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1 Motivation and Overview

Suffix trees provide most efficient solutions to a “myriad” [4] of string processing problems.
The suffix tree for a string t really turns t inside out, immediately exposing properties like
longest or most frequent subwords. The fundamental question whether w occurs in t can be
answered in O(|w|) steps — independent of the length of t — once the suffix tree for t is
constructed. Thus it is of great importance that the suffix tree for t can be constructed and
represented in linear time and space.

In spite of their basic role for string processing, elementary books on algorithms and data
structures barely mention suffix trees, and never give efficient algorithms for their construc-
tion [3, 20, 10, 1, 15, 6]. Recent exceptions are [21, 12]. The reason for this is historical:
starting with the seminal paper by Weiner [25], suffix tree construction has built up a rep-
utation of being overly complicated. The purpose of the present paper is to correct this
reputation — by working out what is essential about efficient suffix tree construction, and
what is unnecessary complexity.

∗Work supported by a grant from the International Computer Science Institute, Berkeley, CA; This article
appeared in Algorithmica, 19:331-353, 1997
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More precisely, we review the linear time algorithms of Weiner [25], McCreight [17], and
Ukkonen [24]. Let us call these algorithms wrf,1 mcc, and ukk.

We use the terminology of the most recent algorithm, Ukkonen’s online construction, to
explain its predecessors. This reveals relationships much closer than one would expect, since
the three algorithms are based on rather different intuitive ideas. Moreover, it completely
explains the differences between these algorithms in terms of simplicity, efficiency, and im-
plementation complexity.

In Section 2, we take some time to carefully establish the terminology necessary for suffix
tree construction. New aspects of this section are a more generalized definition of suffix
links, and observations concerning their duality with reverse prefix trees.

Section 3 gives an exposition of Ukkonen’s and McCreight’s algorithm on a very abstract
level, showing that their different intuitive ideas lead to the same sequence of tree con-
structing operations. The two following sections make this observation more precise. A
derivation of Ukkonen’s algorithm is given (Section 4), and then Ukkonen’s is transformed
into McCreight’s algorithm. Section 5 explains the transformation steps.

Section 6 revisits Weiner’s algorithm. In a sense that is made precise there, wrf is shown as
a version of ukk working on the “wrong” tree. Section 7 concludes.

As you see from this overview, the purpose of this paper is purely academic — no new
algorithms, no improvements of old ones. Just a few explanations about how the known
ones relate. If you have ever been puzzled by the complexity of linear time suffix tree
construction, we hope you will enjoy just reading through Sections 2, 3, and 6. The more
technical material in Section 4 and 5 may be safely spared out for a later reading.

2 Suffix Trees and their Duality Properties

2.1 A+-Trees and Suffix Trees

Let A be a finite set, the alphabet. The elements of A are characters. ε denotes the empty
string, A∗ denotes the set of strings over A, and A+ = A∗ \ {ε}. We use a, c, d, e to denote
characters, and b, p, q, s, t, u, v, w, x, y, z to denote strings. The reverse of t = t1 . . . tn is
tn . . . t1, also denoted by t−1. If t = uvw for some (possibly empty) u, v, w, then u is a prefix
of t, v is a t-word and w is a suffix of t. A prefix or suffix of t is proper, if it is different
from t. A suffix or prefix of t is nested, if it occurs elsewhere in t. Notice that s is a nested
suffix of t, if and only if s−1 is a nested prefix of t−1. We call a t-word w right-branching
(left-branching) in t, if there are different characters a and c, such that wa and wc (aw and
cw) are t-words. Of course, w is right-branching in t, if and only if w−1 is left-branching in
t−1.

Definition 1 (A+-tree)
An A+-tree T is a rooted tree with edge labels from A+. For each a ∈ A, every node k in
T has at most one a-edge k aw- k′. 2

1wrf stands for the historic name “Weiner’s repetition finder” used in [18].
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Suffix trees will be introduced below as a special form of A+-trees. However, most of the
terminology used with suffix tree construction applies to A+-trees as well, so we present it
first.

Let T be an A+-tree. By path(k) we denote the concatenation of the edge labels on the
path from the root of T to the node k. Due to the requirement of unique a-edges at each
node of T , path labels are also unique and we can denote k by w, if and only if path(k) = w.
Moreover, by Tw we denote the subtree of T at node w.

Definition 2 (Words represented in an A+-tree)
A string w occurs in T , if and only if T contains a node wu, for some u. By words(T ) we
denote the set of strings occurring in T . For all s ∈ words(T ) we call (b, u) reference pair
of s with respect to T , if b is a node in T and s = bu. If b is the longest such prefix of s,
then (b, u) is the canonical reference pair of s with respect to T . In such a case we write
ŝ = (b, u). 2

A canonical reference pair of the form (b, ε) will be called explicit node, since it denotes the
node b in T . A canonical reference pair (b, aw) will be called implicit node, since the node
baw does not exist in T , but can be seen “inside” the edge b awv- bawv.

Definition 3 (Atomic and compact A+-trees)
T is atomic, if every edge in T is marked by a single character. T is compact, if every node
in T is either the root, a leaf, or a branching node. 2

Atomic A+-trees are also known under the name “trie” [2]. Both atomic and compact A+-
trees are uniquely determined by the words occurring in them. In an atomic A+-tree every
node is explicit. In a compact A+-tree, nodes with a single outgoing edge are implicit nodes.

Definition 4 (Suffix trees)

1. A suffix tree for t is an A+-tree T , s.t. words(T ) = {w | w is a t-word}.

2. The atomic suffix tree for t is denoted by ast(t).

3. The compact suffix tree for t is denoted by cst(t).

4. ast(t−1) and cst(t−1) are called atomic and compact reverse prefix tree for t, respec-
tively. 2

Figure 1 shows different suffix trees for the string aeceaceae.

The reverse prefix tree is, of course, nothing new, but just the suffix tree for t−1. It will play
an important role in explaining suffix tree constructions. We refine our notation by writing
�
w instead of w−1 for a node in a reverse prefix tree.

To decide whether a word w occurs in T takes O(|w|) steps: check if there is a path in T
labeled w. This efficient access to all subwords of t is the raison d’etre of suffix trees.

The following is known about the space requirements for representing atomic and compact
suffix trees (and holds for reverse prefix trees alike):
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Figure 1: Different Suffix Trees for the String aeceaceae
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1. ast(t) has O(n2) nodes (take e.g. t = ancn in Figure 4). However, isomorphic subtrees2

can be shared [9]. Sharing brings the space requirements down to O(n) [7, 11]. How-
ever, subtree sharing may be impossible, when leaves are to be annotated with extra
information.

2. cst(t) has O(n) nodes, as all inner nodes are branching, and there are at most n leaves.
The edge labels can be represented in constant space by a pair of indices into t. This is
necessary to achieve a theoretical worst case bound of O(n). In practice, this is quite
a delicate choice of representation in a virtual memory environment. Traversing the
tree and reading the edge labels will create random-like accesses into t, and can lead
to performance problems with the memory subsystem.

2.2 Open Edges

A particularly convenient representation of edges which lead to a leaf node (leaf edges, for
short) was introduced in [24]. The label of a leaf edge always extends to the end of the
actually scanned prefix of t. We may as well represent an index pair (i, |t|) by (i,∞), with
∞ denoting |t|, whatever its value is. This means that if t is extended to the right, the label
of the leaf edge grows implicitly, and the leaf continues to represent a complete suffix of (the
extended) t. This representation is called “open edge”. It will play a crucial part in the
following sections. With a little speculation, we might even say: if Weiner had seen this idea
in 1973, he would have designed Ukkonen’s algorithm then (and it would be in all textbooks
today). We shall return to this in Section 6.

2Two A+-trees T and T ′ are isomorphic, if there is a bijection ϕ between the node sets of T and T ′, s.t.
w u-wu is an edge in T , if and only if ϕ(w) u- ϕ(wu) is an edge in T ′.
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Figure 2: The Compact Suffix Trees for ddacda and ddacda$
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2.3 Active Suffixes and Prefixes

The following notion plays a central part in all constructions:

Definition 5 (Active suffix and prefix)
The active suffix of t is its longest nested suffix, denoted α(t). The active prefix of t is its
longest nested prefix, denoted α−1(t). 2

With this notation, we have α(t−1) = (α−1(t))−1.

The node (u, v) representing the active suffix of t in cst(t) is the neuralgic point of the suffix
tree. If t is to be extended to the right by another character, changes in the tree structure
(if any) will start at this point. Correspondingly, the active prefix node will respond to
extensions of t on the left. This behavior is proved and spelled out in detail in later sections.

McCreight uses functions head and tail that split a suffix s of t into an initial part that
already occurs to the left, and the remainder. We can define them in the following way.

Definition 6 (head and tail)
Let t = us for some strings u and s. head(s) is the longest prefix x of s, such that x is a
nested suffix of ux. tail(s) is defined by s = head(s)tail(s). 2

2.4 The Role of the Sentinel Character

If s is a nested suffix of t, then a suffix tree for t does not contain a leaf s. It is often convenient
to add to t a sentinel character, say $, that does not occur in t. Then t$ has no nested suffix,
except for the empty string, i.e. each non-empty suffix of t$ uniquely corresponds to a leaf
in a suffix tree T for t$. Considering a t-word w and the node w in T , the number of leaves
of Tw is equal to the number of positions in t where w occurs:

Definition 7 (Suffix-Rests)
For a node w in a suffix tree T for t, let suffixRestsT (w) = {s | ws is a suffix of t}. 2

Clearly, suffixRestsT (w) uniquely determines the shape of Tw. But can suffixRestsT (w) be
determined from the edge labels of Tw? The answer is Yes, if there is the sentinel, since then
there is the leaf ws for every s ∈ suffixRestsT (w). The answer is No without the sentinel, as
can be seen for Td in T = cst(ddacda) as shown in Figure 2.

It often simplifies proofs and constructions considerably to assume the presence of the sentinel
character. Only in contexts where t may be expanded to the right (e.g. during online
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construction), the requirement for a unique final character does not make sense.

In the subsequent sections, the sentinel character is not assumed unless we explicitly say so.

2.5 Suffix Links

For construction and many applications of A+-trees it is convenient to augment A+-trees
with auxiliary edges that connect nodes quite unrelated in the tree structure:

Definition 8 (Suffix Links)
Consider an A+-tree T . Let aw be a node in T , and v be the longest suffix of w, such that
v is also a node in T . An unlabeled edge aw - v is a suffix link in T . A suffix link aw -w
is called atomic. 2

Notice that node v is well defined, since ε is a node and ε is a suffix of w.

When the A+-tree is a trie, suffix links are identical to the failure transitions of [2]. The
name suffix link is due to [17]. Some authors also define a link for the root: ε - ε. We found
that this obscures the algorithms as well as the observations in Section 2.6.

Proposition 1

1. In the atomic suffix tree for t, all suffix links are atomic.

2. In the compact suffix tree for t$, all suffix links are atomic.

Proof:

1. This follows from the definitions, since all nodes in ast(t) are explicit.

2. We must show that for each node aw, w is also a node in cst(t$). aw is either a
branching node, or a leaf. Hence aw is right-branching or a non-nested suffix of t$.
But then the same holds for w, and so w is a node in cst(t). 2

What if we drop the sentinel in the case of assertion 2? The suffix links for all inner nodes
in cst(t) are atomic. For a leaf aw, w may be nested (due to the lack of $) and not right-
branching, so there is no (explicit) node w. In this case, we have a non-atomic suffix link
aw - v for some proper suffix v of w. Note that this link is the only possible exception,
with all other suffix links in cst(t) being atomic.

Suffix links are the key to efficient sequential suffix tree construction, but there is more to
them than this.

The atomic suffix tree of t, augmented by suffix links, can be seen as a two-head automaton.
Denoting the two heads by [ and ], we can represent a configuration as u[v]w, where

• uv is the scanned part,

• v is the memorized part, and

• w is the unread part of the input string.
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Figure 3: An A+-tree and its Suffix Link Tree
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Now if v = ay and w = cx, there are two possible transitions:

u[ay]cx ; u[ayc]x by following the edge ay c- ayc,

u[ay]cx ; ua[y]cx by following the suffix link ay - y.

This view is taken from [18]. It nicely summarizes the additional power of suffix links that
makes them useful in many contexts. For example, such an automaton can be used to
compute the matching statistics in [8], the q-gram distance [23], or the shift-table for the
Boyer-Moore algorithm [16].

2.6 Dualities between Suffix Trees and Suffix Links

We now study the deeper relation between suffix trees and their suffix links. First we note
that the suffix links form a tree themselves.

Definition 9 The suffix link tree T−1 of an A+-tree T has a node
�
w for each node w of T ,

and an edge
�
w v−1- �

vw when vw -w is a suffix link in T . 2

It is easy to confirm that T−1 is in fact a tree, since each node in T has exactly one suffix link,
which designates its parent in T−1. The notation T−1 will be justified by our subsequent
results.

For an arbitrary A+-tree T , T−1 is generally not an A+-tree, as can be seen in Figure 3:
node

�
e has two d-edges. But this changes when T is a suffix tree:

Proposition 2 (Duality for atomic suffix trees)
(ast(t))−1 = ast(t−1). In words: the suffix link tree of an atomic suffix tree is the reverse
prefix tree.

Proof: There is an edge
�
w a- �

aw in (ast(t))−1, iff there is a suffix link aw -w in ast(t),
iff there are nodes w and aw in ast(t), iff there are nodes

�
w and

�
aw in ast(t−1), iff there

is an edge
�
w a- �

aw in ast(t−1). 2

Figure 4 shows ast(aaaccc) and ast(aaaccc−1). Solid edges represent ast(aaaccc), while
dotted edges (without their labels) represent the suffix links. Vice versa for ast(aaaccc−1).

The reason why this duality is not widely known is that when considering the compact suffix
tree (our main object of interest), it is obscured by the fact that the explicit nodes of a
compact suffix tree and the corresponding reverse prefix tree do not coincide. But a weaker
form of duality still holds:
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Figure 4: The Atomic Suffix Tree for aaaccc and aaaccc−1
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Proposition 3 (Weak duality for compact suffix trees)

1. (cst(t))−1 is an A+-tree.

2. (cst(t))−1 represents a subset of the words represented by cst(t−1).

3. ((cst(t))−1)−1 = cst(t).

Proof:

1. Assume there is a node w in the suffix link tree that has two a-edges. This means that
in cst(t) we have suffix links uaw -w and vaw - w with u 6= ε and v 6= ε. aw is not
a node, since otherwise, the links would point to aw.

• Suppose uaw or vaw is an inner node. Then uaw or vaw is right-branching in t,
and so must be aw. So aw must be a node, which is a contradiction.

• Suppose uaw and vaw are leaves. Without restriction to generality vaw is a suffix
of uaw, and it is longer than w. Hence there can be no suffix link uaw - w.

2. The suffix link chain from w to ε in cst(t) yields a path labeled w−1 in the suffix link
tree. Of course, w−1 is a t−1-word.

3. Because of Statement 1, (cst(t))−1 is an A+-tree, so ((cst(t))−1)−1 is defined. The node
set is unchanged under the ()−1 operation, except for reversal of node names. There
is a suffix link

�
vw - �

v in (cst(t))−1, iff there is no suffix r−1 of (vw)−1, s.t.
�
r is a

node and |(vw)−1| > |r−1| > |v−1|, iff there is no prefix r of vw, s.t. r is a node and
|vw| > |r| > |v|, iff cst(t) has an edge w v- wv. 2

Proposition 3.1 can be slightly generalized: if T is (any sort of) suffix tree of some string t,
then T−1 is an A+-tree. The reverse of this statement does not hold. For example, let T be
an A+-tree representing the words aa and bb. Then T−1 = T . Thus T−1 is an A+-tree, but
T is not a suffix tree.

A t−1-word w−1 is not represented in the suffix link tree, if w is neither right-branching in
t nor a suffix of t. (Adding the sentinel does not change this situation.) This is also why
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Figure 5: Sequence of Trees Constructed by ukk and mcc
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(cst(t))−1 is not a subtree of cst(t−1): some nodes of (cst(t))−1 are not nodes in cst(t−1).
But in the precise sense of Proposition 3, the suffix link tree approximates the reverse prefix
tree. By duality, cst(t) itself approximates the prefix links of cst(t−1).

At this point, it seems natural to ask whether suffix/prefix trees can be subsumed by a more
general data structure in O(n) space, which has the duality as an inherent property. In fact,
the affix trees recently introduced by Stoye [22] are such a self-dual data structure. However,
this is beyond the scope of the present paper.

We now turn to suffix tree constructions.

3 An Abstract Comparison of ukk and mcc

ukk reads t from left to right, character by character, and incrementally constructs suffix
trees for the prefixes of t seen so far. With ukk, labels of open edges grow implicitly as t is
read, while some edges are split and new open edges are inserted explicitly. The intermediate
trees when constructing cst(adadc) using ukk are shown in the left column of Figure 5.

mcc inserts the suffixes of t into an initially empty tree. Starting with the longest suffix, the
method is not online, and the intermediate trees are not suffix trees. For a suffix s of t let
T (s) denote the A+-tree representing the suffixes of t that are longer than or equal to s. The
right column of Figure 5 shows the intermediate trees when constructing T (c) = cst(adadc)
using mcc.

Let us introduce two abstract tree construction operations:

• split(u, v) replaces an edge u vw- uvw by two edges u v- uv w- uvw

• add(u, a . . .) adds a new edge from node u to a leaf, labeled a . . .

9



Table 1: Operations to Compute Intermediate Trees

Operation applied by ukk to applied by mcc to

add(root, a . . .) cst(ε) cst(ε)

add(root, d . . .) cst(a) T (adadc)

split(root, ad) cst(adad) T (dadc)

add(ad, c . . .) cst(adad) T (dadc)

split(root, d) cst(adad) T (adc)

add(d, c . . .) cst(adad) T (adc)

add(root, c . . .) cst(adad) T (dc)

Note that the add-operation abstracts from whether the edge label is entered fully or left
open to grow later. The central observation of this section is the following: the intermediate
trees of ukk and mcc are both constructed by the same sequence of abstract operations!
However, these operations are applied to the intermediate trees in a different way. Both are
shown in Table 1

Analogies on an abstract level often break down when you go to a more concrete level of
presentation. In our case we have abstracted from a number of aspects which are essential
in making both ukk and mcc linear time algorithms. But when we take these into account,
our analogy still persists. Let us summarize what will be shown in full detail in Sections 4
and 5.

1. ukk can be transformed into mcc by a modification of its control structure, leaving the
sequence of tree constructing operations invariant.

2. This modification is a slight optimization. Under a fair implementation of the related
data structures, it will give mcc a minor efficiency advantage over ukk, on every possible
input.

3. This transformation sacrifices the online property. mcc will always read ahead of ukk
in t. This lookahead is quantified in Proposition 5.

Assertion 2 is confirmed by the measurements in [14]. In fact, this invariance of the relative
efficiency of ukk and mcc made us first wonder about a deeper relationship between these
two algorithms. We were incited further by a note in [24], where Ukkonen remarks that
on the technical level, the main difference between ukk and mcc lies in the way in which
character reads and suffix link traversals are arranged over the loops of the program. Our
study confirms, concretizes, and explains this observation.
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4 Development of ukk and mcc

4.1 A Short Derivation of ukk

Space does not allow a complete derivation of ukk here. We only give a short explanation
together with the concrete algorithm, and refer the reader to the development in [24] or [14].

Online construction means generating a series of suffix trees for longer and longer prefixes
of t. While cst(ε) is trivial (just the root with no edges), we study the step from cst(p) to
cst(pa), where p is a prefix of t, and a is the next character in t to be read. To construct
cst(pa) we have to insert some suffixes of pa into cst(p). Let sa be a suffix of pa. ukk is
based on the following observations about suffixes:

• If |sa| > |α(p)a| then s is not a nested suffix of p and thus s corresponds to a leaf in
cst(p). In such a case sa will correspond to the same leaf in cst(pa) by the implicit
growing of the corresponding open edge.

• If |α(p)a| ≥ |sa| > |α(pa)| then sa is a relevant suffix of pa, and a new leaf sa must be
introduced.

• If |α(pa)| ≥ |sa| then no action is required, since sa already occurs in cst(p).

In ukk a suffix s is represented by its canonical reference pair. To make reference pairs
canonical we use a function canonize. When the relevant suffixes of pa are processed in their
natural order, i.e. by decreasing length from α(p)a to (excluding) α(pa), the corresponding
canonical reference pairs can be accessed via the suffix links.

With the prefix p of t globally given, ukk takes four arguments with each call:

• T = cst(p).

• the set L of suffix links in T .

• the canonical reference pair (b, u) of α(p),

• the position i, such that p = t1 . . . ti−1 and ti is the next input character to be read.

For convenience let us denote b′ by L(b), whenever b - b′ ∈ L.

The access from one canonical reference pair to the next is accomplished by a function link,
which is defined as follows:

link(T, L, (b, ε)) =

{
(b, ε) if b = root

(L(b), ε) otherwise

link(T, L, (b, cw)) =

{
canonize(T, (b, w)) if b = root

canonize(T, (L(b), cw)) otherwise

Let n = |t|. ukk is simply an iteration of a function update that inserts the relevant suffixes.

ukk(T, L, (b, u), i) =

{
T if i = n + 1

ukk(T ′, L′, (b′, u′), i + 1) otherwise

where (T ′, L′, (b′, u′)) = update(T, L, (b, u), i)

11



To construct cst(t), the initial call of ukk is ukk(∅, ∅, (root, ε), 1). Now let us define the
function update. For each relevant suffix, update creates (if necessary) a new branching
node by edge splitting, and sets its suffix link. It adds a new open edge for the new suffix,
and advances (b, u) via the suffix link to the next suffix, until the canonical reference pair
of α(pti) is reached. The function canonize is applied whenever the right component of a
reference pair is extended by a new character. As indicated in Section 2, edge labels are now
implemented as index pairs. The pair (l, r) denotes the label tl . . . tr, while (i,∞) denotes
the suffix ti . . ..

update(T, L, (b, ε), i) =





(T, L, canonize(T, (b, ti))) if b has a ti-edge

(T t ((b, ε), i), L, (b, ε)) else if b = root

update(T t ((b, ε), i), L, (L(b), ε), i) otherwise

update(T, L, (b, cw), i) =

{
(T, L, canonize(T, (b, cwti))) if tl+|cw| = ti
update(T t ((b, cw), i), L′, (b′, u′), i) otherwise

where b (l,r)- v is a c-edge

(b′, u′) = link(T, L, (b, cw))

L′ = L ∪ {(bcw, b′u′)}

The expression T t((b, u), i) denotes the A+-tree that results from inserting the suffix buti . . .
into T . It is formally defined as follows:

T t ((b, ε), i) = T ∪ {b (i,∞)- bti}

T t ((b, cw), i) = (T \ {b (l,r)- v}) ∪ {b (l,k)- bcw (k+1,r)- v, bcw (i,∞)- bti}

where b (l,r)- v is a c-edge
k = l + |w|

The first equation for t implements the abstract add-operation of Section 3. The second
equation corresponds to a split/add-combination.

4.2 A Short Description of mcc

Before we embark on the derivation of mcc from ukk, we give a short intuitive descrip-
tion of our target. The complete algorithm will be given in Section 5, at the end of our
transformation series.

mcc constructs cst(t) by successively inserting the suffixes of t into an initially empty tree,
from longest to shortest. It produces a sequence

cst(ε), T (t1 . . . tn), T (t2 . . . tn), · · · , T (tn−1tn), T (tn) = cst(t)

of compact A+-trees, of which only the first and the last one is a suffix tree. The initial step
of mcc is trivial: T (t) = T (t1 . . . tn) is obtained from cst(ε) by inserting the longest suffix
t. Thus, T (t) is the compact A+-tree with only one edge root t- t. Let as be a suffix of t,
and suppose x = head(as). For the step from T (as) to T (s), mcc first determines tail(s)
and the canonical reference pair ŷ of y = head(s) in constant time from x̂ and tail(as). This
is accomplished by following suffix links and scanning downward in the actual tree using a
function scan (see Section 5.1). Then it constructs T (s) from T (as) by splitting for the node
y (if necessary) and adding a leaf edge labeled tail(s).
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5 Transforming ukk into mcc

5.1 A Series of Program Transformations from ukk to mcc

mcc assumes that t ends with a sentinel. We will assume the like in the rest of this section.

In Figure 5 we saw that ukk produces a sequence

cst(ε), cst(t1), cst(t1t2), . . . , cst(t),

which might contain a subsequence of suffix trees, in which only the leafs grow implicitly
with the length of the input string. In the sequence of trees produced by mcc there are no
such “non-essential” subsequences, i.e. every step produces a tree of a different structure. In
the following we show that it is in fact the additional “non-essential” steps in ukk that make
the difference between both algorithms. Technically, we transform ukk stepwise into equiv-
alent functions ukk1, ukk2, and ukk3, such that ukk3 does only “essential” derivation steps.
Equivalence means that for k = 1, 2, 3 we have ukk(∅, ∅, (root, ε), 1) = ukkk(∅, ∅, (root, ε), 1),
and that linear time complexity is preserved. From ukk3 we synthesize a definition of mcc.

Definition 10 (Essential Steps)
A derivation step ukkk(T, L, (b, w), i) ⇒ ukkk(T

′, L′, (h, q), j), k = 1, 2, 3 is essential, if the
set of edges in T ′ is different from the set of edges in T . 2

The first transformation step does not affect the essential steps. It simply eliminates the
function update in ukk, yielding an equivalent function ukk1:

ukk1(T, L, (b, ε), i) =





T, if i = n + 1 (1)

ukk1(T, L, canonize(T, (b, ti)), i + 1), else if b has a ti-edge (2)

ukk1(T t ((b, ε), i), L, (b, ε), i + 1), else if b = root (3)

ukk1(T t ((b, ε), i), L, (L(b), ε), i), otherwise (4)

ukk1(T, L, (b, cw), i) =





T, if i = n + 1 (5)

ukk1(T, L, canonize(T, (b, cwti)), i + 1), else if tl+|cw| = ti (6)

ukk1(T t ((b, cw), i), L′, (b′, u′), i), otherwise (7)

where b (l,r)- v ∈ T is a c-edge

(b′, u′) = link(T, L, (b, cw))

L′ = L ∪ {(bcw, b′u′)}

To develop ukk2 we need the following lemmas.

Lemma 1 Let csa be a relevant suffix of pa, such that s is not a right-branching p-word.
Then sa is a relevant suffix of pa.

Proof: By assumption, cs is a nested suffix of p. This implies that s is a nested suffix of
p, i.e. p = vcsdw, for some strings v, w and some character d. Since csa is not a p-word, we
have d 6= a. Suppose p = v′sd′w′ for some character d′ and some strings v′ and w′. Then
d = d′, since otherwise s would be right-branching in p. Hence d′ 6= a, i.e. sa is not a p-word.
Thus sa is a relevant suffix of pa. 2

Lemma 2 Consider a derivation (∗) e0 = ukk1(∅, ∅, (root, ε), 1) ⇒ e1 · · · ⇒ eN = cst(t).
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1. eN = cst(t) is derived from eN−1 by an application of equation (1).

2. Assume that ek+1 is derived from ek by an application of equation (6). Then we have
0 < k < N − 1 and ek is derived from ek−1 by an application of equation (2) or (6).

Proof:

1. Let eN−1 = ukk1(T, L, (h, q), i + 1), such that i = n. Let p = t1 . . . ti−1 and assume
that q 6= ε. Then eN−1 is derived from eN−2 = (T, L, (b, w), i) by an application of
equation (2) or equation (6). Hence bwti occurs in T , i.e. bwti is a p-word and thus
the character ti occurs in p. This is a contradiction, since ti is the sentinel in t. Hence
q = ε, i.e. eN is derived from eN−1 by an application of equation (1).

2. We have k > 0, since equation (6) can not be applied to e0. k < n − 1 follows
from Statement 1. ek could not be derived from ek−1 by an application of equation
(1), (3), (4), or (5), since this would lead to an expression, to which equation (6)
is not applicable. We show that this is also true for equation (7). Assume that ek is
derived from ek−1 by an application of equation (7). Hence ek−1 = ukk1(T, L, (b, cw), i)
and ek = ukk1(T t ((b, cw), i), L′, (b′, u′), i), where (b′, u′) = link(T, L, (b, cw)) and
L′ = L ∪ {(bcw, b′u′)}. By assumption, u′ 6= ε. Let p = t1 . . . ti−1 and a = ti. Now
observe that bcwa is a relevant suffix of pa and that b′u′ is not right-branching in p.
By Lemma 1, b′u′a is a relevant suffix of pa, i.e. b′u′a is not a p-word. Hence b′u′a does
not occur in cst(p) and therefore not in T t ((b, cw), i). Thus tl+|cs| 6= ti and equation
(6) is not applicable to ek, which is a contradiction. Hence ek is derived from ek−1 by
equation (2) or (6). 2

Consider a maximal subderivation ek ⇒ · · · ⇒ ek+m+1 of derivation (∗), in which only
equation (2) or (6) are applied. By Lemma 2, Statement 2, we can conclude that ek+1 is
derived from ek by an application of equation (2). If ek = (T, L, (b, ε), i) then ek+m+1 =
(T, L, (h, q), j) and ((h, q), j) is the information we need to insert the suffix btiti+1 . . . into
T . We have hqtjtj+1 . . . = btiti+1 . . ., such that (h, q) is the canonical reference pair of the
longest prefix of btiti+1 . . . that occurs in T . Thus to compute ek+m+1 from ek we can start
at node b, scan a prefix ti . . . tj−1 of titi+1 . . . until we “fall out of the tree”3 and canonize
the reference pair (b, ti . . . tj−1) to obtain (h, q). Instead of computing ((h, q), j) by some
non-essential steps using equation (2) or (6) we use a function scan:

scan(T, b, i) =





((b, ε), i) if b has no ti-edge

((b, p), i + |p|) else if |p| < r − l + 1
scan(T, v, i + |p|) otherwise

where b (l,r)- v is a ti-edge
p is the longest common prefix of tl . . . tr and titi+1 . . .

If we use scan to compute ek+m+1 from ek we do not need equation (2) and (6). Furthermore,
from Lemma 2, Statement 1, we learn that equation (5) is not necessary. Hence we can
transform ukk1 into the following equivalent function ukk2:

3The sentinel ensures that this must happen before titi+1 . . . is exhausted, since it cannot be a nested
suffix.

14



ukk2(T, L, (b, ε), i) =





T, if i = n + 1 (8)

ukk2(T, L, (h, q), j), else if j > i (9)

ukk2(T t ((h, q), j), L, (h, q), j + 1), else if (h, q) = (root, ε) (10)

ukk2(T t ((h, q), j), L, (L(h), ε), j), otherwise (11)

where ((h, q), j) = scan(T, b, i)

ukk2(T, L, (b, cw), i) = ukk2(T t ((b, cw), i), L′, (b′, u′), i) (12)
where (b′, u′) = link(T, L, (b, cw))

L′ = L ∪ {(bcw, b′u′)}

Notice that equations (10) and (11) result from substituting (b, ε) by (h, q) and i by j in
equation (3) and (4). This is correct, since (h, q) = (b, ε), whenever i = j. Obviously, the
program transformation from ukk1 to ukk2 does not affect the linear time complexity, since
a sequence of m non-essential ukk1-derivation steps with a single character comparison is
transformed into a single non-essential ukk2-derivation step with m character comparisons,
that are done in the same order. However, by the use of scan, the index i starts to advance
through the string without extra calls to ukk1. This is where we give up the online property.
At the same time, this is where we gain the slight speed advantage of mcc over ukk [14] by
getting rid of successive calls to ukk1 and canonize.

The next step is to eliminate the single non-essential steps in the derivation of the form
e0 = ukk2(∅, ∅, (root, ε), 1) ⇒ e1 · · · ⇒ eN = cst(t). Let 0 < k < N and assume that ek =
ukk2(T, L, (h, q), j) is derived from the expression ek−1 = ukk2(T, L, (b, ε), i) by an applica-
tion of equation (9), where ((h, q), j) = scan(T, b, i). Since t has a sentinel, j ≤ n. Let q = ε.
Then we can derive ek+1 from ek, using equation (10) or (11). Since ((h, q), j) = scan(T, h, j)
we find that ek+1 equals the right hand side of equation (10) or (11). Let q 6= ε. Then only
equation (12) can be applied to ek deriving ek+1 = ukk2(T t ((h, q), j), L′, (b′, u′), j), where
(b′, u′) = link(T, L, (h, q)) and L′ = L ∪ {(hq, b′u′)}. Hence for q 6= ε the non-essential step
from ek−1 to ek can be merged with the step from ek to ek+1, if we substitute equation (9),
yielding the following equivalent function ukk3.

ukk3(T, L, (b, ε), i) =





T, if i = n + 1 (13)

ukk3(T t ((h, q), j), L, (h, q), j + 1), else if (h, q) = (root, ε) (14)

ukk3(T t ((h, q), j), L, (L(h), ε), j), else if q = ε (15)

ukk3(T t ((h, q), j), L′, (b′, u′), j), otherwise (16)

where ((h, q), j) = scan(T, b, i)

(b′, u′) = link(T, L, (h, q))

L′ = L ∪ {(hq, b′u′)}

ukk3(T, L, (b, cw), i) = ukk3(T t ((b, cw), i), L′, (b′, u′), i) (17)
where (b′, u′) = link(T, L, (b, cw))

L′ = L ∪ {(bcw, b′u′)}

Obviously, ukk3-derivation steps are always essential. Furthermore, the transformation from
ukk2 to ukk3 does not affect the linear time complexity. As the next step we synthesize the
definition of a function mcc with the following properties:
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mcc(T, L, (b, u), i) =





ukk3(T, L, (b, u), i + 1) if (b, u) = (root, ε)

ukk3(T, L, (L(b), u), i) if b 6= root and u = ε

ukk3(T, L′, (b′, u′), i) if u 6= ε

where (b′, u′) = link(T, L, (b, u))

L′ = L ∪ {(bu, b′u′)}

Consider the following cases:

1. (b, u) = (root, ε). Then mcc(T, L, (b, u), i) = ukk3(T, L, (b, u), i + 1). If i = n then
ukk3(T, L, (b, u), i + 1) reduces to T by an application of equation (13). If i < n then
let ((h, q), j) = scan(T, b, i + 1). Now ukk3(T, L, (b, u), i + 1) reduces to

ukk3(T t ((h, q), j), L, (h, q), j + 1) if (h, q) = (root, ε)

ukk3(T t ((h, q), j), L, (L(h), ε), j) if h 6= root and q = ε

ukk3(T t ((h, q), j), L′, (b′, u′), j) if q 6= ε

where (b′, u′) = link(T, L, (h, q)) and L′ = L ∪ {(hq, b′u′)}.

By definition, the three expressions are equal to mcc(T t ((h, q), j), L, (h, q), j).

2. b 6= root and u = ε. Then mcc(T, L, (b, u), i) = ukk3(T, L, (L(b), ε), i). If we let
((h, q), j) = scan(T, L(b), i), then ukk3(T, L, (L(b), ε), i) reduces to

ukk3(T t ((h, q), j), L, (h, q), j + 1) if (h, q) = (root, ε)

ukk3(T t ((h, q), j), L, (L(h), ε), j) if h 6= root and q = ε

ukk3(T t ((h, q), j), L′, (b′, u′), j) if q 6= ε

where (b′, u′) = link(T, L, (h, q)) and L′ = L ∪ {(hq, b′u′)}. By definition, the three
expressions are equal to mcc(T t ((h, q), j), L, (h, q), j).

3. u 6= ε. Then mcc(T, L, (b, u), i) = ukk3(T, L′, (b′, u′), i) where (b′, u′)= link(T, L, (b, u))
and L′ = L ∪ {(bu, b′u′)}. Consider the following subcases:

• u′ = ε. Let ((h, q), j) = scan(T, b′, i). Then ukk3(T, L′, (b′, u′), i) reduces to

ukk3(T t ((h, q), j), L′, (h, q), j + 1) if (h, q) = (root, ε)

ukk3(T t ((h, q), j), L′, (L(h), ε), j) if h 6= root and q = ε

ukk3(T t ((h, q), j), L′′, (b′′, u′′), j) if q 6= ε

where (b′′, u′′) = link(T, L′, (h, q)) and L′′ = L′ ∪ {(hq, b′′u′′)}. By definition, the
three expressions are equal to mcc(T t ((h, q), j), L′, (h, q), j).

• u′ 6= ε. Let (b′′, u′′) = link(T, L′, (b′, u′)) and L′′ = L′ ∪ {(b′u′, b′′u′′)}. Then
ukk3(T, L′, (b′, u′), i) reduces to ukk3(T t ((b′, u′), i), L′′, (b′′, u′′), i), which equals
mcc(T t ((b′, u′), i), L′, (b′, u′), i).

Putting it all together we get the following definition of mcc:
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mcc(T, L, (b, u), i) =





T if i = n and (b, u) = (root, ε)

mcc(T t ((h, q), j), L, (h, q), j) else if u = ε

mcc(T t ((h, q), j), L′, (h, q), j) else if u′ = ε

mcc(T t ((b′, u′), i), L′, (b′, u′), i) otherwise

where (b′, u′) = link(T, L, (b, u))

L′ = L ∪ {(bu, b′u′)}

((h, q), j) =





scan(T, b, i + 1) if (b, u) = (root, ε)

scan(T, L(b), i) else if u = ε

scan(T, b′, i) else if u′ = ε

This definition of mcc is equivalent to the one we have developed directly in [14]. From the
specification of mcc it is easy to see that the only difference between ukk3 and mcc is that
the computation of some information is delayed one step in mcc. There is no difference in
the order or number of computation steps.

Proposition 4 For n = |t|, mcc({root (1,n)- t}, ∅, (root, ε), 1) returns cst(t) in O(n) time.

Proof: By construction of mcc, we have

mcc({root (1,n)- t}, ∅, (root, ε), 1) = ukk3({root
(1,n)- t}, ∅, (root, ε), 2)

= ukk3(∅, ∅, (root, ε), 1)

= ukk(∅, ∅, (root, ε), 1)

= cst(t)

Since mcc is derived from ukk by eliminating non-essential derivation steps, without affecting
the number or order of essential steps, mcc inherits the linear time property. 2

5.2 Synchronization Points between ukk and mcc

Let us call “point i” the situation after

• ukk has constructed the suffix tree cst(t1 . . . ti),

• mcc has constructed the A+-tree T (ti . . . tn), i.e. the suffix ti . . . tn has just been in-
serted.

At this point, ukk has read no character of t beyond ti. If ti does not occur to the left in t, it
behaves as a sentinel for t1 . . . ti, and both ukk and mcc will have constructed cst(t1 . . . ti),
and no character beyond ti has been read. But generally, mcc has scanned further in t. Let
us call the additional characters read by mcc its lookahead at point i.

Proposition 5 Let cw = tail(ti . . . tn) for some character c and some string w. The looka-
head of mcc at point i is

ε, if head(ti . . . tn) = ε
uc, if head(ti . . . tn) = tiu.

Proof: Intuitively, it is clear that t need not be scanned beyond uc, in order to insert the
new open edge tiu c...- . Formally, this can be verified against the implementation of mcc
given in Section 5.1. 2

17



What does this mean with respect to practical matters? Online construction is attractive
when the suffix tree is intended to be used to search for first occurrences of words in t. If a
word occurs in t, only the suffix tree for the prefix of t ending with the first occurrence must
be constructed. Further queries may further expand the tree. Thus, suffix tree construction
time is amortized over a series of queries. This is the practical advantage of ukk being an
online algorithm.

With the complete input string available — say as a character file —, it does not really
matter whether the partial tree construction stops exactly after the first occurrence of the
search key, or some characters beyond it. mcc may as well be interleaved with queries for
first occurrences, and in this sense, it shares the advantages of a truly online construction.
On the other hand, when t is incrementally calculated by some other computation — say
as a character stream —, then the difference matters: ukk is more lazy than mcc, and the
extra characters called for by mcc may induce an overhead of arbitrary dimension.

6 An Explanation of Weiner’s Algorithm

In this section we go back to the roots and take a look at the “Algorithm of the Year 1973”
(D.E. Knuth according to [18]).

Our explanation of wrf is quite different from the treatment by Chen and Seiferas [9]. They
restate Weiner’s algorithm in a less technical, even prosaic form. Our approach is to relate
wrf to ukk. We shall explain wrf using today’s terminology,4 thus revealing its close relation
to the algorithms discussed in the previous sections.

6.1 An Abstract Explanation

Before we enter the detailed analysis, let us first take a look at Weiner’s algorithm in terms
of our abstract tree construction operations of Section 3. wrf reads the input string t from
right to left, and successively inserts suffixes, shortest first. Figure 6 shows how the suffix
tree arises from a series of add/split-operations. As with ukk and mcc, the crux lies in the
efficient way to move from one insertion point to the next, e.g. from node d to node ad.
Having read trough all the previous sections, you might say: well — just follow the suffix
link ad -d in reverse direction! This idea is not totally wrong. But the general case is not
as simple, and besides, reverse links are more expensive, and they usually exist only after
we needed them ...

6.2 Traversing a Tree that we do not Construct

Let us assume it is 1973 and little is known about suffix trees. The first natural thing to
think of is online construction, successively building the tree for longer and longer prefixes
of t. But immediately, a problem arises: existing leaf edges will have to be extended for
each new character, leading to an O(n2)-algorithm. Since this problem will only be solved
by Ukkonen’s open edges in 1992, let us instead process t from right to left. This way,

4Weiner [25] calls the suffix tree prefix tree, and vice versa, and the overall treatment is very technical.
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Figure 6: Sequence of Trees Constructed produced by wrf for t = adadc
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leaves will always represent a suffix and need to be changed less frequently. This decision
is quite logical — but it will bring us into tremendous difficulties shortly. Anyway: we will
be building the tree successively for longer and longer suffixes of t, so we have an online
property in the reverse direction. Let us call this the anti-online property.

Suppose as is a suffix of t. To obtain cst(as) from cst(s), a naive anti-online algorithm
determines the longest prefix u of as that is an s-word. This is accomplished by walking
down the path for as in cst(s) as far as possible. Let uv = as. One of the following cases
will arise:

1. If u is a leaf in cst(s) then the leaf edge y x- u is replaced by the leaf edge y xv- uv.

2. If u is not a leaf in cst(s) then the algorithm splits for u if necessary, and adds an edge
u v- uv.

Later authors will suggest similar naive versions of other algorithms [17, 13], and it will be
shown that their efficiency is O(n log n) in the expected case [5]. The factor log n comes
from walking the tree from the root to the point of insertion. For an O(n)-algorithm we
must access this point in O(1). As the string u above equals α−1(as), our problem is solved,
if for each iteration we can hop directly from one active prefix node to the next. And of
course, we know exactly where it is:

Proposition 6 There is an edge u vw- s in cst(s), s.t. α−1(s) = uv and w is non-empty.

Proof: Let u be the longest prefix of s that is right-branching in s. Then u is a nested prefix
of s. Thus we can conclude α−1(s) = uv for some string v. Moreover, there is a non-empty
string w, s.t. α−1(s)w = s. Hence there is an edge u vw- s in cst(s). 2
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Figure 7: The Way from α(s−1) = edcb to α((as)−1) = cba
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So the “old” active prefix is always at hand, just above the leaf inserted in the previous step.
But how do we hop to the “new” one in O(1)?

Glancing ahead into the future, we see Ukkonen’s online algorithm swinging easily from
active suffix to active suffix, using the suffix links. We are doing an anti-online construction,
and are interested in active prefixes. If only we had cst(s−1) available! Since α−1(as) is a
prefix of aα−1(s) we then could determine α−1(as) by following the (reverse) prefix links,
shortening α−1(s) from the right, until we find a prefix p, such that ap−1 occurs in cst(s−1).
If such a p exists then α−1(as) = ap−1. Otherwise α−1(as) = ε.

Example 1 Let s = bcdeabcbcdfbcde. Figure 7 shows the relevant parts in cst(s−1) (plus the
new outgoing a-edge from node

�
bcd ) and the way from α(s−1) = edcb to α((as)−1) = cba.

For the sake of comparison with Figure 8, reference pairs are written from right to left. 2

Of course, we cannot simply construct the reverse prefix tree, since this is the dual of the
problem we started to solve. But, with some additional effort, we can use the suffix tree to
simulate the above walk through the reverse prefix tree! This is the essential idea of Weiner’s
algorithm, and at the same time the reason for its extra complexity.

Let us consult Proposition 3. From 3.1 and 3.2 we know that (and how) (cst(s))−1 approx-
imates the reverse prefix tree. From 3.3 we learn that the reversed edges of cst(s) are the
suffix links of (cst(s))−1, i.e. they approximate the prefix links! Thus if we make the edges
of cst(s) bidirectional, this will be sufficient to approach α−1(as) from α−1(s).

A final problem remains, and its solution is less elegant and much more expensive. After
all relevant suffixes are inserted, Ukkonen’s algorithm follows an edge in the suffix tree
downward. By analogy, we shall need to walk along a prefix edge once before α−1(as) is
reached. This means we must make an additional effort to record prefix edges between the
nodes of cst(s). Summing up, we need the following extra information:

(1) The edges of cst(s) must be bidirectional, such that we can traverse them upwards.

(2) For each node in cst(s) and each a ∈ A we must indicate whether this node would
have an a-edge in cst(s−1). We call this a pending prefix edge.

(3) If the target node of this edge happens to be also a node in cst(s), then we record this
as a proper prefix edge.
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Figure 8: Relevant Parts of cst(s)
bPPPPPPPPPq

���������)b
�

�
�	

@
@

@R

b

�
�

�	

@
@

@R
b

�
�

�	

@
@

@R

abc bc

b... de... bcd... d

fb... eab...

�

�

�

?-(abc,ε)

(bcd,e)

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

...
...
...
...
...
...
...
.....
.....
.........

..............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..
..
...
...
...
...
..
...
....
...
....
.....
.....
......

..........
................

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

...

..

...

..

...

...

..

...

...

...

..

..

...

..

..

...
..
...
..
...
..
...
..
...
...
...
...
..
...
...
...
...
...
...
...
...
...
....
...
...
...
...
....
...
....
...
....
....
...
....
....
....
....
.....

....
....
.....

.....
....

......
.....

......
......

......
.......

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

...

..

...

..

...

...

..

...

...

...

..

..

...

..

..

...
..
...
..
...
..
...
..
...
...
...
...
..
...
...
...
...
...
...
...
...
...
....
...
...
...
...
....
...
....
...
....
....
...
....
....
....
....
.....
....
....
.....
.....
....
......
.....
......
......
......
.......

.. . . . . . . . . . . . . . ..

.

.

.

.

.

.

.

.

.

.

.

.

(bcde...,ε) -
up (bcd,e) -

up (bcd,ε) -
up (bc,ε)

?
up

(ε,(bc)) -over
(ε,a(bc))

6down

(ε,abc)

This is how we now simulate the traversal of prefix links in cst(s−1) by using cst(s) and
this auxiliary information: the traversal starts at the leaf below the active prefix, i.e. at
s, and moves upward until an a-prefix edge is indicated. If the edge is pending, we must
take a detour higher up in the tree, recording its length (in characters), until we hit a node
which has a proper a-prefix edge. We follow this edge, and then proceed downward in cst(s)
according to the recorded length of the detour.

Example 2 Let s = bcdeabcbcdfbcde as in Example 1. Figure 8 shows the relevant parts
in cst(s) and the way from α−1(s) = bcde to α−1(as) = abc. Node bc is the one with the
pending prefix edge, where the detour (up, over, down) starts. The extra parenthesis around
bc indicate the characters which account for the length of the detour. It is not typical that
this traversal passes the root, but an even more sophisticated example would be necessary
to demonstrate this. 2

During this traversal, we must also create and update the extra information, and make sure
that we can do all this in O(1) on the average (see Section 6.3).

Summing up, we may say that Weiner’s algorithm has a touch of tragic and heroism: faced
with the problem of growing leaf-edges, it turns to anti-online construction. This means
having to traverse the reverse prefix tree while only the suffix tree is to be constructed.
This adds an almost unsurmountable amount of difficulty — but wrf succeeds in handling
it within the linear time constraint.

6.3 Extra Costs of wrf

Here we detail the extra costs in time and space that result from wrf ’s simulated traversal
of the reverse prefix tree. Recall the extra information required by wrf (see item (1), (2),
(3) on page 20).

The extra pointer needed for (1) is equivalent to the effort of storing suffix links in ukk and
mcc. It is the extra data structures for pending and proper prefix edges which make wrf
more space consuming, and their maintainance makes it slower than the others.
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But still, this extra information can be maintained with a fixed effort per node visited.
When u vw- uvw is split for uv, this node inherits its proper and pending prefix edges from
the leaf uvw. The new leaf, representing the longest suffix, naturally has no prefix edges
when created. Finally, prefix edges of a node on the path from α−1(s) upward must be
updated. They all have a pending a-prefix edge now, and if there is an explicit node uv, we
record the proper prefix edge uv a- auv.

At this point, we are left with one final question: while a traversal along prefix links can be
easily shown to add up to O(n) node visits overall, it is not obvious that the same is true
when we traverse the suffix tree instead. Our “detour” may take us up all the way to the
root, and back down. This is also exemplified in Figure 8. In fact, if this happened at each
iteration, we would essentially be back at the naive anti-online algorithm. How can we prove
that this form of traversal does not visit more than O(n) nodes in total?

Lemma 3 As above, let u be the node encountered which has a proper a-prefix edge, and
let auv = α−1(s). Then, there is no node between au and auv.

Proof: The only possibility for a node between au and auv is when v = xy, x 6= ε, y 6= ε, and
aux is an explicit node. It is an inner node, and the remark after Proposition 1 applies. So
its suffix link points to the node ux, which then has a proper a-prefix edge. This contradicts
the definition of u of being the first such node on the traversal. 2

So from the “summit” u of the detour we descent at most one node. We now consider the
depth of the nodes (from the root) visited: it is first decreased by the detour, and then
increased by at most 1. The tree has O(n) nodes. Since the sum of all increases is bounded
by n, the decreases cannot add up to more than 2n. Hence the number of nodes visited over
all detours is O(n).

7 Conclusion

We have reached the end of our investigation, and the conclusion is clear: the three suffix tree
constructions considered — wrf, mcc, and ukk — are more closely related than is commonly
assumed. While all three are O(n)-algorithms, their relative virtues are different:

• ukk is online, the most elegant construction, and the clue to understanding the others,

• mcc is the most efficient construction, by a small margin over ukk,

• wrf has no practical virtue (it uses significantly more time and space), but remains to
be a true historic monument in the area of string processing.

The notion of active suffixes, suffix links, and the duality between suffix link trees and prefix
trees are the cardinal points of linear time suffix tree construction. Although there is no
truly formal way to express this, we conjecture that any sequential suffix tree construction
not based on these concepts will fail to meet the O(n)-criterion. This does not pertain to
parallel constructions like [19].

22



8 Acknowledgments

Gene Lawler encouraged us to exploit our duality observation for explaining suffix tree con-
struction. Dan Gusfield and Richard Karp directed our attention to the manuscript by Pratt
[18]. Dan Gusfield also provided a carefully written exposition of Weiner’s algorithm. Many
discussions with Esko Ukkonen improved our understanding of suffix trees. The careful com-
ments of the referees gave valuable hints to improve the exposition. All their contributions
are truly appreciated.

References

[1] A. Aho. Algorithms for Finding Patterns in Strings. In van Leeuwen, J., editor, Hand-
book of Theoretical Computer Science, Volume A, pages 257–300. Elsevier, Amsterdam,
1990.

[2] A. Aho and M. Corasick. Efficient String Matching: An Aid to Bibliographic Search.
Communications of the ACM, 18:333–340, 1975.

[3] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-
Wesley, Reading, MA, 1982.

[4] A. Apostolico. The Myriad Virtues of Subword Trees. In Combinatorial Algorithms on
Words, Springer Verlag, pages 85–96, 1985.

[5] A. Apostolico and W. Szpankowski. Self-Alignments in Words and Their Applications.
Journal of Algorithms, 13:446–467, 1992.

[6] R.A. Baeza-Yates. String Searching Algorithms. In W. Frakes and R.A. Baeza-Yates, ed-
itors, Information Retrieval: Algorithms and Data Structures, pages 219–240. Prentice-
Hall, Englewood Cliffs, NJ, 1992.

[7] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas. The
Smallest Automaton Recognizing the Subwords of a Text. Theoretical Computer Sci-
ence, 40:31–55, 1985.

[8] W.I. Chang and E.L. Lawler. Approximate String Matching in Sublinear Expected
Time. In Proceedings of the 31st IEEE Symposium on Foundations of Computer Science,
pages 116–124, 1990.

[9] M.T. Chen and J.I. Seiferas. Efficient and Elegant Subword Tree Construction. In
Combinatorial Algorithms on Words, Springer Verlag, pages 97–107, 1985.

[10] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

[11] M. Crochemore. String Matching with Constraints. In Proceedings of the 1988 Inter-
national Symposium on Mathematical Foundations of Computer Science, pages 44–58.
Lecture Notes in Computer Science 324, Springer Verlag, 1988.

23



[12] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford,
1994.

[13] R. Giegerich and S. Kurtz. Suffix Trees in the Functional Programming Paradigm. In
Proceedings of the European Symposium on Programming (ESOP’94), pages 225–240.
Lecture Notes in Computer Science 788, Springer-Verlag, 1994.

[14] R. Giegerich and S. Kurtz. A Comparison of Imperative and Purely Functional Suffix
Tree Constructions. Science of Computer Programming, 25(2-3):187–218, 1995.

[15] G.H. Gonnet and R.A. Baeza-Yates. Text Algorithms. In Handbook of Algorithms and
Data Structures in Pascal and C, pages 251–288. Addison-Wesley, Reading, MA, 1991.

[16] S. Kurtz. Fundamental Algorithms for a Declarative Pattern Matching System. Disser-
tation, Technische Fakultät, Universität Bielefeld, available as Report 95-03, 1995.

[17] E.M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. Journal of
the ACM, 23(2):262–272, 1976.

[18] V.R. Pratt. Improvements and Applications of the Weiner Repetition Finder. Unpub-
lished Manuscript, Cambridge, MA, 1973.

[19] S. C. S. ahinalp and U. Vishkin. Symmetry Breaking for Suffix Tree Construction. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages 300–
309, 1994.

[20] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1988.

[21] G.A. Stephen. String Searching Algorithms. World Scientific, Singapore, 1994.
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