it

is possible to find k–1 separate linear discriminant functions which

partition the between groups variance into decreasing order, similar to

the way that principal component analysis partitions the within group

variance into decreasing order. The data can be displayed on these

discriminant coordinates.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 107

Example: Iris Data

> ir.species<-
factor(c(rep("s",50),rep("c",50),rep("v",50)))
> ir.lda<-lda(ir,ir.species)
> ir.lda
Call:
lda.matrix(ir, grouping = ir.species)
Prior probabilities of groups:
 c s v
0.33333 0.33333 0.33333
Group means:
 Sepal L. Sepal W. Petal L. Petal W.
c 5.936 2.770 4.260 1.326
s 5.006 3.428 1.462 0.246
v 6.588 2.974 5.552 2.026

Coefficients of linear discriminants:
 LD1 LD2
Sepal L. 0.82938 0.024102
Sepal W. 1.53447 2.164521
Petal L. -2.20121 -0.931921
Petal W. -2.81046 2.839188

Proportion of trace:
 LD1 LD2
0.9912 0.0088

Now plot the data on discriminant coordinates and compare with a

principal component plot:

> ir.ld<-predict(ir.lda,dimen=2)$x
> eqscplot(ir.ld,type="n",
+ xlab="first linear discriminant",
+ ylab="second linear discriminant")
> text(ir.ld,labels=as.character(ir.species))
> eqscplot(ir.pc,type="n",
+ xlab="first principal component",
+ ylab="second principal component")
> text(ir.pc,labels=as.character(ir.species))

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 108

-5 0 5 10

-5
0

5

firs t linear discriminant

s
e

c
o

n
d

 l
in

e
a

r
d

is
c

ri
m

in
a

n
t

s
sss

s
s

ss
s s

s
s
ss

s
s

s
sss

s

s ss
s
s

s ss
ss

s
s
s

s s
ss

s
s
s

s

s

ss

s
s

s
s

sccc

c
cc

c

c
cc

c

c

c

c
ccc

cc c

c

c
c c

ccc
c c

ccc
cc

c
c
c

c

c
cc

c
c

c
c ccc cc

v

vv
v

v
v vvv

v

v

v
v
v

v v

v

v

v

v

v
v

v
v

v
v vvv

vv

v
v

v
v

v

v

v vv
v v

v

v
v

v

v
v

v

v

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

first principal component

s
e

c
o

n
d

 l
in

e
a

r
d

is
c

ri
m

in
a

n
t

s

s
s
s

s

s

s
s

s

s

s

s

s
s

s

s

s

s

s
s

s
s

s ss

s

s
ss

ss

s

s
s

s
s

s
s

s

ss

s

s

s

s

s

s

s

s

s

c
c c

c

c
c

c

c

c

c

c

c

c

c
c

c

c

c

c
c

c

c

c

c
c
c

c
c

c

c

cc

c c
c

c
c

c

c

c
c

c

c

c

c

c
c

c

c

c

v

v

v

v
v

v

v

v

v

v

v

v

v

v

v

v
v

v

v

v

v

v

v

v

v v

v
v

v

v
v

v

vv

v

vv

v
v

vvv

v

vv

v

v

v

v

v

There is perhaps a very slightly better separation between the groups

labelled v and c in the left hand plot than in the right hand one.

Another way of examining the overlap between the groups is to look at

kernel density estimates based on the values on the first linear

discriminant coordinate separately for the three groups, conveniently

done by:

> plot(ir.lda,type="density",dimen=1)

-10 -5 0 5 10

0
.0

0
.1

0
.2

0
.3

0
.4

LD1

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 109

A key objective of discriminant analysis is to classify further

observations. This can be done using the predict function

predict.lda(lda-object,newdata). In the Cushings data we

can perform the lda on the first 21 observations and then use the results

to classify the final 7 observations of unknown categories. Note that we

have to turn the final 7 observations into a data matrix cushu in the

same way as we did with the training data.

> cush<-log(as.matrix(Cushings[1:21,-3]))
> cushu<-log(as.matrix(Cushings[22:27,-3]))
> tp<-factor(Cushings$Type[1:21])

> cush.lda<-lda(cush,tp)

> upredict<-predict.lda(cush.lda,cushu)
> upredict$class
[1] b c b a b b

These are the classifications for the seven new cases.

We can plot the data on the discriminant coordinates with

> plot(cush.lda)

and then add in the unknown points with

> points(jitter(predict(cush.lda,cushu)$x),pch=19,)

and finally put labels giving the predicted classifications on the unknown

points with

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 110

> text(predict(cush.lda,cushu)$x,pch=19,

+ labels=as.character(predict(cush.lda,cushu)$class))

(where the + is the continuation prompt from R) to give the plot below.

The use of jitter() moves the points slightly so that the labels are not

quite in the same place as the plotting symbol.

-2 -1 0 1 2 3

-2
-1

0
1

2
3

LD1

L
D

2

a

a

a

a

aa

b

b

b
b

b

bb

b
b

b

c

c

c

c

c

b

c

ba

b

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 111

Quadratic Discriminant Analysis generalizes lda to allow quadratic

functions of the variables. Easily handled in R qda().

> cush.qda<-qda(cush,tp)
> predict.qda(cush.qda,cushu)$class
[1] b c b a a b
It can be seen that the 5th unknown observation is classified differently

by qda(). How can we see whether lda() or qda() is better? One

way is to see how each performs on classifying the training data (i.e. the

cases with known categories.

> predict.lda(cush.lda,cush)$class
 [1] a a a b b a b a a b b c b b b b c c b c c

and compare with the ‘true’ categories:

> tp
 [1] a a a a a a b b b b b b b b b b c c c c c

We see that 6 observations are misclassified, the 5th,6th,9th,10th,13th and

19th. To get a table of predicted and actual values:

> table(tp,predict.lda(cush.lda,cush)$class)

tp a b c
 a 4 2 0
 b 2 7 1
 c 0 1 4

Doing the same with qda() gives:

> table(tp,predict.qda(cush.qda,cush)$class)
tp a b c
 a 6 0 0
 b 0 9 1
 c 0 1 4

so 19 out 21 were correctly classified, when only 15 using lda().

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 112

If we want to see whether correctly classifying 15 out of 21 is better than

chance we can permute the labels by sampling tp without replacement:

> randcush.lda<-lda(cush,sample(tp))
> table(tp,predict.lda(randcush.lda,cush)$class)

tp a b c
 a 3 2 1
 b 1 9 0
 c 0 5 0

i.e. 12 were correctly classified even with completely random labels.

Repeating this a few more times quickly shows that 15 is much higher

than would be obtained by chance. It would be easy to write a function

to do this 1000 times say by extracting the diagonal elements which are

the 1st,5th and 9th elements of the object table(.,.), i.e.

table(.,.)[1], table(.,.)[5] and table(.,.)[9].

> randcush.lda<-lda(cush,sample(tp))
> table(tp,predict.lda(randcush.lda,cush)$class)
tp a b c
 a 1 5 0
 b 0 10 0
 c 0 5 0
> randcush.lda<-lda(cush,sample(tp))
> table(tp,predict.lda(randcush.lda,cush)$class)
 tp a b c
 a 1 5 0
 b 2 8 0
 c 1 4 0
> randcush.lda<-lda(cush,sample(tp))
> table(tp,predict.lda(randcush.lda,cush)$class)
tp a b c
 a 1 5 0
 b 0 10 0
 c 1 4 0

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 113

5.6 Cluster Analysis

Cluster Analysis is a collection of techniques for unsupervised

examination of multivariate data with an objective of discovering ‘natural’

groups in the data, often used together with scaling methods. The

results are displayed in a dendogram rather like a family tree indicating

which family objects belong to. The first example is on data swiss

which gives demographic measurements of 47 provinces in Switzerland.

The first step is to calculate a distance matrix, using dist() and then to

perform hierarchical cluster analysis using hclust(), The result can

then be plotted as a dendogram using the generic function plot(). This

example has used the default clustering method of complete linkage,

others you might try are average linkage, single linkage or Wards

method

> data(swiss)
> summary(swiss)
 Fertility Agriculture Examination Education
 Min. :35.00 Min. : 1.20 Min. : 3.00 Min. : 1.00
 1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00
 Median :70.40 Median :54.10 Median :16.00 Median : 8.00
 Mean :70.14 Mean :50.66 Mean :16.49 Mean :10.98
 3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00
 Max. :92.50 Max. :89.70 Max. :37.00 Max. :53.00
 Catholic Infant.Mortality
 Min. : 2.150 Min. :10.80
 1st Qu.: 5.195 1st Qu.:18.15
 Median : 15.140 Median :20.00
 Mean : 41.144 Mean :19.94
 3rd Qu.: 93.125 3rd Qu.:21.70
 Max. :100.000 Max. :26.60
> dswiss<-dist(swiss)
> h<- hclust(dswiss)
> plot(h)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 114

3
7

3
4

3
6 3

2
3

1
3

3
7

8
1

1
9

3
5

3
8

3
6

2
1

0
4

5
4

6
4

7 1
4

0
4

1
4

4
1

9
4

2
1

8
2

9
4

1
6

1
5

2
0 2

7
1

3
2

5
1

7
4

3
5

3
9

2
2

3
0 1
4

2
6

2
3

2
4

2
8

1
2

2
1

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Cluster Dendrogram

hclust (*, "complete")
dswiss

H
e

ig
ht

This suggests three main groups, we can identify these with

> cutree(h,3)
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26
 1 2 2 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3

which gives the group membership for each of the provinces.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 115

Next, we look at the iris data (yet again) and use the interactive function

identify.hclust() which allows you to point with the mouse and

click on vertical bars to extract the elements in the family below. Click

with the right button and choose stop to leave it.

> distiris<-dist(ir)
> hiris<- hclust(distiris)
> plot(hiris)
> help(identify.hclust)
> identify.hclust(hiris, function(k) print(table(iris[k,5])))

 setosa versicolor virginica
 0 0 12

 setosa versicolor virginica
 0 23 37

 setosa versicolor virginica
 0 27 1

 setosa versicolor virginica
 50 0 0
>

The dendogram on the next pages shows four groups, and

identify.clust was used to click on the four ancestor lines. Note

that one of the groups is obviously the overlap group between

versicolour and virginica.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 116

1
0

8
1

3
1 1
0

3
1

2
6

1
3

0 1
1

9
1

0
6

1
2

3
1

1
8

1
3

2 1
1

0
1

3
6

1
4

1
1

4
5

1
2

5
1

2
1

1
4

4 1
0

1
1

3
7

1
4

9
1

1
6

1
1

1
1

4
8

1
1

3
1

4
0

1
4

2
1

4
6

1
0

9
1

0
4

1
1

7
1

3
8

1
0

5
1

2
9

1
3

3 1
5

0
7

1
1

2
8

1
3

9 1
1

5
1

2
2

1
1

4
1

0
2

1
4

3
1

3
5

1
1

2
1

4
7

1
2

4
1

2
7 7

3
8

4
1

3
4 1

2
0

6
9

8
8

6
6

7
6 7

7
5

5
5

9
7

8
8

7
5

1
5

3 8
6

5
2

5
7

7
5

9
8 7

4
7

9
6

4
9

2
6

1
9

9
5

8
9

4
1

0
7

6
7

8
5 5
6

9
1 6
2

7
2

6
8

8
3

9
3

9
5

1
0

0
8

9
9

6
9

7
6

3
6

5
8

0 6
0

5
4

9
0 7
0

8
1

8
2

4
2

3
0

3
1 2
6

1
0

3
5 1
3 2

4
6

3
6

5
3

8
2

8
2

9
4

1 1
1

8 5
0 8

4
0

2
3

7
4

3 3 4
4

8 1
4

9
3

9
1

7
3

3
3

4 1
5

1
6

6
1

9
2

1
3

2 3
7

1
1

4
9

4
5

4
7

2
0

2
2 4
4

2
4

2
7 1
2

2
5

0
2

4
6

Cluster Dendrogram

hclust (*, "complete")
distiris

H
e

ig
h

t

Using a different method (Ward’s) gives:

> hirisw<- hclust(distiris,method="ward")
> plot(hirisw)
> identify.hclust(hirisw,function(k) print(table(iris[k,5])))
 setosa versicolor virginica
 50 0 0
 setosa versicolor virginica
 0 0 36
 setosa versicolor virginica
 0 50 14

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 117

3
0

3
1

1
3 2

4
6

2
6

1
0

3
5 4
2

1
4

4
3 9

3
9

2
3 7 3 4

4
8

3
6 5

3
8

5
0 8

4
0

2
8

2
9

4
1 1

1
8

4
4

2
4

2
7

1
2

2
5

1
7

3
3

3
4

1
5

1
6

4
5

4
7

2
0

2
2 6

1
9

2
1

3
2

3
7

1
1

4
9

1
0

8
1

3
1

1
0

3
1

2
6

1
3

0
1

1
9

1
0

6
1

2
3

1
1

8
1

3
2

1
1

0
1

3
6

1
0

9
1

3
5

1
0

5
1

2
9

1
3

3
1

1
2

1
0

4
1

1
7

1
3

8
1

1
1

1
4

8
1

1
3

1
4

0
1

4
2

1
4

6
1

4
1

1
4

5
1

2
5

1
2

1
1

4
4

1
0

1
1

1
6

1
3

7
1

4
9

6
1

9
9

5
8

9
4

6
3

6
8

8
3

9
3

6
5

8
0

7
0

8
1

8
2

6
0

5
4

9
0

1
0

7
9

5
1

0
0

8
9

9
6

9
7

6
7

8
5

5
6

9
1

1
5

0
7

1
1

2
8

1
3

9
1

1
5

1
0

2
1

4
3

1
1

4
1

2
2

6
9

8
8

1
4

7
1

2
4

1
2

7
1

2
0

7
3

8
4

1
3

4
7

8
8

7
5

1
5

3
6

6
7

6
7

7
5

5
5

9
8

6
5

2
5

7
7

4
7

9
6

4
9

2
7

5
9

8
6

2
7

2

0
5

0
1

0
0

1
5

0
2

0
0

Cluster Dendrogram

hclust (*, "ward")
distiris

H
e

ig
h

t

And finally, using the ‘median’ method gives

> hirimed<- hclust(distiris,method="median")
> plot(hirimed)
> identify.hclust(hirimed,function(k)print(table(iris[k,5])))
 setosa versicolor virginica
 50 0 0
 setosa versicolor virginica

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 118

 0 41 13
 setosa versicolor virginica
 0 9 37

4
2

2
3

1
4

4
3

9
3

9
3

6
2

6
2

5
1

2 7
3 4

4
8

4
6

1
3 2

1
0

3
5 3
0

3
1 4
4

2
4

2
7

5
3

8 4
1

5
0

2
9 2
8 8

4
0 1

1
8

1
1

4
9 4

7
2

0
2

2
4

5
1

6
1

5
1

7 3
3

3
4

3
7

2
1

3
2 6 1
9

1
0

7
6

1
9

9
5

8
9

4
6

3
7

2
5

6
6

7
8

5 9
1

7
0

8
1

8
2 5

4
9

0
9

5
1

0
0

8
9

9
6

9
7 6

8
8

3
9

3
6

2
7

5
9

8 7
4

7
9

6
4

9
2

8
6

5
2

5
7

6
9

8
8 1

2
0

7
3

1
3

4
1

4
7

1
2

4
1

2
7

8
4

1
5

0
7

1
1

2
8

1
3

9 1
2

2
1

1
4

1
0

2
1

4
3

6
0

6
5

8
0 1

1
0

1
1

8
1

3
2

1
1

9
1

0
6

1
2

3
1

3
6

1
0

3
1

0
8

1
3

1 1
2

6
1

3
0

1
0

1
1

1
5

1
3

5 1
0

9
7

8
7

7
8

7
6

6
7

6 5
5

5
9 5
1

5
3 1

1
2

1
4

2
1

4
6

1
1

6
1

3
7

1
4

9
1

1
1

1
4

8
1

0
4

1
1

7
1

3
8

1
1

3
1

4
0

1
2

5
1

2
1

1
4

4
1

4
1

1
4

5
1

0
5

1
2

9
1

3
3

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Cluster Dendrogram

hclust (*, "median")
distiris

H
e

ig
h

t

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 119

Further Directions: The library cluster contains a variety of routines

and data sets. The mclust library offers model-based clustering (i.e. a

little more statistical).

Key reference: Cluster Analysis, 4th Edition, (2001), by Brian Everitt,

Sabine Landau and Morven Leese.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 120

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 121

6 Tree-Based Methods

Classification and regression trees are similar supervised techniques

which are used to analyse problems in a step-by-step approach. We

start (even yet again) with the iris data where the objective is to find a

set of rules, based on the four measurements we have, of classifying the

flowers into on of the fours species. The rules will be of the form:

 ‘if petal length>x then…. , but if petal length ≤ x then something else’

i.e. the rules are based on the values of one variable at a time and

gradually partition the data set into groups.

> data(iris)
> attach(iris)
> ir.tr<-tree(Species~.,iris)
> plot(ir.tr)
> summary(ir.tr)

Classification tree:
tree(formula = Species ~ ., data = iris)
Variables actually used in tree construction:
[1] "Petal.Length" "Petal.Width" "Sepal.Length"
Number of terminal nodes: 6
Residual mean deviance: 0.1253 = 18.05 / 144
Misclassification error rate: 0.02667 = 4 / 150
> text(ir.tr,all=T,cex=0.5)

Now look at the graphical representation:

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 122

|
Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor
virginica

virginica virginica

> ir.tr
node), split, n, deviance, yval, (yprob)
 * denotes terminal node

 1) root 150 329.600 setosa (0.33333 0.33333 0.33333)
 2) Petal.Length < 2.45 50 0.000 setosa (1.00000 0.00000 0.00000) *
 3) Petal.Length > 2.45 100 138.600 versicolor (0.00000 0.50000 0.50000)
 6) Petal.Width < 1.75 54 33.320 versicolor (0.00000 0.90741 0.09259)
 12) Petal.Length < 4.95 48 9.721 versicolor (0.00000 0.97917 0.02083)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 123

 24) Sepal.Length < 5.15 5 5.004 versicolor (0.00000 0.80000 0.20000) *
 25) Sepal.Length > 5.15 43 0.000 versicolor (0.00000 1.00000 0.00000) *
 13) Petal.Length > 4.95 6 7.638 virginica (0.00000 0.33333 0.66667) *
 7) Petal.Width > 1.75 46 9.635 virginica (0.00000 0.02174 0.97826)
 14) Petal.Length < 4.95 6 5.407 virginica (0.00000 0.16667 0.83333) *
 15) Petal.Length > 4.95 40 0.000 virginica (0.00000 0.00000 1.00000) *
>

Another example: the forensic glass data fgl. the data give the

refractive index and oxide content of six types of glass.

> data(fgl)
> attach(fgl)
> summary(fgl)
 RI Na Mg Al
 Min. :-6.8500 Min. :10.73 Min. :0.000 Min. :0.290
 1st Qu.:-1.4775 1st Qu.:12.91 1st Qu.:2.115 1st Qu.:1.190
 Median :-0.3200 Median :13.30 Median :3.480 Median :1.360
 Mean : 0.3654 Mean :13.41 Mean :2.685 Mean :1.445
 3rd Qu.: 1.1575 3rd Qu.:13.82 3rd Qu.:3.600 3rd Qu.:1.630
 Max. :15.9300 Max. :17.38 Max. :4.490 Max. :3.500
 Si K Ca Ba
 Min. :69.81 Min. :0.0000 Min. : 5.430 Min. :0.0000
 1st Qu.:72.28 1st Qu.:0.1225 1st Qu.: 8.240 1st Qu.:0.0000
 Median :72.79 Median :0.5550 Median : 8.600 Median :0.0000
 Mean :72.65 Mean :0.4971 Mean : 8.957 Mean :0.1750
 3rd Qu.:73.09 3rd Qu.:0.6100 3rd Qu.: 9.172 3rd Qu.:0.0000
 Max. :75.41 Max. :6.2100 Max. :16.190 Max. :3.1500
 Fe type
 Min. :0.00000 WinF :70
 1st Qu.:0.00000 WinNF:76
 Median :0.00000 Veh :17
 Mean :0.05701 Con :13
 3rd Qu.:0.10000 Tabl : 9
 Max. :0.51000 Head :29
> fgl.tr<-tree(type~.,fgl)
> summary(fgl.tr)

Classification tree:
tree(formula = type ~ ., data = fgl)
Number of terminal nodes: 20
Residual mean deviance: 0.6853 = 133 / 194
Misclassification error rate: 0.1542 = 33 / 214
> plot(fgl.tr)
> text(fgl.tr,all=T,cex=0.5))
Error: syntax error
> text(fgl.tr,all=T,cex=0.5)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 124

|
Mg < 2.695

Na < 13.785

A l < 1.38

Fe < 0.085

Ba < 0.2

RI < 1.265

A l < 1.42

RI < -0.93

RI < -1.885 K < 0.29

Ca < 9.67 Mg < 3.75

Fe < 0.145

RI < 1.045 A l < 1.17

Mg < 3.455

Si < 72.84 Na < 12.835
K < 0.55

WinNF

Con WinNF

Tabl WinNF
Head

WinF Veh

WinF WinF

WinF WinFWinNFWinF

WinNF

V eh WinNF
WinF

WinNFWinNF

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 125

Decision Trees:

One common use of classification trees is as an aid to decision making

— not really different from classification but sometimes distinguished.

Data shuttle gives guidance on whether to use autolander or manual

control on landing the space shuttle under various conditions such as

head or tail wind of various strengths, good or poor visibility (always use

auto in poor visibility!) etc, 6 factors in all. There are potentially 256

combinations of conditions and these can be tabulated and completely

enumerated but displaying the correct decision as a tree is convenient

and attractive.

> data(shuttle)
> attach(shuttle)
> summary(shuttle)
 stability error sign wind magn vis use
 stab :128 LX:64 nn:128 head:128 Light :64 no :128 auto :145
 xstab:128 MM:64 pp:128 tail:128 Medium:64 yes:128 noauto:111
 SS:64 Out :64
 XL:64 Strong:64
> table(use,vis)
 vis
use no yes
 auto 128 17
 noauto 0 111
> table(use,wind)
 wind
use head tail
 auto 72 73
 noauto 56 55

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 126

> table(use,magn,wind)
, , wind = head

 magn
use Light Medium Out Strong
 auto 19 19 16 18
 noauto 13 13 16 14

, , wind = tail

 magn
use Light Medium Out Strong
 auto 19 19 16 19
 noauto 13 13 16 13

> shuttle
 stability error sign wind magn vis use
1 xstab LX pp head Light no auto
2 xstab LX pp head Medium no auto
3 xstab LX pp head Strong no auto
… … … … … …
… … … … … …
… … … … … …
… … … … … …
255 stab MM nn head Medium yes noauto
256 stab MM nn head Strong yes noauto
>
> shuttle.tr<-tree(use~.,shuttle)

> plot(shuttle.tr)

> text(shuttle.tr)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 127

|vis:a

stability:a

error:bc

magn:abd

error:b
sign:a

auto

noauto auto
auto

noauto

noauto

noauto

In this default display, the levels of the factors are indicated by a,b,….

alphabetically and the tree is read so that levels indicated are to the left

branch and others to the right, e.g. at the first branching vis:a indicates

no for the left branch and yes for the right one. At the branch labelled

magn:abd the right branch is for level c which is ‘out of range’; all

other levels take the left branch. The plot can of course be enhanced

with better labels.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 128

Regression Trees:

We can think of classification trees as modelling a discrete factor or

outcome as depending on various explanatory variables, either

continuous or discrete. For example, the iris species depended upon

values of the continuous variables giving the dimensions of the sepals

and petals. In an analogous way we could model a continuous outcome

on explanatory variables using tree-based methods, i.e. regression

trees. The analysis can be thought of as categorizing the continuous

outcome into discrete levels, i.e. turning the continuous outcome into a

discrete factor. The number of distinct levels can be controlled by

specifying the minimum number of observations (minsize) at a node

that can be split and the reduction of variance produced by splitting a

node (mindev). This is illustrated on the hills data, but first an example

of data on c.p.u. performance of 209 different processors in data set

cpus contained in the MASS library. The measure of performance is perf

and we model the log of this variable.

> library(MASS)
> library(tree)
> data(cpus)
> attach(cpus)
> summary(cpus)
 name syct mmin mmax
 WANG VS10 : 1 Min. : 17.0 Min. : 64 Min. : 64
 WANG VS 90 : 1 1st Qu.: 50.0 1st Qu.: 768 1st Qu.: 4000
 STRATUS 32 : 1 Median : 110.0 Median : 2000 Median : 8000
 SPERRY 90/80 MODEL 3: 1 Mean : 203.8 Mean : 2868 Mean :11796
 SPERRY 80/8 : 1 3rd Qu.: 225.0 3rd Qu.: 4000 3rd Qu.:16000
 SPERRY 80/6 : 1 Max. :1500.0 Max. :32000 Max. :64000
 (Other) :203
 cach chmin chmax perf estperf
 Min. : 0.00 Min. : 0.000 Min. : 0.00 Min. : 6.0 Min. : 15.0
 1st Qu.: 0.00 1st Qu.: 1.000 1st Qu.: 5.00 1st Qu.: 27.0 1st Qu.: 28.0
 Median : 8.00 Median : 2.000 Median : 8.00 Median : 50.0 Median : 45.0
 Mean : 25.21 Mean : 4.699 Mean : 18.27 Mean : 105.6 Mean : 99.3
 3rd Qu.: 32.00 3rd Qu.: 6.000 3rd Qu.: 24.00 3rd Qu.: 113.0 3rd Qu.: 101.0
 Max. :256.00 Max. :52.000 Max. :176.00 Max. :1150.0 Max. :1238.0

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 129

> cpus.tr<-tree(log(perf)~.,cpus[,2:8])
> plot(cpus.tr)
> text(cpus.tr)

|
cach < 27

mmax < 6100

mmax < 1750 syct < 360

chmin < 5.5

mmax < 28000

cach < 96.5
mmax < 11240

cach < 56

2.507 3.285
3.911 4.546

2.947 4.206 4.916
5.350 5.223 6.141

The attraction of the display is that it gives a quick way of predicting cpu

performance for a processor with specified characteristics. The accuracy

of the predictions can be increased by increasing the number of terminal

nodes (or leaves). However, this does not offer a substitute for more

investigative modelling and outlier identification.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 130

Now we illustrate some of the refinements with the more familiar Scottish

Hill race data hills

> data(hills)
> hills.tr<-tree(time~.,hills)
> plot(hills.tr)
> text(hills.tr,cex=1.25)

|
dist < 12

dist < 7.75

dist < 5.75
 28.58 41.28 71.66

165.20

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 131

Next, increase the number of terminal nodes, i.e. increase the resolution

of forecasting.

> hills.tr1<-tree(time~.,hills,control=tree.control(nobs=35,
+ minsize=2,mindev=.003))
> plot(hills.tr1)
> text(hills.tr1)

|
dist < 15

dist < 7.75

dist < 5.75climb < 425climb < 325 dist < 3.25
dist < 12

dist < 17dist < 24

 15.95 78.65
 17.57 28.15 41.28 71.66 98.42

204.60 165.00 192.70

With function tree, the maximum number of terminal nodes is 32.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 132

Next, for comparison we repeat the above analyses removing the known

outliers observations 7 and 18.

> hills.tr2<-tree(time~.,hills[-c(7,18),])
> plot(hills.tr2)
> text(hills.tr2,cex=1.25)

|dist < 9.75

dist < 6.25

dist < 4.75

 21.69 36.28
 59.32

129.80

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 133

And with more nodes:

> hills.tr3<-tree(time~., hills[-c(7,18),],
+ control=tree.control(nobs=33,
+ minsize=2,mindev=.003))
> plot(hills.tr3)
> text(hills.tr3)

|
dist < 16

dist < 7.75

dist < 5.75
dist < 3.25 climb < 1325

dist < 12climb < 3735

dist < 24

 17.16 28.15 38.05 48.83 68.18 85.58 98.42

165.00 192.70

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 134

It is clear that there differences in the trees after dropping the outliers but

these are not quite so great as they might appear, taking into account

the resolution of the end nodes.

More refined facilities are available in library rpart (pruning etc).

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 135

7 Neural Networks

7.1 Introduction

We have seen how we can consider classification and discrimination

problems as a form of modelling the relationship between a categorical

variable and various explanatory variables. We could make this more

explicit and use, for example, logistic regression techniques. For

example, suppose we have two categories, A and B, and explanatory

variables x1,…,xk then we could model the probability that an object with

values of x1,…,xk belongs to category A as a logistic function of the

x1,…,xk:

1 1 k k

1 1 k k

exp{ x ... x }
P[belongs to A]

1 exp{ x ... x }

α + β + + β
=

+ α + β + + β

and then estimate the unknown parameters βi from training data on

objects with known classifications. New observations would be classified

by classifying them as of type A if the estimated probability of belonging

to A is > 0.5, otherwise classify them as of type B. The technique is

widely used and is very effective, it is known as logistic discrimination. It

can readily handle cases where the xi are a mixture of continuous and

binary variables. If there is an explanatory variable whish is categorical

with k>2 levels then it needs to be replaced by k–1 dummy binary

variables (though this step can be avoided with tree-based methods).

The idea could be extended to discrimination and classification with

several categories, multiple logistic discrimination.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 136

Neural networks, from a statistical point of view, can be thought of as a

further extension of the idea and special cases of them are essentially

non-linear logistic models. However, the technique is rather more

general than just non-linear logistic modelling. It also has analogies with

generalized additive modelling (mentioned very briefly on p97).

The full model for a feed-forward neural network with one hidden layer is

k 0 k hk h h ih i
h i

y w (w x)
⎛ ⎞= φ α + φ α +⎜ ⎟
⎝ ⎠

∑ ∑

where the ‘inputs’ are xi (i.e. values of explanatory variables), the

‘outputs’ are yk (i.e. values of the dependent variable, and the αj and wij

are unknown parameters which have to be estimated (i.e. the network

has to be ‘trained’) by minimising some fitting criterion, e.g. least

squares or a measure of entropy. The functions φj are ‘activation

functions’ and are often taken to be the logistic function

φ(x)=exp(x)/{1+exp(x)}. The wij are usually thought of as weights

feeding forward input from the observations through a ‘hidden layer’ of

units (φh) to output units which also consist of activation functions φo.

The model is often represented graphically as a set of inputs linked

through a hidden layer to the outputs:

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 137

The number of inputs is the number of explanatory variables xi, the

number of outputs is the number of levels of yk (if yk is categorical), or

the dimension of yk (if yk is continuous) and the number of ‘hidden units’

is open to choice. The greater the number of hidden units the larger the

number of parameters to be estimated and (generally) the better will be

the fit of the predicted yk with the observed yk.

input
layer

hidden
layer(s)

outputs
yk

inputs
xi

wih φh φo whk

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 138

7.2 Examples

These next two examples are taken from the help(nnet) output and

are illustrations on the iris data yet again, this time the classification is

based on (i.e. the neural network is trained on) a random 50% sample of

the data and evaluated on the other 50%. In the first example the target

values are taken to be the vectors (1,0,0), (0,1,0) and (0,0,1) for the

three species (i.e. indicator variables) and we classify new data (i.e. with

new values of the sepal and petal measurements) by which column has

the maximum estimated value.

> library(nnet)
> data(iris3)
># use half the iris data
> ir <- rbind(iris3[,,1],iris3[,,2],iris3[,,3])
> targets <-class.ind(c(rep("s",50),rep("c",50),rep("v",50)))
> samp<-c(sample(1:50,25),sample(51:100,25),
+ sample(101:150,25))
>ir1 <- nnet(ir[samp,], targets[samp,], size=2, rang=0.1,
+ decay=5e-4, maxit=200)
weights: 19
initial value 54.827508
iter 10 value 30.105123
iter 20 value 18.718125
… … … … … … … … … … … …
… … … … … … … … … … … …
iter 200 value 0.532392
final value 0.532392
stopped after 200 iterations
> test.cl <- function(true, pred){
+ true <- max.col(true)
+ cres <- max.col(pred)
+ table(true, cres)
+ }
> test.cl(targets[-samp,], predict(ir1, ir[-samp,]))
 cres
true 1 2 3
 1 24 0 1
 2 0 25 0
 3 2 0 23

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 139

Thus, the classification rule only misclassifies 3 out of the 75 flowers

which were not used in the analysis. If we used a net with only 1 unit in

the hidden layer:

> ir1 <- nnet(ir[samp,], targets[samp,], size=1, rang=0.1,
+ decay=5e-4, maxit=200)
weights: 11
initial value 57.220735
iter 10 value 35.168339
… … … … … …
iter 60 value 17.184611
final value 17.167133
converged
> test.cl <- function(true, pred){
+ true <- max.col(true)
+ cres <- max.col(pred)
+ table(true, cres)
+ }
> test.cl(targets[-samp,], predict(ir1, ir[-samp,]))
 cres
true 1 2 3
 1 22 0 3
 2 0 25 0
 3 0 0 25
>

then it is still only 3, though a different 3 clearly. To see what the actual

values of the predictions are we can print the first five rows of the

estimated target values:

> predict(ir1, ir[-samp,])[1:5,]
 c s v
[1,] 0.1795149 0.9778684 0
[2,] 0.1822938 0.9747983 0
[3,] 0.1785939 0.9788104 0
[4,] 0.1758644 0.9813966 0
[5,] 0.1850007 0.9714523 0

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 140

and we see that although it does not estimate the values as precisely

(0,1,0) (or (1,0,0) or (0,0,1)) they are close. Hence the use of the

mac.col function above.

We can find out more about the actual fitted (or trained) network,

including the estimated weights with summary() etc:

> ir1
a 4-1-3 network with 11 weights
options were - decay=5e-04
> summary(ir1)
a 4-1-3 network with 11 weights
options were - decay=5e-04
 b->h1 i1->h1 i2->h1 i3->h1 i4->h1
 -0.15 0.41 0.74 -1.01 -1.18
 b->o1 h1->o1
 -0.06 -1.59
 b->o2 h1->o2
 -6.59 11.28
 b->o3 h1->o3
 3.75 -39.97
and we could draw a graphical representation putting in values of the

weights along the arrows.

Another way of tackling the same problem is given by the following:

> ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
+ species=c(rep("s",50), rep("c", 50), rep("v", 50)))
> ir.nn2 <- nnet(species ~ ., data=ird, subset=samp,
+ size=2, rang=0.1, decay=5e-4, maxit=200)
weights: 19
initial value 82.614238
iter 10 value 27.381769
… … … … …
iter 200 value 0.481454
final value 0.481454
stopped after 200 iterations
>table(ird$species[-samp], predict(ir.nn2, ird[-samp,],
type="class"))
 c s v
 c 24 0 1
 s 0 25 0
 v 2 0 23

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 141

again, 3 of the new data are misclassified. However, if try a net with only

one hidden unit we actually succeed slightly better:

> ir.nn2 <- nnet(species ~ ., data=ird, subset=samp, size=1,
+ rang=0.1, decay=5e-4, maxit=200)
weights: 11
initial value 82.400908
final value 3.270152
converged
> table(ird$species[-samp], predict(ir.nn2, ird[-samp,],
+ type="class"))

 c s v
 c 24 0 1
 s 0 25 0
 v 1 0 24

> summary(ir.nn2)
a 4-1-3 network with 11 weights
options were - softmax modelling decay=5e-04
 b->h1 i1->h1 i2->h1 i3->h1 i4->h1
 -1.79 -0.44 -0.91 1.05 1.65
 b->o1 h1->o1
 7.11 -0.99
 b->o2 h1->o2
 12.30 -36.31
 b->o3 h1->o3
-19.45 37.43

Exercise: Try modifying the R commands above to train a network on a

much smaller sample, say 10 from each species, and the classifying the

remainder. This can be done by changing the 25 to 10 in each of the

three sample commands on P171. (I found that the misclassification rate

on the new data was 6 out of 120 and even with training samples of 5

from each species it was 8 out of 135).

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 142

Simple Example:

This is an artificial example: the objective is to train a network with a

hidden layer containing two units to return a value A for low numbers

and a value B for high ones. The following code sets up a dataframe

(nick) which has 8 rows and two columns. The first column has the

values of x and the second the targets. The first five rows will be used

for training the net and the last three will be fed into the trained net for

classification, so the first 3 rows have low values of x and target value

A, the next 2 rows have high values of x and the target value B and

the final 3 rows have test values of x and unknown classifications.

> library(nnet) # open nnet library
> nick<-
+ data.frame(x=c(1.1,1.7,1.3,5.6,7.2,8.1,1.8,3.0),
+ targets=c(rep("A",3),rep("B",2),rep("U",3)))
> attach(nick)
check dataframe is ok
> nick
 x targets
1 1.1 A
2 1.7 A
3 1.3 A
4 5.6 B
5 7.2 B
6 8.1 U
7 1.8 U
8 3.0 U
> nick.net<-nnet(targets~.,data=nick[1:5,],size=2)
weights: 10
initial value 3.844981
final value 0.039811
converged
Warning message:
group(s) U are empty in: nnet.formula(targets ~ .,
data = nick[1:5,], size = 2)

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 143

check predictions on training data
> predict(nick.net,nick[1:5,],type="class")
[1] "A" "A" "A" "B" "B"
now classify new data
> predict(nick.net,nick[6:8,],type="class")
[1] "B" "A" "A"
see what the predictions look like numerically
> predict(nick.net,nick[6:8,])
 A B
6 1.364219e-15 1.000000e+00
7 1.000000e+00 4.659797e-18
8 1.000000e+00 1.769726e-08
> predict(nick.net,nick[1:5,])
 A B
1 1.000000e+00 2.286416e-18
2 1.000000e+00 3.757951e-18
3 1.000000e+00 2.477393e-18
4 1.523690e-08 1.000000e+00
5 2.161339e-14 1.000000e+00
>
look at estimates of weights.
> summary(nick.net)
a 1-2-2 network with 10 weights
options were - softmax modelling
 b->h1 i1->h1
 -7.58 1.32
 b->h2 i1->h2
-10.44 3.47
 b->o1 h1->o1 h2->o1
 20.06 -16.10 -22.59
 b->o2 h1->o2 h2->o2
-20.69 15.81 21.88

 x

A (o1) (+20.06)

B (o2) (-20.69)

h1(-7.58)

h2 (-10.44)

1.32

3.47

-16.10

21.88

15.81

-22.59

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 144

7.3 Extended example: Data set Book

Data set book.txt is available from the WebCT Datasets page. If you

right-click on the filename then you can download the file onto your

hard disk. Suppose you have downloaded the file to file book.txt in

directory temp on your C drive. So its full pathname would be

C:\temp\book.txt. Then to read it into R you need to do

> book<- read.table("c:\\temp\\book.txt")

> attach(book)

which will make the data set and its variables accessible to the session.

NOTE the use of the double backslash \\ in the pathname.

This data set has 16 variables, plus a binary classification (QT). The

variables are a mixture of continuous (5 variables), binary (8 vars) and

ordinal (3). An exploratory PCA on the correlation matrix (not shewn

here) on ‘raw’ variables (i.e. ordinal not transformed to dummy variables)

indicates very high dimensionality, typical of such sets with a mixture of

types. The first 6 PCs account for only 75% of variability, the first 9 for

90%. Plots on PCs indicate that there is some well-defined structure

revealed on the mid-order PCs but strikingly the cases with QT=1 are

clearly divided into two groups, one of which separates fairly well from

cases with QT=0 but the other is interior to those with QT=0 from all

perspectives.

A Linear Discriminant Analysis emphasizes that these latter points are

consistently misclassified. The plot below (from R) shews the data on

the first (and only) crimcoord against sequence number. There then

follows various analyses using a random subset to classify the

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 145

remainder using both LDA and various simple neural nets. In this

exercise LDA appears to win. Again the ‘raw’ variables are used for

illustration but recoding would be better.

0 50 100 150 200 250 300

-2
0

2
4

Index

b
o

o
k.

ld

11

1

1

1

1

1

1
1

1
1

1

1

111

0

0

0

0

0
0

0
0

0
0

1

1

0

0

0

0
000

0

0

0

0
0
000

1

0

00

0

1

000

0

00
0
0

0

00
0

00
00
0

0

1

0

0

0

0

0

0
00

00
0
0

0

1

0

00

0

1

1

00
0
00

1

0

0

0
0

0

0

000
0

00
0

00

0
0

0

0

0

0

0
00

1

00

00

1

0

0
0
0

0

0
0

0

0

0

0

1
1

0

0

0

1

00

1

0

0
00
00

0

0
0
0

0

0

0
0

00
0

00

0

0
0

00

0000

0
0

0

00

0
0

0
0

000
0
00

0
0

0

0

0

0

0

0

000

0

000

0

0

0

00

0

00

0

00

0
00
0
00
0

0
0

1

0
0

0

0

0

1

0

0
0
0
01
0

00

0
00
0

0
0

0

1
00
0

00

00
0

0

1
0
0

0

00
00

0

0

0

0

000
0
0

1

0

00

00

0

00

1
00
0
0

0

0

1

0
0

0

0

0

0
0

Plot of Book data on first discriminant (vs index in data file)

 Predicted
 0 1
 true 0 256 1
 1 16 23
 17

Raw misclassification rate 17/296

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 146

Next take random samples of 200 and then use the LDF obtained to

classify the remaining 96 (details of code and some output suppressed):

> samp<- sample(1:296,200)
> books.lda<-lda(book[samp,],qt[samp])
> table(qt[-samp],predict(book.lda,book[-samp,])$class)
 predicted
 0 1 0 1 0 1 0 1 0 1
 true 0 82 0 0 87 0 0 84 1 0 88 0 0 84 0
 1 7 7 1 2 7 1 3 8 1 4 4 1 6 6
misclassif
 rates 7 2 4 4 6

 0 1 0 1 0 1 0 1 0 1
 true 0 81 1 0 79 0 0 81 0 0 89 0 0 83 1
 1 4 10 1 6 11 1 7 8 1 2 5 1 4 8
misclassify
 rates 5 6 7 2 5

i.e. overall about 5%

Now try a neural net with 8 hidden units:

> book.net<-nnet(book,qt,size=8,rang=0.1,decay=5e-4,maxit=200)
> q<-class.ind(qt)
> book.net<-nnet(book,q,size=8,rang=0.1,decay=5e-4,maxit=200)
> book.net
a 16-8-2 network with 154 weights
options were - decay=5e-04
> test.cl(q,predict(book.net,book))
 pred
true 1 2
 1 257 0
 2 11 28
 11
Raw misclassification rate 11/96, now again with 15 hidden units:

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 147

> book.net<-nnet(book,q,size=15,rang=0.1,decay=5e-4,maxit=200)
weights: 287
> test.cl(q,predict(book.net,book))
 pred
true 1 2
 1 257 0
 2 9 30
 9

Raw misclassification rate 9/96

Now again with 20 hidden units:

> book.net<-nnet(book,q,size=20,rang=0.1,decay=5e-4,maxit=200)
weights: 382
> test.cl(q,predict(book.net,book))
 pred
true 1 2
 1 257 0
 2 4 35
 4
Raw misclassification rate 4/96

Now try training the net on 200 randomly selected cases and classify the
remaining 96.

> book.net<-
nnet(book[samp,],q[samp,],size=20,rang=0.1,decay=5e-
4,maxit=200)
weights: 382
> test.cl(q[-samp,],predict(book.net,book[-samp,]))
 pred pred pred pred pred
true 1 2 true 1 2 true 1 2 true 1 2 true 1 2
 1 82 2 1 77 9 1 73 10 1 79 9 1 77 5
 2 6 6 2 5 5 2 6 7 2 3 5 2 8 6
misclassif
 rates
 8 14 16 12 13

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 148

 pred pred pred pred pred
true 1 2 true 1 2 true 1 2 true 1 2 true 1 2
 1 81 4 1 81 1 1 88 2 1 81 9 1 85 5
 2 6 5 2 7 7 2 2 4 2 2 4 2 2 4

misclassif
 rates
 10 8 4 11 7

 pred pred
true 1 2 true 1 2
 1 86 4 1 80 10
 2 2 4 2 2 4
misclassif
 rates
 6 12

i.e. overall about 10%

Next, try this again with only 5 hidden units:

> book.net<-
nnet(book[samp,],q[samp,],size=5,rang=0.1,decay=5e-
4,maxit=300)
weights: 97
 pred pred pred pred pred
true 1 2 true 1 2 true 1 2 true 1 2 true 1 2
 1 85 5 1 82 4 1 77 7 1 82 2 1 77 8
 2 2 4 2 3 7 2 6 6 2 7 5 2 4 7
misclassif
 rates
 7 7 13 9 12
 pred pred pred pred pred
true 1 2 true 1 2 true 1 2 true 1 2 true 1 2
 1 76 5 1 78 5 1 79 5 1 75 10 1 78 6
 2 8 7 2 6 7 2 3 9 2 6 5 2 6 6
 misclassif
 rates
 13 11 8 16 12
>

i.e. overall about 11%

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 149

7.4 Summary

The above account is only a very brief introduction to simple neural

networks, with particular reference to their use for classification. As with

tree-based methods they can also be used for regression problems.

Little has been said about the use and choice of activation functions,

fitting criteria etc and examples have been given entirely in the context

of the simple and basic facilities offered in the nnet library of R. To find

out more then look at the reference Ripley (1996) given on p1, this is

written with statistical terminology and largely from a statistical point of

view. Another definitive reference is Chris Bishop (1995), Neural

Networks for Pattern Recognition, Oxford, Clarendon Press.

©NRJF, University of Sheffield, 2004/05 Statistical Modelling & Computing

 150

8 Concluding Remarks

The sections above have been intended to give an introduction to and a

flavour of the more practical and intuitive methods which are used by

practicing applied statisticians in their day-to-day work. Some of the

techniques are used only at early or intermediate stages of the

investigation into obtaining understanding and insight into the data,

some are used to provide the end-points of the analysis and would be

used in the final report. The account given above is inevitably selective

and incomplete, many important areas have not been mentioned (e.g.

time series analysis, spatial statistics, survival data, …) nor have all the

available techniques been covered within those areas that have been

touched upon. In part this is because the account is based around the

facilities offered in one particular computer package or language R.

What should have become apparent is that this package itself contains a

great deal of instructional material and example data sets that should

encourage you to try out new and unfamiliar methods. Use the code

given on worked examples in the help system, try modifying it and

seeing what happens. Remember the maxim (Aristotle) that:

‘for the things we have to know before we can do them,
we learn by doing them’.

This is a quotation given in the start of a book Applied Stochastic

Modelling by Byron Morgan (2000), another good book to read.

NRJF

 n.fieller@shef.ac.uk

http://www.shef.ac.uk/nickfieller

