Low Background Facility Setup in CJPL A Brief Introduction

Tsinghua University
ZENG Zhi
2011-03-26

Outline

- Group introduction
- Objective
- Strategy
- Conceptual Design
- Future works

Group Introduction

Group Leader Director of CJPL

Prof. Cheng Jianping

Dr. Zeng Zhi

Dr. Ma Hao

Prof. Li Jianming

Physical Design &Monte Carlo simulation

Mechanical Design&construction

Consultors: Prof. Li Jin, Prof. Yue Qian, and others.

Objective

- To develop a ultra-low-level Ge gamma spectrometry in CJPL, used for
 - Material Screening for CDEX, PANDAX,...
 - Environmental Samples measurements;

Project name: GeThu

GeThu Stategy

- Goal of Stategy(sensitivity for U/Th/K):
 - > GeThu-Zero, as a prototype study in current status
 - <1 mBq/kg (recent years)</p>
 - → Like other underground labs
 - μBq/kg (few years later)
 - → Like GeMPI-III in LNGS
 - nBq/kg (a long way to go)
 - → Who, where and when?

Low Background Facility Setup in CJPL: A brief Introduction

CONCEPTUAL DESIGN

Conceptual design for GeTHU

Application of Germanium Detector in fundamental research, Beijing, March 23-30, 2011

Tsinghua University

4π anticoincidence with scintillators(optional)

GeThu-ZERO HPGe detector

Application of Germanium Detector in fundamental research, Beijing, March 23-30, 2011

GeThu-ZERO detector HPGE Canberra

- Coaxial N type Germanium detector
- EGC 40-195-R in SB 99 30A cryostat.
- FWHM at 1.33MeV: 1.92keV
- FWHM at 122keV: 0.80keV
- Peak shape at 1.33MeV:
- FWTM / FWHM: 1.92
- FWFM / FWHM: 2.6
- Relative efficiency: 40%
- Peak to Compton ratio: 61
- ULB Aluminium endcap.

GeThu-ZERO detector Canberra France

GeThu-ZERO shielding materials

sample	nuclide	specific activity(Bq/kg)
Lead	²¹⁰ Pb	166.2

sample	nuclides	specific activity(Bq/kg)
Copper	²³⁸ U	< 2.5×10 ⁻¹
	²³⁵ U	< 1.2×10 ⁻²
	²²⁶ Ra	< 7.5×10 ⁻³
	²²⁸ Ac (²³² Th daughter)	< 8.8×10 ⁻³
	²¹² Pb (²³² Th daughter)	< 1.2×10 ⁻²
	⁴⁰ K	< 5.3×10 ⁻²
	¹³⁷ Cs	< 2.9×10 ⁻³
	⁶⁰ Co	< 3.6×10 ⁻³

singhua University

Testing in CJPL

Future works

- Background measurements;
- Calibration measurements and efficiency determination;
- Data analysis;
- Update GeThu-ZERO to GeThu-I
 - Material screening selection;
 - New ULB HPGe detector design;

Thank you!

中国锦屏地下实验室 China Jinping Underground Laboratory