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ABSTRACT

Like many cryptosystems, PGPfone[13] requires a method
of reliably exchanging binary data over noisy phone lines.
This paper describes a method of encoding binary data into
a \radio alphabet," using a feature-based distance metric
to measure phonetic confusibility, then using this metric in a
GA to select appropriate words from a larger list of candidate
words. This work indicates several larger issues that should
be addressed in any (human) language engineering project.

1. Motivations

PGPfone[13], developed by Boulder Software Engineering,
provides high-quality secure voice communications over or-
dinary phone lines. Implicit in this project, as in any cryp-
tographic project, are several situations where it is necessary
to exchange various strings of near-random binary numbers
in a secure and reliable fashion. Unfortunately, reading these
strings in binary (or even hexadecimal) is tedious and error-
prone.

PGPfone's designed solution to this problem is to develop a
word list, styled after the traditional military or pilot's alpha-
bet (alpha, bravo, charlie, . . . ), with each word representing
some �xed number of bits. In addition to providing com-
pression, this also provides some error prevention, error de-
tection, and human factors advantages if done properly. An
ideal word list would consist of short, easily recognizable and
easily pronounceable words with easily distinguished pre�xes
and a minimum of phonetic confusibility or bad associations.

We chose to approach this task as a selection problem|from
a much larger list, select words with appropriately chosen
characteristics. For this project, we used the Moby Pronun-
ciator database of nearly 200,000 word/pronunciation pairs.
In some characteristics, such as \short", selection is triv-
ial. In others, such as \no bad associations", this is nearly
impossible to perform automatically and it was recognized
that this would need to be done by hand. The main techni-
cal di�culty that we considered to be solvable by computer
occurred in the representation of \phonetic confusibility."

2. Linguistic distances

Our approach to the problem of phonetic confusibility is a
variant of the work of [9]. In particular, words are ordered
strings of phonemes instead of acoustic signals, phonemes
in turn contain features [such as those enumerated in [6]],
and individual phonemes can be meaningfully compared by
comparing their features. It is further assumed that the pho-
netic distance between two words can be approximated by
some function of the di�erences between the phonemes that
comprise the words.

It should be noted that this is only one of many possi-
ble approaches. In genealogy, the Soundex algorithm clus-
ters similar-sounding names by deleting similar, repeated, or
unimportant letters. Later, [7] measured vowel similarity in
speech based on formant frequency. Other approaches have
been proposed using \autosegmental phonology" [5] to com-
press word representations into feature change sets, at the
expense of synchronization data. [9] and more recently [1]
use a more introspective/scienti�c approach than simply cal-
culating mathematical distances, instead directly examining
people's perceived distances, which may or may not exactly
map onto a feature-based metric|but this approach requires
either extensive lab-work to validate, or a willingness to rely
on pure introspection without validation.

There are several advantages to the chosen approach. First,
words can be represented symbolically rather than as sound
signals. Second, phonetic features (in gross) are largely un-
controversial. Third, they are usually speaker-independent,
and, fourth, can be easily generalized to new words. On the
other hand, there are severe representational di�culties at a
number of levels. Phoneticians usually use feature sets de-
signed to represent di�erences important to the production of
a sound. The amount of detail, and hence importance, thus
changes with the degree of variability in a feature. Sounds
with voiceless stop consonants can be produced at many dif-
ferent locations ranging from the lips to the very back of
the throat. Voicing, on the other hand, is either present
or absent; no known language makes a three-way distinc-
tion among consonants. However, [9] indicate that voicing is
one of the most salient and robust features of English con-



Feature name Sample #bits

Place of articulation /d/ vs /g/ 7
Manner of articulation /l/ vs /t/ 6
Height of articulation /i/ vs /�/ 5
Voicing /z/ vs /s/ 4
Syllabic vowels vs. cons. 1
Nasal /n/ vs /d/ 1
Lateral /l/ vs /r/ 1
Roundedness (various) 1

Table 1: Phoneme coding for PGPfone alphabet

sonants; generalizing this yields the unfortunate result that
phoneme pairs may di�er in several unimportant features
and yet sound closer than another pair that di�er only in
one extremely salient aspect.

Furthermore, the relative salience of features varies wildly
depending upon the sort of noise in which the signal is em-
bedded. Finally, although [9] provide exact data that could
be used to balance some features, they don't provide enough.
[6] proposes a more extensive list of features that allow for
all sounds of English, consonants and vowels alike, to be pre-
sented and distinguished on a uniform scale but provides no
data on salience. With appropriate judgements, the various
features can be approximately balanced to the data. Using
this method, the perceptual di�erence between two compa-
rable phonemes can be measured as the number of bits that
di�er in the two representations. The �nal representation is
attached as table 1.

Even granting the viability and success of a phoneme-by-
phoneme perceptual distance metric, there are di�culties in
its extension to full-word distances, and here theory provides
less support than might be wished. For example, if each
phoneme were weighted equally and could be directly com-
pared with a single other phoneme, the di�erence between
two words is simply the sum of the phoneme di�erences.
However, some phonemes are clearly more salient than oth-
ers. On a gross level, the stressed syllables of a word pair
are intuitively of much greater salience than the unstressed
ones. Furthermore, psycholinguistic results such as [4, 11]
suggest that onsets are more salient than codas. The ap-
proach taken in PGPfone was a simple one; the preceding
consonant cluster and vowel(s) of the stressed syllable were
given twice normal weight, as was the (word-)onset phoneme.

A similar problem arises with non-aligned or non-existent
sounds. For example, should the word /bEst/ be treated
as most similar to /bEts/, /bEt/, or /bEs/? [4] present a
few primitive metrics to address this question, based on pri-
marily on a notion of sequences of identical vs. nonidentical
phonemes. A more sophisticated approach could use the no-
tion of \edit-distance" as typi�ed by [10], but only with an
accurate measure of the perceived di�erence between a sound
and its absence, or in other words, a featural representation
for silence.

This problem can be reduced by the use of templates. For in-
stance, if all the words in a study are of the form CVC, then
there need be no representation of silence as all phonemes
are aligned directly. For independent reasons (discussed be-
low), the PGPfone list demands words with small consonant
clusters and of a particular syllabic structure. The list to be
selected from was �ltered before the selection process began
to eliminate unsuitable words with long consonant clusters.
By increasing the strength of the pre�ltering, one can re-
strict attention to words where comparisons are meaningful,
or phrased another way, one can greatly limit the damage
done by a bad representation of silence. Similarly, by careful
use of duplicate sounds, some of the silence/sound compar-
isons can be avoided. Vowel sounds can be lengthened or
shortened almost at will, thus, vowel blends (such as /Oi/)
are compared with \pure" vowels such as /i/ by the sim-
ple technique of presenting the pure vowel twice (/ii/) and
comparing|and thus /Oi/ is accurately represented as mid-
way between /O/ (/OO/) and /i/ (/ii/).

One �nal concern for the PGPfone distance metric touches
on the incorporation of additional, non-linguistic features.
For example, it would be nice if the �nal words had distin-
guishable orthographic pre�xes, to make it easier for key-
board entry and similar (non-linguistic) processing tasks.
Obviously, paying attention to such things will, in theory,
weaken the linguistic quality of the �nal solution but result
in a better system overall.

3. Engineering Aspects

The ultimate test of any representation is the quality of so-
lutions it permits. A good solution for the PGPfone list
involves more qualities than simply an accurate distance rep-
resentation, as detailed in this section.

The most obvious engineering aspect is the length of the
word list to be developed. A small list (for example, sixteen
words) would provide no compression over reading hexadec-
imal numbers, but could still provide some degree of error-
proo�ng by removing potentially confusing tuples such as
�ve/nine, B/C/D/E, and so forth. A list of 64 words would
allow about 30% compression, but be harder for a human to
memorize. For situations where humans are required to gen-
erate keys from memory, this would be unreasonable. How-
ever, in PGPfone, all keys are generated and stored by the
computers, and the only job for a human is to read a series of
words presented by the computer; thus, there is no need for
a human to memorize the list. Using larger lists would allow
better compression, but require more (computer) memory to
store the word table. For example, two lists of 256 words can
be stored in only 5 kilobytes of memory. A larger list (two
bytes per word) would require nearly 650 kilobytes of mem-
ory, as well as a word vocabulary larger than most speakers'
vocabulary.

Humans, when reading sequences, tend to make di�erent er-
rors from simple bit-
ips (misreadings), so error detection



and recovery is not simply correcting bits. [12] suggested a
clever way to allow human-like errors to be easily detected.
By building two lists instead of one, and alternating the lists
from which the words in the sequence come, one can easily
spot common human errors (omission, repetition, and trans-
position) by noticing that two successive words come from
the same list. This assumes, of course, that the (listening)
human can tell from which list a word has been drawn.

Similarly, the lists should consist of words that are easily
pronounceable and easily readable. Thus, words with multi-
ple spellings or multiple pronunciations, words for which we
had evidence of signi�cant dialect variations (e.g. tomato),
or any hard-to-pronounce words, de�ned as words incorpo-
rating any non-English sounds or lengthy consonant or vowel
clusters, were also eliminated.

The most di�cult aspect of the list to control was unfor-
tunately one of the more important; the �nal lists should
contain words with appropriate associations. One of the
goals was to develop a word list that would inspire a certain
amount of con�dence in the security of the overall product.
Although it proved di�cult enough to automatically banish
repugnant words there seems no automated procedure for
detecting all and only \cool" words. We used what ad hoc
principles we could identify. The standard pilots' alphabet,
for instance, contains familiar but uncommon words; only a
few words do not appear in the Brown corpus at all, while
no word listed has a frequency of 85 occurrences or more. So
words that were too unfamiliar or too common were elim-
inated. In general, nonin
ected words seem stronger than
their in
ected variants. In the end, we were forced to rely on
human judgement, generating a list, blue-pencilling or mod-
ifying words that we found inappropriate, then using the
survivors as the base for another list.

Once the selection and measuring criteria are available, the
actual selection of the list is, technologically speaking, near-
trivial. Because, as discussed above, only the computer will
ever need the full list, we opted to use lists of 256 words,
allowing each word to represent a byte. The lists for PGP-
fone are obviously di�erent in that one consists only of two
syllable words, and the other, three. We used a simple ge-
netic algorithm [2] to evolve a near-optimum (sub)set of the
candidates such that the smallest distance between any pair
was maximized. Speci�cally, the GA generated a population
of random 256-word subsets of the candidate list. Subsets
were permitted to \breed" by trading some of their members,
and the daughter subsets were evaluated (using the distance
metric described above) to determine the closest pairwise
distance. Successful children were allowed to be fruitful and
multiply, while the losers in the genetic sweepstakes were
simply dropped from the population. After several hundred
generations, the top candidate was then edited as described
above, and the surviving words were used as a �xed and un-
changing part of the entire population for the next run of
the GA selection program. Because our automated selection
procedure relied on two separate lists, using two separate

111 glucose hesitate 116 guidance impartial
112 goggles hideaway 117 hamlet impetus
113 gold�sh holiness 118 highchair inception
114 granny hurricane 119 hockey indigo
115 gremlin hydraulic 120 hotdog inertia

Table 2: Sample words from the PGPfone list

and incomparable templates, we also performed a form of
cross-checking between lists to assure signi�cant di�erences
between the two lists.

After several runs, when a �nal, accepted list had been
agreed upon, the words in each list were alphabetized with-
out regard to case and used to represent byte values from 0
to 255. Some sample words from the middle of the lists are
here attached as table 2.

4. Implications and Conclusions

The �nal alphabet as distributed in PGPfone appears to
work well enough for the purpose for which it was designed;
our feedback has generally been positive, and suggested im-
provements tend to be matters of opinion on single words
rather than changes to the underlying structure or model.
Figure 1 shows how this alphabet can convert a relatively
unmnemonic key �ngerprint into something more memorable
(and easier to con�rm over a telephone).

This work does strongly suggest the need for further work on
the development of word-scale phonetic confusibility models.
The alphabet itself might have been made much stronger if
we had been able to take several dozen subjects into a pho-
netics laboratory and test the weightings conjectured above.
Fundamental data on the salience of various word-level char-
acteristics is available only in a very sketchy manner (and
likely to vary signi�cantly with language anyway.)

Clearly, a full evaluation of this work requires some empir-
ical checking, which at this point has not yet been done.
Although informal tests show that the words are under-
stood, the degree of confusibility has not been rigorously
tested. There are many open questions. How confusible are
the words? Does the actual transmission channel �t the as-
sumptions? Do the pronunciation assumptions fail when the
reader is not a native English speaker?

Although this problem may seem arti�cial in many regards,
it lends itself well to treatment as a touchstone problem for
many speech/language generation problems. The di�culty
we encountered with the representation of consonant clusters
mimics the di�culties other researchers such as [3, 8] have
had with the learning and representation of sound patterns
in language acquisition tasks. Particularly in situations such
as neural networks or supervised learning, where a distance
measure is used to direct the system to its new state, an
accurate distance measure is more a necessity than a conve-
nience. An accurate statistical analysis of the e�ectiveness



-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: 2.6.2i

mQCNAzDIPcEAAAEEALvWEowkZJ8sLUnOcMkCykWpjKirlwEv3LAC6c6ciU63bhzn

yVcH22KKZQj6n+A2sIn+qLdKiKlLNOd0Bh7wIwlJrlYb/g6zMyw6TpWPPRopzkis

7U2eofSKZ4L19RSVw8+QejFvHeMx89+QdTzUNXTAAthkJZporyC+v3X+p5ZhAAUR

tCpQYXRyaWNrIEp1b2xhIDxwYXRyaWNrLmp1b2xhQHBzeS5veC5hYy51az6JAJUD

BRAw5a+WZXmEuMepZt0BAfSdA/0VQcMu1oV8N1Tx4MTI8gk/FN7BYH5PHFpF0QrQ

Ahr4NZKN395q7LvMPb6jbsuLAI2eamg6ujQZU3X5iiXMS58dm7F7ATz0PRVh9768

dl62STyMNVMBbYc2Wqruk7jDHIw2HaU+8CMSWJE66FbKO8y7TnAy1TTIXOvHR6OL

EOWLbw==

=uB9I

-----END PGP PUBLIC KEY BLOCK-----

Key fingerprint = 5C 39 76 D5 DD E2 9E C2 56 2C A2 91 C7 91 65 F9

Encoded fingerprint =

escape crossover hotdog speculate swelter torpedo puppy reproduce egghead

combustion quota molecule spaniel molecule fracture Waterloo

Figure 1: Patrick's PGP key, with encoded �ngerprint

and salience of various feature-based representations may
shed light to bridge the sound/phoneme gap|as well as help
with the (word) segmentation problem and provide funda-
mental evidence about the psychological reality of phonemes
and phonetic features. From an engineering perspective, an
accurate way of measuring perceptual distance could help
in any situation where language must be engineered or cor-
rected, for example in sublanguage design, speech-text con-
versions, database retrieval, or more prosaically to help with
the creation of distinctive product names.

This work illustrates several basic principles that a reason-
able metric should follow:

� First, that standard feature sets do not accurately re-

ect the perceived salience of various features.

� Second, that feature di�erences are a signi�cant but
not all-encompassing part of the perceived di�erences
among words; superphonemic attributes such as stress
and onset must also be taken into account.

� Third, that templates are best used to control the sorts
of comparisons and measurements taken, but that us-
ing them will greatly restrict the overall validity of the
measurements.

There are almost certainly other principles that could be
found and added to this list. It is hoped that future work,
whether in the context of PGPfone 2.0 or other unrelated
projects, will be able to extend this list of principles to a full
theory of isolated word perception.
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