
Feature Selection with Linked Data in Social Media

Jiliang Tang∗ Huan Liu∗

Abstract

Feature selection is widely used in preparing high-
dimensional data for effective data mining. Increasingly
popular social media data presents new challenges to
feature selection. Social media data consists of (1) tra-
ditional high-dimensional, attribute-value data such as
posts, tweets, comments, and images, and (2) linked
data that describes the relationships between social me-
dia users as well as who post the posts, etc. The nature
of social media also determines that its data is mas-
sive, noisy, and incomplete, which exacerbates the al-
ready challenging problem of feature selection. In this
paper, we illustrate the differences between attribute-
value data and social media data, investigate if linked
data can be exploited in a new feature selection frame-
work by taking advantage of social science theories, ex-
tensively evaluate the effects of user-user and user-post
relationships manifested in linked data on feature selec-
tion, and discuss some research issues for future work.

1 Introduction

The myriads of social media services are emerging in
recent years that allow people to communicate and ex-
press themselves conveniently and easily, e.g., Face-
book1 and Twitter2. The pervasive use of social me-
dia generates massive data in an unprecedented rate.
For example, users on Twitter are sending 200 million
Tweets per day, which is about 200 percent growth in a
year3; more than 3,000 photos are uploaded to Flickr4

per minutes and more than 153 million blogs are posted
per year5. The massive, high-dimensional social media
data poses new challenges to data mining tasks such
as classification and clustering. One conventional ap-
proach to handling large-scale, high-dimensional data is
feature selection [13].

Feature selection aims to select relevant features
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from the high dimensional data for a compact and
accurate data representation. It can alleviate the
curse of dimensionality, speed up the learning process,
and improve the generalization capability of a learning
model [14]. The vast majority of existing feature
selection algorithms work with “flat” data containing
uniform entities (or attribute-value data points) that
are typically assumed to be independent and identically
distributed (i.i.d.). However, social media data differs
as its data points or instances are inherently connected
to each other. Without loss of generality, Figure 1
presents a simple example of social media data with
two data representations. Figure 1(a) has four users
(u1, ..., u4) and each user follows some other users (e.g.,
u1 follows u2 and u4) and has some posts (e.g., user
u1 has two posts p1 and p2). We use posts in a loose
way to cover posts, tweets, or images. Figure 1(b) is
a conventional representation of attribute-value data:
rows are posts and columns are features or terms for
text posts. Its similarity with social media data stops
here. In the context of social media, there is additional
information in the form of linked data such as who posts
the posts and who follows whom as shown in Figure 1(c).
After delineating the differences between attribute-value
data and social media data, we now discuss the problem
of feature selection with linked data.

In this paper, we investigate issues of feature selec-
tion for social media data as illustrated in Figure 1(c).
Specifically, we perform feature selection on posts (e.g.,
tweets, blogs, or images) in the context of social me-
dia with link information between user and user or be-
tween user and posts. Since conventional feature selec-
tion methods cannot take advantage of the additional
information in linked data, we proceed to study two fun-
damental problems: (1) relation extraction - what are
distinctive relations that can be extracted from linked
data, and (2) mathematical representation - how to rep-
resent these relations and integrate them in a state-of-
the-art feature selection formulation. Providing answers
to the two problems, we propose a novel feature selec-
tion framework (LinkedFS) for social media data. The
main contributions of this paper are summarized next.

• Identify the need for feature selection in social
media and propose to exploit social correlation
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Figure 1: Typical Social Media Data and Its Two Representations

theories and linked data in formulating the new
problem of feature selection for social media data;

• Show that various relations can be extracted from
linked data guided by social correlation theories
and provide a way to capture link information;

• Propose a framework for social media feature selec-
tion (LinkedFS) that integrates conventional fea-
ture selection with extracted relations; and

• Evaluate LinkedFS systematically using real-world
social media data to verify if different types of rela-
tions improve the performance of feature selection.

The rest of this paper is organized as follows. The
problem of feature selection with linked data in social
media is formally defined in Section 2. A new feature
selection framework, LinkedFS, is introduced in Section
3 based on social correlation theories. Empirical eval-
uation is presented in Section 4 with discussions. The
related work is reviewed in Section 5. The conclusion
and future work are presented in Section 6.

2 Problem Statement

We first give the notations to be used in this
paper. Scalars are denoted by low-case letters
(a, b, . . . ;α, β, . . .), vectors are written as low-case bold
letters (a,b, . . .), and matrices correspond to bold-face
upper-case letters (A,B, . . .). A(i, j) is the entry at the
ith row and jth column of the matrix A, A(i, :) is the
ith row of A and A(:, j) is the jth column of A.

Let p = {p1, p2, . . . , pN} be the post set (e.g., p1
to p8) where N is the number of posts. Let f =
{f1, f2, . . . , fm} denote the feature set where m is the
number of features. For each post pi, fi ∈ Rm are the set

of feature values where fi(j) is the frequency of fj used
by pi. F = {f1, f2, . . . , fNl

} ∈ Rm×N denotes the whole
dataset p. We assume that the subset {p1, p2, . . . , pNl

}
is the labeled data where Nl is the number of labeled
posts. Then X = {f1, f2, . . . , fNl

} ∈ Rm×Nl is the
matrix for labeled data. Let c = {c1, c2, . . . , ck} denote
the class label set where k is the number of classes.
Y ∈ RNl×k is the class label matrix for labeled data
where Y(i, j) = 1 if pi is labeled as cj , otherwise zero.

Let u = {u1, u2, . . . , un} be the user set (e.g., u1
to u4) where n is the number of users. Fi denotes the
set of posts from user ui (e.g., F1 = {p1, p2}). We also
model the user-user following relationships as a graph
with adjacency matrix S, where S(i, j) = 1 if there is a
following relationship from uj to ui and zero otherwise
(e.g., S(:, 1) = [0, 1, 0, 1]>). Let P ∈ Rn×N denote user-
post relationships where P(i, j) = 1 if pj is posted by
ui, zero otherwise (e.g., P(1, :) = [1, 1, 0, 0, 0, 0, 0, 0]).

Traditional supervised feature selection aims to
select a subset features from m features based on
{X,Y}. Different from traditional feature selection
problems, our problem with linked data is stated as:

Given labeled data X and its label indicator matrix
Y, the whole dataset F, its social context(or social
correlations) including user-user following relationships
S and user-post relationships P, we aim to select K
most relevant features from m features on the dataset F
with its social context S and P.

3 A New Framework - LinkedFS

Recall the two fundamental problems for feature selec-
tion on social media data: (1) relation extraction, and
(2) mathematical representation. Their associated chal-
lenges are: (a) what are different types of relations
among data instances and how to capture them, and (b)
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Figure 2: Different Types of Relations Extracted from Social Correlations among Social Media Data

how to model these relations for feature selection. In
this section, we discuss how to capture relations from
linked data guided by social correlation theories, pro-
pose a framework (LinkedFS) of social media data that
naturally integrates different relations into a state-of-
the-art formulation of feature selection, and turn the in-
tegrated formulations to an optimization problem with
convergence analysis when developing its corresponding
feature selection algorithm.

3.1 Extracting Various Relations Examining
Figure 1(a), we can find four basic types of relations
from the linked data as shown in Figure 2: (a) a user
(u2) can have multiple posts (p3, p4, and p5), (b) two
users (u1 and u3) follow a third user (u4), (c) two users
(u2 and u4) are followed by a third user (u1), and (d) a
user (u1) follows another user (u2). Social correlation
theories such as homophily [17] and social influence [16]
can be helpful to explain what these relations suggest.
Homophily indicates that people with similar interests
are more likely to be linked, and social influence reveals
that people that are linked are more likely to have
similar interests. Based on these theories that define
social correlations among data, we turn the four types
of relations into four corresponding hypotheses that
can affect feature selection with linked data.

CoPost Hypothesis: This hypothesis assumes
that posts by the same user (e.g., {p3, p4, p5}, in Fig-
ure 2(a)) are of similar topics. In other words, the
posts of a user are more similar, in terms of topics (say,
“sports”, “music”), than those randomly selected posts.

CoFollowing Hypothesis: This hypothesis sug-
gests that if two users follow the same user (e.g., u1 and
u3 follow u4 as in Figure 2(b)), their posts, {p1, p2} and
{p6, p7}, are likely of similar topics. Its counterpart in
citation analysis is bibliographic coupling [18]: if two
papers cite a paper, they are more similar than other

papers that do not share references.
CoFollowed Hypothesis: It says that if two users

are followed by the same user, their posts are similar
in topics. For example, in Figure 2(c), both users u2
and u4 are followed by user u1 and then their posts
{p3, p4, p5} and {p8} are of more similar topics. It
is similar to the co-citation relation [18] in citation
analysis: if two papers are cited by the same paper,
they are more similar than other paper that are not.

Following Hypothesis: The hypothesis assumes
that one user follows another (e.g., u1 follows u2 in
Figure 2(d)) because u1 shares u2’s interests. Thus,
their posts (e.g., {p1, p2} and {p3, p4, p5}) are more
likely similar in terms of topics.

Next, we elaborate how the above four hypotheses
can be modeled into a feature selection formulation in
our effort to create a new framework for feature selection
with linked data.

3.2 Modeling Hypotheses We first introduce a
representative feature selection method for attribute-
value data based on `2,1-norm regularization [15], which
selects features across data points with joint sparsity [5].

(3.1) min
W

‖X>W −Y‖2F + α‖W‖2,1

where W ∈ Rm×k and ‖W‖2,1 is the `2,1-norm of W,
which is defined as follows:

(3.2) ‖W‖2,1 =

m∑
i=1

√√√√ k∑
j=1

W2(i, j) =

m∑
i=1

‖W(i, :)‖2

This formulation (Eq. (3.1)) is a supervised feature
selection method where data instances are assumed
to be independent. We now discuss how one can
jointly incorporate `2,1 minimization and different types
relations in feature selection with linked data.



CoPost Relation: To integrate this hypothesis
into Eq. (3.1), we propose to add a regularization term
that enforces the hypothesis that the class labels (i.e.,
topics in this paper) of posts by the same user are simi-
lar. Thus, feature selection with CoPost hypothesis can
be formulated as the following optimization problem.

min
W

‖X>W −Y‖2F + α‖W‖2,1

+ β
∑
u∈u

∑
fi,fj∈Fu

‖T (fi)− T (fj)‖22(3.3)

where ‖ · ‖F denotes the Frobenius norm of a matrix.
The parameter α controls the sparseness of W in
rows and β adjusts the contribution from the CoPost
relation. Let A be the copost matrix, which is defined
as A(i, j) = 1 if post pi and post pj are posted by
the same user, and A(i, j) = 0 otherwise. A can be
obtained from the user-post relationship matrix P, i.e.,
A = P>P. Let T (fi) : Rm → Rk be the function to
predict the labels of the post pi, i.e., T (fi) = W>fi.
LA = DA − A is the Laplacian matrix, and DA is a
diagonal matrix with DA(i, i) =

∑
j A(j, i).

Theorem 3.1. The formulation in Eq (3.3) is equiva-
lent to the following optimization problem:

(3.4) min
W

tr(W>BW − 2EW) + α‖W‖2,1

where tr(·) is the trace of a matrix. B and E are defined
as follows:

B = XX> + βFLAF>

E = Y>X>(3.5)

Proof. It is easy to verify that the first part of Eq (3.3)
can be written as:

‖X>W −Y‖2F =

tr(W>XX>W − 2Y>X>W + Y>Y)(3.6)

With the definition of F and LA, the last regularization
constraint of Eq (3.3) can be written as:∑

u∈u

∑
fi,fj∈Fu

‖T (fi)− T (fj)‖22

=
∑
i

∑
j

A(i, j)‖W>fi −W>fj‖22(3.7)

= tr(W>FLAF>W)

Since Y>Y is constant, the object function can be
converted into:

tr(W>XX>W − 2Y>X>W + Y>Y)

+ βtr(W>FLAF>W)

= tr(W>(XX> + βFLAF>)W − 2Y>X>W)(3.8)

= tr(W>BW − 2EW)

which completes the proof.

CoFollowing Relation: To model this hypothesis,
we have to formally define users’ topic interests. With
the definition of T (fi), the topic interests for uk, T̂ (uk),
is defined as follows:

(3.9) T̂ (uk) =

∑
fi∈Fk

T (fi)

|Fk|
=

∑
fi∈Fk

W>fi

|Fk|

For this hypothesis, we add a regularization term into
Eq. (3.1), reflecting the constraint that two co-following
users have similar interested topics. The feature selec-
tion formulation with CoFollowing hypothesis is below:

minW ‖X>W −Y‖2F + α‖W‖2,1
+ β

∑
uk∈u

∑
ui,uj∈Fk

‖T̂ (ui)− T̂ (uj)‖22(3.10)

where Fk is the people who follow uk. Let FI be
the co-following matrix where FI(i, j) = 1 if ui and
uj are following at least one other person (e.g., uk).
FI can be obtained from the adjacency matrix S, i.e.,
FI = sign(S>S) where the function sign(x) = 1 if
x > 0 and 0 otherwise.

Let H ∈ RN×n be an indicator matrix where
H(i, j) = 1

|Fj | if uj is the author of pi. Let LFI is the

Laplacian matrix defined on FI.

Theorem 3.2. The formulation in Eq (3.10) is equiv-
alent to the following optimization problem:

(3.11) min
W

tr(W>BW − 2EW) + α‖W‖2,1

where B and E are defined as follows:

B = XX> + βFHLFIH
>F>

E = Y>X>(3.12)

Proof. We can see that the first part of Eq (3.3) is the
same as that of Eq (3.10). For this part, the proof
process is similar as that of CoPost hypothesis. The last



regularization constraint of Eq (3.10) can be written as:∑
uk∈u

∑
ui,uj∈Fk

‖T̂ (ui)− T̂ (uj)‖22

=
∑
i,j

FI(i, j)‖W>FH(:, i)−W>FH(:, j)‖22(3.13)

= tr(W>FHLFIH
>F>W)

Then object function can be converted into:

tr(W>XX>W − 2Y>X>W + Y>Y)

+ βtr(W>FHLFIH
>F>W)

= tr(W>(XX> + βFHLFIH
>F>)W − 2Y>X>W)

(3.14)

= tr(W>BW − 2EW)

which completes the proof.

Following a similar approach to the CoFolllowing
relation, we can develop the relations of CoFollowed and
Following below.

CoFollowed Relation: Let FE be the CoFollowed
matrix where FE(i, j) = 1 if ui and uj are followed by at
least one other person uk. FE can be obtained from the
adjacency matrix S, i.e., FE = sign(SS>). Let LFE is
the Laplacian matrix defined on FE. Similarly, we can
verify that the formulation for CoFollowed relation is
equivalent to the following optimization problem:

(3.15) min
W

tr(W>BW − 2EW) + α‖W‖2,1

where B and E are defined as follows:

B = XX> + βFHLFEH>F>

E = Y>X>(3.16)

Following Relation: Let LS be the Laplacian
matrix defined on S. It is easy to verify that the
formulation for Following relation is equivalent to the
following optimization problem:

(3.17) min
W

tr(W>BW − 2EW) + α‖W‖2,1

where B and E are defined as follows:

B = XX> + βFHLSH>F>

E = Y>X>(3.18)

In this paper, we focus on the effect of each hypoth-
esis on feature selection and do not consider the combi-
nation of multiple hypotheses into the same formulation
to capture multi-faceted relations [23], which we leave
as future work because it is more about how to use data

to effectively the values of different parameters. Closely
examining the optimization problems for these four hy-
pothesis, we can see that the LinkedFS framework is
tantamount to solving the following optimization prob-
lem.

(3.19) min
W

tr(W>BW − 2EW) + α‖W‖2,1

Next we will present an optimization formulation to
solve this problem and give convergence analysis.

3.3 An Optimal Solution for LinkedFS In this
section, inspired by [19], we give a new approach to
solve the optimization problem shown in Eq. (3.19).
The Lagrangian function of the problem is:

(3.20) L(W) = tr(W>BW − 2EW) + α‖W‖2,1

Taking the derivative of L(W),

(3.21)
∂L(W)

∂W
= 2BW − 2E> + 2αDWW

where DW is a diagonal matrix with the i-th diagonal
element as6:

(3.22) DW(i, i) =
1

2‖W(i, :)‖2

All matrices B defined above are semi-positive definite
matrices and therefore B + αDW is positive definite
matrix. Then setting the derivative to zero, we have:

(3.23) W = (B + αDW)−1E>

DW is dependent to W and we proposed an iterative
algorithm to obtain the solution W. The detailed opti-
mization method for LinkedFS is shown in Algorithm 1.
We next verify that Algorithm 1 converges to the opti-
mal W, beginning with the following two lemmas.

Lemma 3.1. For any non-zero constants x and y, the
following inequality holds [19].

(3.24)
√
x− x

2
√
y
≤ √y − y

2
√
y

Proof. The detailed proof is similar as that in [19].

Lemma 3.2. The following inequality holds provided
that wi

t|ri=1 are non-zero vectors, where r is an arbitrary

6Theoretically, ‖W(i, :)‖2 can be zero, then we can regularize

DW(i, i) as DW(i, i) = 1
2‖W(i,:)‖2+ε

, where ε is a very small

constant. It is easy to see that when ε → 0, then DW(i, i) =
1

2‖W(i,:)‖2+ε
approximates DW(i, i) = 1

2‖W(i,:)‖2



Algorithm 1 LinkedFS

Input: {F,X,Y,S,P} and the number of features
expected to select, K;
Output: K most relevant features

1: Construct E and B according to the hypothesis you
choose;

2: Set t = 0 and initialize DWt
as an identity matrix;

3: while Not convergent do
4: Calculate Wt+1 = (B + αDWt)

−1E>;
5: Update the diagonal matrix DWt+1

, where the
i-th diagonal element is 1

2‖Wt+1(i,:)‖2 ;
6: t = t+ 1;
7: end while
8: Sort each feature according to ‖W(i, :)‖2 in de-

scending order and select the top-K ranked ones.

number [19].∑
i

‖wi
t+1‖2 −

∑
i

‖wi
t+1‖2

2‖wi
t‖2

≤
∑
i

‖wi
t‖2 −

∑
i

‖wi
t‖22

2‖wi
t‖2

(3.25)

Proof. Substitute x and y in Eq. (3.24) by ‖wi
t+1‖2

and ‖wi
t‖22, respectively, we can see that the following

inequality holds for any i.

(3.26) ‖wi
t+1‖2 −

‖wi
t+1‖2

2‖wi
t‖2
≤ ‖wi

t‖2 −
‖wi

t‖22
2‖wi

t‖2
Summing Eq. (3.26) over i, we see that Eq. (3.25) holds.

According to Lemma (3.2), we have the following
theorem:

Theorem 3.3. At each iteration of Algorithm 1, the
value of the objective function in Eq. (3.19) monotoni-
cally decreases.

Proof. It can be easily verified that Wt+1 in line 4 of
Algorithm 1 is the solution to the following problem,

Wt+1 = arg min
W

tr(W>(B + αDWt
)W − 2EW),

which indicates that,

tr(W>
t+1(B + αDWt)Wt+1 − 2EWt+1)

≤ tr(W>
t (B + αDWt

)Wt − 2EWt)

That is to say,

tr(W>
t+1BWt+1 − 2EWt+1) + α

∑
i

‖Wt+1(i, :)‖22
2‖Wt(i, :)‖2

≤ tr(W>
t BWt − 2EWt) + α

∑
i

‖Wt(i, :)‖22
2‖W(

ti, :)‖2

Then we have the following inequality,

tr(W>
t+1BWt+1 − 2EWt+1) + α

∑
i

‖Wt+1(i, :)‖2

− α(
∑
i

‖Wt+1(i, :)‖2 −
∑
i

‖Wt+1(i, :)‖22
2‖Wt(i, :)‖2

)

≤ tr(W>
t BWt − 2EWt) + α

∑
i

‖Wt(i, :)‖2

− α(
∑
i

‖Wt(i, :)‖2 −
∑
i

‖Wt(i, :)‖22
2‖W(

ti, :)‖2
)

Meanwhile, according to Lemma 3.2, we have,∑
i

‖Wt+1(i, :)‖2 −
∑
i

‖Wt+1(i, :)‖22
2‖Wt(i, :)‖2

≤
∑
i

‖Wt(i, :)‖2 −
∑
i

‖Wt(i, :)‖22
2‖W(

ti, :)‖2

Therefore, we have the following inequality:

tr(W>
t+1BWt+1 − 2EWt+1) + α‖Wt+1‖2,1

≤ tr(W>
t BWt − 2EWt) + α‖Wt‖2,1

which indicates that the objective function of Eq. (3.19)
monotonically decreases using the updating rules in
Algorithm 1. Since B + αDWt is a positive definite
matrix, the iterative approach in Algorithm 1 converges
to an optimal solution, which completes the proof.

4 Experiments

In this section, we present the experiment details to
verify the effectiveness of the proposed framework,
LinkedFS. After introducing social media data used in
experiments, we first confirm if linked data contains ad-
ditional information than data randomly put together,
then study how different relational information affects
feature selection performance. In particular, we inves-
tigate how feature selection performance changes with
different factors such as number of selected features, the
amount of labeled data, which relational hypothesis im-
pacts the performance most, and the relationships be-
tween the factors.

4.1 Social Media Data Two real-world social me-
dia datasets are Digg and BlogCatalog. For both
datasets, we have posts and their social contextual in-
formation such as user-post relationship.

Digg: Digg7 is a popular social news aggregator
that allows users to submit, digg and comment on
stories. It also allows users to create social networks by

7http://www.digg.com



Table 1: Statistics of the Datasets
BlogCatalog Digg

# Posts 7,877 9,934
# Original Features 84,233 12,596
# Features after TFIDF 13,050 6,544
# Classes 14 15
# Users 2,242 2,561
# Following Relations 55,356 41,544
Ave # Posts 3.5134 3.8790
Max # Followers 820 472
Min # Followers 1 1
Network Density 0.0110 0.0063
Clustering Coefficient 0.3288 0.2461

designating other users as friends and tracking friends’
activities. We obtain this dataset from [12]. The
“following” relationships form a directed graph and the
topics of stories are considered as the class labels.

BlogCatalog: BlogCatalog8 is a blog directory
where users can register their blogs under predefined
categories, which is used as class labels of blogs in our
work. This dataset is obtained from [24]. The “follow-
ing” relationships in BlogCatalog form an undirected
graph, which means the CoFollowing and CoFollowed
relationships in this dataset are the same.

The posts are preprocessed for stop-word removal
and stemming. Obviously irrelevant features (terms)
are also removed using TFIDF, a common practice
in information retrieval and text mining [25]. Some
statistics of these datasets are shown in Table 1.

4.2 Preliminary Verification Before conducting
extensive experiments for feature selection, we validate
if it is worthy of doing so. For the four relations, we
form a null hypothesis for each: there is no difference
between relational data and random data. If the null
hypothesis is rejected, we then proceed to perform ex-
tensive experiments for feature selection. The difference
is measured by a topic distance (Tdist) defined next.

Let ci be the class vector for post pi, where ci(j) =
1 if pi belongs to the class cj , ci(j) = 0 otherwise. The
topic distance between two posts, pi and pj , is defined
as the distance between their class vectors, ci and cj :

(4.27) T p
dist(pi, pj) = ‖ci − cj‖2.

For each post pi, we construct two vectors cpt(i) and
cpr(i): the former by calculating the average T p

dist

between pi and other posts from the same user, and the
latter by calculating the average T p

dist between pi and
randomly chosen posts from other users. The number of

8http://www.blogcatalog.com

Table 2: Statistics of Tdist to Support Relation Hy-
potheses (α = 0.01)

Digg BlogCatalog

CoPost <1.00e-14* <1.00e-14*
CoFollowing <1.00e-14* 2.80e-8*
CoFollowed <1.00e-14* 1.23e-8*
Following <1.00e-14* 1.23e-8*

randomly chosen posts is the same as the size of co-posts
of pi in the CoPost relation.

The topic distance between two users is defined as:

(4.28) Tu
dist(ui, uj) = ‖T̄ ∗(ui)− T̄ ∗(uj)‖2;

where T̄ ∗(ui) ∈ Rk, T̄ ∗(ui) =

∑
pj∈Fi

cj

|Fi| is the topic

interest distribution of ui, and its jth element represents
the probability of ui interested in the jth class. In the
same spirit of constructing {cpt, cpr}, for each user
ui, we construct {cfit(i), cfir(i)}, {cfet(i), cfer(i)} and
{fit(i),fir(i)} by calculating their average Tu

dist(ui, uj)
according to CoFollowing, CoFollowed, and Following
relations, respectively.

With the four pairs of vectors, we perform a two-
sample t-test on each pair. The null hypothesis, H0,
is that: there is no different between the pair; the
alternative hypothesis, H1, is that the average topic
distance following a relation is less than that without.
For example, for the CoPost relation, H0: cpt = cpr,
and H1: cpt < cpr. The t-test results, p-values, are
shown in Table 29. The star (∗) next to the p-value
means that there is strong evidence(p < 0.01) to reject
the null hypothesis. We observe that p-values for all
four pairs are close to zero on both datasets. Hence,
there is strong evidence to reject the null hypothesis.
In other words, these relations are not random patterns
and we now check how they help feature selection.

4.3 Quality of Selected Features and Deter-
mining Factors For both datasets, we randomly and
evenly (50-50) split data into training data, T and
test data, U . Following [19, 29, 26], feature quality
is assessed via classification performance. If a fea-
ture subset is more relevant with the target concept,
a classifier trained with the subset should achieve bet-
ter accuracy [28]. Linear SVM [8] is used for clas-
sification. As a common practice, the parameters in
feature selection algorithms and SVM are tuned via
cross-validation. Since the performance of supervised

9We use the “ttest2” function from Matlab, which reports p-
value as 0 if p-value is too small, i.e., exceeding the decimal places

one allows. In our work, we use “<1.00e-14” when Matlab reports
p-value as 0, which indicates it is significant.



learning improves with the number of labels data,
we fix U and sub-sample T to generate training sets
of different sizes, {T5, T25, T50, T100}, corresponding to
{5%, 25%, 50%, 100%} of T , respectively. Another fac-
tor affecting learning performance is the number of fea-
tures. Usually, other things being equal, the fewer fea-
tures, the better. We set the numbers of selected fea-
tures as {50, 100, 200, 300}.

Four representative feature selection algorithms are
chosen as baseline methods: ttest (TT), Information
Gain (IG), FishserScore (FS) [6], and Joint `2,1-Norms
(RFS) [19]10 where RFS applies `2,1 for both loss
function and regularization, and FishserScore selects
features by assigning similar values to the samples
from the same class and different values to samples
from different classes. We compare the four baseline
methods with four methods based on LinkedFS, i.e.,
CoPost (CP), CoFollowing (CFI), CoFollowed (CFE),
and Following (FI). The results are shown in Tables 3
and 4 for Digg and BlogCatalog, respectively. Since the
Following relations in BlogCatalog are undirected, CFI
is equivalent to CFE, having the same performance as
shown in Table 4.

General trends. As seen in Tables 3 and 4, the
performance of all the methods improves with increasing
amount of labeled data. More often than not, with more
features selected, the performance also improves. On
both datasets, TT, IF, and FS perform comparably and
RFS performs best. RFS selects features in batch mode
and considers feature correlation. It is consistent what
was suggested in [26, 29] that it is better to analyze
instances and features jointly for feature selection.

Comparison with baselines. Our proposed
methods, CP, CFI, CFE, and FI, consistently outper-
form all baseline methods on both datasets. Comparing
with the best performance of baseline methods, the rel-
ative improvement of our methods is obtained and then
averaged over different numbers of features. The results
are given in Table 5. It is clear that CP and FI achieve
better performance than CFI and CFE. That is, Co-
Post and Following hypotheses hold more strongly than
CoFollowing and CoFollowed.

Relationships between amounts of labeled
data and types of relations. Table 5 also says that
our methods work more effectively when using small
amounts of labeled data. For example, in Digg, CP is
better than the best baseline by 14.54% with T5, but
only by 4.9% with T100. In Tables 3 and 4, if we select,
for instance, 50 features, the performance using linked
data with T5 is comparable with that without linked

10We obtain the code for TT, IG and FS from fea-
tureselection.asu.edu, and RFS from the first author’s web-

page(sites.googl.com/site/feipingnie)

Table 5: Classification Accuracy Improvement of the
Proposed Methods

Improvement in Digg(%)
Datasets CP CFI CFE FI
T5 +14.54 +7.01 +4.69 +15.25
T25 +4.59 +1.59 0 +4.02
T50 +7.19 +3.92 +1.05 +8.48
T100 +4.90 +3.15 +1.63 +4.64

Improvement in BlogCatalog(%)
Datasets CP CFI CFE FI
T5 +10.71 +7.89 +7.89 +12.62
T25 +10.04 +5.00 +5.00 +9.50
T50 +9.70 +2.16 +2.16 +7.34
T100 +7.18 +0.46 +0.46 +7.67

with T100. In other words, linked data compensates the
shortage of labeled data. The finding has its practical
significance as in social media, it is not easy to obtain
labeled data but there is often abundant linked data.

4.4 Effects of β and Numbers of Selected Fea-
tures An important parameter in LinkedFS is β that
determines the impact of a relation on feature selec-
tion. A high value indicates the importance of this re-
lation, or the corresponding hypothesis holds strongly.
Another important parameter is the number of selected
features. Hence, we study how the performance of CP,
CFI, CFE, and FI varies with β and the number of se-
lected features.

The results shown in Figures 3 and 4 are of T5
and T50 of BlogCalong data, respectively. Since CFI
and CFE are equivalent for Blogcatalog, there are only
three plots for CP, CFI, and CP. CP and FI achieve
the peak performance with β = 0.1, and CFI with
β = 1e-6. The performance patterns clearly vary with
β and number of selected features. The results for
Digg show similar patterns. CoPost and Following
hypotheses hold more strongly than CoFollowing and
CoFollowed hypotheses in the two datasets. Among the
two parameters, performance is relatively more sensitive
to the number of selected features. As pointed in [26],
how to determine the number of selected features is still
an open problem.

5 Related Work

Feature selection methods fall into three categories, i.e.,
the filter model, the wrapper model and embedded
model [14]. The filter model relies on general character-
istics of the data to evaluate and select feature subsets
without involving any mining algorithm. Widely used
filter-type feature selection methods include t-test, In-
formation Gain, ReliefF and its multi-class extension



Table 3: Classification Accuracy of Different Feature Selection Algorithms in Digg

Datasets # Features
Algorithms

TT IG FS RFS CP CFI CFE FI

T5

50 45.45 44.50 46.33 45.27 58.82 54.52 52.41 58.71
100 48.43 52.79 52.19 50.27 59.43 55.64 54.11 59.38
200 53.50 53.37 54.14 57.51 62.36 59.27 58.67 63.32
300 54.04 55.24 56.54 59.27 65.30 60.40 59.93 66.19

T25

50 49.91 50.08 51.54 56.02 58.90 57.76 57.01 58.90
100 53.32 52.37 54.44 62.14 64.95 64.28 62.99 65.02
200 59.97 57.37 60.07 64.36 67.33 65.54 63.86 67.30
300 60.49 61.73 61.84 66.80 69.52 65.46 65.01 67.95

T50

50 50.95 51.06 53.88 58.08 59.24 59.39 56.94 60.77
100 53.60 53.69 59.47 60.38 65.57 64.59 61.87 65.74
200 59.59 57.78 63.60 66.42 70.58 68.96 67.99 71.32
300 61.47 62.35 64.77 69.58 77.86 71.40 70.50 78.65

T100

50 51.74 56.06 55.94 58.08 61.51 60.77 59.62 60.97
100 55.31 58.69 62.40 60.75 63.17 63.60 62.78 65.65
200 60.49 62.78 65.18 66.87 69.75 67.40 67.00 67.31
300 62.97 66.35 67.12 69.27 73.01 70.99 69.50 72.64

Table 4: Classification Accuracy of Different Feature Selection Algorithms in BlogCatalog

Datasets # Features
Algorithms

TT IG FS RFS CP CFE CFI FI

T5

50 46.54 40.96 41.31 46.16 53.37 53.01 53.01 52.84
100 46.77 43.08 43.02 48.81 53.44 52.48 52.48 53.82
200 46.84 44.06 45.66 50.77 55.94 53.61 53.61 57.30
300 46.91 44.59 43.93 52.73 57.22 55.13 55.13 60.02

T25

50 48.13 40.58 45.44 47.60 53.40 53.24 53.24 52.79
100 48.42 41.94 46.34 51.47 57.02 53.62 53.62 56.57
200 48.05 43.45 53.07 53.64 58.83 55.81 55.81 60.50
300 47.44 42.32 54.58 60.29 65.56 61.00 61.00 63.67

T50

50 48.66 52.21 48.23 52.51 56.22 53.47 53.47 56.97
100 49.11 51.61 50.72 55.38 59.32 56.00 56.00 57.43
200 48.43 51.54 53.74 62.02 68.08 63.58 63.58 65.66
300 48.20 52.21 53.67 61.78 70.95 63.75 63.75 68.76

T100

50 50.54 54.33 52.39 54.55 58.34 55.31 55.31 55.92
100 50.32 53.89 52.99 57.11 60.45 58.20 58.20 65.51
200 50.77 54.02 54.80 66.33 70.81 63.11 63.11 68.31
300 49.03 54.45 56.84 63.26 69.06 65.40 65.40 69.89
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Figure 3: Performance Variation of Our Methods in T5 from BlogCatalog Dataset
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Figure 4: Performance Variation of Our Methods in T50 from BlogCatalog Dataset

ReliefF [21], mRmR [20], LaplacianScore [10] and its
extensions [28]. The wrapper model requires one pre-
determined mining algorithm and uses its performance
as the evaluation criterion. It searches for features
better suited to the mining algorithm aiming to im-
prove mining performance. Methods in that category
include supervised algorithms [9, 6] and unsupervised
algorithms [22, 7, 4]. However, these methods are usu-
ally computationally expensive [14] and may not be able
to be applied on large scale data mining problems. For
embedded model, the procedure of feature selection is
embedded directly in the training process [2, 3].

Recently sparsity regularization such as `2,1 of ma-
trix in dimensionality reduction has been widely inves-
tigated and also applied into feature selection studies
the `2,1 of matrix is first introduced in [5] as rotational
invariant `1 norm. A similar model for `2,1-norm regu-
larization is proposed in [1, 15] to couple feature selec-
tion across tasks. Nie et al. [19] introduced a robust
feature selection method emphasizing joint `2,1-norm
minimization on both loss function and regularization.
The `2,1-norm based loss function is robust to outliers
in data points and `2,1-norm regularization selects fea-
tures across all data points with joint sparsity. Zhao
et al. [29] propose a spectral feature selection algorithm
based on a sparse multi-output regression with a `2,1
norm constraint, which can do well in both selecting
relevant features and removing redundancy. Yang et
al. [26] proposed a joint framework for unsupervised fea-
ture selection which incorporates discriminative analy-
sis and `2,1-norm minimization. Different from existing
unsupervised feature selection algorithms, this proposed
algorithm selects the most discriminative feature subset
from the whole feature set in batch mode.

The methods above focus on attribute-value data
that is independent and identically distributed. There
are recent developments that try to address rela-
tional data. In [11], the authors propose the prob-
lem of relational feature selection. Relational features
are different from traditional features. A relational
feature is, as an example in [11], Max(Age(Y )) >

65 where Movie(x), Y = {y|ActedIn(x, y)} where
ActedIn is a relation that connects two objects x and y.
Relational feature selection identifies a particular rela-
tion that links a single object to a set of other objects.
Feature selection with linked data (or LinkedFS) still se-
lects traditional features. Since LinkedFS involves more
than one type (or source) of data such as user-post re-
lationships and user-user relationships, it is related to
multi-source feature selection (MSFS) [27] with the fol-
lowing differences: (1) sources in MSFS are different
views of the same objects while additional sources in
LinkedFS are different types of relations; and (2) MSFS
and LinkedFS take different approaches to data of dif-
ferent sources: MSFS linearly combines multiple sources
to a single source before applying single source feature
selection, and LinkedFS considers a relation as a con-
straint.

6 Conclusions

Social media data differs from traditional data used in
data mining. It presents new challenges to feature se-
lection. In this work, we suggest to research a novel
problem - feature selection with linked data. In par-
ticular, we extract four types of relations from linked
data and propose a simple framework (LinkedFS) to in-
tegrate relational constraint into a state-of-the-art fea-
ture selection formulation. We further show that an op-
timal solution can be developed for LinkedFS, and con-
duct extensive experiments to show its efficacy and the
relationships among several factors intrinsic to feature
selection: numbers of selected features, percentages of
labeled data, and importance of four types relations in
performance improvement. This work aims to show the
effectiveness of using linked data for feature selection.
Our future work will focus on studying the combina-
tion of relations in a general model that can efficiently
determine their contributions to feature selection, ex-
ploring additional and relevant information hidden in
social media, and develop an open-source platform for
collaborative research in this challenging new direction
of feature selection.
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