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Abstract

We have written a program,dde23, to solve delay differential equations (DDEs) with constant delays in
MATLAB . In this paper we discuss some of its features, including discontinuity tracking, iteration for short delays,
and event location. We also develop some theoretical results that underlie the solver, including convergence, error
estimation, and the effects of short delays on stability. Some examples illustrate the use ofdde23 and show it to
be a capable DDE solver that is exceptionally easy to use. 2001 IMACS. Published by Elsevier Science B.V. All
rights reserved.

1. Introduction

Our goal is to make it as easy as possible to solve effectively a large class of delay differential equations
(DDEs). We restrict ourselves to systems of equations of the form

y′(x)= f (x, y(x), y(x − τ1), y(x − τ2), . . . , y(x − τk)) (1)

for constant delaysτj such thatτ = min(τ1, . . . , τk) > 0. The equations are to hold ona � x � b, which
requires the historyy(x)= S(x) to be given forx � a. Although DDEs with delays (lags) of more general
form are important, this is a large and useful class of DDEs. Indeed, Baker et al. [1] write that “The lag
functions that arise most frequently in the modeling literature are constants.” Restricting ourselves to this
class of DDEs makes possible a simpler user interface and more robust numerical solution.

A popular approach to solving DDEs exploits the fact that the task has much in common with the
solution of ordinary differential equations (ODEs). Indeed, the DDE solverdde23 that we discuss
here is closely related to the ODE solverode23 from the MATLAB ODE Suite [18]. In particular,
our attention is focused on the Runge–Kutta triple BS(2,3) used inode23 because it has some special
properties that we exploit indde23. (Refer to the survey by Zennaro [21] for a delightful discussion
of the important issues for more general methods of this type.) In Section 2 we explain how explicit
Runge–Kutta triples can be extended and used to solve DDEs. This extension is greatly simplified if the
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maximum step sizeH is smaller thanτ because the resulting formulas are explicit. This is no restriction
when proving convergence asH → 0, so many papers assume it. However, we believe that it is not
acceptable in a quality solver, so we also discuss how to evaluate the implicit formulas that arise when
the step size is bigger thanτ . In Section 3 we prove uniform convergence of the numerical scheme in
realistic circumstances. In the following section we justify an estimate of the local truncation error.

Generallyy′(a+) from (1) is different fromy′(a−) = S ′(a−). It is characteristic of DDEs that this
discontinuity iny′ propagates as a discontinuity iny′′ at a + τ1, . . . , a + τk . In turn these discontinuities
propagate as a discontinuity iny(3), and so forth. Locating and accounting for low-order discontinuities
in the solution is key to the use of Runge–Kutta methods for solving DDEs. In Section 5 we discuss the
practical issues of locating these discontinuities. Any DDE solver must account for them, butdde23
also deals with discontinuous changes inf at known pointsx in both the history and the interval of
integration in a similar way.

Some problems involve changes inf at points that depend on the solution itself, or more generally on
a function of the solution called an event function. Event functions are used to locate wherey satisfies
certain conditions, e.g., where a specific component ofy(x) has a local maximum.dde23 has a powerful
event location capability that is discussed in Section 6. It is difficult to deal with the many possibilities
that are seen in practice, so providing this capability affected profoundly the design of the solver.

The natural step size of a Runge–Kutta method is the largest that will yield the desired accuracy.
Delays that are long compared to this step size and delays that are short present special difficulties for a
DDE solver that we consider in Section 7. In this we prove a result about the stability of the numerical
scheme for small delays.

We close with a pair of examples that show restricting the class of problems, algorithmic developments,
language facilities in MATLAB , and design have resulted in a DDE solver that is both capable and
exceptionally easy to use. We have prepared a tutorial that shows how to usedde23. The solver and
its auxiliary functions, the tutorial, and complete solutions of many examples from the literature are
available at http://www.runet.edu/~thompson/webddes/.

2. Formulas

Explicit Runge–Kutta triples are a standard way to solve the ODE problemy′ = f (x, y) on [a, b]
with given y(a). They can be extended to solve DDEs. Indeed,dde23 is closely related to the ODE
solverode23 [18] which implements the BS(2,3) triple [2]. A triple ofs stages involves three formulas.
Suppose that we have an approximationyn to y(x) at xn and wish to compute an approximation at
xn+1 = xn + hn. For i = 1, . . . , s, the stagesfni = f (xni, yni) are defined in terms ofxni = xn + cihn and

yni = yn + hn
i−1∑
j=1

aij fnj .

The approximation used to advance the integration is

yn+1 = yn + hn
s∑
i=1

bifni .
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For brevity we may write this in terms of the increment function

Φ(xn, yn)=
s∑
i=1

bifni.

The solution satisfies this formula with a residual called the local truncation error,lten,

y(xn+1)= y(xn)+ hnΦ(xn, y(xn))+ lten.

For sufficiently smoothf andy(x) this error is O(hp+1
n ). The triple includes another formula,

y∗
n+1 = yn + hn

s∑
i=1

b∗
i fni = yn + hnΦ∗(xn, yn).

The solution satisfies this formula with a local truncation errorlte∗
n that is O(hpn). This second formula is

used only for selecting the step size. The third formula has the form

yn+σ = yn + hn
s∑
i=1

bi(σ )fni.

The coefficientsbi(σ ) are polynomials inσ , so this represents a polynomial approximation toy(xn +
σhn) for 0 � σ � 1. We assume that this formula yields the valueyn whenσ = 0 andyn+1 whenσ = 1.
For this reason the third formula is described as a continuous extension of the first. A much more serious
assumption is that the order of the continuous extension is the same as that of the first formula. These
assumptions hold for the BS(2,3) triple. For such triples we regard the formula used to advance the
integration as just the special caseσ = 1 of the continuous extension and write

yn+σ = yn + hnΦ(xn, yn, σ ).
The local truncation error of the continuous extension is defined by

y(xn + σhn)= y(xn)+ hnΦ(xn, y(xn), σ )+ lten(σ ).

We assume that for smoothf and y(x), there is a constantC1 such that‖lten(σ )‖ � C1h
p+1
n for

0� σ � 1.
In his discussion of continuous extensions, Dormand [4] treats the local truncation error of the

BS(2,3) triple as an example. In Section 6.3 he obtains

A(4)(σ )= σ 2

288

(
1728σ 4 − 7536σ 3 + 13132σ 2 − 11148σ + 3969

)1/2
(2)

as a measure of the local truncation error atxn + σhn. In Fig. 6.2 he shows that this measure increases
monotonely from zero atxn to a maximum atxn+1. We shall see that the solver controls the size of
the error atxn+1, so the continuous extension of this triple provides an accurate solution throughout
[xn, xn+1].

To use an explicit Runge–Kutta triple to solve the DDE (1), we need a strategy for handling the history
termsy(xni − τj ) that appear in

fni = f (xni, yni, y(xni − τ1), . . . , y(xni − τk)).
Two situations must be distinguished:hn � τ andhn > τj for somej . We begin with the first. Suppose
that we have available an approximationS(x) to y(x) for all x � xn. If hn � τ , then all thexni − τj � xn
and

fni = f (xni, yni, S(xni − τ1), . . . , S(xni − τk))



444 L.F. Shampine, S. Thompson / Applied Numerical Mathematics 37 (2001) 441–458

is an explicit recipe for the stage and the formulas are explicit. The functionS(x) is the initial history
for x � a. After taking the step toxn+1, we use the continuous extension to defineS(x) on [xn, xn+1] as
S(xn+σhn)= yn+σ . We are then ready to take another step. This suffices for proving convergence as the
maximum step size tends to zero, but we must take up the other situation because in practice, we may very
well want to use a step size larger than the smallest delay. Whenhn > τj for somej , the “history” term
S(x) is evaluated in the span of the current step and the formulas are defined implicitly. In this situation
we evaluate the formulas with simple iteration. On reachingxn, we have definedS(x) for x � xn. We
extend its definition somehow to(xn, xn + hn] and call the resulting functionS(0)(x). A typical stage
of simple iteration begins with the approximate solutionS(m)(x). The next iterate is computed with the
explicit formula

S(m+1)(xn + σhn)= yn + hnΦ(xn, yn, σ ;S(m)(x)).
Here and elsewhere it is convenient to show the dependence on the history by means of another argument
in the increment function. In the next section we show that if the step size is small enough, this is a
contraction andS(x) is well-defined forx � xn+1.

In dde23we predictS(0)(x) to be the constanty0 for the first step. We do not attempt to predict more
accurately then because the solution is not smooth ata and we do not yet know a step size appropriate
to the scale of the problem. Indeed, reducing the step size as needed to obtain convergence of simple
iteration is a valuable tactic for finding an initial step size that is on scale, cf. [16]. After the first step, we
use the continuous extension of the preceding step asS(0)(x) for the current step. This prediction has an
appropriate order of accuracy and we can even assess the accuracy quantitatively using (2). Remarkably,
the truncation error has a local maximum atxn+1 so that extrapolation actually provides a more accurate
solution for some distance. Specifically, the ratio of the error ofyn+σ to the error ofyn+1 is no larger
than 1 forσ up to about 1.32. Much more important in practice is the accuracy of the prediction in the
span of a subsequent step of the same size or rather larger. Unfortunately, the ratio grows rapidly asσ

increases. Still, it is no bigger than 13 for 1� σ � 2, so the prediction is quite good when the step size
is changing slowly. The step size adjustment algorithms ofdde23 are those ofode23 augmented to
deal with implicit formulas. The convergence test for simple iteration is that‖y(m+1)

n+1 − y(m)n+1‖ is no more
than one tenth the accuracy required ofyn+1. Because each iteration costs as much as an explicit step,
any proposedhn with τ < hn < 2τ is reduced toτ so as to make the formulas explicit. Considering
the quality of the prediction whenhn � 2τ , we have allowed up to 5 iterations. If convergence is not
achieved,hn is halved and the step repeated. The solver cannot crash because of repeated convergence
failures because eventually it will resort to a step size for which the formulas are explicit.

3. Convergence

Theorem. Suppose an explicit Runge–Kutta triple is used to solve the DDE(1) as described in the
preceding section. Assume that the meshes{xn} include all discontinuities of low orders and that the
maximum step sizeH satisfies(5) and (7). If f satisfies a Lipschitz condition in its dependent variables
and is sufficiently smooth in all its variables, then there exists a constantC such that fora � x � b,∥∥y(x)− S(x)∥∥� CHp. (3)
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This theorem shows how our method works. A more general convergence result may be found in [21].
Before proving this result, we begin our investigation of convergence by recalling the comments earlier
about how discontinuities arise and propagate for DDEs. We know in advance all the points where the
solution might not be smooth enough for the usual orders of the formulas to hold. Because we consider
one-step methods, if we take these points to be mesh points, the analysis is the same as if the solution
were smooth throughout the interval. Accordingly, we consider a sequence of meshes{xn} which include
all these points. Just how this is accomplished in practice is described in Section 5. Between these points
we assume thatf and y(x) are smooth enough for the formulas to have their usual orders. We also
assume thatf satisfies a Lipschitz condition with respect to all the dependent variables. For the sake of
simplicity, we suppose that there is only one delay and take the Lipschitz condition in the form∥∥f (x, ỹ, z̃)− f (x, y, z)∥∥� Lmax

(‖ỹ − y‖,‖z̃− z‖).
The Runge–Kutta formulas extended to DDEs involve a history term that we write generically in the

increment function asg(x). We require two lemmas about how the increment functions depend on their
arguments.

Lemma 1. There is a constantL such that for0� σ � 1,∥∥Φ(xn, ỹn, σ ;g(x))−Φ(xn, yn, σ ;g(x))∥∥�L‖ỹn − yn‖. (4)

Proof. In a step of sizehn from (xn, ỹn), the intermediate quantities̃yni are defined by

ỹni = ỹn + hn
i−1∑
j=1

aij f
(
xnj , ỹnj , g(xnj − τ))

and theyni are defined similarly in a step from(xn, yn). Using the Lipschitz condition onf , it is
straightforward to show that for eachi, there is a constantLi such that

‖ỹni − yni‖ �
(

1+HL
i−1∑
j=1

Lj |aij |
)

‖ỹn − yn‖ = Li‖ỹn − yn‖.

With this result it follows easily that (4) holds withL= L∑s
i=1Li max(|bi(σ )|). ✷

The second lemma we need is a bound on the effect of using different history terms.

Lemma 2. Let∆ be a bound on‖G(x)− g(x)‖ for all x � xn+1. If the maximum step sizeH is small
enough that

HLmax
i

(
i−1∑
j=1

|aij |
)

� 1 (5)

then there is a constantΓ such that∥∥Φ(xn, yn, σ ;G(x))−Φ(xn, yn, σ ;g(x))∥∥� Γ∆. (6)

Proof. Let the intermediate quantities of the two formulas be

rni = yn + hn
i−1∑
j=1

aij f
(
xnj , rnj ,G(xnj − τ))
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and

sni = yn + hn
i−1∑
j=1

aij f
(
xnj , snj , g(xnj − τ)).

The Lipschitz condition onf , inequality (5), and a simple induction argument show that for eachi,

‖rni − sni‖ � hn
i−1∑
j=1

|aij |L∆�∆.

With this result it follows easily that (6) holds withΓ = L∑s
i=1 max(|bi(σ )|).

Recall that if the step size is small enough, the intermediate resultsyni are defined by the explicit
formulas

yni = yn + hn
i−1∑
j=1

aij f
(
xnj , ynj , S(xnj − τ)),

but if hn > τ , we may have somexnj − τj > xn so thatS(x) is evaluated in the span of the current step. In
this situation we evaluate the formulas with simple iteration as described in the preceding section. Using
this lemma we obtain a condition on the maximum step size that insures the convergence of simple
iteration: Letδ(m) be the maximum of‖S(m+1)(x)− S(m)(x)‖ for xn � x � xn+1. (The functions are the
same forx � xn.) Inequality (6) implies thatδ(m) � hnΓ δ(m−1) � HΓ δ(m−1). From this it is obvious
that simple iteration is contracting and the formula is well-defined if the maximum step sizeH is small
enough to satisfy both (5) and

HΓ =HL
s∑
i=1

max
(|bi(σ )|)� 1

2
. (7)

We are now in a position to prove convergence asH → 0 when the meshes include all discontinuities
of low order andH satisfies (5) and (7). Suppose that the integration has reachedxn and letEn be a
bound on‖y(x)− S(x)‖ for all x � xn. The local truncation error of the continuous extension is defined
by

y(xn + σhn)= y(xn)+ hnΦ(xn, y(xn), σ ;y(x))+ lten(σ ).

If we introduce

wn+σ = yn + hnΦ(xn, yn, σ ;y(x))
then inequality (4) and our assumption about the local truncation error imply that for 0� σ � 1,∥∥y(xn + σhn)−wn+σ

∥∥ � (1+ hnL)
∥∥y(xn)− yn∥∥+ ∥∥lten(σ )∥∥

� (1+ hnL)En +C1h
p+1
n .

The numerical solution is

yn+σ = yn + hnΦ(xn, yn, σ ;S(x)).
The next step of the proof is complicated by the possibility that this formula is implicit. If we let∆ be
the maximum of‖y(x)− S(x)‖ for x � xn+1, then inequality (6) states that

‖yn+σ −wn+σ‖ = hn
∥∥Φ(xn, yn, σ ;S(x))−Φ(xn, yn, σ ;y(x))‖ � hnΓ ∆
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and the triangle inequality implies that∥∥y(xn + σhn)− yn+σ
∥∥� (1+ hnL)En +C1h

p+1
n + hnΓ ∆.

This is a bound on‖y(x)− S(x)‖ for xn � x � xn+1 and by definition ofEn, the bound also holds for all
x � xn. We conclude that

∆� (1+ hnL)En +C1h
p+1
n + hnΓ∆.

With the assumption thatH satisfies (7), it then follows that

∆� 1+ hnL
1− hnΓ En + C1

1− hnΓ h
p+1
n �

(
1+ 2(L+ Γ )hn)En + 2C1h

p+1
n .

If we letC2 = 2(L+ Γ ) andC3 = 2C1, this inequality tells us that

En+1 = (1+ hnC2)En +C3h
p+1
n

is a bound on‖y(x) − S(x)‖ for all x � xn+1. Because we start with the given initial history,E0 = 0.
A simple induction argument shows that for alln,

En � C3e
C2(xn−a)(xn − a)Hp.

The uniform bound

En � C3e
C2(b−a)(b− a)Hp = CHp

implies (3) fora � x � b.

4. Error estimation and control

Nowadays codes based on explicit Runge–Kutta triples estimate and control the error made in the
current step by the lower order formula. They advance the integration with the higher order resultyn+1

(local extrapolation) because it is more accurate, though just how much is not known. Our notation and
proof of convergence incorporate this assumption about the triple. We make use of local extrapolation
in our proof that we can estimate the local truncation error of the lower order formula,lte∗

n, by the
computable quantityest= yn+1 − y∗

n+1.
The local truncation error

lte∗
n = (y(xn+1)− y(xn))− hnΦ∗(xn, y(xn);y(x))

is O(hpn). Using the corresponding definition oflten it follows easily that

lte∗
n = hnΦ(xn, y(xn);y(x))− hnΦ∗(xn, y(xn);y(x))+ O

(
hp+1
n

)
.

From the definition ofyn+1 we have

hnΦ
(
xn, yn;S(x))= yn+1 − yn.

Using the convergence result (3), we show now that

hnΦ
(
xn, y(xn);y(x))= hnΦ(xn, yn;S(x))+ O

(
hnH

p
)
.

First we use inequality (4) to see that∥∥hnΦ(xn, y(xn);y(x))− hnΦ(xn, yn;y(x))∥∥� hnL
∥∥y(xn)− yn∥∥� hnLCHp
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and then inequality (6) to see that∥∥hnΦ(xn, yn;y(x))− hnΦ(xn, yn;S(x))∥∥� hnΓ CHp.

The desired relation follows from the triangle inequality. The same argument establishes the correspond-
ing relation for the lower order formula. With these two relations we have

lte∗
n = hnΦ

(
xn, yn;S(x))− hnΦ∗(xn, yn;S(x))+ O

(
hnH

p
)

= (yn+1 − yn)− (y∗
n+1 − yn)+ O

(
hnH

p
)

= est+ O
(
hnH

p
)

which justifies our estimate of the local truncation error.
As with ODEs, the local truncation error can be expanded to

lte∗
n = φ∗(xn, y(xn);y(x))hpn + O

(
hp+1
n

)
.

If we reject the step of sizehn from (xn, yn), we predict the local truncation error of another attempt of
sizeh to be

est(h/hn)
p ≈ φ∗(xn, y(xn);y(x))hp.

The same prediction applies to a step of sizeh from (xn+1, yn+1) on making the approximation
φ∗(xn+1, y(xn+1);y(x))≈ φ∗(xn, y(xn);y(x)) because the change in each of the arguments is O(hn).

We control the local truncation error ofy∗
n+1, but advance the integration withyn+1 because it is

believed to be more accurate. Recall that for the BS(2,3) triple, the local truncation error ofyn+σ attains
its maximum foryn+1. Accordingly, though we do not know the local truncation error of the continuous
extension, we believe that it is smaller than required throughout the span of the step.

5. Tracking discontinuities

The constant lagsτ1, . . . , τk are supplied todde23 as the arraylags. It is required thatτ =
min(τ1, . . . , τk) > 0 and that the delays are distinct. In simplest use the only discontinuity is at the
initial point where the derivative obtained from the DDE,y′(a+)= f (a, y(a), y(a − τ1), y(a− τ2), . . . ,
y(a − τk)), is generally different from that provided by the history,S ′(a−). Generally the solution itself
is continuous at the initial point, so we defer consideration of the case when it is not. It is characteristic
of DDEs that this discontinuity in the first derivative results in discontinuities in the second derivative at
a+τ1, . . . , a+τk . We describe this as discontinuities at the first level. In turn each of these discontinuities
propagates in the next level as a discontinuity in the third derivative, and so forth. This is much simpler
than the situation with more general DDEs because we can determine easily, and in advance, where the
solution might have discontinuities and the lowest order discontinuity possible there. Some solvers ask
users to supply details about whichy(x−τj ) appear in which equations so as to determine more precisely
how discontinuities propagate. We think that the inconvenience of this design outweighs any advantages
gained in the solution of the DDEs. Moreover, assuming that the worst can happen is more robust because
there is no opportunity for a user to make a mistake in specifying the structure of the DDEs.

We have to track discontinuities and account for them during the integration because the usual
order of a Runge–Kutta formula is seen in a step of sizehn from xn only whenf (x, y(x), y(x − τ1),
y(x− τ2), . . . , y(x− τk)) is sufficiently smooth. As we have described the solution of DDEs with explicit
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Runge–Kutta methods, each step is taken with two formulas in order to estimate the error made in the
step. If the error estimation and step size adjustment algorithms are to work properly,f must be smooth
enough for both to have their expected order. If we require that the step size be chosen so that each point
of discontinuity is a mesh pointxm, then none ofy(x), y(x − τ1), . . . , y(x − τk) will have a low order
discontinuity in the span of the current step. This is obvious for a discontinuity in the argumenty(x).
There cannot be aξ in (xn, xn+hn) for which somey(ξ − τj ) is not smooth because the discontinuity in
y at ξ − τj would have propagated toξ and we would have limitedhn so thatxn + hn � ξ . Because we
consider only one-step methods, it is only the smoothness off in the current step that affects the order
of the formula. This is true even ify or f is discontinuous atxn provided that the correct values are used
atxn+, but we need take no special action in the solver because with one exception that we take up later,
we assume these functions are (at least) continuous.

Although constant delays simplify greatly the location of potential discontinuities, there are some
subtleties. One is revealed by a simple example. Suppose we start the integration atx = 0 and the delays
are 1/3 and 1. The first lag implies a potentially severe lack of smoothness at 1/3,2/3,3/3, . . . . The
difficulty is that in finite precision arithmetic, representation of 1/3 is not exact, implying that the
propagated value that ought to be 1 is merely very close to the correct value. Generally this is not
important, but the lag of 1 implies a discontinuity precisely at 1. We must recognize that finite precision
arithmetic has split two values that are the same else the requirement that the solver step to points of
discontinuity will cause it to attempt steps that are too short to be meaningful in the precision available.
In dde23 we purge one of any pair of values that differ by no more than ten units of roundoff. This is
done at each level of propagation so as to remove duplicates as soon as possible.

Example 4.4 of Oberle and Pesch [13] is a model for the spread of an infection due to Hoppensteadt
and Waltman. The problem is posed on[0,10] and there is one lag,τ = 1. The solution is continuous
throughout the interval, but there are discontinuous changes in the differential equation at points known
in advance. Indeed, the changes are qualitative because at first the equation does not depend ony(x− 1),
hence is an ODE. We provide indde23 for discontinuities at points known in advance. All the user need
do is give the locations of potential discontinuities as the value of the option’Jumps’. As with the ODE
Suite, options fordde23 are set with an auxiliary function,ddeset. In the case of the Hoppensteadt-
Waltman model, the three points where discontinuities occur are defined by

c = 1/sqrt(2);
options = ddeset(’Jumps’,[(1-c), 1, (2-c)]);

and conveyed to the solver by means of the optional argumentoptions. Discontinuities at known
points are not limited to the interval of integration. The Marchuk immunology model discussed in [7,
pp. 297–298] is solved on[0,60] and there is one lag,τ = 0.5. One component of the history function
is V (t)= max(0, t + 10−6), which has a discontinuity in its first derivative att = −10−6. With the user
interface ofdde23 it is easy to specify discontinuities at known points and they are accommodated in
the algorithm simply by forming an array that includes these points as well as the initial point and then
propagating them all as described already for the initial point. When using a solver with the capabilities of
dde23 it is easy and certainly better practice to specify discontinuities like those of these two examples,
but a robust integrator may well be able to cope with them automatically.

Much more serious complications are introduced by continuation (restarts). As we discuss more fully
in Section 6, we provide for the location of events. This capability is used, for example, to deal with
a coefficientξ(m) in the Marchuk model that has a jump in its first derivative with respect to the state



450 L.F. Shampine, S. Thompson / Applied Numerical Mathematics 37 (2001) 441–458

variablem(t). Restarting the integration when this happens assures us that the formulas are applied only
to smooth functions. Retaining the solution in the form of a structure makes it possible to continue. For
the present we note only that we must include in the solution structure the list of potential discontinuities.
After all, we might have discarded points outside the original interval of integration that lie in the span of
the current interval. Accordingly, on a restart this list, any jumps specified by the user in the current
integration, and the initial point of the current integration are formed into an array. The entries are
propagated and duplicates purged as described earlier.

An initial discontinuity in the first derivative appears in derivatives of successively higher order. When
the discontinuities are in a derivative of sufficiently high order that they do not affect the order of the
formulas, we can stop tracking them. The relatively low order of the BS(2,3) triple implies that the effects
of discontinuities are rather more short-lived than with other popular formulas. Our basic assumption is
thaty(x) is continuous, so only four levels of propagation are needed. During the integration itself, the
only time we permit a discontinuity iny(x) is at the initial point, which is indicated by providing the
value of the solution as the value of the option’InitialY’. The DDE is evaluated using this value,
so bothy and f are continuous to the right of the initial point. The facilities ofdde23 allow us to
deal with discontinuous changes in the solution at other times. If the discontinuity occurs during the
integration, as for example at the time of occurrence of an event, the integration is to be restarted with the
appropriate value of the solution supplied via’InitialY’. Potential discontinuities of any order in the
initial history are specified via the’Jumps’ option. If either kind of discontinuity iny(x) is possible,
discontinuities are propagated to one higher level in the solver.

The Hoppensteadt–Waltman model involves the solution of ODEs as well as DDEs. The solver makes
no assumption about whether terms with lags actually appear in the equations. This makes it possible
to solve ODEs, though it is best then to setlags = [] because any delay specified affects the list of
potential low-order discontinuities, hence the details of the integration.

6. Event location

Recall that the Marchuk model has a coefficientξ(m) that has a jump in its first derivative with respect
to the state variablem(t). Such discontinuities are qualitatively different from the discontinuities that we
treat with the’Jumps’ option because they occur at unknown times. An event is said to occur at time
t∗ when a scalar functiong(t, y(t), y(t − τ1), . . . , y(t − τk)), called an event function, vanishes att = t∗.
There may be many event functions and it may be important how the function vanishes, but we defer
discussion of these complications. As with the propagated discontinuities, if we locate events and restart
there, we integrate only with smooth functions. The theoretical and practical difficulties of event location
are often not appreciated, but a theoretical analysis is possible with reasonable assumptions, e.g. [19],
and a number of quality ODE solvers provide for the location of events. In particular, all the solvers of
the MATLAB ODE Suite have a powerful event location capability that we have exploited in developing
dde23. The capability is realized by means of the zero-finding functionodezero. A nice exposition of
its algorithm is found in [11]. Although we did not change the basic algorithm, we modified the function
to account for the circumstances ofdde23.

The user interface for event location indde23 is similar to that ofode23. There is no limit on the
number of scalar event functions. They are all evaluated in a single function and the values returned as a
vector. Usingddeset, the name of this function is passed to the solver as the value of the’Events’
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option. The function must also return some information about the nature of the events. Sometimes a user
wants to know when events occur and the solution then, e.g., where a solution component has its local
maxima and its values there. This is quite different from the events of the Marchuk model which cause
the integration to be terminated. The two situations are distinguished using a vectoristerminal. If we
want to terminate the integration when event functionk vanishes, we set componentk of isterminal
to 1, and otherwise to 0. There is an annoying matter of some importance: Sometimes we want to start
an integration with an event function that vanishes at the initial point. Imagine, for example, that we fire
a model rocket into the air and we want to know when it hits the ground. It is natural to use the height of
the rocket as a terminal event function, but it vanishes at the initial time as well as the final time.dde23
treats an event at the initial point in a special way. The solver locates such an event and reports it, but does
not treat it as terminal, no matter howisterminal is set. It may be important how an event function
vanishes. For example, to find local maxima of a solution component, we can locate zeros of the first
derivative of this component. However, to distinguish maxima from minima, we want the solver to report
a zero only when this function decreases through 0. This is done using the vectordirection. If we
are interested only in events for which event functionk is increasing through 0, we set componentk of
direction to +1. Correspondingly, we set it to−1 if we are interested only in those events for which
the event function is decreasing, and 0 if we are interested in all events.

It is hard to devise a good interface for event location because users may want to do quite different
things when an event occurs. We have distinguished between terminal and non-terminal events.dde23
returns its solution in the form of a structure. It can be called anything, but to be specific, suppose it
is calledsol. Often a user will want to know when an event occurred, what the solution is there, and
which event function vanished. This information is returned by means of fields that have fixed names. If
there are events, they occur at the entries of the vectorsol.xe. For each entry, the solution there is the
corresponding column of the arraysol.ye. Also, the corresponding entry of the vectorsol.ie is the
index of the event function that vanished.

Often an event is terminal because it is necessary to change the function defining the equations, as with
the Marchuk model, and/or the value of the solution before continuing the integration. The user interface
for event location inode23 is powerful and reasonably convenient when solving ODEs because on a
return from a terminal event, it is not difficult to make such changes, continue on as the solution of a new
problem, and finally assemble the solutions on subintervals to obtain a solution on the whole interval of
interest. The matter is much more difficult for DDEs because they involve previously given or computed
quantities. On a restart, the solver may have to evaluate the given history function, which can be specified
either as a function or a vector, as well as evaluate the solution computed prior to the restart. As mentioned
in Section 5, propagated discontinuities also present complications. We deal with restarts by allowing the
history to be specified as a solution structure. This structure contains all the information the solver needs
to recognize and deal with the various possibilities. The approach is easy for the user, indeed, easier than
when solving ODEs because the solution structure always contains the solution from the initial point to
the last point reached in the integration.

As stated earlier, discontinuities in the solution are allowed only at the initial point of an integration.
The solver is told of this and given the value of the solution there by providing it as the value of the option
’InitialY’. Discontinuities in the solution are not common, and when they do occur, they invariably
do so when a suitably defined event function vanishes. By making the event terminal, we can use the
’InitialY’ option to give the solution the correct initial value for continuation.
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7. Long and short delays

The “natural” step size is the largest one that yields the specified accuracy. Codes for the solution of
DDEs have difficulties when the delays are both long and short compared to the natural step size. Long
delays present no special difficulty fordde23, so after we explain why, we give our attention to short
delays.

On reaching a pointxn, the solver needs to evaluate the solution at previous pointsxn− τj , hence must
retain the information it needs to do this. When there is a delay long compared to the natural step size, this
implies that the solution must be retained over many steps. Many solvers are written in FORTRAN 77.
Because this environment requires allocation of storage at the beginning of a run, there is a possibility of
exceeding the storage provided. This is not an issue fordde23 because we have followed the traditional
design of ODE solvers in MATLAB of returning to the user the solution at all mesh points. Virtual storage
and dynamic memory management increase the class of problems that can be solved, but we assume that
long delays will not prevent solution of the problem given.

An ODE problem is stiff when the natural step size must be reduced greatly and often. Although
the reduction necessary for the stability of explicit formulas gets the most attention, [16] points out
reductions arising in the evaluation of implicit formulas by simple iteration and in output that might be
just as severe.dde23 uses simple iteration to evaluate the implicit formulas that arise whenτ is smaller
than the step size. The sufficient condition (7) for the convergence of simple iteration does not depend
on τ , so delays cannot restrict the step size greatly for this reason. Some DDE solvers require thatH < τ

so as to have the simplicity of evaluating explicit formulas. For such solvers a short delay does cause
stiffness. Another issue specific to DDEs is that solvers likedde23 do not step over discontinuities. A
short delay may cause the natural step size to be reduced greatly for this reason. However, this is not
likely to happen so often when usingdde23 as to constitute stiffness. For one thing, the relatively low
order of the formulas limits the number of steps affected by propagated discontinuities. For another, not
stepping over discontinuities is different from limiting the step size to the shortest delay. To appreciate the
distinction, suppose that there are two delays,τ1 � τ2. The first few steps of the integration are limited to
τ1 because there are potential discontinuities of low order ata + τ1, a + 2τ1, . . .. The other delay makes
its appearance first ata + τ2. Once the discontinuity ata that is propagating at spacingτ1 has smoothed
out, the solver can use step sizes much bigger thanτ1 in the rest of the integration toa + τ2. This all
repeats ata + τ2 because the discontinuity there propagates at a spacing ofτ1 for a few steps and the
second delay has its next effect ata + 2τ2.

There is an extensive literature on the stability of Runge–Kutta methods for DDEs, cf. [6,8,14,15] and
references cited therein, much of it concerned with solving the scalar model problem

y′(x)= Ly(x)+My(x − τ) (8)

with constant step sizeh. Our investigation is somewhat novel in that we consider short delays and we
relate the stability of our scheme when solving the model equation for DDEs to its stability when solving
the test equation for ODEs,y′(x)= Ly(x). Specifically, we prove that if the scheme is stable in a strong
sense for the test equation, then for all sufficiently smallτ andM , it is stable for (8). We conclude that
in interesting circumstances, small delays do not affect adversely the stability of the scheme.

Suppose the integration has reachedxn and we take a step of sizeh. For all sufficiently smallτ , the
only argument of the BS(2,3) triple that does not lie in the span of the current step isxn − τ . It lies
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in [xn − h, xn] whereS(x) is the cubic Hermite interpolant toyn−1, fn−1, yn, fn. As the form of the
interpolant suggests and Maple [9] confirms,

S(xn − τ)= yn − τfn + O
(
τ 2). (9)

The only way thatyn−1 andfn−1 affect the computation ofyn+1 is through the valueS(xn − τ). Because
these quantities from the preceding step do not appear in the lowest order terms of the expansion of
S(xn − τ), we can investigate stability in the limitτ → 0 by considering only the current step. With this
in mind, we can normalize by takingyn = 1 so that for smallτ , the integration is stable if|yn+1|< 1.

In what follows we work only with terms through O(τ 2). The quantityfn is defined implicitly because
fn = Lyn +MS(xn − τ) andS(xn − τ) depends onfn. A little calculation using (9) shows that

fn =
(
L+M
Mτ + 1

)
yn + O

(
τ 2).

A similar expression holds forfn+1. Using Maple it is now straightforward to determine howyn+1

depends onh,L,M, τ . Examination of the expression shows that it is easier to interpret if we introduce
z= hL andZ = hM .

Insight and a check on the computations is provided by supposing thatM = 0. In this situationyn+1

should be, and is, a third order approximation to the solution of the test equation withyn = 1, namely
yn+1 = P(z) = 1 + z + z2/2 + z3/6. The polynomialP(z) appearing here is the stability polynomial
of the method for ODEs. The method is stable if|P(z)| � 1 and we shall say that it is “damped” if
|P(z)|< 1.

So far we have been considering an expression foryn+1 that is useful for smallτ . Let us now suppose
thatZ is also small. A straightforward computation using Maple shows that

yn+1 = P(z)+w12(z)Z+ w20(z)

h
τ + O

(
Z2)+ O(τZ)+ O

(
τ 2).

This expression makes clear that if for givenh andL, the method is damped for the test equation, then it
is stable for the model DDE (8) for all sufficiently smallτ andM .

8. Examples

In this section we consider a pair of examples that show how easily even rather complicated DDEs can
be solved withdde23.

8.1. Example 1

A Kermack–McKendrick model of an infectious disease with periodic outbreak is discussed in [7]
where Fig. 15.6 shows the solution of

y′
1(t) = −y1(t)y2(t − 1)+ y2(t − 10),

y′
2(t) = y1(t)y2(t − 1)− y2(t), (10)

y′
3(t) = y2(t)− y2(t − 10)

on [0,40] with historyy1(t)= 5, y2(t)= 0.1, y3(t)= 1 for t � 0.
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Solving this model illustrates the simplest use ofdde23. In general a call to the solver with all options
set by default has the form

sol = dde23(ddefile,lags,history,tspan);

The call list could scarcely be shorter. The interval of integration,tspan, is here[0, 40]. history
can be specified in several ways. In the common case that the solution is constant prior to the initial point,
the vector itself can be supplied ashistory. For the example it is[5; 0.1; 1]. The initial value of
the solution is not an input argument fordde23 because most problems have initial values that are the
same as those given by the history function evaluated at the initial point. The constant delays are supplied
as an arraylags, here[1, 10]. There is no limit on the number of delays, but they must be distinct.
ddefile is the name of the function for evaluating the DDEs. For the example this function can be
coded as

function v = kmf(t,y,Z)
ylag1 = Z(:,1);
ylag2 = Z(:,2);
v = zeros(3,1);
v(1) = - y(1)*ylag1(2) + ylag2(2);
v(2) = y(1)*ylag1(2) - y(2);
v(3) = y(2) - ylag2(2);

Here the vectory approximatesy(t) and columnj of the arrayZ approximatesy(t−τj ) for j = 1, . . . , k.
The delays can be specified in any order, but in defining the DDEs,τj is lags(j). It is not necessary
to create a local vectorylag1 approximatingy(t − τ1) as we have done here, but we find that it often
makes the equations easier to read.

Having coded the DDEs, we now solve the initial value problem with the command

sol = dde23(’kmf’,[1, 10],[5; 0.1; 1],[0, 40]);

The input arguments ofdde23 are much like those ofode23, but the output differs formally in that it
is one structure, here calledsol, rather than several arrays

[t,y,...] = ode23(...

The fieldsol.x corresponds to the arrayt of values of the independent variable returned byode23
and the fieldsol.y, to the arrayy of solution values. Fig. 15.6 of [7] is reproduced by

plot(sol.x,sol.y);

In summary, a complete program for solving the Kermack–McKendrick model consists of the filekmf.m
defining the DDEs, the one command invokingdde23, and the one plot command.

Output from dde23 is not just formally different from that ofode23. The method ofdde23
approximatesy(t) by a piecewise-polynomial functionS(t) ∈ C1[a, b]. The solver places insol the
information necessary to evaluate this function withddeval. Values ofS(t) and optionallyS ′(t) are
obtained at an array of argumentst by

[S,Sp] = ddeval(sol,t);
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With this form of output, we solve a DDE just once and then obtain inexpensively as many solution values
as we like, anywhere we like. Plotting the solution at the mesh points ofsol.x is generally satisfactory,
but when the graph is not sufficiently smooth, we can always get a smooth graph by evaluating it at
enough points withddeval.

To further illustrate the advantages of output in this form, we explain how to reproduce a figure in [5].
A DDE with a single lag of 14 is solved there on[0,300]. Fig. 2a plotsy(t − 14) againsty(t), but starts
with t = 50 so as to allow transient behavior to die out. The problem is solved easily withdde23, but we
cannot make this plot using results at the mesh pointssol.x alone. This is because they are not equally
spaced: Ift∗ appears insol.x so that we havey(t∗) available insol.y, it is generally not the case that
t∗ − 14 appears insol.x, so we do not havey(t∗ − 14). However, usingddevalwe can reproduce the
figure easily with

t = linspace(50,300,1000);
y = ddeval(sol,t);
ylag = ddeval(sol,t - 14);
plot(y,ylag);

We specify 1000 points because generally a smooth graph in the phase plane requires a good many.
Becauseddeval is vectorized and exploits fast built-in functions, there is no need to be concerned
about evaluating the solution at so many points.

As noted in Section 5,dde23 does not require that the equations actually involve the delays specified.
By specifying an additional, artificial delay that is short, the way the solution is computed is affected, but
the solution and the natural step size remain the same. Solving the Kermack–McKendrick model with the
option’Stats’ set’on’, it is found that the problem is solved in 133 successful steps, with 17 failed
attempts and a total of 451 function evaluations. Adding an artificial delay of 10−4 by changinglags
to [1, 10, 1e-4] increased the number of successful steps to 164, the number of failed attempts
dropped to 12, and the total number of function evaluations rose to 1027. If the step size had been
restricted to the shortest delay, the integration would have required at least 40× 104 steps!

8.2. Example 2

A two-wheeled suitcase may begin to rock from side to side as it is pulled. When this happens, the
person pulling it attempts to return it to the vertical by applying a restoring moment to the handle. There
is a delay in this response that can affect significantly the stability of the motion. This is modeled by
Suherman et al. [20] with the DDE

θ ′′(t)+ sign
(
θ(t)

)
γ cosθ(t)− sinθ(t)+ βθ(t − τ)=Asin(1t + η). (11)

The equation is solved on[0,12] as a pair of first order equations withy1 = θ, y2 = θ ′. Fig. 3 of [20]
shows a plot ofy1(t) againstt and a plot ofy2(t) againsty1(t) whenγ = 2.48, β = 1, τ = 0.1,A =
0.75, 1= 1.37, η= arcsin(γ /A) and the initial history is the constant vector zero.

This complicated problem can be solved with a short program that we state now and then discuss:

state = +1;
opts = ddeset(’RelTol’,1e-5,’AbsTol’,1e-5,’Events’,’scasee’);
sol = dde23(’scasef’,0.1,[0; 0],[0, 12],opts,state);
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while sol.x(end) < 12
if sol.ie(end) == 1 % A wheel hit the ground.
state = - state;
opts = ddeset(opts,’InitialY’,[0; 0.913*sol.y(2,end)]);
sol = dde23(’scasef’,0.1,sol,[sol.x(end), 12],opts,state);

else % The suitcase fell over.
break;

end
end

A parameterstate is used for the value of sign(y1(t)). Parameters can be communicated as global
variables or by adding them at the ends of the call lists. Using the latter technique, theddefile can be
coded as

function v = scasef(t,y,Z,state)
ylag = Z(:,1);
v = [ y(2); 0];
eta = asin(2.48/0.75);
v(2) = sin(y(1)) - state*0.248*cos(y(1)) - ylag(1) ...

+ 0.75*sin(1.37*t + eta);

A wheel hits the ground (the suitcase is vertical) wheny1(t)= 0 and the suitcase has fallen over when
|y1(t)| = π/2. All these events are terminal and all are to be reported. The event function can be coded
as

function [value,isterminal,direction] = scasee(t,y,Z,state)
value = [y(1); abs(y(1))-pi/2];
isterminal = [1; 1];
direction = [0; 0];

When a wheel hits the ground, the integration is to be restarted withy1(t)= 0 andy2(t) multiplied by
the coefficient of restitution 0.913. The’InitialY’ option is used for this purpose. The solution at
all the mesh points is available as the fieldsol.y and in particular, the solution at the time of a terminal
event is the last column of this array,sol.y(:,end). The sign ofstate is changed to reflect the
change in sign ofy1(t). If the suitcase falls over, the run is terminated, so we must check which event
occurred. This information is provided insol.ie and it is the last event that we must check. Because
we do not know how many events will occur, restarts are coded in awhile loop.

Options are set by means of the auxiliary functionddeset exactly as withodeset when using
ode23. In the first call toddeset, we specify the event function and error tolerances. The call inside
thewhile loop shows how to add an option and change the value of an option previously set.

The program reproduces Fig. 3 of [20] except that we have not included the standard commands
that plot the figures. The event locations computed bydde23 are compared in Table 1 to reference
values computed with the FORTRAN 77 code DKLAG5 [12] used in [20] and verified with its successor
DKLAG6 [3]. Having written the three solvers, we can fairly say that it is very much easier to solve this
problem in MATLAB with dde23.
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Table 1
Events for the suitcase problem

dde23 reference

A wheel hit the ground at 4.5168 4.516757

A wheel hit the ground at 9.7511 9.751053

The suitcase fell over at 11.6704 11.670393

After running this program,sol.xe is

0.0000 4.5168 4.5168 9.7511 9.7511 11.6704

This does not seem to agree with the event locations of Table 1. For instance, why is there an event at 0?
That is because one of the event functions isy1 and this component of the solution has initial value 0.
As explained in Section 6,dde23 locates this event, but does not terminate the integration because the
terminal event occurs at the initial point. The first integration terminates at the first point after the initial
point wherey1(t

∗)= 0, namelyt∗ = 4.5168. The second appearance of 4.5168 insol.xe is the same
event at the initial point of the second integration. The same thing happens at 9.7511 and finally the event
at 11.6704 tells us that the suitcase fell over and we are finished.
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