
A Comparison of Open Source Search Engines

Christian Middleton, Ricardo Baeza-Yates

2

Contents

1 Introduction 5

2 Background 7

2.1 Document Collection . 8

2.1.1 Web Crawling . 9

2.1.2 TREC . 9

2.2 Indexing . 10

2.3 Searching and Ranking . 12

2.4 Retrieval Evaluation . 13

3 Search Engines 17

3.1 Features . 18

3.2 Description . 19

3.3 Evaluation . 21

4 Methodology 25

4.1 Document collections . 26

4.2 Performance Comparison Tests 26

4.3 Setup . 27

5 Tests 29

5.1 Indexing . 29

5.1.1 Indexing Test over TREC-4 collection 29

3

4 CONTENTS

5.1.2 Indexing WT10g subcollections 32

5.2 Searching . 33

5.2.1 Searching Tests over TREC-4 collection 35

5.2.2 Precision and Recall Comparison 38

5.3 Global Evaluation . 39

6 Conclusions 41

Chapter 1

Introduction

As the amount of information available on the websites increases, it becomes

necessary to give the user the possibility to perform searches over this infor-

mation. When deciding to install a search engine in a website, there exists

the possibility to use a commercial search engine or an open source one.

For most of the websites, using a commercial search engine is not a feasible

alternative because of the fees that are required and because they focus on

large scale sites. On the other hand, open source search engines may give the

same functionalities (some are capable of managing large amount of data)

as a commercial one, with the benefits of the open source philosophy: no

cost, software maintained actively, possibility to customize the code in order

to satisfy personal needs, etc.

Nowadays, there are many open source alternatives that can be used, and

each of them have different characteristics that must be taken into consider-

ation in order to determine which one to install in the website. These search

engines can be classified according to the programming language in which

it is implemented, how it stores the index (inverted file, database, other file

structure), its searching capabilities (boolean operators, fuzzy search, use of

stemming, etc), way of ranking, type of files capable of indexing (HTML,

PDF, plain text, etc), possibility of on-line indexing and/or making incre-

5

6 CHAPTER 1. INTRODUCTION

mental indexes. Other important factors to consider are the last date of

update of the software, the current version and the activity of the project.

These factors are important since a search engine that has not been updated

recently, may present problems at the moment of customizing it to the ne-

cessities of the current website. These characteristics are useful to make a

broad classification of the search engines and be capable of narrowing the

available spectrum of alternatives. Afterward, it is important to consider

the performance of these search engines with different loads of data and

also analyze how it degrades when the amount of information increases. In

this stage, it is possible to analyze the indexing time versus the amount of

data, as well as the amount of resources used during the indexing, and also

analyze the performance during the retrieval stage.

The present work is the first study, to the best of our knowledge, to

cover a comparison of the main features of 17 search engines, as well as a

comparison of the performance during the indexing and retrieval tasks with

different document collections and several types of queries. The objective of

this work is to be used as a reference for deciding which open source search

engine fits best with the particular constraints of the search problem to be

solved.

On chapter 2 we prefer a background of the general concepts of Infor-

mation Retrieval. On chapter 3 it is presented a description of the search

engines used in this work. Then, on chapter 4 the methodology used during

the experiments is described. On chapters 5.1 and 5.2 we present the results

of the different experiments conducted, and on chapter 5.3 the analysis of

these results. Finally, on chapter 6 the conclusions are presented.

Chapter 2

Background

Information Retrieval (IR) is a very broad field of study and it can be

characterized as a field that:

“. . . deals with the representation, storage, organization of, and

access to information items.”[1]

As a general field, it must be able to manipulate the information in order

to allow the user to access it efficiently, focusing on the user information

need. Another definition, without loss of generality, can be stated as:

“Information retrieval is finding material (usually documents) of

an unstructured nature (usually text) that satisfy an information

need from within large collections (usually on local computer

servers or on Internet)”[17]

The main idea is to satisfy the user information need by searching over

the available material for information that seems relevant. In order to ac-

complish this, the IR system consists on several modules that interact among

them (see Figure 2.1). It can be described, in a general form, as three main

areas: Indexing, Searching, and Ranking :

7

8 CHAPTER 2. BACKGROUND

Figure 2.1: Information Retrieval process

Indexing In charge of the representation and organization of the material,

allowing rapid access to the information.

Searching In charge of extracting information from the index that satisfies

the user information need.

Ranking Although this is an optional task, it is also very important for the

retrieval task. It is in charge of sorting the results, based on heuristics

that try to determine which results satisfy better the user need.

2.1 Document Collection

In order to have information where to search for, it is necessary to collect

it and use it as input for the Indexing stage. A document collection can be

any type of source of data, that can be used to extract information. There

can be several scenarios, depending on the application of the IR system.

2.1. DOCUMENT COLLECTION 9

2.1.1 Web Crawling

In the scenario of Web search, it is necessary to use a crawler that, basi-

cally, navigates through the Web and downloads the pages it access. There

are several crawlers available, some with commercial licenses, and others

available with open-source licenses. Since the Web has become immense,

the crawlers may differ on the algorithm used to select the pages to crawl

in order to leverage adding new pages to the collection and updating exis-

tent ones. Also, they must consider the bandwidth usage, in order not to

saturate the crawled sites.

2.1.2 TREC

Other document collections have been generated, some of them for academic

analysis. For example, in the Text REtrieval Conference[13] (TREC), they

have created several document collections with different sizes and different

types of documents, specially designed for particular tasks. The tasks are

divided into several tracks that characterize the objective of the study of

that collection. For example, some of the seven 2007 TREC Tracks are:

• Blog Track: Their objective is to explore information seeking behavior

in the blogosphere.

• Enterprise Track: Analyze enterprise search, i.e., fulfill the information

need of a user searching data of an organization to complete some task.

• Genomics Track: Study retrieval tasks in a specific domain (genomics

data).

• Spam Track: Analyze current and proposed spam filtering approaches.

Besides the document collection, TREC is used as an instance for dis-

cussing and comparing different retrieval approaches by analyzing the results

of the different groups and the approaches used. For this purpose, they pro-

vide a set of retrieval tasks and the corresponding query relevance judgment,

10 CHAPTER 2. BACKGROUND

1 10 20 30 40 50 60 70

It was open - wide, wide open - and I grew furious as I gazed upon it.

Vocabulary Posting list
open → 8, 26, . . .
wide → 15, 21, . . .
grew → 39, . . .
.

Table 2.1: Example of inverted index based on a sample text. For every

word, the list of occurrences is stored.

so it is possible to analyze the precision and recall of the different IR systems,

in different scenarios.

2.2 Indexing

In order to be able of making efficient searches over the document collection,

it is necessary to have the data stored in specially designed data structures.

These data structures are the indices, and permits to make fast searches over

the collection, basically, by decreasing the number of comparisons needed.

One of the most used data structure used on text retrieval is the inverted

index (see Table 2.1). It consists on a vocabulary, that contains all the words

in the collection, and a posting list that, for each term in the vocabulary,

gives the list of all the positions where that word appears in the collection.

Depending on the application, and type of matching that is required, some

implementations store a list of documents instead, but the concept of index

remains.

The space required to store the index is proportional to the size of the

document collection, and there exists some techniques for reducing or op-

timizing the amount of space required. In general, the space used by the

vocabulary is small, but the space used by the posting list is much more sig-

nificant. Also, the space required depends on the functionalities offered by

the search engine, so there is a trade-off between the space required and the

2.2. INDEXING 11

functionalities offered. For example, some indexers store the full text of the

collection, in order to present the user with a sample of the text (“snippet”)

surrounding the search, while others use less space, but are not able to give

a snippet. Other indexers use techniques for reducing the size of the posting

list (e.g., using block addressing, where the text is divided into blocks so

the posting list points to the blocks, grouping several instances into fewer

blocks), but their trade-off is that for obtaining the exact position of a word

the engine might need to do extra work (in our case, it is necessary to do a

sequential scan over the desired block).

There are several pre-processing steps that can be performed over the

text during the indexing stage. Some of the most commonly used are stop-

word elimination and stemming.

There are some terms that appear very frequently on the collection, and

are not relevant for the retrieval task (for example, in English, the words “a”,

“an”, “are”, “be”, “for”, . . .), and they are referred as stopwords. Depending

on the application and language of the collection, the list of words can vary.

A common practice, called stopword elimination, is to remove these words

from the text and do not index them, making the inverted index much

smaller.

Another technique is stemming, since it is common that, besides the

exact term queried by the user, there are some variations of the word that

also appear on the text. For example, the plural form and past tense of the

word might also be used as a match. To address this problem, some indexers

use an algorithm that obtain the stem of a word, and querying this word

instead. The stem of a word is the portion of the word that is left after the

removal of the affixes [1]. An example is the word “connect” that is the stem

of the words “connected”, “connecting”, “connection”, and “connections”.

All the pre-processing and the way of storing the inverted index affect

the space required as well as the time used for indexing a collection. As

mentioned before, it depends on the application, it might be convenient to

12 CHAPTER 2. BACKGROUND

trade-off time needed to build the index in order to obtain a more space-

efficient index. Also, the characteristics of the index will affect the searching

tasks, that will be explained on the following section.

2.3 Searching and Ranking

Based on an inverted index, it is possible to perform queries very efficiently.

Basically, the main steps in the retrieval task are:

1. Vocabulary Search: The query is splitted into words (terms), and

searched over the vocabulary of the index. This step can be achieved

very efficient, by having the vocabulary sorted.

2. Retrieval of Occurrences: All the posting lists, of the terms found on

the vocabulary, are retrieved.

3. Manipulation of Occurrences: The lists must be manipulated in order

to obtain the results of the query.

Depending on the type of query (boolean, proximity, use of wildcards,

etc), the manipulation differ and might imply some additional processing

of the results. For example, boolean queries are the most commonly used,

and consist on a set of terms (atoms) that are combined using a set of

operators (as “and”, “or”, “not”) in order to retrieve documents that match

these conditions. These kind of queries are very simple to solve using an

inverted file, since the only manipulation required is to merge the posting

lists and selecting only the ones that satisfy the conditions. On the other

hand, phrase and proximity queries are more difficult to solve, since they

require a complex manipulation of the occurrences. Phrase queries refers to

queries that search for a set of words that appear in a particular pattern,

while proximity queries is a more relaxed version where the words might be

at a certain distance, but still satisfying the order of the words. For these

type of queries, it is necessary to have the list of occurrences ordered by

2.4. RETRIEVAL EVALUATION 13

the word position, and perform a pattern matching over the resulting list,

making the retrieval more complicated than simple boolean queries.

After performing the search over the index, it might be necessary to

rank the results obtained in order to satisfy the user need. This stage of

ranking might be optional, depending on the application, but for the Web

search scenario it has become very important. The process of ranking must

take into consideration several additional factors, besides whether the list of

documents satisfy the query or not. For example, in some applications, the

size of the retrieved document might indicate a level of importance of the

document; on the Web scenario, another factor might be the “popularity”

of the retrieved page (e.g. a combination of the number of in- and out-links,

age of the page, etc); the location of the queried terms (e.g. if they appear

on the body or in the title of the document); etc.

2.4 Retrieval Evaluation

For analyzing the “quality” of a retrieval system, it is possible to study if

the results returned by a certain query are related to it or not. This can be

done by determining, given a query and a set of documents, the ones that

are related (i.e., are relevant) and the ones that are not, and then comparing

the number of relevant results returned by the retrieval system.

To formalize this notion of quality, there has been defined several mea-

sures of quality. We are focusing on precision and recall and the relationship

between them. Let R be the set of documents that are relevant, given a query

q in a reference collection I. Also, let A be the set of documents retrieved

by the system, when submitting the query q, and Ra the set of documents

retrieved that were relevant (i.e., were in the set R). We can define:

• Recall: Ratio between the relevant retrieved documents, and the set

of relevant documents.

Recall =
|Ra|
|R|

14 CHAPTER 2. BACKGROUND

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Recall

Average Precision/Recall

Engine 1

(a) Data from 1 engine.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Recall

Average Precision/Recall

Engine 1
Engine 2
Engine 3

(b) Data from 3 engines.

Figure 2.2: Average Precision/Recall

• Precision: Ratio between the relevant retrieved documents and the set

of retrieved documents.

Precision =
|Ra|
|A|

Since each of these values by itself may not be sufficient (e.g., a system

might get full recall by retrieving all the documents in the collection), it is

possible to analyze them by combining the measures. For example, to an-

alyze graphically the quality of a retrieval system, we can plot the average

precision-recall (see Figure 2.2) and observe the behavior of the precision

and recall of a system. These type of plots is useful also for comparing the

retrieval of different engines. For example, on Figure 2.1(b) we observe the

curves for 3 different engines. We can observe that Engine 2 has lower pre-

cision than the others at low recall, but as the recall increases, its precision

doesn’t degrade as fast as the other engines.

Another common measure is to calculate precision at certain document

cut-offs, for example, analyze the precision at the first 5 documents. This

is usually called precision at n (P@n) and represents the quality of the

answer, since the user is frequently presented with only the first n documents

retrieved, and not with the whole list of results.

2.4. RETRIEVAL EVALUATION 15

As mentioned before, to calculate precision and recall, it is necessary to

analyze the entire document collection, and for each query determine the

documents that are relevant. This judgment of whether a document is rel-

evant or not, must be done by an expert on the field that can understand

the need represented by the query. In some cases, this analysis is not feasi-

ble since the document collection is too large (for example, the whole Web)

or maybe the user intention behind the query is not clear. To address this

problem, as mentioned on section 2.1.2, besides the document collection, the

TREC conference also provides a set of queries (topics) and the correspond-

ing set of relevant documents (relevance judgment). Using the document

collection provided for each track, they have defined a set of topics, with a

description of the intention behind it, that can be used to query the engine

in study and then compare the results obtained with the list of relevant

documents.

16 CHAPTER 2. BACKGROUND

Chapter 3

Search Engines

There are several open source search engines available to download and use.

In this study it is presented a list of the available search engines and an

initial evaluation of them that permits to have a general overview of the al-

ternatives. The criteria used in this initial evaluation was the development

status, the current activity and the date of the last update made to the

search engine. We compared 29 search engines: ASPSeek, BBDBot, Dat-

apark, ebhath, Eureka, ht://Dig, Indri, ISearch, IXE, Lucene, Managing

Gigabytes (MG), MG4J, mnoGoSearch, MPS Information Server, Namazu,

Nutch, Omega, OmniFind IBM Yahoo! Ed., OpenFTS, PLWeb, SWISH-E,

SWISH++, Terrier, WAIS/ freeWAIS, WebGlimpse, XML Query Engine,

XMLSearch, Zebra, and Zettair.

Based on the information collected, it is possible to discard some projects

because they are considered outdated (e.g. last update is prior to the year

2000), the project is not maintained or paralyzed, or it was not possible

to obtain information of them. For these reasons we discarded ASPSeek,

BBDBot, ebhath, Eureka, ISearch, MPS Information Server, PLWeb, and

WAIS/freeWAIS.

In some cases, a project was rejected because of additional factors. For

example, although the MG project (presented on the book “Managing Gi-

17

18 CHAPTER 3. SEARCH ENGINES

gabytes” [18]) is one of the most important work on the area, it was not

included in this work, due to the fact that it has not been updated since

1999. Another special case is the Nutch project. The Nutch search engine

is based on the Lucene search engine, and is just an implementation that

uses the API provided by Lucene. For this reason, only the Lucene project

will be analyzed. And finally, XML Query Engine and Zebra were discarded

since they focus on structured data (XML) rather than on semi-structured

data as HTML.

Therefore, the initial list of search engines that we wanted to cover in the

present work were: Datapark, ht://Dig, Indri, IXE, Lucene, MG4J, mno-

GoSearch, Namazu, OmniFind, OpenFTS, Omega, SWISH-E, SWISH++,

Terrier, WebGlimpse (Glimpse), XMLSearch, and Zettair. However, with

the preliminary tests, we observed that the indexing time for Datapark,

mnoGoSearch, Namazu, OpenFTS, and Glimpse where 3 to 6 times longer

than the rest of the search engines, for the smallest database, and hence we

also did not considered them on the final performance comparison.

3.1 Features

As mentioned before, each of the search engines can be characterized by the

features they implement as well as the performance they have in different

scenarios. We defined 13 common features that can be used to describe each

search engine, based only on the functionalities and intrinsic characteristics

they possess:

Storage Indicates the way the indexer stores the index, either using a

database engine or simple file structure (e.g. an inverted index).

Incremental Index Indicates if the indexer is capable of adding files to an

existent index without the need of regenerating the whole index.

Results Excerpt If the engine gives an excerpt (“snippet”) with the results.

Results Template Some engines give the possibility to use a template for

parsing the results of a query.

3.2. DESCRIPTION 19

Stop words Indicates if the indexer can use a list of words used as stop

words in order to discard too frequent terms.

Filetype The types of files the indexer is capable of parsing. The common

filetype of the engines analyzed was HTML.

Stemming If the indexer/searcher is capable of doing stemming operations

over the words.

Fuzzy Search Ability of solving queries in a fuzzy way, i.e. not necessarily

matching the query exactly.

Sort Ability to sort the results by several criteria.

Ranking Indicates if the engine gives the results based on a ranking func-

tion.

Search Type The type of searches it is capable of doing, and whether it

accepts query operators.

Indexer Language The programming language used to implement the

indexer. This information is useful in order to extend the functionalities or

integrate it into an existent platform.

License Determines the conditions for using and modifying the indexer

and/or search engine.

On Table 3.2 it is presented a summary of the features each of the search

engines have. In order to make a decision it is necessary to analyze the

features as a whole, and complement this information with the results of

the performance evaluation.

3.2 Description

Each of the search engines that will be analyzed can be described shortly,

based on who and where developed it and its main characteristic that iden-

tifies it.

ht://Dig [16] is a set of tools that permit to index and search a website. It

provides with a command line tool to perform the search as well as a CGI

20 CHAPTER 3. SEARCH ENGINES

interface. Although there are newer versions than the one used, according

to their website, the version 3.1.6 is the fastest one.

IXE Toolkit is a set of modular C++ classes and utilities for indexing and

querying documents. There exists a commercial version from Tiscali (Italy),

as well as a non-commercial version for academic purposes.

Indri [3] is a search engine built on top of the Lemur [4] project, which is a

toolkit designed for research in language modeling and information retrieval.

This project was developed by a cooperative work between the University

of Massachusetts and Carnegie Mellon University, in the USA.

Lucene [6] is a text search engine library part of the Apache Software

Foundation. Since it is a library, there are some applications that make use

of it, e.g. the Nutch project [8]. In the present work, the simple applications

bundled with the library were used to index the collection.

MG4J [7] (Managing Gigabytes for Java) is full text indexer for large col-

lection of documents, developed at the University of Milano, Italy. As by-

products, they offer general-purpose optimized classes for processing strings,

bit-level I/O, etc.

Omega is an application built on top of Xapian [14] which is an Open Source

Probabilistic Information Retrieval library. Xapian is written in C++ but

can be binded to different languages (Perl, Python, PHP, Java, TCL, C#).

IBM Omnifind Yahoo! Edition [2] is a search software that enables

rapid deployment of intranet search. It combines internal search, based on

Lucene search engine, with the possibility to search on Internet using Yahoo!

search engine.

SWISH-E [11] (Simple Web Indexing System for Humans - Enhanced) is

an open source engine for indexing and searching. It is an enhanced version

of SWISH, written by Kevin Hughes.

SWISH++ [10] is an indexing and searching tool based on Swish-E, al-

though completely rewritten in C++. It has most of the features of Swish-E,

but not all of them.

3.3. EVALUATION 21

Terrier [12] (TERabyte RetrIEveR) is a modular platform that allows rapid

development of Web, intranet and desktop search engines, developed at the

University of Glasgow, Scotland. It comes with the ability to index, query

and evaluate standard TREC collections.

XMLSearch is a set of classes developed in C++ that permits indexing

and searching over document collections, by extending the search with text

operators (equality, prefix, suffix, phrase, etc). There is a commercial version

available from Barcino (Chile), and a non-commercial version for academic

use.

Zettair [15] (formerly known as Lucy) is a text search engine developed by

the Search Engine Group at RMIT University. Its primary feature is the

ability to handle large amounts of text.

3.3 Evaluation

As seen before, each search engine has multiple characteristics that differ-

entiates it from the other engines. To make a comparison of the engines, we

would like to have a well-defined qualification process that can give the user

an objective grade indicating the quality of each search engine. The problem

is that it depends on the particular needs of each user and the main objec-

tive of the engine, how to choose the “best” search engine. For example, the

evaluation can be tackled from the usability point of view, i.e. how simple

is to use the engine out-of-the-box, and how simple it is to customize it in

order to have it running. This depends on the main characteristic of the

search engine. For example, Lucene is intended to be an index and search

API, but if you need the features of Lucene as a front-end you must focus

on the subproject Nutch. Another possibility is to analyze the common

characteristics, as indexing and searching performance, and these features

are much more analytical, but they must be analyzed with care since they

are not the only feature. For this reason, we present a comparison based

on these quantifiable parameters (indexing time, index size, resource con-

22 CHAPTER 3. SEARCH ENGINES

sumption, searching time, precision/recall, etc) and, at the end, we present

several use cases and possible alternatives for each case.

3.3. EVALUATION 23

Search Engine Update Version Observation
ASPSeek 2002 N/A The project is paralyzed.
BBDBot 2002 N/A Last update was on 2002, but

since then it has not have any
activity.

Datapark 13/03/2006 4.38
ebhath N/A N/A No existing website.
Eureka N/A N/A Website is not working.
ht://Dig 16/06/2004 3.2.0b6
Indri 01/2007 2.4
ISearch 02/11/2000 1.75 According to the website,

“the software is not actively
maintained, although it is
available for download”.

IXE 2007 1.5
Lucene 02/03/2006 1.9.1
Managing Gigabytes 01/08/1999 1.2.1
MG4J 03/10/2005 1.0.1
mnoGoSearch 15/03/2006 3.2.38
MPS Inform. Server 01/09/2000 6.0
Namazu 12/03/2006 2.0.16
Nutch 31/03/2006 0.7.2 Subproject of the Lucene

project.
Omega 08/04/2006 0.9.5 Omega is an application that

uses the Xapian library.
OmniFind IBM Yahoo! 2006/12/07 8.4.0
OpenFTS 05/04/2005 0.39
PLWeb 16/03/1999 3.0.4 On 2000, AOL Search pub-

lished a letter stating that the
code will no longer be avail-
able.

SWISH-E 17/12/2004 2.4.3
SWISH++ 14/03/2006 6.1.4
Terrier 17/03/2005 1.0.2
WAIS & freeWAIS N/A N/A The software is outdated.
WebGlimpse 01/04/2006 4.18.5 Uses Glimpse as the indexer.
XML Query Engine 02/04/2005 0.69 It is an XML search engine.
Zebra 23/02/2006 1.3.34 It is an XML search engine.
Zettair 09/2006 0.93

Table 3.1: Initial characterization of the available open source search en-
gines.

24 CHAPTER 3. SEARCH ENGINES

S
ea

rc
h

E
n
gi

n
e

S
to

ra
ge

(f
)

In
cr

em
.

In
d
ex

R
es

u
lt

s
E
x
ce

rp
t

R
es

u
lt

s
T
em

p
la

te

S
to

p
w

or
d
s

F
il
et

y
p
e(

e
)

S
te

m
m

in
g

F
u
zz

y
S
ea

rc
h

S
or

t(
d
)

R
an

k
in

g

S
ea

rc
h

T
y
p
e(

c
)

In
d
ex

er
L
an

g.
(b

)

L
ic

en
se

(a
)

Datapark 2 � � � � 1,2,3 � � 1,2 � 2 1 4
ht://Dig 1 � � � � 1,2 � � 1 � 2 1,2 4
Indri 1 � � � � 1,2,3,4 � � 1,2 � 1,2,3 2 3
IXE 1 � � � � 1,2,3 � � 1,2 � 1,2,3 2 8
Lucene 1 � � � � 1,2,4 � � 1 � 1,2,3 3 1
MG4J 1 � � � � 1,2 � � 1 � 1,2,3 3 6
mnoGoSearch 2 � � � � 1,2 � � 1 � 2 1 4
Namazu 1 � � � � 1,2 � � 1,2 � 1,2,3 1 4
Omega 1 � � � � 1,2,4,5 � � 1 � 1,2,3 2 4
OmniFind 1 � � � � 1,2,3,4,5 � � 1 � 1,2,3 3 5
OpenFTS 2 � � � � 1,2 � � 1 � 1,2 4 4
SWISH-E 1 � � � � 1,2,3 � � 1,2 � 1,2,3 1 4
SWISH++ 1 � � � � 1,2 � � 1 � 1,2,3 2 4
Terrier 1 � � � � 1,2,3,4,5 � � 1 � 1,2,3 3 7
WebGlimpse 1 � �(g) �(g) � 1,2 � � 1(e) � 1,2,3 1 8,9
XMLSearch 1 � � � � 3 � � 3 � 1,2,3 2 8
Zettair 1 � � � � 1,2 � � 1 � 1,2,3 1 2
(a) 1:Apache,2:BSD,3:CMU,4:GPL,5:IBM,6:LGPL,7:MPL,8:Comm,9:Free
(b) 1:C, 2:C++, 3:Java, 4:Perl, 5:PHP, 6:Tcl
(c) 1:phrase, 2:boolean, 3:wild card.
(d) 1:ranking, 2:date, 3:none. � Available
(e) 1:HTML, 2:plain text, 3:XML, 4:PDF, 5:PS. � Not Available
(f) 1:file, 2:database.
(g) Commercial version only.

Table 3.2: Main characteristics of the open source search engines analyzed.

Chapter 4

Methodology

One of the objectives of this study is to present a comparison of the per-

formance of open source search engines in different scenarios (i.e. using

document collections of different sizes), and evaluate them using a common

criteria. In order to perform this benchmark, we divided the study in the

following steps:

1. Obtain a document collection in HTML

2. Determine the tool that will be used to monitor the performance of

the search engines

3. Install and configure each of the search engines

4. Index each document collection

5. Process and analyze index results

6. Perform searching tasks

7. Process and analyze search results.

25

26 CHAPTER 4. METHODOLOGY

4.1 Document collections

To execute the performance comparison between the different search engines,

it was necessary to have several document collections of different sizes, rang-

ing from a collection of less than 1 gigabyte of text, to 2.5 or 3 gigabytes

of text. Another requirement was the file-type that will be used, and the

common file-type supported by the search engines that were analyzed was

HTML. In order to have a collection of nearly 3 GB of HTML documents,

one possible solution was to use an on-line site and perform a crawl over

the documents and obtain the collection, but this work is focused on the

indexing capabilities of the search engines, so it was decided to use a local

collection.

To create this document collection, a TREC-4 collection was obtained.

This collection consists on several files containing the documents of The

Wall Street Journal, Associated Press, Los Angeles Times, etc. Each of

these files is in SGML format, so it was necessary to parse these documents

and generate a collection of HTML documents of approximately 500kB each.

Afterward, the collection was separated into 3 groups of different sizes: one

of 750MB (1,549 documents), another of 1.6GB (3,193 documents), and one

of 2.7GB (5,572 documents).

Afterward, the comparison was extended to using the WT10g TREC

Web corpus (WebTREC). This collection consists on 1,692,096 documents,

divided into 5117 files, and the total size is 10.2 GB. The collection was

divided into subcollections of different sizes (2.4GB, 4.8GB, 7.2GB, and 10.2

GB) in order to compare the corresponding indexing time. The searching

tests were performed over the whole WT10g collection.

4.2 Performance Comparison Tests

We executed 5 different tests over the document collections. The first three

experiments were conducted over the parsed document collection (TREC-4),

4.3. SETUP 27

and the last two experiments were conducted over the WT10g WebTREC

document collection. The first test consisted on indexing the document col-

lection with each of the search engines and record the elapsed time as well

as the resource consumption. The second test consisted on comparing the

search time of the search engines that performed better during the index-

ing tests, and analyze their performance with each of the collections. The

third test consisted on comparing the indexing time required for making

incremental indices. The indexing process of all the search engines were

performed sequentially, using the same computer. The fourth experiment

consisted on comparing the indexing time for subcollections of different sizes

from the WT10g, with the search engines that were capable of indexing the

whole collection of the previous experiments. Finally, the fifth experiment

consisted on analyzing the searching time, precision and recall using a set

of query topics, over the full WT10g collection.

4.3 Setup

The main characteristics of the computer used: Pentium 4HT 3.2 GHz pro-

cessor, 2.0 GB RAM, SATA HDD, running under Debian Linux (Kernel

2.6.15). In order to analyze the resource consumption of every search engine

during the process of indexing, it was necessary to have a monitoring tool.

There are some open source monitors available, for example, “Load Moni-

tor” [5] and “QOS” [9], but for this work a simple monitor was sufficient.

For this reason, we implemented a simple daemon that logged the CPU and

memory consumption of a given process, at certain time intervals. After-

ward, the information collected can be easily parsed in order to generate

data that can be plotted with Gnuplot.

28 CHAPTER 4. METHODOLOGY

Chapter 5

Tests

5.1 Indexing

5.1.1 Indexing Test over TREC-4 collection

The indexing tests consisted on indexing the document collections with each

of the search engines and record the elapsed time as well as the resource

consumption (CPU, RAM memory, and index size on disk). After each

phase, the resulting time was analyzed and only the search engines that had

“reasonable” indexing times continued to be tested on the following phase

with the bigger collection. We arbitrarily defined the concept of “indexers

with reasonable indexing time”, based on the preliminary observations, as

the indexers with indexing time no more than 20 times the fastest indexer.

Indexing Time

On Figure 5.1 we present a graphical comparison of the search engines that

were capable of indexing all the document collections (in reasonable time).

As mentioned on chapter 3, we discarded Datapark, Glimpse, mnoGoSearch,

Namazu, and OpenFTS search engines, since their indexing time, for the

750MB collection, ranged from 77 to more than 320 minutes. Compared to

the other search engines, their performance was very poor. An important

29

30 CHAPTER 5. TESTS

 1

 10

 100

 1000

ZettairXMLSearchTerrierSwish++SwishEOmnifindOmegaMG4JLuceneIXEIndriHtDig

Ti
m

e
(m

in
)

Search Engine

Indexing Time

750 MB
1.6 GB
2.7 GB

Figure 5.1: Indexing time for document collections of different sizes (750MB,

1.6GB, and 2.7GB) of the search engines that were capable of indexing all

the document collections.

observation is that all of the search engines that used a database for storing

the index had indexing time much larger than the rest of the search engines.

For the 750MB collection, the search engines had indexing time between

1 and 32 minutes. Then, with the 1.6GB collection, their indexing time

ranged from 2 minutes to 1 hour. Finally, with the 2.7GB collection, the

indexing time of the search engines, with the exception of Omega, was be-

tween 5 minutes and 1 hour. Omega showed a different behavior than the

other, since the indexing time for the larger collection was of 17 hours and

50 minutes.

RAM Memory and CPU Consumption

Using the monitoring tool described on chapter 4, we were able to analyze

the behavior of the search engines, during the indexing stage. The RAM con-

sumption corresponds to the percentage of the total physical memory of the

5.1. INDEXING 31

server, that was used during the test. We observed that their CPU consump-

tion remained constant during the indexing stage, using almost the 100%

of the CPU. On the other hand, we observed 6 different behaviors on the

RAM usage: constant (C), linear (L), step (S), and a combination of them:

linear-step (L-S), linear-constant (L-C), and step-constant (S-C). ht://Dig,

Lucene, and XMLSearch had a steady usage of RAM during the whole pro-

cess. MG4J, Omega, Swish-E, and Zettair presented a linear growth in their

RAM usage, and Swish++ presented a step-like behavior, i.e. it started us-

ing some memory, and then it maintained the usage for a period of time,

and then continued using more RAM. Indri had a linear growth on the RAM

usage, then it decreased abruptly the amount used, and then started using

more RAM in a linear way. Terrier’s behavior was a combination of step-

like growth, and then it descended abruptly, and kept constant their RAM

usage until the end of the indexing. Finally, Omega’s behavior was a lin-

ear growth, but when it reached the 1.6GB of RAM usage, it maintained a

constant usage until the end of the indexing.

Index Size

In Table 5.2 it is presented the size of the indices created by each of the

search engines that were able of indexing the three collections in reasonable

time. We can observe 3 groups: indices whose size range between 25%-35%,

a group using 50%-55%, and the last group that used more than 100% the

size of the collection.

We also compared the time needed for making incremental indices using

three sets of different sizes: 1%, 5%, and 10% of the initial collection. We

based on the indices created for the 1.6GB collection and each of the new

collections had documents that were not included before. We compared

ht://Dig, Indri, IXE, Swish-E, and Swish++. On Figure 5.2 we present the

graph comparing their incremental indexing time.

32 CHAPTER 5. TESTS

Search 750MB 1.6GB 2.7GB
Engine Max. Max. RAM Max. Max. RAM Max. Max. RAM

CPU RAM Behav. CPU RAM Behav. CPU RAM Behav.
ht://Dig 100.0% 6.4 % C 100.0% 6.4 % C 88.9% 6.4 % C
Indri 100.0% 7.3 % L-S 97.5% 8.0 % L-S 88.6% 9.7 % L-S
IXE 96.7% 39.1 % S 98.7% 48.5 % S 92.6% 51.5 % S
Lucene 99.4% 20.0 % L 100.0% 38.3 % L 99.2% 59.4 % L
MG4J 100.0% 23.4 % C 100.0% 48.0 % C 100.0% 70.4 % C
Omega 100.0% 26.8 % L 99.2% 52.1 % L 94.0% 83.5 % L-C
OmniFind 78.4% 17.6 % S 83.3% 18.3 % S 83.8% 19.5 % S
Swish-E 100.0% 16.2 % L 98.9% 31.9 % L 98.8% 56.7 % L
Swish++ 99.6% 24.8 % S 98.5% 34.3 % S 98.6% 54.3 % S
Terrier 99.5% 58.1 % S-C 99.4% 78.1 % S-C 98.7% 86.5 % S-C
XMLSearch 93.6% 0.6 % C 86.2% 0.6 % C 90.1% 0.6 % C
Zettair 77.2% 20.2 % L 98.1% 22.3 % L 82.7% 23.1 % L

RAM behavior: C – constant, L – linear, S – step.

Table 5.1: Maximum CPU and RAM usage, RAM behavior, and index
size of each search engine, when indexing collections of 750MB, 1.6GB, and
2.7GB.

5.1.2 Indexing WT10g subcollections

Another test performed consisted on comparing the time needed to index

different subcollections of the WebTREC (WT10g) collection. We observed

two groups of search engines: one group was able to index the collection with

the original format (i.e. each file consisted on a set of records that contained

the actual HTML pages); and another group that did not understand the

format, so it was necessary to parse the collection and extract each HTML

file separately. Indri, MG4J, Terrier, and Zettair were able to index the

WT10g files without any modification, but ht://Dig, IXE1, Lucene, Swish-E,

and Swish++ needed the data to be splitted. XMLSearch was not included

in the tests with the WT10g collection, since it does not make ranking over

the results.

First, we tested each of the search engines that passed the previous

1It included the script to parse the TREC documents, so the splitting into small HTML

files was “transparent” for the user.

5.2. SEARCHING 33

Search Index Size
Engine 750MB 1.6GB 2.7GB

ht://Dig 108% 92% 104%
Indri 61% 58% 63%
IXE 30% 28% 30%
Lucene 25% 23% 26%
MG4J 30% 27% 30%
Omega 104% 95% 103%
OmniFind 175% 159% 171%
Swish-E 31% 28% 31%
Swish++ 30% 26% 29%
Terrier 51% 47% 52%
XMLSearch 25% 22% 22%
Zettair 34% 31% 33%

Table 5.2: Index size of each search engine, when indexing collections of
750MB, 1.6GB, and 2.7GB.

test, with the whole WT10g collection (10.2 GB). Only Indri, IXE, MG4J,

Terrier, and Zettair could index the whole collection with a linear growth in

time (compared to their corresponding indexing times on the previous tests).

The other search engines did not scale appropriately or crashed due to lack

of memory. ht://Dig and Lucene took more than 7 times their expected

indexing time and more than 20 times the fastest search engine (Zettair);

while Swish-E and Swish++ crashed due to an “out of memory” error.

Based on these results, we analyzed the indexing time with subcollections

of the original collection, of different sizes (2.4GB, 4.8GB, 7.2GB, and 10.2

GB). On Figure 5.3 we present a comparison of the indexing time for each

of the search engines that were capable of indexing the entire collection. We

can observe that these search engines scaled linearly as the collection grew.

5.2 Searching

The searching tests are based on a set of queries that must be answered,

and then compare the level of “correct” results that each engine retrieved.

Depending on the collection and the set of queries, this idea of “correct”

34 CHAPTER 5. TESTS

 1

 10

 100

Swish++Swish-EIXEIndriHtDig

Ti
m

e
(s

ec
)

Search Engine

Incremental Indexing Time

1 %
5 %

10 %

Figure 5.2: Indexing time for Incremental Indices

results will be defined. In order to obtain the set of queries to use, we can

identify three approaches:

• Use a query log to find “real” queries

• Generate queries based on the content of the collection

• Use predefined set of queries, strongly related to the content of the

collection

The first approach, using a query log, seems attractive since it will test

the engines in a “real-world” situation. The problem with this approach is

that, in order to be really relevant, it must be tested with a set of pages that

are related to the query log, i.e. we would need to obtain a set of crawled

pages and a set of query logs that were used over these documents. Since on

the first tests we are using the TREC-4 collection which is based on a set of

news articles, we don’t have a query log relevant to these documents. For

this reason we used a set of randomly created queries (more detail on section

5.2. SEARCHING 35

 1

 10

 100

ZettairTerrierMG4JIXEIndri

Ti
m

e
(m

in
)

Search Engine

Indexing Time - WT10g Collection

2.4 GB
4.8 GB
7.2 GB

10.2 GB

Figure 5.3: Indexing time for the WT10g collection.

5.2.1) based on the words contained on the documents, using different word

distributions. Finally, the most complete test environment can be obtained

by using a set of predefined set of queries, related to the document collection.

These queries can be used on the second set of experiments, that operate

over the WT10g collection, created for the TREC evaluation. This approach

seems to be the most complete and close to the real-world situation, with a

controlled environment.

For the reasons mentioned above, we used a set of randomly generated

queries over the TREC-4 collection, and a set of topics and query relevance

for the WT10g TREC collection.

5.2.1 Searching Tests over TREC-4 collection

The Searching Tests were conducted using the three document collections,

with the search engines that had better performance during the Indexing

Tests (i.e., ht://Dig, Indri, IXE, Lucene, MG4J, Swish-E, Swish++, Terrier,

XMLSearch, and Zettair). These tests consisted on creating 1-word and 2-

36 CHAPTER 5. TESTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Recall

Average Precision/Recall - WT10g Collection

Indri
IXE

MG4J
Terrier
Zettair

Figure 5.4: Average Precision/Recall for the WT10g collection.

words queries from the dictionary obtained from each of the collections, and

then analyzing the search time of each of the search engines, as well as

the “retrieval percentage”. The “retrieval percentage” is the ratio between

the amount of documents retrieved by a search engine and the maximum

amount of documents that were retrieved by all of the search engines.

In order to create the queries, we chose 1 or 2 words by random from

the dictionary of words that appeared on each of the collections (without

stopwords), using several word distributions:

1. Original distribution of the words (power law)

2. Uniform distribution from the 5% of the most frequent words

3. Uniform distribution from the 30% of the least frequent words.

The queries used on each of the collections considered the dictionary and

distribution of words particular to that collection. The word frequency of

all of the collections followed a Zipf law.

5.2. SEARCHING 37

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

ZettairXMLSearchTerrierSwish++Swish-EMG4JLuceneIXEIndriHtDig

Ti
m

e
(m

s)

Search Engine

Average Searching Time (2.7GB Collection)

1-word queries
2-word queries

Figure 5.5: Average search time (2.7 GB collection).

Searching time and Retrieval percentage

After submitting the set of 1- and 2-words queries (each set consisted on

100 queries), we could observe the average searching time for each collection

and the corresponding retrieval percentage. For the 2-words queries, we

considered the matching of any of the words (using the OR operator). On

figure 5.5 we present a graph comparison of the average search times of each

search engine for the 2.7GB collection.

The results obtained show that all of the search engines that qualified

for the searching stage had similar searching times in each of the set of

queries. In average, the searching time of submitting a 1-word or a 2-words

query differed by a factor of 1.5 or 2.0, in a linear way. The fastest search

engines were Indri, IXE, Lucene, and XMLSearch. Then it was MG4J, and

Zettair. The retrieval percentage was also very similar between them, but

it decreased abruptly as the collection became larger and with queries from

the lowest 30%.

38 CHAPTER 5. TESTS

RAM memory consumption

During the searching stage we observed 4 different behaviors. Indri, IXE,

Lucene, MG4J, Terrier, and Zettair used constant memory (1%-2% mem-

ory), independent of the size of the collection queried. XMLSearch used few

and constant memory, but dependant on the size of the collection (0.6%,

0.8%, and 1.1% for every collection respectively). The memory usage of

Swish++ increased linearly upto 2.5%, 3.5% and 4.5% for every collection

respectively, and Swish-E and ht://Dig used much more memory with a

constant curve. Swish-E used 10.5% RAM and ht://Dig used 14.4% RAM.

5.2.2 Precision and Recall Comparison

Using the indices created for WT10g, it was possible to analyze precision

and recall for each of the search engines. We used the 50 topics (using title-

only queries) used on the TREC-2001 Web Track for the “Topic Relevance

Task”, and their corresponding relevance judgments. To have a common

scenario for every search engine, we didn’t use any stemming, or stop-word

removal of the queries, and used the OR operator between the terms.

Afterward, the processing of the results was done using the trec_eval

software, that permits to evaluate the results with the standard NIST eval-

uation and is freely available. As output of the program, you obtain general

information about the queries (e.g. number of relevant documents) as well as

precision and recall statistics. We focused on the interpolated average preci-

sion/recall and the precision at different levels. The average precision/recall

permits to compare the retrieval performance of the engines by observing

their behavior throughout the retrieval (see Figure 5.4). On the other hand,

we also compared the precision at different cutoff values, allowing to observe

how it behaves at different thresholds (see Table 5.3).

5.3. GLOBAL EVALUATION 39

Search Engine P@5 P@10 P@15 P@20 P@30

Indri 0.2851 0.2532 0.2170 0.2011 0.1801

IXE 0.1429 0.1204 0.1129 0.1061 0.0939

MG4J 0.2480 0.2100 0.1800 0.1600 0.1340

Terrier 0.2800 0.2400 0.2130 0.2100 0.1930

Zettair 0.3240 0.2680 0.2507 0.2310 0.1993

Table 5.3: Answer Quality for the WT10g.

5.3 Global Evaluation

Based on the results obtained, after performing the tests with different

collection of documents, the search engines that took less indexing time

were: ht://Dig, Indri, IXE, Lucene, MG4J, Swish-E, Swish++, Terrier,

XMLSearch, and Zettair. When analyzing the size of the index created,

there are 3 different groups: IXE, Lucene, MG4J, Swish-E, Swish++, XMLSearch

and Zettair created an index of 25%-35% the size of the collection; Terrier

had an index of 50%-55% of the size of the collection; and ht://Dig, Omega,

and OmniFind created an index of more than 100% the size of the collec-

tion. Finally, another aspect to consider is the behavior that had the RAM

usage during the indexing stage. ht://Dig, Lucene, and XMLSearch had

a constant usage of RAM. The first two used the same amount of RAM

memory, independent of the collection (between 30MB and 120MB). On the

other hand, IXE, MG4J, Swish-E, Swish++, and Terrier used much more

memory, and growed in a linear way, reaching between 320MB to 600MB

for the smallest collection, and around 1GB for the largest collection.

Another fact that can be observed is related to the way the search engines

store and manipulate the index. The search engines that used a database

(DataparkSearch, mnoGoSearch, and OpenFTS) had a very poor perfor-

mance during the indexing stage, since their indexing time was 3 to 6 larger

than the best search engines.

On the second part of the tests, it was possible to observe that, for a

40 CHAPTER 5. TESTS

given collection and type of queries (1- or 2-words), the search engines had

similar searching times. For the 1-word queries, the searching time ranged

from less than 10 ms to 90 ms, while on the 2-words queries their searching

time ranged from less than 10 ms to 110 ms. The search engines that had

the smallest searching time were Indri, IXE, Lucene, and XMLSearch. The

only difference observed is when searching over the least frequent words,

since most of them retrieved 0 or 1 documents, the retrieval percentage is

not representative.

From the tests performed with the WT10g collection we can observe that

only Indri, IXE, MG4J, Terrier, and Zettair where capable of indexing the

whole collection without considerable degradation, compared to the results

obtained from the TREC-4 collection. Swish-E, and Swish++ were not able

to index it, on the given system characteristics (operating system, RAM,

etc.). ht://Dig and Lucene degraded considerably their indexing time, and

we excluded them from the final comparison. Zettair was the fastest indexer

and its average precision/recall was similar to Indri’s, MG4J’s, and Terrier’s.

IXE had low values on the average precision/recall, compared to the other

search engines. By comparing the results with the results obtained on other

TREC Tracks (e.g. Tera collection) we can observe that IXE, MG4J, and

Terrier were on the top list of search engines. This difference with the official

TREC evaluation can be explained by the fact that the engines are carefully

fine-tuned by the developers, for the particular needs of each track, and most

of this fine-tuning is not fully documented on the released version, since they

are particularly fitted to the track objective.

Chapter 6

Conclusions

This study presents the methodology used for comparing different open

source search engines, and the results obtained after performing tests with

document collections of different sizes. At the beginning of the work, 17

search engines were selected (from the 29 search engines found), for being

part of the comparison. After executing the tests, only 10 search engines

were able to index a 2.7GB document collection in “reasonable” time (less

than an hour), and only these search engines were used for the searching

tests. It was possible to identify different behaviors, in relation to their

memory consumption, during the indexing stage, and also observed that

the size of the indexes created varied according to the indexer used. On the

searching tests, there was no considerable difference on the performance of

the search engines that were able to index the largest collections.

The final tests consisted on comparing their ability to index a larger

collection (10GB) and analyze their precision at different levels. Only five

search engines were capable of indexing the collection (given the character-

istic of the server). By observing the average precision/recall we can observe

that Zettair had the best results, but similar to the results obtained by Indri.

By comparing these results with the results obtained on the official TREC

evaluation, it is possible to observe some differences. This can be explained

41

42 CHAPTER 6. CONCLUSIONS

Search Engine Indexing Time Index Size Searching Time Answer Quality
(h:m:s) (%) (ms) P@5

ht://Dig (7) 0:28:30 (10) 104 (6) 32 -
Indri (4) 0:15:45 (9) 63 (2) 19 (2) 0.2851
IXE (8) 0:31:10 (4) 30 (2) 19 (5) 0.1429
Lucene (10) 1:01:25 (2) 26 (4) 21 -
MG4J (3) 0:12:00 (8) 60 (5) 22 (4) 0.2480
Swish-E (5) 0:19:45 (5) 31 (8) 45 -
Swish++ (6) 0:22:15 (3) 29 (10) 51 -
Terrier (9) 0:40:12 (7) 52 (9) 50 (3) 0.2800
XMLSearch (2) 0:10:35 (1) 22 (1) 12 -
Zettair (1) 0:04:44 (6) 33 (6) 32 (1) 0.3240

Table 6.1: Ranking of search engines, comparing their indexing time, index
size, and the average searching time (for the 2.7GB collection), and the
Answer Quality for the engines that parsed the WT10g. The number in
parentheses corresponds to the relative position of the search engine.

by the fact that most of the search engines are fine-tuned by the developers

for each of the retrieval task of TREC, and some of these tuning are not

fully documented.

When comparing the results of the initial tests made with the dis-

carded search engines (Datapark, mnoGoSearch, Namazu, OpenFTS, and

Glimpse), it is possible to observe that the discarded search engines were

much slower than the final search engines.

With the information presented on this work, it is possible to have a

general view of the characteristics and performance of the available open

source search engines in the indexing and retrieval tasks. On Table 6.1

we present a ranked comparison of the indexing time and index size when

indexing the 2.7GB collection and the average searching time of each of

the search engines. The ranked comparison of the searching time was made

considering all the queries (1- and 2-words queries with original and uniform

distribution) using the 2.7GB collection. Also we present the precision from

the first 5 results for the search engines that indexed the WT10g collection.

By analyzing the overall quantitative results, over the small (TREC-

43

4) and the large (WT10g) collections, we can observe that Zettair is one

of the most complete engines, due to its ability to process large amount of

information in considerable less time than the other search engines (less than

half the time of the second fastest indexer) and obtain the highest average

precision and recall over the WT10g collection.

On the other hand, in order to make a decision on what search engine to

use, it is necessary to complement the results obtained with any additional

requirement of each website. There are some considerations to make, based

on the programming language (e.g. to be able to modify the sources) and/or

the characteristics of the server (e.g. RAM memory available). For example,

if the size of the collection to index is very large and it tends to change

(i.e. needs to be indexed frequently), maybe it can be wise to focus the

attention on Zettair, MG4J or Swish++, since they are fast in the indexing

and searching stages. Swish-E will also be a good alternative. On the other

hand, if one of the constraints is the amount of disk space, then Lucene

would be a good alternative, since it uses few space and has low retrieval

time. The drawback is the time it takes to index the collection. Finally, if the

collection does not change frequently, and since all the search engines had

similar searching times, you can make a decision based on the programming

language used by the other applications in the website, so the customization

time is minimized. For Java you can choose MG4J, Terrier or Lucene, and

for C/C++ you can choose Swish-E, Swish++, ht://Dig, XMLSearch, or

Zettair.

44 CHAPTER 6. CONCLUSIONS

Bibliography

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.

Addison-Wesley, Wokingham, UK, 1999.

[2] IBM OmniFind Yahoo! Homepage. http://omnifind.ibm.yahoo.net/.

[3] Indri Homepage. http://www.lemurproject.org/indri/.

[4] Lemur Toolkit Homepage. http://www.lemurproject.org/.

[5] Load Monitor Project Homepage. http://sourceforge.net/projects/monitor.

[6] Lucene Homepage. http://jakarta.apache.org/lucene/.

[7] Managing Gigabytes Homepage. http://www.cs.mu.oz.au/mg/.

[8] Nutch Homepage. http://lucene.apache.org/nutch/.

[9] QOS Project Homepage. http://qos.sourceforge.net/.

[10] SWISH++ Homepage. http://homepage.mac.com/pauljlucas/software/swish/.

[11] SWISH-E Homepage. http://www.swish-e.org/.

[12] Terrier Homepage. http://ir.dcs.gla.ac.uk/terrier/.

[13] Text REtrieval Conference (TREC) Homepage. http://trec.nist.gov/.

[14] Xapian Code Library Homepage. http://www.xapian.org/.

[15] Zettair Homepage. http://www.seg.rmit.edu.au/zettair/.

45

46 BIBLIOGRAPHY

[16] ht://Dig Homepage. http://www.htdig.org/.

[17] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze.

Introduction to Information Retrieval. Cambridge University Press,

Cambridge, UK, 2008.

[18] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gi-

gabytes: Compressing and Indexing Documents and Images. Morgan

Kaufmann Publishers, San Francisco, CA, 1999.

